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Abstract

Machine learning and data mining algorithms
have been increasingly used recently to support
decision-making systems in many areas of high
societal importance such as healthcare, education,
or security. While being very efficient in their pre-
dictive abilities, the deployed algorithms some-
times tend to learn an inductive model with a dis-
criminative bias due to the presence of this latter
in the learning sample. This problem gave rise to
a new field of algorithmic fairness where the goal
is to correct the discriminative bias introduced by
a certain attribute in order to decorrelate it from
the model’s output. In this paper, we study the
problem of fairness for the task of edge prediction
in graphs, a largely underinvestigated scenario
compared to a more popular setting of fair classi-
fication. To this end, we formulate the problem of
fair edge prediction, analyze it theoretically, and
propose an embedding-agnostic repairing proce-
dure for the adjacency matrix of an arbitrary graph
with a trade-off between the group and individual
fairness. We experimentally show the versatil-
ity of our approach and its capacity to provide
explicit control over different notions of fairness
and prediction accuracy.

1 INTRODUCTION

We live in a world where an increasing number of decisions,
with major societal consequences, are made or at least sup-
ported by algorithms that diligently learn the patterns from
a training sample and gain their discriminating ability by
identifying the key attributes correlated with the desired
output. These attributes, however, can represent sensitive
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information that, in its turn, can lead to a significant bias in
model’s predictions when deployed on a previously unseen
sample. For instance, when building a recommendation sys-
tem supporting a recruitment company in finding a potential
candidate suitable for their clients’ needs, one wants to pro-
vide accurate recommendation of job offers (edge prediction
task) with similar offers shown to people with similar pro-
files (individual fairness), while from a legal perspective,
this process should not depend on criteria such as the gender
or the ethnicity of a candidate (group fairness). In practice,
such bias prevents minorities from gaining influence in the
network as studied in [Stoica et al., 2018]. In practice, how-
ever, the training sample used to learn the model may have
been collected in a biased manner with an unequal number
of successive outcomes between the genders and/or ethnic
groups. The recommendations of the learned model in this
case will tend to follow the learned pattern thus reinforcing
the already existent bias. Fairness in the context of online
social graph can also be seen as a way to prevent online po-
larization by promoting links between users having opposite
views, on controversial topics, such as political debates. In
this context, link prediction algorithms tend to promote links
between people having the same opinion (eg. belonging to
the same political party) since they are more likely to be
connected in the network, which leads to the increase in the
formation of online bubbles and thus segregation of the net-
work. Research works aiming at identifying and correcting
such inductive bias form the core of the algorithmic fairness
field, a scientific area that is constantly gaining more and
more attention from the machine learning and data mining
communities nowadays.

Algorithmic fairness methods are traditionally divided into
one of the three following categories: (i) pre-processing
methods that repair the original data to remove the bias, ii)
methods that integrate fairness constraints or penalties in a
given learning algorithm and iii) post-processing methods
that debias directly the model’s output. First family of meth-
ods can be further divided into two subfamilies where the
first one corrects the input raw data to ensure that the infer-
ence of the sensitive attribute is impossible, regardless of the
learning algorithm (e.g. classifier) used downstream [Feld-
man et al., 2015a, Calmon et al., 2017, Johndrow and Lum,
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2019], while the other learns a new representation that is
forced to be independent from the sensitive attribute [Zemel
et al., 2013, Edwards and Storkey, 2016, Louizos et al.,
2016, Madras et al., 2018]. These methods present the most
generic solution to the considered problem as they allow to
use any available algorithm on the repaired data and ensure
that the generalization performance on this latter would be
comparable to that obtained on the original data [Gordaliza
et al., 2019]. The methods belonging to the second cate-
gory [Zafar et al., 2017a, Zafar et al., 2017b, Corbett-Davies
et al., 2017, Agarwal et al., 2018, Donini et al., 2018] are
specific to the learning algorithm and thus the modification
of this latter due to, for instance, a performance drop on
another data set requires modifying the whole optimization
procedure. Finally, the last category [Hardt et al., 2016, Kus-
ner et al., 2017, Jiang et al., 2019, Chiappa, 2019, Zehlike
et al., 2020] of methods has a virtue of debiasing directly the
outputs of a learning algorithm, but similarly to the methods
that impose fairness constraints while learning require the
post-processing to be performed for each prediction.

Most of the works mentioned above address the problem
of algorithmic fairness in the context of supervised clas-
sification and completely ignore learning from relational
data given in form of structured objects or graphs, and the
tasks associated to it. Such data, however, is ubiquitous in
areas dealing with complex systems, especially in the social
sciences where the relationships and interactions between
people are studied. Several mining tasks can be defined for
such data, such as edge prediction, node classification or
community detection, to name a few.

Contributions In this paper, we propose a first theoreti-
cally sound embedding-agnostic method for group and in-
dividually fair edge prediction. This is done through the
following contributions:

1. We analyze the group fair edge prediction task theoret-
ically and show that one can efficiently repair the adja-
cency matrix of a graph by aligning the joint distribu-
tions of nodes appearing in different sensitive groups.

2. We derive an optimal transport (OT)-based algorithm
from our analysis, add individual fairness constraints to
it and implement it for binary and multi-class settings.
The proposed algorithm outputs a repaired adjacency
matrix by adding edges that obfuscate the dependence
on the sensitive attribute. The repaired adjacency ma-
trix can be used as input of any node embedding tech-
nique thus making it embedding agnostic.

3. We evaluate the efficiency of our approach through
extensive experiments on several synthetic and real-
world data sets and show that it provides an explicit
control on the trade-off between the two notions of
fairness and prediction accuracy.

Organisation The rest of this paper is organized as fol-
lows. We provide a theoretical analysis of group fair edge
prediction in Section 2. In Section 3, we present a group
and individually fair repair scheme for adjacency matrix of
a graph. In Section 4, we evaluate our approach on syn-
thetic and real-world networks and show the impact of the
proposed repairing scheme both on the capacity of predict-
ing the sensitive attribute from embeddings learned with
repaired data and on the performance of edge prediction.
Last section concludes the paper and gives a couple of hints
for possible future research.

2 FAIR EDGE PREDICTION

In this section, we formulate the problem of fair edge predic-
tion in graphs and give a definition of several key concepts
related to it such as statistical parity, disparate impact and
balanced error rate. We further analyze this problem and
derive a theoretically sound approach allowing to solve it.

2.1 Problem Setup

Let V denote an abstract vertex space, and let V =
{v1, . . . , vN} ∈ VN be a set of N vertices drawn inde-
pendently and identically (iid) from an arbitrary distribution
over V. Let r : V×V→ {0, 1} be a (symmetric) true edge
prediction function that outputs 1 if there is an edge between
two nodes and 0 otherwise. In the finite case, we further
consider a graph G = (V, E) where E ⊆ V × V is labeled
according to r such that a tuple {(vi, vj , r(vi, vj)} defines
an undirected edge (i, j) ∈ E . Furthermore, we assume that
all nodes have one categorical sensitive attribute S : V→ S
where, for simplicity, we assume that S is a set {0, 1}. In
the context of fair edge prediction, this variable defines a
potential source of bias in the graph where S = 0 stands for
the minority (unfavored) class, while S = 1 stands for the
default (favored) class. In what follows, we are interested in
the edge prediction task where the goal is to find a function
h : V× V→ {0, 1} such that h is as close as possible to r.

We define the notion of statistical parity of h for this sce-
nario as the equality between the probability of h for predict-
ing the same value, say 1, for both nodes belonging to the
same and different classes. More formally, this definition is
given below.
Definition 1. Given a graph G = (V, E) and a function
h : V× V→ {0, 1}, we define the statistical parity for an
edge predictor h on S with respect to (w.r.t) V as:

P(h(V, V ′) = 1|S 6= S′) = P(h(V, V ′) = 1|S = S′)

or equivalently

P(h(V, V ′) = 1|S⊕S′ = 1) = P(h(V, V ′) = 1|S⊕S′ = 0),

where ⊕ stands for XOR operation and the probability is
taken over random variables ((V, S), (V ′, S′)) ∼ D × D
with D denoting the joint distribution over V× S.
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This definition states that the probability for h to pre-
dict an edge between two nodes v and v′ is the same
whether v and v′ belong to the same (S = 0, S′ = 0
or S = 1, S′ = 1) or to the different (S = 1, S′ = 0 or
S = 0, S′ = 1) classes. One may note that it is different
from the definition considered in (node) classification task
with V ⊂ Rd, h : V→ {0, 1} as this latter trivially reduces
to a usual fair classification problem studied extensively in
the literature. In our case, however, we have to deal with tu-
ples of variables and implicitly attribute a sensitive variable
defined by S ⊕ S′ to each pair of nodes or, equivalently, to
an edge. On a higher level, this transposes the initial prob-
lem into repairing adjacency matrices contrary to repairing
the feature representation of nodes as done in the case of
node classification. Bearing in mind the equivalent XOR
representation, we further denote these two events by

P1(h) = P(h(V, V ′) = 1|S 6= S′),

P0(h) = P(h(V, V ′) = 1|S = S′). (1)

Using these notations, we define two other important fair-
ness measures, notably disparate impact (DI) and balanced
error rate (BER). We give their definitions below.
Definition 2. Given a graph G = (V, E) and a function
h : V× V→ {0, 1}, let P0(h) and P1(h) be defined as in
(1). We define disparate impact (DI) and balanced error
rate (BER) for an edge predictor h on S ⊕ S′ w.r.t. V as:

DI(h,V, S ⊕ S′) =
P1(h)

P0(h)
,

BER(h,V, S ⊕ S′) =
P1(h)− P0(h) + 1

2
.

Each of these two measures has its own interpretation. DI is
identical to statistical parity and it is equal to 1, when h is
perfectly fair. In practice, we are interested in bounding this
latter, i.e., DI(h,V, S ⊕ S′) ≤ τ , indicating that a classifier
has a disparate impact at level τ ∈ (0, 1]. As for the BER, it
stands for a misclassification error of the sensitive attribute
S by h in a setting where P(S ⊕S′ = 1) = P(S ⊕S′ = 0).
This latter condition roughly tells us that the probability of
drawing a pair of nodes belonging to the same class should
be the same as the probability of them belonging to different
classes. It is important to note that while higher values of
disparate impact and τ indicate a more fair outcome, the
best misclassification error in terms of fairness is equal to
1
2 as in this case a classifier is not capable of predicting
whether the nodes are from the same or different classes.
Remark 1. In what follows, it will be also convenient to
define both the disparate impact and the balanced error
rate w.r.t. S by considering only the conditioning on one
variable of the pair (S, S′). For this latter case, we write

DI(h,V, S) =
P(h(V, V ′) = 1|S = 0)

P(h(V, V ′) = 1|S = 1)

and similarly for BER(h,V, S).

We proceed to the analysis of our fairness setting below.

2.2 Analysis of Group Fair Edge Prediction

Several works [Feldman et al., 2015b, Gordaliza et al.,
2019, Jiang et al., 2019] provided a theoretical analysis
for the fair classification setting where one deals with one
random variable X : Ξ → Rd with Ξ being an arbitrary
instance space and considers learning a hypothesis function
h : Rd → {0, 1}. Below, we provide the analysis for the
edge prediction fairness and relate it to the statistical par-
ity of h in predicting the sensitive attributed individually
for one of the node’s pair. Note that from the algorithmic
point of view, working with edges given by pairs of nodes
and their associated sensitive attributes S ⊗ S′ is hard as
they do not admit any representation allowing further re-
pair. To this end, our goal would be to simplify the problem
in a principled way by considering learning on the joint
space of nodes with the sensitive attribute being related to
only one node from a pair. In this case, we would be able
to use the pair-wise information about the nodes as node
representation.

To proceed, we first make the following assumptions.

A1. The probability of each node belonging to the favoured
or unfavoured class is the same, i.e.,

P(S = 0)=P(S′ = 0)=P(S = 1)=P(S′ = 1)=
1

2
.

A2. The probability of predicting an edge given that both
nodes are in the same class is higher than that of pre-
dicting an edge between the nodes of different classes,
i.e., for all s ∈ {0, 1}

P(h(V, V ′) = 1|S = s, S′ = 1− s)
≤ P(h(V, V ′) = 1|S = s, S′ = s).

We state our main result below1.

Theorem 1. Consider a graph G = (V, E), sets S, S′ ∈
{0, 1}, an edge prediction function h : V × V → {0, 1}
and assume that DI(h,V, S) ≤ τ for some τ ∈ (0, 1]. Then,
with the assumptions A1-A2 the following holds:

DI(h,V, S ⊕ S′) ≤ DI(h,V, S) ≤ τ.

Before discussing the implications of this theorem, we
briefly note that the assumptions A1-A2 are not restrictive
and capture one’s intuition about the fair edge prediction
setting. Indeed, A1 assumes that each node has an equal
probability of belonging or not to the favoured class which
is a reasonable assumption to make in practice when sam-
pling vertices at random. This assumption is not related to

1All proofs are provided in the Supplementary material.
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the sampling process and imbalanced datasets. For instance,
P (S = man) = P (S = women) holds with almost exact
equality but does not imply that the number man and women
in the given graph is the same. This assumption is commonly
used to draw the equivalence between BER(h,X, S) and
the missclassification error P(h(X) 6= S) [Gordaliza et al.,
2019]. In its turn, A2 states that the probability of predicting
an edge inside any of the two classes is higher than that of
predicting an edge between different classes. This latter
is related to assortativity effect and it is rather intuitive as
sensitive attributes are often correlated with a certain latent
structure of the graph and thus can be seen as a “community”
indicator of each node.

As for the implications, several remarks are in order here.
First, the theorem shows that the DI w.r.t. the sensitive
attribute S of individual nodes provides an upper bound on
the DI of h when considering the compositional sensitive
attribute S ⊕ S′ defined for pairs of nodes. An immediate
consequence of this is that repairing a graph in this case can
be done by considering only classes of nodes (S = 0 and
S = 1) rather that classes of edges (S = S′ and S 6= S′)
given by pairs of nodes. Second, the established inequality
allows to further provide several results for BER(h,V, S ⊕
S′) that suggest an algorithmic solution for an OT-based
repairing procedure. We give this result below.
Corollary 1. With the assumption from Theorem 1, we have

BER(h,V, S ⊕ S′) ≤ 1

2
− P1(h)

2

(
1

τ
− 1

)
,

min
h∈H

BER(h,V, S ⊕ S′) =
1

2
(1− 1

2
W1·6=·(γ0, γ1))

where W1·6=· is the Wasserstein distance between true joint
distributions γ0, γ1 over V × V given S = 0 and S = 1,
respectively equipped with the Hamming cost function.

This corollary provides an upper bound on BER(h,V, S ⊕
S′) in terms of DI(h,V, S) and thus allows to control the
former by maximizing the latter. Furthermore, the second
part of the statement tells us that the balanced error rate of
the best edge predictor depends on the divergence between
the joint distributions over the nodes given that the sensi-
tive attribute is equal to one of its possible values. This
implication allows us to come up with an algorithmic imple-
mentation of the repair procedure based on aligning these
joint conditional distributions with an OT coupling acting
as a mapping. We use this idea as the backbone for our
approach and further explore how one can constrain this
mapping to ensure individual fairness too.
Remark 2. Note that in the case of multi-class classification
with C classes, P(S = i) = 1/C, while P(S 6= S′) =
(C − 1)/C implying

(C − 1)P(S = i) = P(S 6= S′).

However, this does not change the final result as this factor
will appear in both the denominator and numerator (see

Supplementary materials, proof of Theorem 1). Finally, if
P(S = 0) 6= P(S = 1), then

min
h∈H

BER(h,V, S ⊕ S′)

=
1

2
(2(1− P1(h))− 2αW1·6=·(γ0, γ1))

where for α > 0, P(S = 0) = α,P(S = 1) = 1 − α
and similar adjustment will have to be made for the first
statement as well.

3 ALGORITHMIC IMPLEMENTATION

We now present our algorithm, its multiclass extension and
its positioning w.r.t. other related works.

3.1 Group Graph Fairness with OT

The algorithmic idea behind minimizing W1·6=·(γ0, γ1)
from Corollary 1 is to find an optimal transportation plan
between γ0 and γ1 and to use it in order to map (push) one
distribution on the other 2. To do this in practice, we con-
sider the adjacency matrix A ∈ RN×N associated with the
graph G defined previously and notice that γ0 (resp. γ1)
corresponds to those rows (nodes) in A for which S = 0
(resp. S = 1). Let us denote such submatrices of A by
A0 ∈ RN0×N and A1 ∈ RN1×N and assume that they con-
tain N0 and N1 rows, respectively. For further convenience,
we denote the ratio of each class by πs, s ∈ {0, 1} with
πs = Ns

N . We now aim to solve the following OT problem:

min
γ∈Π( 1

N0
, 1
N1

)
Ω

(γ,M)
Group , Ω

(γ,M)
Group := 〈γ,M〉 (2)

where 1
Ns

is a uniform vector with Ns elements, s ∈ {0, 1}
and M is the matrix of pairwise distances between the rows
in A0 and A1, i.e., Mij = l(a

(i)
0 , a

(j)
1 ) for some distance

l where a(i)
0 , a

(j)
1 denote the ith and jth rows of A0,A1,

respectively. Note that while the Hamming distance l =
1·6=· is advocated by the theoretical results given above, in
practice we use the usual squared Euclidean distance as it
tends to give better results and allows a simple closed-form
repairing procedure as detailed below.

3.2 Individual Fairness with Laplacian
Regularization

Intuitively, one expects from an individually fair mapping
to respect the initial relationships between the studied ob-
jects when learning their fair representation. This intuition
of individually fair mapping was formally captured in the
seminal work of [Dwork et al., 2012] and we present its
adaptation to graphs below.

2For more details about optimal transport problem, we refer
the reader to the Supplementary material.
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Definition 3. A mapping φ : V → V satisfies the (D, d)-
Lipschitz property if for every v, v′ ∈ V, and two metrics
D, d : V× V→ R+, we have

D(φ(v), φ(v′)) ≤ d(v, v′).

In our case, it means that for any two rows a(i), a(j) ∈ A,
the adjacency matrix repaired by φ should preserve the
initial similarities between them. We can further rewrite this
definition in the form of constraints as follows:

D(φ(a(i)), φ(a(j)))k(a(i), a(j)) ≤ 1,

where k(a(i), a(j)) is a similarity function inversely propor-
tional to d(a(i), a(j)) (eg, as a popular RBF kernel). We can
further assume that the mapping φ(·) is given by a linear
transformation with an unknown linear operator matrix Φ.
IfD is taken to be the squared `2 norm, we get the following
pair-wise constraints for all a(i), a(j):

||ΦTa(i) − ΦTa(j)||22k(a(i), a(j)) ≤ 1.

One can further incorporate this term into the objective
function by introducing a regularization term that aggregates
pairwise constraints over all pairs:

min
Φ

∑
i,j

||ΦTa(i) − ΦTa(j)||22k(a(i), a(j)).

We call this term “individual fairness” term, denote it by
ΩIndiv. and rewrite it as a graph Laplacian with similarity
matrix (K)ij = k(a(i), a(j)):

ΩIndiv.(Φ,A, k) = trace(ATΦTLKΦA),

where LK = diag(K)−K.

Below, we put all the ingredients together to propose a
unified repair procedure that allows us to control the extent
of both group and individual fairness when solving the edge
prediction task. The group fairness term ensures that edge
prediction does not depend on a given protected attribute,
and it is the only type of fairness which have been addressed
by the related work in the context of fair graph embeddings.
Different from this, the individual fairness term ensures that
the edge prediction remains consistent with respect to the
original graph structure. For instance, let us consider two
nodes vi, vj having the same sensitive attribute (S = 0)
and that are similar (in terms of some similarity measure,
eg, KNN graph) in the original graph: the first term create
edges between these two nodes and nodes with (S = 1)
in the corrected graph, while the second term ensure that
vi and vj preserve their original neighbors in the corrected
graph. As a result, the proposed objective function allows
us to control explicitly the trade-off between individual and
group fairness as encouraging one is degrading the other.

3.3 Repairing the Adjacency Matrix

The proposed optimization problem for both group and
individually fair adjacency matrix repair takes the following
form:

min
γ∈Π( 1

N0
, 1
N1

)
Ω

(γ,M)
Group +λ

1∑
i=0

ΩIndiv.(Φi(γ),Ai,KNN3) (3)

where Φ0(γ) = N1γ
T and Φ1(γ) = N0γ are barycentric

projections used to push the points of one distribution to
those of the other [Ferradans et al., 2013], and KNN3 is
the adjacency matrix of a k-nearest neighbor graph with
k = 3 calculated from the raw adjacency matrix. Note that
we choose to calculate the Laplacian using a KNN graph
instead of the raw adjacency matrix as it provides a richer
structural information about the graph. Once a solution γ∗λ
to Problem (3) is found, we use it to align the two joint
conditional distributions by mapping both A0 and A1 on
the mid-point of the geodesic path between them [Villani,
2009] as follows:

Ã0 = π0A0 + π1γ
∗
λA1,

Ã1 = π1A1 + π0γ
∗T
λ A0.

Note that the closed-form expression given above is valid
only when one uses the squared Euclidean distance be-
tween the nodes’ representations. However, for any ar-
bitrary distance we may obtain the equivalent solution by
solving the pre-image problem for each row ã

(i)
0 of Ã0,

i = {1, . . . , N0} as follows

ã
(i)
0 = π0a

(i)
0 + π1argmin

a∈RN

N0∑
j=1

γ∗λ(i, j)l
(
a, a

(j)
1

)
and similarly for Ã1. Such an optimization procedure can be
easily parallelized for all ã(i)

0 with each individual problem
solved efficiently by any quasi-Newton method.

Multi-class extension In order to extend our method to
the case of |S| > 2, i.e., non-binary attributes, we propose
to use a recently proposed method for computing the free-
support Wasserstein barycenters introduced in [Cuturi and
Doucet, 2014, Algorithm 2] and add a Laplacian regulariza-
tion to it. This leads to the following optimization problem:

Ãbary = argmin
A∈RN×N

1

|S|

|S|∑
i=1

min
γi∈Π( 1

N ,
1
Ni

)
Ω

(γi,Mi)
Group

+ λΩIndiv.(Niγ
T
i ,A,KNN3),

where Mi is the cost matrix between A and Ai for i ∈
{1, . . . , |S|}. Contrary to the binary setting of Problem (3),
we have only one fairness term here applied to a projection
of each sensitive group on the barycenter. Once the optimal
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solution for this problem is obtained, we use barycentric
mapping to repair each individual submatrix Ai as follows:

Ãi = Niγ
∗T
i Ãbary,

where Ni = |S = i| and in general we do not require
Ni = Nj , i 6= j. Note that contrary to the binary case, this
mapping projects each matrix Ai on the barycenter and not
on the mid-point of the geodesic path as before.

Complexity Solving OT with Laplacian regularization
relies on Frank-Wolfe algorithm where at each iteration a
linearization of the loss function under the linear constraints
(LP) is solved [Courty et al., 2017]. This results in O(n3)
complexity of each iteration plus the complexity of the node
embedding technique used once the repair is done. This cost,
however, should not be directly compared with that of other
baselines (for instance O(n2d) for CNE used by [Buyl
and Bie, 2020], on par with node2vec used by [Rahman
et al., 2019]) as they provide a solution for one particular
embedding technique without individual fairness constraints,
while our method is versatile and allows to choose any
embedding technique without needing to repeat the repair
procedure and deals with individually fair constraints.

Illustration To illustrate the different steps needed to re-
pair an adjacency matrix, we provide in Figure 1 a visual
explanation of our proposed approach for a graph having
9 nodes (A). In this graph, the nodes numbered from 1
to 4 belong to the class ”Female” (S = 0, A0), while the
nodes from 5 to 9 belong to the class ”Male” (S = 1, A1).
The matrix M calculated in the first step and given in Fig-
ure 1 contains higher values (darker squares) for the node
pairs that are far away from each other in terms of the used
distance (e.g., 1 and 5) and lower values for those close
to each other (e.g., 3 and 6). The solution obtained in the
second step highlights the difference between the group
fair (EMD, λ = 0) and both group and individually fair
(Laplace, λ > 0) repair as illustrated by the adjacency ma-
trix [Ã0 Ã1] obtained in the third step. Here, we see that
group fair repair adds edges that obfuscate the original graph
structure both within and across the sensitive groups, while
adding individually fair regularization keeps the original
structure withing groups almost intact.

3.4 Related Works

Fairness for graphs To the best of our knowledge, very
few articles proposed group fair repair schemes for rela-
tional data. In [Rahman et al., 2019], the authors proposed
FAIRWALK algorithm that produces fairness-aware node
embeddings using a modification of the random walk stage
of the popular NODE2VEC algorithm [Grover and Leskovec,
2016]. Similarly, DEBAYES [Buyl and Bie, 2020] is an adap-
tation of Conditional Network Embedding (CNE) [Kang
et al., 2019], a Bayesian approach based on integrating prior

knowledge through prior distribution for the network. DE-
BAYES is an adaptation of CNE where the sensitive informa-
tion is modeled in the prior distribution. Contrary to these
two approaches, our proposal is embedding-agnostic, enjoys
a theoretical justification and takes individual fairness into
account as well. Unlike the previous methods, [Bose and
Hamilton, 2019] introduces an adversarial framework that
enforces fairness by filtering out the information related to
the sensitive attribute from node embeddings obtained with
any embedding technique. To obtain a trade-off between
fairness and accuracy, the optimization process minimizes
alternatively the loss w.r.t. the filtering and its opposite w.r.t.
the discriminator. In that case, fairness is defined in terms of
invariance, in other words independence, according to the
mutual information, between the node embedding and the
sensitive attribute. A main drawback of such procedure is
that it does not debias relational data given by pairs of nodes
but only node embeddings themselves. Consequently, this
algorithm seems more designed for fair node classification
but not tailored to specifically tackle the fair edge prediction
task that takes node tuples as input.

Fairness with OT Several works used the capacity of
OT to align probability distributions for fair classification
[Gordaliza et al., 2019, Jiang et al., 2019, Zehlike et al.,
2020]. The origin of such idea is close to the use of OT in
domain adaptation [Courty et al., 2017] where two distribu-
tions are aligned using the barycentric mapping. Our work
is close to this line of research and extends it in two ways.
First, we show that Laplacian regularization previously used
in OT for color transfer [Ferradans et al., 2013] and domain
adaptation [Courty et al., 2017] leads to an individually fair
repair. Second, we use the free-support barycenter algo-
rithm to provide a multi-class version of repair that can deal
with sensitive attributes taking non-binary values.

4 EXPERIMENTAL EVALUATION

We investigate the efficiency of our contribution at different
levels for both synthetic graphs (see supplementary mate-
rials) and three real-world networks 3. Overall, we aim to
answer the following questions: (Q1) Impact on the struc-
ture of the graph: we investigate the structural changes
of the considered graph resulting from the repairing mech-
anism and the impact of the Laplacian regularization pa-
rameter used to promote individual fairness. (Q2) Impact
on node embeddings: we analyze the impact of our ap-
proach on the embeddings obtained from the repaired graph
with traditional fairness-unaware node embedding methods.
Specifically, we aim to verify whether one can infer the
sensitive attribute from the node embedding vectors. (Q3)
Impact on edge prediction: we study the influence of the

3The code reproducing the experimental results is pub-
licly available at https://github.com/laclauc/
FairGraph.
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Figure 1: Illustration of the three steps performed to repair the adjacency matrix of a graph.

alterations of the graph on the edge prediction accuracy.

4.1 Baselines

For (Q2) and (Q3), we consider two embedding methods,
namely NODE2VEC (N2VEC) and CNE, and compare our
approach with their fair versions described below.

NODE2VEC and FAIRWALK To evaluate the impact of
our approach on node embeddings, we first consider the
very popular N2VEC as a baseline. This approach builds
a representation of a node in based on its neighborhood
following a two-step procedure:

1. Generate a corpus of traces by performing random walks.
Formally, denoting by ci the i-th node in a given walk, the
next node is selected among all neighbors of ci, i.e.,

P(ci+1 = v|ci = u) =

{
πvu

C if {u, v} ∈ E
0 otherwise,

where πuv denotes the unnormalized transition probability
between nodes u and v and C corresponds to a normaliza-
tion constant. The transition probability is set so as to reflect
the neighborhood of u.

2. Use the generated corpus to learn the embedding vectors
through a SkipGram architecture that maximizes the log-
probability of observing a network neighborhood for a node
conditioned on its feature representation:

argmax
Z

∏
u∈V

∏
v∈Nu

P(v|Z(u)).

We compare our approach with FAIRWALK, a version of
N2VEC, designed for fair node embeddings. This latter mod-
ifies the transition probability of N2VEC for the generation

of unbiased traces. Step (1) of N2VEC becomes

P(ci+1 = v|ci = u) =

{
1/k

|Sk
Nu
| if Skv = 1 and {u, v} ∈ E

0 otherwise,

where k = {1, · · · ,K} denotes the modality of the sensitive
attribute S, SkNu

is the number of nodes in the neighborhood
of u belonging to the group k and Skv = 1 indicates that node
v belongs to the k-th group of the sensitive attribute. As a
result, each generated random walk has a higher probability
to contain nodes of different groups.

CNE and DEBAYES We also study the impact of our
algorithm on CNE and compare our algorithm with its re-
cently proposed fair extension DEBAYES. Given a graph
G = (V,E, S), CNE finds an embedding Z by maximizing
P (G|Z) = P (Z|G)P (G)

P (Z) . In our experiments, we use the
prior knowledge about the node degree modeled by the prior
distribution P (G) expressed by the following constraint:∑

v∈V
P ((v, v′) ∈ E) =

∑
v∈V

1
(

(v, v′) ∈ E
)
. (4)

DEBAYES extends CNE, with a prior to model the sensitive
attribute by replacing the constraint (4) with:∑
v∈Vs

P ((v, v′) ∈ E | S(v) = s) =
∑
v∈Vs

1
(

(v, v′) ∈ E
)
,

where Vs = {v|S(v) = s}. With this prior, debiased embed-
dings containing less information about sensitive informa-
tion are obtained during the training step. Then, the debiased
link predictions are computed using these embeddings and
P (G) instead of the biased prior distribution P (G|S).

Random To illustrate the fact that the OT repairing
schema is efficient in choosing where to add edges to reduce
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Table 1: Statistics for all networks: number of nodes (|V|),
number of edges (|E|), type of the protected attribute.

Network V E Type of S |S|
POLBLOGS 1, 490 19, 090 binary 2
FACEBOOK 4, 039 88, 234 binary 2

DBLP 3,790 6,602 multiclass 5

Table 2: Comparison of assortativity coefficient w.r.t the
protected attribute between the original and the repaired
graphs. We report the values obtained for λ ∈ {0.005, 1, 5}

.
Dataset Original EMD Lap.005 Lap1 Lap5

POLBLOGS .81 .14 .59 .68 .77

FACEBOOK .09 .04 .04 .05 .06

DBLP .83 −.003 −.002 .04 .03

the bias, while maintaining a reasonable accuracy for link
prediction, we also compare it with an approach that adds
random edges between nodes from different groups for the
sensitive attribute. This method is referred to as RANDOM.

For the sake of reproducibility, hyperparameters used in the
experiments are provided in the Supplementary materials.

4.2 Datasets

We present the experimental results obtained on three real-
world publicly available networks described below. Their
key characteristics are summarized in Table 1.

Political Blogs [Adamic and Glance, 2005]4 is a network
representing the state of the political blogosphere in the
US in 2005. Nodes represent blogs and vertices represent
hyperlinks between two blogs. For each node, the sensitive
variable indicates the political leaning of the blog.

Snap Facebook [Leskovec and Mcauley, 2012]5 data set
consists of ego networks collected through the Facebook
app. We use the combined version which contains the ag-
gregated networks of ten individual’s Facebook friends list.
The gender is the sensitive attribute of each node.

DBLP is a co-authorship network originally built from
DBLP, a computer science bibliography database. We use
the version proposed by [Buyl and Bie, 2020] where the
sensitive attribute corresponds to the continent extracted
from authors’ affiliation.

4.3 Experimental Results

Q1: impact on the graph structure In order to gain in-
sights on the structural changes resulting from the repairing
with our OT-based method, we propose to look at the co-

4www-personal.umich.edu/˜mejn/netdata/
5snap.stanford.edu/data/ego-Facebook.html

efficient of assortativity given the sensitive attribute of the
original graph and its repaired versions. We recall that assor-
tativity coefficient takes values in the range between -1 and
1, and that its high values indicate a preference for nodes
within the group to be connected with each other w.r.t. a
given attribute. Therefore, in our context, one can see the as-
sortativity w.r.t. the protected attribute as a measure of how
much biased the graph structure is, where values close to 1
indicate a strong bias. From Table 2, we observe that POL-
BLOGS and DBLP are strongly biased with assortativity
coefficients close to 1, while FACEBOOK presents no par-
ticular bias w.r.t. its protected attribute as indicated by the
assortativity coefficient close to 0. Consequently, we expect
1) to significantly reduce this coefficient for POLBLOGS and
DBLP after the repair, and only slightly for FACEBOOK,
2) to preserve the original bias more and more with the
increasing strength of the Laplacian regularization. Both
these expectations are confirmed by the results provided in
Table 2 where the desired behavior is clearly observed.

Q2: impact on node embeddings We proceed by study-
ing the impact of the fair graph repair on the information
carried by the node embeddings. In particular, we follow a
standard protocol and use 10-fold cross-validated logistic re-
gression to predict the sensitive attribute S from the learned
embeddings in order to understand whether applying these
latter on a repaired graph maintains the desirable level of
fairness. We use the resulting AUC score as a measure of
bias, also termed Representation Bias (RB) in [Buyl and
Bie, 2020], and recall that in this context the ideal RB corre-
sponds to the optimal value of BER and should be around
0.5. These results are presented in Table 3. From it, we can
see that all repairing procedures manage to decrease the RB
score successfully and that this decrease is more pronounced
for DEBAYES method and, in general, when using CNE em-
bedding. We believe that this embedding is inherently more
sensitive to the considered score and we leave the question
on why this is the case as an open research avenue.

Q3: Impact on edge prediction For N2VEC- and CNE-
based approaches, we follow the protocol of [Rahman et al.,
2019] and [Buyl and Bie, 2020] 6, respectively. Our goal
here is to identify which approach provides the best trade-off
in terms of fairness and prediction accuracy.

To this end, Table 3 reports the AUC for link prediction,
the disparate impact (DI) and the consistency (Cons) scores,
where the two latter are measures of group and individual
fairness (see [Zemel et al., 2013]), respectively. From these
results, we make the following observations. First, we recall
that POLBLOGS and DBLP present a true challenge for fair
edge prediction as the original results obtained with classical
embeddings approaches are characterized by a low DI and
a high RB score. This is contrary to FACEBOOK graph em-

6github.com/aida-ugent/DeBayes
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Table 3: AUC score for link prediction, Representation Bias (RB), Disparate Impact (DI) and Consistency (Cons.). For the
Laplacian, results corresponds to the regularization parameter set to 1. RANDOM results are N2Vec-based.

Metric N2VEC FAIRWALK N2VECEMD N2VECLAP CNE DEBAYES CNEEMD CNELAP RANDOM

POLBLOGS

AUC .75± .01 .75± .01 .66± .01 .73± .01 .93± .01 .88± .01 .86± .01 .91± .02 .53± .01

RB .97± .01 .96± .01 .78± .01 .94± .01 .97± .01 .64± .04 .73± .03 .94± .04 .63± .01

DI .10± .02 .20± .01 .54± .07 .25± .02 .03± .02 .53± .05 .83± .05 .19± .03 .43± .02

Cons. .75± .02 .73± .01 .77± .10 .91± .01 .89± .01 .89± .01 .90± .01 .93± .01 .90± .04

FACEBOOK

AUC .98± .01 .85± .00 .96± .00 .96± .00 .99± .01 .99± .03 .99± .01 .98± .01 .49± .04

RB .64± .01 .61± .01 .61± .00 .63± .00 .58± .02 .57± .02 .54± .03 .58± .02 .56± .02

DI .80± .01 .83± .00 .80± .01 .80± .00 .93± .03 .91± .03 .98± .01 .99± .05 .84± .02

Cons. .96± .00 .94± .00 .96± .01 .96± .00 .97± .01 .96± .00 .97± .01 .97± .00 .89± .01

DBLP

AUC .98± .01 .98± .01 .78± .03 .81± .04 .98± .01 .98± .01 .77± .03 .82± .05 .54± .01

RB .77± .00 .77± .01 .58± .04 .58± .02 .55± .02 .51± .02 .52± .01 .51± .02 .59± .01

DI .14± .01 .14± .01 1.26± .04 1.02± .05 .03± .01 .04± .01 1.29± .04 .98± .05 .43± .03

Cons. .91± .01 .91± .01 .93± .02 .95± .01 .91± .01 .90± .02 .94± .01 .97± .01 .86± .01

bedding for which we obtain a high DI value indicating that
it requires no particular repair. The goals of the repairing
methods for each of these data sets are thus quite different:
for POLBLOGS and DBLP we would like to increase the DI
value and reduce the predictability of the sensitive attribute
by trading off as little of the edge prediction AUC as pos-
sible, while for FACEBOOK the algorithms should mainly
maintain the existing graph structure and not hinder the edge
prediction with unnecessary repairing. From the obtained
results, we first note that all fairness-aware methods increase
DI score compared to the original one on POLBLOGS and
FACEBOOK, while maintaining a decent prediction accu-
racy well-above the random guessing threshold observed
in the case of the RANDOM repair. On the other hand, on
DBLP dataset only our approach improves fairness scores,
but this comes at a price of a drop in terms of the perfor-
mance. Most likely, this is due to the imbalance between
different sensitives groups that hinders the performance of
OT. As for the consistency, only Laplacian regularization
significantly improves this criterion, while it remains almost
unchanged for other baselines after the repair. While differ-
ent repair methods have their distinct strong sides making
it difficult to choose the “best” one, we note that our pro-
posed approach is versatile and allows to explicitly control
the trade-off between the fairness and prediction accuracy
and to be used with different embeddings. Finally, Figure
2 shows the results for different regularization parameters
for the Laplacian OT on POLBLOGS. Once can see that as
the value of the regularization parameter increase, the group
fairness metric (DI) decreases while the individual fairness
metric (Cons.) increases.

5 CONCLUSION

In this paper we addressed an important problem of fair
edge prediction in graphs. Contrary to fair classification,
fair edge prediction in graphs has received a very limited
amount of attention from the research community and has

Figure 2: Impact of the Laplacian regularization on the
different metrics for POLBLOGS.

mainly been solved using heuristic embedding-dependent
procedures and only in group fairness context. To bridge
this gap, we provide a first embedding-agnostic repair pro-
cedure for the adjacency matrix of a graph with both group
and individual fairness constraints. We show through exten-
sive experimental evaluations that our approach provides a
flexibility of choosing explicitly to which extent one wants
to ensure group and individually fair constraints.

Further research directions of this work are many. First,
we would like to study the impact of different embedding
techniques on the bias in the adjacency matrix of a graph
as empirical evidence suggests that some embedding tech-
niques reinforce the bias in the data making it even more
apparent. We also plan to use a recent theoretical analysis
of popular node embedding methods [Qiu et al., 2018] to
provably show their effect on the correlation between the
estimated output and the sensitive attribute.
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