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Region-of-Interest CT Reconstruction using Object
Extent and Singular Value Decomposition

Aurélien Coussat∗, Simon Rit∗, Rolf Clackdoyle†, Michel Defrise‡, Laurent Desbat†, Jean Michel Létang∗

Abstract—In computed tomography, a whole scan of the object
may be impossible, generally because the object is larger than the
scanner field-of-view. Such a set up leads to truncated projections.
Using differentiated backprojection, the reconstruction problem
can be reduced to a set of one-dimensional problems consisting
of the inversion of the Hilbert transform. When the object partly
overlaps the scanner field-of-view, this problem is commonly
referred to as the “one-sided truncated Hilbert transform”. Our
work investigates this situation and proposes a novel approach
to address it. Using differentiated backprojection, and the object
extent supposedly known a priori, a pseudo-inverse of the trun-
cated Hilbert transform is computed by truncated singular value
decomposition, and its truncated singular values are replaced
by a simple estimation. The estimation is calculated using the
singular value decomposition of the known convex hull filled
with a constant value per line computed from the corresponding
projection in the direction of the Hilbert transform. Experiments
illustrate the image quality improvements resulting from this
approach compared to a simple truncation of the singular
values and the reconstruction speed improvement compared to
two-dimensional iterative reconstruction solving penalized least
squares with the conjugate gradient algorithm.

Index Terms—Image reconstruction, Computed tomography,
Inverse problems

I. INTRODUCTION

Traditional two-dimensional (2D) computer tomography
techniques generally require X-ray irradiation of the entire
transaxial slice of the object in order to achieve image re-
construction of satisfactory quality. However, in some situ-
ations, such a scan is difficult or impossible to perform. For
instance, the object might be too large for the scanner field-of-
view (FOV), making conventional reconstruction approaches
ineffective. Relatively recent analytic results have shown that
accurate region-of-interest (ROI) reconstruction is possible for
certain configurations of truncated projection data [1].

An important result used in this article concerns differenti-
ated backprojection (DBP): by backprojecting the derivatives
of the projection data, one obtains the directional Hilbert
transform of the volume along a set of line-segments. When
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the Hilbert transform of a function is only known along a line-
segment, the terminology “finite Hilbert transform” has been
used [2], [3, Chapter 11]. In the tomographic reconstruction
context, it is usually called the “truncated Hilbert transform”
and we maintain that terminology here. Image reconstruction
is possible by inverting the truncated Hilbert transform along
each segment. The main difficulty of this method comes from
the inversion of the truncated Hilbert transform, for which an
analytic formula is not known in all cases. The conditions
necessary to invert the truncated Hilbert transform along each
segment depend on the locations of the segment’s endpoints
with respect to the object extent.

Throughout this paper, the geometry is assumed 2D, the
object extent is assumed known (or, at least, a convex region
containing the object is assumed known), and we assume a
data configuration defined by a circular FOV. The angular
range of the acquisition is considered complete (180◦ for
parallel-beam simulation data, 180◦ plus divergence for fan-
beam patient data). The measurement lines are exactly those
that cross the circle defining the FOV, and no other lines.
Consequently, the segments of directional Hilbert transforms
all lie inside the FOV; no endpoints can be outside the circle.
Note, however, that the object does not have to be contained
inside the FOV.

If the two endpoints of a directional Hilbert segment lie
outside the object, then an analytic formula [2] can be used
to invert the Hilbert transform, as was described by Noo et
al. in the context of 2D tomography [4]. The bold segment of
Figure 1a illustrates a segment with two endpoints outside the
object. The reconstruction method based on the DBP and this
truncated Hilbert transform inversion formula has sometimes
been referred to as the “two-sided Hilbert inversion”. We pre-
fer to adopt the terminology “two-endpoint Hilbert inversion”
in this paper. In 2006, it was shown that only a single endpoint
is required to lie outside of the object (and within the FOV)
in order to ensure a unique and stable solution along the
line [5], such as the bold segment of Figure 1b. Although the
endpoints must be inside the FOV, the orientation of the line-
segments can be selected within the backprojection procedure.
The region that can be reconstructed thus became the full
FOV, provided the FOV is not completely enclosed by the
object. In spite of this powerful result, no analytic inversion
formula was presented in [5], and an iterative algorithm was
proposed to invert the truncated Hilbert transform. Here, we
refer to this situation of one endpoint of a directional Hilbert
segment being outside the object and one endpoint inside as
the “one-endpoint” Hilbert transform. Finally, when the FOV
is completely included within the extent of the object (which
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Fig. 1: Reconstruction scenarios. The gray areas are the
regions that can theoretically be reconstructed using horizontal
Hilbert lines in the two-endpoint set-up, such as the bold seg-
ment in (a). Note the missing regions at the top of the FOVs,
representing the limit of the two-endpoint inversion formula.
On the other hand, full-FOV reconstruction is possible in the
one-endpoint case, because only one end of the Hilbert line-
segment is required to lie outside the object; (b) shows such
a segment.

might be called the zero-endpoint situation), the inversion
problem is known as “interior tomography” (following the
definition given by Natterer [6, Chapter VI]). This problem
has been proven to not have a unique solution [6] except
if some a priori information is provided, e.g., if the object
is known in a small region inside the FOV [7] or if the
object is piecewise smooth [8]. Neural networks have been
designed to solve the interior problem with machine learning,
either from DBP data [9], directly from sinogram data [10], or
using data extrapolation schemes [11], [12]. For further details,
a thorough literature review on tomographic reconstruction
using deep learning was also recently made available [13].

Numerous other works explore ROI reconstruction. Iter-
ative reconstruction has been a popular approach and sev-
eral algorithms have been investigated, including ML-EM-
based algorithms [5], [14]–[16] and the conjugate gradient
algorithm [17], [18]. However, these iterative algorithms are
computationally expensive, not only because they generally
require many iterations, but also because the full object
must be stored in computer memory during the iterations. A
different technique to perform approximate ROI reconstruction
is the so-called “edge-padding”, which consists of estimating
the truncated part of the projections and using a regular full-
data reconstruction algorithm [19]–[22]. As mentioned above,
direct, analytic reconstruction has been shown to be possible
in part of the FOV (shown in gray in Figure 1) using DBP
and two-endpoint Hilbert inversion [4], [23], [24]. Similarly,
the virtual fanbeam approach [?], [14], [25] can reconstruct
some part of the FOV by rebinning the projections to a new
(virtual) source trajectory. Finally, the work of Defrise et
al. [5] gave hope for a full-FOV and computationally-efficient
reconstruction by inverting the one-endpoint Hilbert transform
with projection onto convex sets (POCS). For nearly all non-
interior ROI problems, the DBP based methods require the

reconstruction of some one-endpoint line-segments to recon-
struct the entire FOV. The present article therefore focuses on
the inversion of the truncated Hilbert transform in the one-
endpoint scenario.

A central issue being addressed in this article concerns the
rapid loss of stability incurred when inverting the one-endpoint
Hilbert transform when approaching the interior endpoint, as
previously described [5], [7], [26]. However, other methods
performing ROI reconstruction for the same geometry exhibit a
similar artifact near the interior boundary [14], [15], [18], [27]
suggesting that the effect might be intrinsic to the tomography
problem, not just to the Hilbert inversion.

Singular value decomposition (SVD) can be used to invert
the discrete truncated Hilbert transform and reconstruct a vol-
ume, and classical forms of regularization (such as Tikhonov
regularization [28]) can be applied. Our work provides an anal-
ysis of this artifact using the SVD of the one-endpoint discrete
Hilbert transform, and proposes a procedure to partially correct
it. The procedure is as follows:
• the DBP procedure is applied to the measured projection

data to yield a directional Hilbert image of the original
volume, which consists of a set of parallel Hilbert line-
segments;

• each parallel Hilbert line-segment generates a discrete
one-dimensional (1D) linear inverse problem, whose ma-
trix representation depends on the number of voxels of
the line-segment that are inside the FOV, the number of
voxels of the line that intersect the object extent, and the
relative position of these two segments;

• a SVD of this matrix is performed for each Hilbert line-
segment;

• each line-segment problem is solved using a standard
truncated SVD approach with a new additional correction
term based on the knowledge of the object extent;

• the final image is reconstructed by assembling the parallel
line-segment solutions to build the 2D image.

Previous works analytically examined the SVD for the
continuous truncated Hilbert transform [29]–[33]. This article
focuses on numerical aspects of the discrete truncated Hilbert
transform. We compare our proposed method against an itera-
tive reconstruction method which directly reconstructs from
the projections, without DBP: the conjugate gradient algo-
rithm [34] minimizing a penalized least-square cost function.

This article is organized as follows. Section II provides the
theoretical foundations of this work, details how the correction
is performed and describes the experiments conducted on two
standard phantoms shown in Figure 2 and on a patient data
set shown in Figure 6. Section III presents the results of the
experiments. Section IV discusses the results and connects
them to the existing literature. Finally, Section V briefly
concludes.

II. MATERIALS AND METHODS

A. DBP theory

This section summarizes the theory behind DBP and Hilbert
inversion. The theory and notation mostly come from the two
main articles discussed in Section I [4], [5].
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(a) Shepp-Logan phantom.
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(b) Thorax FORBILD phantom.
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Fig. 2: Two 2D phantoms used during simulations. The FOV
is represented by the red circle and the object extent Ω by
the green ellipse. The FOV diameter is set to 400 pixels. The
transparent red circles visible on (a) represent other considered
FOV diameters of 300 and 500 pixels. The Hilbert filtering
direction is vertical (blue arrow). For each column passing
through the FOV, the integers a1, a2, a3, a4 are defined along
the blue line by certain intersections with the FOV and the
object extent.

Let f : R2 → R be a density function. The attenuation sum
of the ray at a distance r ∈ R to the origin at angle φ ∈ [0;π[,
a measurement acquired by the scanner, is modeled as

p(φ, r) =

∫ +∞

−∞
f
(
rαφ + sβφ

)
ds (1)

where αφ = (cosφ, sinφ) and βφ = (− sinφ, cosφ). The
projections p are also known as the Radon transform of f [6].
Projections for angles outside the range [0;π[ can be obtained
within [0;π[ using the relation p(φ+π, r) = p(φ,−r), thus any
measurements spanning an angular arc of at least π is enough
to retrieve p for any φ. The problem of ROI tomography is to
recover f from p when the values of r span less than their full
range, i.e. when the projections of f are truncated. Truncated
projections occur when the scanner FOV does not completely
encompass the object, as shown in Figure 1.

The reconstruction technique presented in this article is
based on DBP, the backprojection of the derivative along r of
the projections. Formally, this procedure is defined by applying
the differential operator in the standard backprojection formula
for a given backprojection arc [θ; θ + π]:

bθ(x) =

∫ θ+π

θ

∂p (φ, r)

∂r

∣∣∣∣
r=x·αφ

dφ (2)

with x = (x1, x2).
There exists a link of great significance between the DBP

image and the initial density function f :

bθ(x) = −2πHθf(x) (3)

with Hθf representing the directional Hilbert transform of f
in the direction of the vector βθ = (− sin θ, cos θ):

Hθf(x) = −
∫ +∞

−∞

f (x− sβθ)
πs

ds. (4)

The symbol −
∫

denotes the Cauchy principal value which
handles the singularity at s = 0. The angle θ represents the
direction of the Hilbert transform, referred to as the Hilbert
direction in the following. The DBP procedure thus yields a
Hilbert image Hθf of the original object f , scaled by −2π.
The Hilbert image of a 2D signal arises from applying the
Hilbert transform in the direction θ along each of its 1D
“slices”.

To simplify the presentation and the numerical implemen-
tation, this article always considers θ = 0, limiting the
regions possibly reconstructed but simplifying the numerical
analysis: this choice in particular avoids any diagonal spatial
interpolation, since it will align the problem along the vertical
columns of pixels in the image. Thus, considering θ = 0 in
Equations (2) to (4) gives

b0(x) = −2πH0f(x) (5)

where

b0(x) =

∫ π

0

∂p(φ, r)

∂r

∣∣∣∣
r=x·αφ

dφ (6)

and

H0f(x) = −
∫ +∞

−∞

f(x1, x
′
2)

π(x2 − x′2)
dx′2. (7)

In order to estimate b0 at some point x, the derivative of
p along r is needed for every φ. The set of points satisfying
this condition corresponds to those lying within the FOV. As a
consequence, the differentiated then backprojected projections
yield a correct Hilbert image inside the FOV, even using
truncated projections. Performing an inverse Hilbert transform
(assuming such an inverse is known) along each 1D slice in
the vertical direction then recovers the initial density function
f . The 2D reconstruction problem is thus simplified into a set
of independent 1D problems.
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Fig. 3: Discretization grid of the sought object function f . The
space is represented as a discrete image which samples f at
different locations. The grid is sufficiently large to cover the
entire object extent Ω. The pixel value is the value of f at the
pixel center.

B. Discretization

As previously mentioned, the one-endpoint set-up has no
known analytical inverse and must therefore be solved numer-
ically. This section details the discretization process used in
our work. We assume that f(x) = 0 outside a known convex
region Ω which we refer to as the object extent.

The reconstruction space is discretized on a grid of pixels.
The discretization is achieved by sampling f at points rep-
resenting the center of the pixels. For simplicity, this article
considers the pixel size to be equal to 1 × 1, even though
the results can be generalized to any rectangular pixel size.
Thus, the discrete counterpart of f , named F, is defined as an
I × J ∈ N2 image sampling f :

Fi,j = f

(
−I

2
+ i,−J

2
+ j

)
(8)

for 1 ≤ i ≤ I and 1 ≤ j ≤ J . We refer to the (vertical)
columns and (horizontal) rows of the image as the elements
Fi,j with a fixed value of i or fixed value of j, respectively. The
image F is the sought solution to the reconstruction problem
and the sampling pattern for F can be visualized according to
Figure 3.

The I × J image G is defined as the discrete DBP of f on
the same grid as F but shifted by half a pixel along the x2

axis (Hilbert direction):

Gi,j = − 1

2π
b0

(
−I

2
+ i,−J

2
+ j − 1

2

)
(9)

for 1 ≤ i ≤ I and 1 ≤ j ≤ J . The factor −1/2π comes from
Equation (5). Since b0 is known from Equation (6), the image
G is given by applying the DBP to the projection data. Note
the samples being shifted by half the sample size: this “half-
pixel shift” has been shown to improve the resolution when
modeling the discrete Hilbert transform [35]. We assume that
the grids of F and G are large enough to contain the FOV

ROI
F | | | | | | | | | | | | | | | | | | | |

1 Ja2 a4

f ∈ RN

Ω (object space)

G| | | | | | | | | | | | | | | | | | | |
1 Ja1 a3

g ∈ RM

FOV (data space)

Fig. 4: Definitions of the regions of a single column, rep-
resented by the horizontal lines. Their graduations represent
pixel centers. The dashed lines represent the FOV borders
while the dotted lines represent borders of Ω. The exact
values at which these borders lie are real values, whereas their
discrete representations (a1, a2, a3, a4) are integers. The FOV
borders a1 and a3 are located inside the FOV; and the borders
of Ω, a2 and a4, are located outside Ω. The ROI is defined
as the overlap between Ω and the FOV, and is shown here as
the gray rectangle.

and Ω. The goal is to retrieve F from G, for that part of F
lying inside the FOV.

According to the DBP theory, each column of G provides
the data for a 1D discrete inverse problem to reconstruct the
same column of F. The 1D problems being independent, this
section focuses on one single 1D problem (i.e. the reconstruc-
tion of one column of the image F). In other words, we focus
on the reconstruction of a fixed i = i0 of the image, and
we will omit this index. Noting that the integration limits of
Equation (7) can be reduced to the interval where f is non-
zero, the discretized integral along the column i = i0 can be
reduced to an interval [a2, a4] ⊂ N with 1 ≤ a2 < a4 ≤ J
such that a2 and a4 entirely bound the intersection of Ω with
the line of equation x1 = − I2 + i0. Similarly, the DBP G is
known only within the FOV and the intersection of the FOV
with the same line is defined by integers a1 and a3 such that
all points x2 = −J2 + j − 1

2 , a1 ≤ j ≤ a3 strictly belong
to the FOV. For the one-endpoint problem considered here,
a1 ≤ a2 ≤ a3 ≤ a4. These definitions follow the convention
established in previous works [29], [32] and are summarized
in Figure 4. Note that the quadruplet (a1, a2, a3, a4) ∈ N4

changes with each column.
The problem consists of recovering Fi0,j for a2 ≤ j ≤ a4

from Gi0,j for a1 ≤ j ≤ a3. To simplify, we define N =
a4 − a2 + 1, M = a3 − a1 + 1 and the vectors f ∈ RN and
g ∈ RM such that

fj−a2+1 = Fi0,j for a2 ≤ j ≤ a4 (10)

and
gj−a1+1 = Gi0,j for a1 ≤ j ≤ a3. (11)

The relation between f and g is obtained by discretizing
Equation (7), yielding g = Hf with H being the M × N
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matrix such that

Hj−a1+1,j′−a2+1 =
1

π

1

j − j′ − 1
2

(12)

for a1 ≤ j ≤ a3 and a2 ≤ j′ ≤ a4. The matrix H represents
a discrete Hilbert transform in the vertical direction. Each
column has its own H, but two matrices will be identical
for two columns which have the same quadruplets up to a
translation.

C. Extended TSVD with estimated singular vectors

The SVD of the matrix H provides three different matrices
U (M × M ), Σ (M × N ) and V (N × N ) such that
H = UΣV>. The columns of U (respectively V), named
uk for 1 ≤ k ≤ M (respectively vk for 1 ≤ k ≤ N ),
form an orthonormal basis of the discrete data (respectively
object) space. Only diagonal elements of the matrix Σ are
non-zero, and they correspond to the singular values of H:
Σk,k = σk ≥ 0. They are generally decreasingly sorted:
σk ≥ σk+1.

A well-known method of resolving linear inverse problems
is by the procedure known as truncated SVD (TSVD). The
idea is to consider the true function f in the basis of singular
vectors, so f =

∑N
k=1 ckvk and to construct an approximate

(regularized) solution by only considering those vectors whose
singular values are larger than some threshold and discarding
the others as not recoverable from the data. Thus fTSVD =∑kc
k=1 ckvk at the cutoff index kc. From the equation Hvk =

σkuk, it is easily seen that the unknown coefficients ck are
found by ck = 〈g,uk〉/σk which is only possible for non-
zero σk, and therefore kc must be chosen as no more than the
rank of H. More aggressive (smaller) choices of kc can be
used to discard components with very small non-zero values
of σk.

In this work we extend the TSVD procedure. We refer to this
extension as extended SVD (XSVD). The idea is to augment
the TSVD reconstruction by estimating the cut-off singular
components for k > kc using the measured ray-sum p(0, x1).
From Ω and p(0, x1), a rough estimate f̄ of the sought f can
be defined. Using this estimate, we construct a correction term
f̄

corr which provides components of the cutoff singular vectors.
The reconstruction formula is thus

fXSVD = fTSVD + f̄
corr

=

kc∑
k=1

ckvk + f̄
corr (13)

where

f̄
corr

=

N∑
k=kc+1

c̄kvk with c̄k = 〈f̄ ,vk〉. (14)

It is readily verified that the procedure of Equations (13)
and (14) is equivalent to formulating a new image reconstruc-
tion problem by subtracting the projections of f̄ from the
measured projections and reconstructing a difference image
to be added to f̄ by using (unmodified) TSVD with cutoff
kc. Since the sought intensity values of the new “difference”
reconstruction problem are smaller than those of f (assuming
a reasonable estimate f̄ ), the errors incurred using TSVD are

anticipated to be smaller, resulting in an improved reconstruc-
tion with our XSVD approach.

We define the estimate analytically in the continuous, 2D
space. Our estimate f̄ : R2 → R is defined such that
• f̄ has the same extent Ω as f ;
• the projections of f and f̄ in the Hilbert direction (the

sum of the samples over the line) are equal:∫ +∞

−∞
f(x1, x2) dx2 =

∫ +∞

−∞
f̄(x1, x2) dx2 = p(0, x1);

(15)
• for each line in the Hilbert direction, indexed by x1, the

values of f̄ are 0 outside Ω and constant in Ω.
In mathematical terms, f̄ can be defined as

f̄(x1, x2) =

{
p(0,x1)
W (x1) (x1, x2) ∈ Ω

0 otherwise
(16)

where, for a fixed x1, W (x1) corresponds to the width of
Ω in the vertical direction at x1 and is given by W (x1) =∫ +∞
−∞ 1Ω(x1, x2) dx2 with 1Ω the indicator function (char-

acteristic function) of Ω. Then f̄ is discretized in the same
fashion as F to produce F̄ and we define f̄ ∈ RN from F̄ as per
Equation (10). Examples of resulting volumes are illustrated
in Figure 5.

This XSVD approach, with our choice of f̄ , is the principal
original contribution of this article.

D. Experiments

Computer simulations were conducted on both
• the 2D Shepp-Logan phantom [36] (Figure 2a);
• a 2D central slice of the standard three-dimensional (3D)

thorax FORBILD phantom1 (Figure 2b).
For each of 720 truncated projections, equally spaced over a
180◦ arc, 6× 400 ray-sums were computed analytically from
the mathematical descriptions of the phantoms. Six rays were
simulated and averaged per detector pixel, resulting in a 400-
pixel wide FOV. Two other FOVs of 300 and 500 pixels were
also simulated by adjusting the number of rays. The chosen
Hilbert direction was vertical (θ = 0◦), to avoid any diagonal
interpolation. The estimates F̄ were computed for each phan-
tom and can be visualized in Figure 5. Reconstructions using
the DBP approach were performed on a I×J = 1024×1024
pixel grid. Each pixel measured about 0.2 mm× 0.2 mm for
the Shepp-Logan reconstruction and 0.4 mm× 0.4 mm for the
thorax phantom reconstruction. Two reconstruction procedures
were considered:
• by TSVD, empirically choosing a per-column cutoff kc =
K + 1 (where K = a3 − a2 + 1 is the number of points
of f to reconstruct in the FOV), which produced the best
looking result;

• by XSVD with an experimental cutoff set to kc = K,
with and without noise applied to the projection data in
order to assess the reconstruction stability.

Noisy measurements were simulated by adding pre-log
Poisson noise to the projections, following the methodology

1See http://www.imp.uni-erlangen.de/phantoms/thorax/thorax.htm.

http://www.imp.uni-erlangen.de/phantoms/thorax/thorax.htm
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(a) Shepp-Logan estimation.
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(b) Thorax FORBILD estimation.
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Fig. 5: Volume estimates F̄ used to perform reconstructions of
the 2D phantoms shown in Figure 2. The volumes are column-
wise constant in Ω. The width is limited to the FOV: the
Hilbert direction being vertical, the other columns will never
be used.

introduced in a previous work [37]. The phantom densities
were weighted by 0.018 79 mm−1, corresponding to the linear
attenuation coefficient of water at 75 keV. The number of
photons received per detector pixel without object in the beam
was constant for all pixels and set to 1.5× 106. The signal-
to-noise ratio is consequently higher for the FORBILD thorax
phantom which is thicker. Note that the noise addition is not
meant to be realistic but a simple evaluation of the robustness
to noise.

For comparison purposes, Shepp-Logan reconstructions
were also performed using a 2D conjugate gradient reconstruc-
tion procedure to optimize a gradient-penalized least squares
(GPLS) cost function. The GPLS cost function, for a linear
system Ay = p, is given by

yGPLS = arg min
ŷ
‖Aŷ − p‖22 + γ ‖∇ŷ‖22 (17)

where γ represents a Tikhonov regularization parameter [28]
applied on the `2-norm of the gradient of the solution. For
us, y is the image function, A the projection matrix and p
the noise-free projection data (sinogram). A Joseph projector
was chosen to implement the projection operator A [38]. The
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Fig. 6: Experimental set-up for real-data reconstructions. The
green oval encompasses the object extent. The red circle
represents a region-of-interest simulated from non-truncated
projections. The reconstruction shown here is a full-data FBP
reconstruction that also serves as a reference. The dotted
purple line indicates the location of the profile considered in
Figure 18c.

object extent Ω was provided as a priori knowledge to the
algorithm.

To further assess the proposed method, real data were
also reconstructed. 2D projections of a patient head were
acquired with an XVI Elekta cone-beam CT but only the
line corresponding to the slice of the circular source trajectory
was kept in each projection. The detector row was made of
256 pixels of 1.6 mm. The resulting sinogram consisted of
195 fan-beam projections spanning an angular range of about
198◦. Acquired projections were non-truncated and used to
reconstruct a reference filtered-backprojection (FBP) image af-
ter flat-field correction and without beam-hardening or scatter
corrections. Projections were then truncated to simulate a FOV
that suited our requirements. An approximate object extent
was used to encompass the actual patient head extent. The
FOV and the approximate extent are illustrated in Figure 6.
Since Equation (6) only applies to parallel projections, the
DBP was instead computed using a fan-beam DBP formula [4,
Equation (35)]. The TSVD and XSVD reconstructions were
computed on a 256× 256 pixel grid of 1 mm× 1 mm. As for
simulated experiments, cutoffs were empirically chosen to be
equal to K for XSVD and K + 1 for TSVD.

The implementation of our simulations relies on the Re-
construction ToolKit (RTK) 2.0 [39] for the operations of
projection and backprojection. The derivative step was per-
formed using two-point finite differences. Backprojection at
a given pixel is pixel-based, i.e., the sum of interpolated
projections at the projected positions of the pixel for every
source angle. The fan-beam DBP formula [4, Equation (35)]
was implemented using NumPy 1.15.4. GPLS is implemented
using RTK’s conjugate gradient algorithm. Reconstruction
times were measured on an Intel R© Xeon(R) E-2176M CPU
at 2.70 GHz on 12 cores.
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Fig. 7: The singular values of H for (a1, a2, a3, a4) =
(83, 158, 481, 865) (corresponding to the reconstruction ge-
ometry defined by the Shepp-Logan phantom at its central
512th column) plotted using a logarithmic scale. Here, M =
481− 83 + 1 = 399, and K = 481− 158 + 1 = 324. The first
values are close to 1 and the last close to 0. Values quickly
decay around k = K. The singular value σK is highlighted in
orange and is approximately equal to 0.57.

III. RESULTS

A first insight into the behavior of H was obtained by
examining its singular value spectrum. We consider the case
(a1, a2, a3, a4) = (83, 158, 481, 865) corresponding to the
geometry of the 512th column of the Shepp-Logan phan-
tom, as shown in Figure 2a. The SVD of the corresponding
M×N = 399×708 matrix H was computed and the decreas-
ingly sorted singular values σk were plotted, see Figure 7.
The plotted spectrum shows that all singular values σk tend
towards 1 or 0, except a small transition region starting with
k = a3 − a2 + 1 where singular values rapidly decay from 1
towards 0. This behavior was typical of all columns of both
phantoms, with the transition region systematically beginning
at k = a3 − a2 + 1 = K, which is the number of points of f
to reconstruct in the FOV.

To the kth singular value is associated a pair of singular
vectors (uk,vk) respectively equal to the kth columns of U
and V. Their components can be directly mapped onto the
spatial domain (either the data space or the object space).
Figures 8 and 9 show their behavior for various singular values
σk, for two different quadruplets (a1, a2, a3, a4). For singular
values close to 1, the components of both the singular vectors
uk and vk strongly oscillate in the ROI (within [a2; a3]),
while the remaining components are extremely small. As σk
decreases towards 0, the oscillations dissipate inside the ROI
and develop outside the ROI. Finally, for σk close to 0, the
oscillations lie outside the ROI only. To summarize, singular
values approaching 1 contribute within the ROI, singular
values approaching 0 contribute outside the ROI, and singular
values in between contribute to both.

Figures 10 and 11 show the reconstructions of the two phan-
toms illustrated in Figure 2, by XSVD and TSVD, respectively.
A column-based threshold value of kc = K was chosen for
XSVD and K+1 for TSVD. The image quality improvements
caused by XSVD can be assessed, and are more obvious on

Figure 10a. The whole reconstruction area is shown, but the
only region where a satisfactory reconstruction is expected is
the ROI, that is the intersection of the FOV and Ω.

Figure 12 shows XSVD and TSVD reconstructions based on
noisy measurements of the same two phantoms of Figure 2. As
before, cutoffs were set to kc = K for XSVD and kc = K+1
for TSVD. The reconstructions are deteriorated by the noise,
especially when performed using TSVD.

Different values for kc were also tested around K in the
noise-free case. Figures 13a and 13b show XSVD recon-
structions of the Shepp-Logan phantom for kc = K − 1
and kc = K + 1, respectively. Figures 13c and 13d show
XSVD reconstructions of the FORBILD thorax phantom for
kc = K − 1 or kc = K + 1, respectively. Profiles of the
Shepp-Logan reconstructions for three FOV diameters, with
additional reconstructions for other values of kc, are displayed
in Figures 14a, 14c and 14e. Figures 14b, 14d and 14f also
show profiles of reconstructions at different FOV diameters
and cutoff values using TSVD. The same results for the
FORBILD thorax phantom are presented in Figure 15.

For comparison purposes, reconstructed images were ob-
tained by applying the GPLS method, implemented using
RTK’s conjugate gradient reconstruction algorithm on noise-
free data. Figure 16 shows the reconstructions, which were
performed using a Tikhonov regularization (see Equation (17))
empirically tuned to γ = 3 for the Shepp-Logan phantom
and γ = 0.4 for the FORBILD thorax phantom. A limit of
1000 iterations was set – higher iteration numbers did not
significantly improve the reconstruction. In order to facilitate
the comparison with XSVD and TSVD, vertical profiles are
displayed in Figure 17. Plots of the true phantom intensities
are included.

The approximate reconstruction time using either XSVD or
GPLS was recorded. The results are given in Table I. XSVD
is split into its two main steps: DBP and SVD; for GPLS, the
time for a single iteration is provided.

Finally, patient images are shown in Figures 18a and 18b.
Note the grayscale level, chosen tighter than the one used in
Figure 6 to emphasize the differences between XSVD and
TSVD reconstructions. Figure 18c compares these reconstruc-
tions with the FBP reconstruction from full data, using profile
lines through the central column.

IV. DISCUSSION

A. SVD analysis

The main advantage of SVD is its ability to decompose
the reconstruction process in a sum of weighted orthonormal
vectors. By doing so, establishing which singular vectors and
values contribute to what part of the reconstructed volume is
straightforward. Regularization is therefore intuitive, as SVD
provides insights into the effect of diminishing or discarding
a singular component.

A major characteristic of the discrete Hilbert transform is
its singular value spectrum, whose values are either close to
one or close to zero (Figure 7), coupled with the typical
shape of its singular vectors (Figures 8 and 9). Since these
singular vectors form a basis of their corresponding space
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(d) σ325 = σK+1 = 0.011
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(e) σ326 = σK+2 = 8.1× 10−5
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(f) σ399 = σM = 3.9× 10−17
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Fig. 8: Singular vectors associated with various singular values of H for (a1, a2, a3, a4) = (83, 158, 481, 865) (corresponding
to the reconstruction geometry defined by the Shepp-Logan phantom at its central 512th column). Their components are mapped
to the spatial domain, and the gray area bounded by a2 and a3 represents the ROI. (b)–(e) represent the “transition zone”,
located around K = 324, where singular values quickly decay (see Figure 7). The left singular vectors from U (in dashed
blue) are mapped onto [a1; a3] while the right singular vectors from V (in orange) are mapped onto [a2; a4].
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(e) σ170 = σK+2 = 3.3× 10−4
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Fig. 9: Singular vectors associated with various singular values of H for (a1, a2, a3, a4) = (166, 231, 398, 792) (corresponding
to the reconstruction geometry defined by the Shepp-Logan phantom at its 350th column). Here, K = 168. Same comments
as in Figure 8 apply.
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(a) Shepp-Logan, XSVD, kc = K.
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(b) FORBILD thorax, XSVD, kc = K.
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Fig. 10: Reconstructions performed in the contexts of Figure 2
from noiseless measurements using XSVD. The reconstruction
is limited to the columns crossing the FOV.

(“data space” and “object space”), their shape accounts for
their contribution to the reconstruction along the Hilbert lines.
Largest singular values (σk equal or almost equal to 1) are
associated to singular vectors contributing negligible values
outside the ROI (Figures 8a and 9a). Similarly, low singular
values (σk equal or almost equal to 0), which cause numerical
instability during inversion, are associated to singular vectors
which are negligible within the ROI (Figures 8f and 9f).
Finally, the singular vectors associated to the singular values
in the transition region (k around K, the number of points
of f in the FOV) contribute both inside and outside the ROI
(Figures 8b to 8e and 9b to 9e), but their values quickly decay
towards 0, as illustrated by Figure 7.

Reconstructing from these singular components implies
inversion of the singular values, as stated by Equation (13).
This inversion does not cause any difficulty when the singular
value is large enough. However, the last singular components
have very low singular values, of the order of 10−14 (Figure 7),
and numerical floating point operations cannot be accurate,
requiring their truncation.

Another important property of the singular vectors in the
transition region is the singularity visible in the singular

(a) Shepp-Logan, TSVD, kc = K + 1.

0 250 500 750 1000
0

200

400

600

800

1000

1.00

1.01

1.02

1.03

1.04

1.05

1.06

(b) FORBILD thorax, TSVD, kc = K + 1.

0 250 500 750 1000
0

200

400

600

800

1000

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

Fig. 11: Reconstructions performed in the contexts of Figure 2
from noiseless measurements using TSVD. The reconstruction
is limited to the columns crossing the FOV.

vectors at a2 and a3, which can be observed on Figures 8b
to 8e and 9b to 9e. Previous works studied these features of
the Hilbert transform, and showed that the singularities have
a logarithmic behavior [31], [32]. The shape of the spectrum
and of the singular vectors are essentially independent of the
quadruplet (a1, a2, a3, a4), which defines the matrix H, even
though only two examples are given here in Figures 8 and 9.

B. Improvements from XSVD

The XSVD reconstructions shown in Figure 10 highlight
the improvements that come from the correction term given
by Equation (14) when compared to the TSVD reconstructions
(Figure 11). The TSVD and XSVD reconstructions use cutoffs
kc = K + 1 and kc = K, respectively. The small values of
σK+1 (see Figures 8d and 9d) lead to an unstable estimation
of the corresponding component cK+1 in the TSVD recon-
structions. This is the main explanation of the vertical streak
artifacts in Figure 11. The proposed XSVD algorithm uses
instead a more stable approximation of cK+1, based on the
image f̄ .

These residual streaks are due to columns being treated
as independent problems, with a column geometry (defined
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(a) Shepp-Logan, XSVD.
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(c) FORBILD thorax, XSVD.
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(d) FORBILD thorax, TSVD.
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Fig. 12: Reconstructions from noisy measurements. The re-
construction display is limited to x1 ∈ [200; 800]. The cutoffs
and grayscales are as in Figures 10 and 11.

by (a1, a2, a3, a4)) slightly changing for every column, along
with the data contained in g. The vertical streaks could
potentially be smoothed out using some post-processing step,
such as total variation denoising.

Figures 12a and 12c show XSVD reconstructions from
noisy measurements. Even though the image deteriorated, the
inner structures of the phantoms can still be discerned. On
the other hand, TSVD reconstructions, shown in Figures 12b
and 12d, are strongly impacted by noise due to its amplifica-
tion by the small value of the additional σK+1 in the TSVD
procedure.

TSVD reconstruction from patient data, shown in Fig-
ure 18b, shows the same kind of FOV artifact that was present
in the TSVD reconstructions from simulated data. The strong
variations from column to column that were present in TSVD
reconstructions from simulated data (Figures 11, 12b and 12d)
are nevertheless less visible in patient data due to the higher
level of noise. The XSVD reconstruction is still closer to
the full-data FBP reconstruction, as illustrated by the profile
shown in Figure 18c.

We also notice that the improvements given by XSVD are
larger on the Shepp-Logan phantom (Figures 10a and 12a)
than they are on the thorax phantom (Figures 10b and 12c).

(a) Shepp-Logan, kc = K − 1.
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(b) Shepp-Logan, kc = K + 1.
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(c) FORBILD thorax,
kc = K − 1.
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(d) FORBILD thorax,
kc = K + 1.
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Fig. 13: XSVD reconstructions for two different cutoff values
kc from noiseless measurements. The reconstruction display is
limited to x1 ∈ [200; 800]. The grayscales are as in Figures 10
and 11.

Notably, the thorax reconstructions display vertical band arti-
facts. The correction term of Equation (14) is probably more
adapted to the Shepp-Logan simulations than to the FORBILD
thorax simulations. A possible explanation is that the Shepp-
Logan phantom does not have high-contrast features outside
the FOV (except the bone) and is hence better approximated by
a constant than the FORBILD thorax phantom which has high-
contrast lungs and spine. Furthermore, the band artifacts are
aligned with these features, suggesting that they are the direct
cause of the band artifacts. To confirm this explanation, the
same thorax as in Figure 10b was reconstructed with a tilted
Hilbert direction θ = −45◦. The absence of band artefacts in
the resulting image (Figure 19) suggests that they were caused
by the lungs and the spine. Choosing Hilbert directions that
avoid high contrast features should reduce the band artifact.
Note the white region that appears at the lower right side of
the FOV: this artifact takes a different aspect than the one
discussed in Section IV-D but its location suggests that it
also originates from the difference between the sought density
function f and its approximation f̄ .

From a more general point of view, the estimate of the
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(a) XSVD, FOV diameter of 300 pixels.
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(b) TSVD, FOV diameter of 300 pixels.
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(c) XSVD, FOV diameter of 400 pixels.
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(d) TSVD, FOV diameter of 400 pixels.
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(e) XSVD, FOV diameter of 500 pixels.

200 250 300 350 400 450 500
0.80

0.85

0.90

0.95

1.00

1.05

1.10

Reference

K − 2K − 1

K

K + 1

K + 2

(f) TSVD, FOV diameter of 500 pixels.
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Fig. 14: Profiles of reconstructions of the 512th (central) column of the Shepp-Logan phantom, with noise-free data, for different
cutoff values kc, for both XSVD and TSVD, and for three FOV sizes represented in Figure 2a. On (b), (d), and (f), the inner
plots represent zoom-outs on which we see that the curves for kc = K − 1 and kc = K + 3 lie away from the reference.
Horizontal axis of the plots is the coordinate along the column, and is bounded by the limits of the ROI.

original volume f̄ used to build the correction term does not
have to be limited to our definition given by Equation (16).
This estimate could incorporate any other a priori knowledge,
such as the location and density of an organ located outside
the scanner FOV. Though this remains to be shown, we expect
that an improvement of the estimate f̄ will further improve the
XSVD reconstruction.

The TSVD and XSVD algorithms are both valid as long
as f(x) = 0 outside the chosen segments [a2; a4] along each
Hilbert line. In our numerical examples, the segment [a2; a4]
perfectly encompasses the convex hull of f . Often, only a
rough estimate of the object boundaries is available, as in

our real-data experiments (Figure 6). One must then work
for safety with longer segments [a2; a4] than if the convex
hull of f was known exactly, and this can be expected to
degrade image quality although we did not evaluate this effect.
In particular, increasing the segment [a2; a4] leads to a poorer
estimate. An interesting observation is that the estimate f̄ tends
to zero when a4 tends towards infinity (see Equation (16)). In
this limit XSVD becomes identical to TSVD if the same cutoff
is used in the sense that all replaced singular components will
be equal to zero.

The test cases considered in this study are relatively simple
and do not represent the complexity of real-life scenarios, but
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(a) XSVD.
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(b) TSVD.
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Fig. 15: Profiles of reconstructions of the 500th column of the FORBILD thorax phantom for different cutoff values kc using
both XSVD and TSVD. On (b), the inner plot represents a zoom-out on which we see that the curves for kc = K − 1 and
kc = K + 3 lie away from the reference.

the object does not have to be convex: only the object extent
provided as a priori knowledge needs to be. This is why the
extent is generally chosen as the convex hull of the support
of the object. In fact, a weaker condition can be stated: the
object extent only needs to be convex in the Hilbert direction.

C. Choosing a cutoff kc
The results shown in Figures 13, 14a, 14c, 14e and 15a

highlight that XSVD reconstructions are very sensitive to the
choice of the cutoff kc. Indeed, increasing or decreasing kc by
a single unit degrades the reconstruction. The value that yields
the best results seems to be K, i.e. the number of points of f to
reconstruct in the FOV. This optimal kc value is identical for
every dataset and FOV diameter we tested. This observation
suggests that this parameter does not require manual tweaking
for different geometries and objects (unlike the regularization
parameter of GPLS). Remarkably, the same cutoffs yield
satisfactory reconstructions from noisy data, at least for the
noise level in our example (Figure 12). This observation is
a consequence of the extremely fast decay of the singular
values for k > K, which explains that the optimal value of
the regularization kc increases only very slowly, roughly as the
logarithm of the noise level [33]. Similar observations can be
made for TSVD, by looking at Figures 14b, 14d, 14f and 15b,
but in this case the best cutoff value seems equal to K + 1.

A comparison of Figure 13b with Figure 11a, and Fig-
ure 13d with Figure 11b, reveals that the TSVD and XSVD re-
constructions are very similar when the same cutoff kc = K+1
is used for both methods (also seen on Figures 14 and 15).
We deduce that the constant correction term f̄ has a non-zero
inner product with vK+1, and an inner product close to zero
for k > K + 1. Computing the correction terms c̄ for various
columns considered in our reconstructions (not shown here)
seems to confirm this deduction: the ratio between c̄K+1 and
c̄K+2 is about 5, while the ratio between c̄K+1 and c̄k for
k > K + 2 is roughly about 50.

D. The FOV artifact
A problem occurs in “one-endpoint” set-ups: an artifact

whose intensity increases when approaching the interior end-

point a3 of the Hilbert line-segment. This artifact is visible on
the GPLS reconstructions of Figure 16a, and, to a lesser extent,
of Figure 16b, but appears more clearly on the profiles shown
by Figure 17. A similar artifact can be observed in previous
works [15], [16], [18], [40] and is caused by the reduced
stability for pixels that are close to the FOV border [5].

The singular values spectrum of Figure 7 combined with the
singular vectors of Figures 8 and 9 provide an explanation to
the presence of this artifact. As the singular values approach
0, the contributions of their associated singular vectors ac-
cumulate at the innermost border of the FOV, as illustrated,
for example, by Figures 8e and 9e. Additionally, data used
during the reconstruction, although noiseless, still suffers from
small perturbations, mostly caused by numerical noise and the
discretization. The inverse 1/σk strongly amplifies these per-
turbations for small σk. The sensitivity to these perturbations is
therefore stronger near a3, which explains the artifact observed
in all our reconstructions.

This is why reconstructions achieved without regularization
(not shown here) are useless. The classical TSVD method
leads to better results by setting to zero all unstable singu-
lar components, as in Figures 11, 12b, 12d and 18b. This
truncation, however, causes the artifact, which increases with
decreasing values of the cutoff kc. The proposed XSVD
method favorably compensates this by assigning approximate
but stable values to the missing singular components. This
simple approach leads to reconstructions of higher quality, as
seen in Figures 10, 12a, 12c and 18a. Profiles displayed in
Figure 17 highlight that the improvements brought by XSVD
mostly consist of a reduction of the artifact near a3. Although
slightly outperformed by GPLS, XSVD produces an artifact of
lesser intensity and the best reconstructions close to the inner
endpoint of the FOV.

E. Size of reconstruction problem

Iterative methods such as GPLS require the entire object
to be modeled, even if only a small ROI is known to be
stably reconstructible. This characteristic appears clearly in
Figure 16, where the full reconstruction area is shown. On
the other hand, the DBP uses independent 1D slices that, in
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(a) Shepp-Logan phantom.
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(b) FORBILD thorax phantom.
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Fig. 16: Two GPLS reconstructions in a set-up similar to our simulations. The dotted purple lines indicate the location of the
profiles considered in Figure 17.

(a) Shepp-Logan, 485th column.
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(b) FORBILD thorax, 470th column.
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(c) Shepp-Logan, 512th column.
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(d) FORBILD thorax, 500th column.
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Fig. 17: Profiles comparing GPLS, TSVD and XSVD reconstructions. The corresponding images are Figures 16a and 16b
for the GPLS reconstruction, Figures 10a and 10b for XSVD, Figures 11a and 11b for TSVD and Figures 2a and 2b for the
references. Horizontal axis of the plots is the coordinate along the column, and is bounded by the limits of the ROI.
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XSVD GPLS

Shepp-Logan phantom

DBP calculation 1.8 s
XSVD reconstruction (without SVDs) 3.6 s Approximate iteration time 6.1 s

Total with pre-computed SVDs 5.4 s Number of iterations 1000
SVD computations 14.5 s Total reconstruction time 6085 s

Total time including SVD computation 19.9 s

FORBILD thorax phantom

DBP calculation 1.9 s
XSVD reconstruction (without SVDs) 2.2 s Approximate iteration time 6.2 s

Total with pre-computed SVDs 4.0 s Number of iterations 1000
SVD computations 10.8 s Total reconstruction time 6168 s

Total time including SVD computation 14.9 s

TABLE I: Computation time taken for reconstruction using the two methods introduced in this article.

total, require a smaller model (since the Hilbert lines that do
not intersect the FOV, known to be impossible to reconstruct
without prior assumptions, are not present). On top of that,
each 1D problem is treated independently, further reducing
memory and computational requirements. Additionally, the
SVDs do not depend on any data, and could be pre-computed
and stored in a look-up table. Table I illustrates that the
entire reconstruction using XSVD takes about as much time
as two to three GPLS iterations, which represents a significant
acceleration (1000 GPLS iterations were applied). Note that
the DBP time is given for a backprojection in the whole
1024× 1024 image, but could be drastically sped up by
computing the backprojection in the FOV only, as it is the
only region where data is used to perform XSVD.

Fully reconstructing the FOV generally imposes the combi-
nation of several Hilbert directions selected so as to completely
cover the FOV. For instance, in Figure 1b, one can see that
vertical segments respecting the one-endpoint set-up do not
cover the FOV in its entirety: two regions, at the left and the
right, are left uncovered. Reconstructing these regions can be
done by picking different values for the Hilbert direction θ
in order to obtain tilted segments attaining these regions. Still
using Figure 1b as an example, one would need approximately
θ ∈ {−20◦, 0, 20◦} to completely cover the FOV. The results
of the reconstruction for different θ would then need to
be combined to recover the volume. This would inevitably
increase the computation time linearly with respect to the
number of directions, but would also probably improve the
image quality and reduce the quality gap between XSVD and
GPLS reconstructions.

Although here solely applied to 2D tomographic problems,
XSVD is applicable to any method that produces one-endpoint
Hilbert data, such as cone-beam DBP. The properties of XSVD
discussed above are of even greater importance in cone-beam
tomography because the third dimension drastically increases
the size of the reconstruction problem. The practical impact
of the numerical efficiency of XSVD will be even more
significant for these 3D problems.

V. CONCLUSION

This work analyzes numerical aspects of the discrete trun-
cated Hilbert transform. Its SVD highlights how and why
stability decreases approaching the inner border of the scanner
FOV, and also explains a characteristic artifact observed in
one-endpoint set-ups. The method developed here, XSVD, es-
timates the singular components discarded by TSVD, resulting

in an improvement of image quality. This improvement is es-
pecially visible when approaching the interior endpoint, where
the artifact is of high intensity. In the rest of the reconstruction,
the artifact is reduced but still visible, with additional band
artifacts aligned with anatomical features. Iterative regularized
least squares reconstruction produces results of better quality
but at a significantly higher computational cost.
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(a) Real data, XSVD.

0 100 200
0

50

100

150

200

250

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

(b) Real data, TSVD.
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(c) Profile of the 128th column in the ROI.
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Fig. 18: Reconstruction results of patient data. In (c), the full-
data FBP reconstruction (shown in Figure 6) is used as a
reference.
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