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Abstract

The theoretical analysis of deep neural net-
works (DNN) is arguably among the most
challenging research directions in machine
learning (ML) right now, as it requires
from scientists to lay novel statistical learn-
ing foundations to explain their behaviour
in practice. While some success has been
achieved recently in this endeavour, the ques-
tion on whether DNNs can be analyzed using
the tools from other scientific fields outside
the ML community has not received the at-
tention it may well have deserved. In this pa-
per, we explore the interplay between DNNs
and game theory (GT), and show how one
can benefit from the classic readily available
results from the latter when analyzing the
former. In particular, we consider the widely
studied class of congestion games, and illus-
trate their intrinsic relatedness to both lin-
ear and non-linear DNNs and to the prop-
erties of their loss surface. Beyond retriev-
ing the state-of-the-art results from the liter-
ature, we argue that our work provides a very
promising novel tool for analyzing the DNNs
and support this claim by proposing concrete
open problems that can advance significantly
our understanding of DNNs when solved.

1 INTRODUCTION

Since the very seeding of the machine learning (ML)
field, the ML researchers have constantly drawn in-
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spiration from other areas of science both to develop
novel approaches and to better understand the exist-
ing ones. One such notable example is a longstand-
ing fruitful relationship of ML with game theory (GT)
that manifested itself by the novel insights regarding
the analysis of such different learning settings as re-
inforcement learning [Peshkin et al., 2000, Hu and
Wellman, 2003, Claus and Boutilier, 1998], boosting
[Freund and Schapire, 1996] and adversarial classifi-
cation [Liu and Chawla, 2009, Brückner and Scheffer,
2011, Dritsoula et al., 2017] to name a few. While the
interplay between ML and GT in the above-mentioned
cases is natural, ie, reinforcement learning is a game
played between the agent and the environment, boost-
ing is a repeated game with rewards and adversarial
learning can be seen as a traditional minimax game,
very few works studied the connection between the
deep neural networks (DNNs) and GT despite the om-
nipresence of the former in the ML field. Indeed, in
recent years, deep learning has imposed itself as the
state of the art ML method in many real-world tasks,
such as computer vision or natural language process-
ing to name a few [Goodfellow et al., 2016]. While
achieving impressive performance in practice, training
DNNs requires optimizing a non-convex non-concave
objective function even in the case of linear activation
functions and can potentially lead to local minima that
are arbitrary far from global minimum. This, how-
ever, is not the typical behaviour observed in practice,
as several works [Dauphin et al., 2014, Goodfellow and
Vinyals, 2015] showed empirically that even in the case
of training the state-of-the-art convolutional or fully-
connected feedforward neural networks one does not
converge to suboptimal local minima. Such a mysteri-
ous behaviour made studying the loss surface of DNNs
and characterizing their local minima one of the topics
of high scientific importance for the ML community.

In this paper, we propose a novel approach for ana-
lyzing DNNs’ behaviour by modelling them as conges-
tion games, a popular class of games first studied by
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[Rosenthal, 1973] in the context of traffic routing. To
this end, we first prove that linear DNNs can be cast
as special instances of non-atomic congestion games
defined entirely in terms of the DNNs main charac-
teristics. This result allows us to successfully draw
the parallel between local minima of the loss func-
tion of a linear DNN and the Wardrop equilibria of
the corresponding non-atomic congestion game under
some mild assumptions on the considered loss func-
tion. As a consequence, we prove the well-known re-
sult provided by [Kawaguchi, 2016] for linear networks
regarding the equivalence between the local minima of
the loss function optimized by a linear DNN and its
global optimum. Second, we study the case of non-
linear DNNs with rectified linear activation function
(ReLU) by considering the model proposed in the sem-
inal work of [Choromanska et al., 2014]. We model
such networks as congestion games where some re-
sources available to the agents in the game can fail. In
this latter setting, we show that the seminal model of
[Choromanska et al., 2014] is essentially equivalent to
the linear DNN model studied before and thus enjoys
the same guarantees. To the best of our knowledge,
the proposed approach for the analysis of DNNs has
never been studied in the literature before and we ex-
pect it to have a very strong scientific impact due to
the established formal connection between one of the
most studied ML models and one of the most rich areas
of GT in terms of the number of available results.

The rest of this paper is organized as follows. In Sec-
tion 2, we review other existing works on the anal-
ysis of DNNs and their loss surface and convergence
properties. In Section 3, we provide the required pre-
liminary knowledge related to both DNNs and conges-
tion games. Section 4 contains our main contributions
that analyze both linear and non-linear DNNs. Fi-
nally, in Section 5 we emphasize the importance of the
established connection between DNNs and congestion
games and pose several open problems.

2 RELATED WORK

Below, we briefly review the main related works with
a particular emphasis on contributions analyzing the
loss surface of DNNs1 and those linking DNNs to GT.

Analysis of DNNs’ loss surface While strong em-
pirical performance of DNNs make of them a num-
ber one choice for many ML practitioners, it has
been shown that training a neural network is NP-hard

1For more results on the theoretical analysis of gradient
descent convergence for over-parametrized models includ-
ing Recurrent and Convolutional NNs, we refer the inter-
ested reader to [Du et al., 2017, Section 2] and [Allen-Zhu
et al., 2019, Section 1.2].

[Blum and Rivest, 1992] as it requires finding a global
minimum of a non-convex function of high dimension-
ality. To circumvent this difficulty, the methods for
convex optimization are widely used to train DNNs,
but the reasons why these methods work well in prac-
tice remain unknown as, in principle, nothing restricts
them from converging to poor local minima arbitrary
far from the global minimum. To shed light on this,
several works adapted a geometric approach to pro-
vide a justification for optimizing DNNs using convex
optimization methods. This latter consists in studying
the general class of non-convex optimization problems
with desired geometric properties, i.e., equivalence of
local minima to global optimum and negative curva-
ture for every saddle point, and showing that DNNs
belong to this class. In the case of the linear networks,
such notable result was provided in the works of [Baldi
and Hornik, 1989] and [Kawaguchi, 2016] who proved
that local minima are global minimum when a squared
loss function is considered. This statement was proved
for non-linear networks as well, first by [Choroman-
ska et al., 2014] who showed that the number of bad
local minima decreases quickly with the distance to
the global optimum and then by several other more
recent follow-up works considering different NN’s con-
figurations [Hardt and Ma, 2017, Freeman and Bruna,
2017, Soudry and Hoffer, 2018, Safran and Shamir,
2018]. An important consequence for DNNs having
these properties is that (perturbed) gradient descent
provably converges to a global optimum in this case
[Ge et al., 2015, Jin et al., 2017, Du et al., 2017]. Con-
trary to the works using the above-mentioned geomet-
ric approach, we obtain the same results for a family of
loss functions resembling the squared loss relying solely
on the properties of non-atomic congestion games.

Game theory and ML To the best of our knowl-
edge, only two other studies have reduced learning of
DNNs to game playing. In [Balduzzi, 2016], the au-
thor studied DNNs with non-differentiable activation
functions in order to explain why methods designed
for convex optimization are guaranteed to converge on
modern convnets with non-convex loss functions2. On
the other hand, the authors of [Schuurmans and Zinke-
vich, 2016] showed how supervised learning of a DNN
with differentiable convex gates can be seen as a simul-
taneous move two-person zero-sum game in order to
further establish the equivalence between the Karush-
Kuhn-Tucker (KKT) points of a DNN and Nash equi-
libria of the corresponding game. With these results in
hand, the authors illustrated empirically that a well-
known regret matching algorithm often used to find

2While being highly insightful, this work was shown to
have several flaws [Schuurmans and Zinkevich, 2016, Supp.
material, Section J] that remain unaddressed up to now.
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coarse-correlated Nash equilibria can be used success-
fully to train DNNs. It is worth noticing that in both
papers, the games considered by the authors were de-
signed for their specific purpose and have not been
studied independently in the game theory field. On
the contrary, in this paper we aim to study DNNs as
instances of arguably one of the most studied classes of
games in order to make the rich body of existing theo-
retical results proved for them readily available for the
ML researchers. Also, unlike the two other papers,
we study non-atomic games which are infinite-person
games with each player having an infinitesimal impact
on the game’s analysis and Wardrop equilibria specific
to such games contrary to games with a finite number
of players and Nash equilibria considered before.

3 BACKGROUND KNOWLEDGE

In this section, we briefly review the main definitions
related to DNNs and congestion games.

Deep Neural Networks Let us consider a DNN
defined as N = (V,E, I,O, F ), where 1) V is a set of
vertices, i.e., the total number of units in the neural
network; 2) E ⊆ V × V is a set of edges; 3) I =
{i1, . . . , id} ⊂ V is a set of input vertices equal to the
number of input features; 4) O = {o1, . . . , oC} ⊂ V
is a set of output vertices of size equal to number of
outputs and 5) F = {fv : v ∈ V } is a set of activation
functions, where fv : R→ R.

In the graph defined by G = (V,E) and having a lay-
ered structure with L layers, a path p = (v1, ..., vL)
with v1 ∈ I and vL ∈ O consists of a sequence of ver-
tices such that (vj , vj+1) ∈ E for all j. We assume that
G is directed and contains no cycles, the input vertices
have no incoming edges and the output vertices have
no outgoing edges. We let nl denote the number of
neurons at each layer l ∈ [1, . . . , L] where n1 = d and

nL = C. We further associate a (trainable) weight w
(l)
ij

to an edge between vertex v
(l)
i of layer l and v

(l−1)
j of

layer l−1 and denote by w(l) the matrix of all weights
between the two layers. W = {w(`),∀`} is the set of all
parameters associated to the network. For each ver-

tex v
(l)
i , we also associate a value (activation function)

g
(l)
i = f

v
(l)
i

(z
(l)
i ) with z

(l)
i=1 =

∑nl−1

k w
(l)
ik g

(l−1)
k .

Given a training set L = {(xj , yj)}Mj=1 drawn from

distribution D on X × Y with X ⊆ Rd and |Y| = C,
the task of the neural network is to produce a predictor
h : X → Y that assigns a label close to yj ∈ Y to
each xj ∈ X . This is done by solving the following

optimization problem:

min
W

loss(W ) = min
W

1

M

M∑
j=1

`(oL(xj), yj), (1)

where ` : R × R → R+ is a convex loss function.
Stochastic gradient descent (SGD) is commonly used
to solve Problem (1) where the weights are updated
either for each example x or for a mini-batch.

Congestion Games We consider a non-atomic ver-
sion of the congestion games [Schmeidler, 1973] that
were first defined in [Rosenthal, 1973] to model road
traffic. All along the paper, we use the definition of
non-atomic congestion games from [Roughgarden and
Éva Tardos, 2004] and use some of the results estab-
lished in this paper. A non-atomic congestion game
illustrated in Figure 1 is composed of the following
five elements:

• n: the size of each population of players. In non-
atomic game, the number of players is infinite and
the significance of one player is negligible. Conse-
quently, players are distributed into populations
and we denote by d the number of such popula-
tions. Each population i ∈ [[d]] has a size ni and
must be seen as a flow of players.

• E(G): the set of resources of the game which are
available for players when choosing a strategy. In
the setting we study, the resources are the edges
of a graph G that players can use when choosing a
path from their starting point to the ending one.

• S: the set of strategies. Each population of play-
ers needs to travel from the starting to the ending
point in the graph using the graph paths between
them. Then, for a population i with a starting
point di and an ending point fi, the set of strate-
gies Si of the players from population i are the set
of paths that link di to fi.

• c: the cost functions. To each edge of the graph
e ∈ E(G), we associate a non-negative, continu-
ous cost function ce(·) on R+ which denotes the
cost paid by the players using this edge. The cost
function depends on the flow of players that use
e and can be viewed as time spent by players to
travel so that more players using the same edge
leads to them spending more time on it.

• a: the rates of consumption. As non-atomic con-
gestion games were designed to model road traf-
fic, they can also take into account the possi-
ble types of roads (i.e., edges) and the types of
users in the game. The non-negative coefficients
aS,e are created for this aim (with the convention
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Population1
n1

Population2
n2

Population3
n3

d2

d3

d1

f2, f3

z̃e = ae,1
∑

S∈S1,e∈S
zs+ ae,2

∑
S∈S2,e∈S

zs+ ae,3
∑

S∈S3,e∈S
zs

f1

z̃e

Figure 1: Example of a non-atomic congestion game
with three populations of players.

aS,e = 0 if e /∈ S and aS,e > 0 otherwise). Then,
for each population i, a strategy Si ∈ S and an
edge e, we associate a coefficient aS,e which is used
while defining the flow of users on this edge and
the cost a player pays.

These five elements define a non-atomic congestion
game NCG = (E(G), c, S, n, a).

The decisions of players are modelled through the ac-
tion distribution z = (zS) S∈Si

i∈[[d]]
that lists all possible

strategies and is given by a vector of non-negative re-
als such that

∑
S∈Si

zS = ni for each player type i.
One can see zS as the measure of the set of players
that selects strategy S. We call z̃e the total amount of
congestion on element e produced by the action distri-
bution z:

z̃e =

d∑
i=1

∑
S∈Si

aS,ezS .

The cost cS(z) incurred by a player of type i selecting
strategy S ∈ Si is defined with respect to the action
distribution z as follows:

cS(z) =
∑
e∈S

aS,ece(z̃e).

One would have noticed that this cost is the sum over
all edges used by the player of the costs of these edges.
The social cost SC(z) w.r.t. an action distribution z
and the social optimum SO of a game are given re-
spectively by:

SC(z) =

d∑
i=1

∑
S∈Si

cS(z)zS , SO = min
z

SC(z).

The social cost can be seen as the sum over all players
of the costs payed the players while the social optimum
is the optimal social cost. In what follows, when we
speak about the value of an action distribution, we
mean the value of the social cost associated to this
distribution.

An action distribution z is a Wardrop equilibrium
(WE) if for each player type i = 1, 2, ..., d and strate-
gies Sa, Sb ∈ Si such that zSa

> 0, we have cSa
(z) ≤

cSb
(z). The Wardrop equilibrium is a situation in

which no player intends to switch to another strat-
egy because each of the players has already chosen
the cheaper strategy with respect to the choices of the
other players.

The main results about non-atomic congestion games
needed further are the followings:

P1. Social cost SC(z) can be rewritten as:

SC(z) =
∑
e∈E

ce(z̃e)z̃e with z̃e =
∑
i

∑
S∈Si

aS,ezS .

P2. Each NCG admits a Wardrop equilibrium.

P3. All Wardrop equilibria have the same value.

P4. For a given game NCG, we define the price of
anarchy (PoA) of a game as:

PoA(NCG) =
WE(NCG)

SO(NCG)
.

4 MAIN CONTRIBUTIONS

We start by introducing the assumptions needed to
model DNNs as non-atomic congestion games. We ar-
gue that these assumptions are not restrictive in prac-
tice and have been used in the literature before. Then,
we proceed by formally proving the equivalence be-
tween DNNs and non-atomic congestion games and by
relating the local minima of the former to the Wardrop
equilibria of the latter.

4.1 Problem Setup

Hereafter, we consider the following assumptions:

A1. ∀i, j, l, w(l)
ji ≥ 0 and ∀i, l,

∑
j w

(l)
ji = 1.

A2. X ⊆ Rd+, ie, all learning samples are positive
vectors.

A3. ∀l ≥ 2, nl ≥ C, ie, all hidden layers are wider
than the output layer.
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A4. The loss can be written as:

loss(W ) =
∑
j

∑
k

`(ojk, y
j
k)

with ojk the value of the kth output of the DNN
for the instance xj .

Regarding A1, one should note that the normaliza-
tion of the weights have been commonly used both to
study DNNs’ properties and even to accelerate their
training (see [Salimans and Kingma, 2016]). On the
other hand, the non-negativity constraint, which at
first glance might seem too restrictive, has also been
used by [Gautier et al., 2016] where the authors em-
pirically demonstrate the lack of its negative impact
on the NNs’ expressiveness. A2 is naturally satisfied
by numerous real-world data sets used to train DNNs,
such as image collections or text corpora. A3 implies
for the hidden layers to be wider than the output layer
and was used in [Nguyen and Hein, 2017] under the
name of pyramidal structure assumption. While the
importance of depth is often required for DNNs to have
good approximation properties, the width of DNNs
should be constrained to be wide enough to achieve
disconnected decision regions as shown in [Nguyen
et al., 2018]. Finally, A4 restricts us to consider only
those losses that are computed output-wise thus in-
cluding many popular norm-based loss function. Note
that considering this assumption is less restrictive than
many other previous works on the subject that explic-
itly analyze only the least square loss.

4.2 Analysis of Linear DNNs

We start by proving a first result related to linear
DNNs. We recall that while being quite restrictive in
practice, the theoretical analysis of this setting is still
challenging as it represents a non-convex optimization
problem. Furthermore, we use it as a cornerstone re-
sult for our future developments as it allows to illus-
trate our proposed construction.

Lemma 1. Assume A1-4, let DNN be defined as N =
(V,E, I,O, F ) with F = {f : ∀z, f(z) = z}, let loss(·)
be its associated loss function and let L = {(xj , yj)}Mj=1

be the learning sample. Then, one can construct a non-
atomic congestion game NCGloss

N = (E, c, S, n, a) fully
defined in terms of N , loss(·) and L.

Proof. We start by defining E of the corresponding
congestion game by applying a set of predefined rules
to the network N as follows:

1. Each edge of N becomes an edge of NCGloss
N . De-

note by B the set of these edges.

2. Each node ofN with an activation function (nodes
of the hidden layers and of the output layer) be-
comes an edge of the NCGloss

N . Denote by J the
set of these edges.

3. Each node of the output layer becomes a concate-
nation of M edges of NCGloss

N which are added
to the edge of J so that the last edge points to a
common node of the congestion game F . Denote
by T the set of these edges such that T = {ejk : ejk
associated to ok for a tuple (xj , yj)}. The index k
is used for the output number which is considered
1 ≤ k ≤ C and for a fixed k the index j is the num-
ber of the arc which is considered 1 ≤ j ≤M . Let
pk be the set of the paths of the neural network
(seen as a DAG) that include the concatenation
of the M edges associated to output k.

4. The ith node of the input layer become a node of
the congestion game named di for 1 ≤ i ≤ d.

An illustrative example of such transformation is given
in Figure 2. We now define S, n, c and a as follows.

S,n. One population of players i is created for
each node i of the input layer. The set of
strategies of the player i, Si, is the set of the
paths from di to F . The size of the popula-
tion i is 1 for each i, ie, ni = 1.

c. We define the cost of the edges as follows:

ce(ξ) =

{
0, if e ∈ B ∪ J
`(ξ, yjk)/ξ, if e = ejk ∈ T.

a. We define the rate of consumption as follows:

∀S ∈ Si, aS,e =

{
1, if e ∈ B ∪ J
xji , if e = ejk ∈ T.

The congestion game is entirely defined.

Remark 1. We implicitly assume that cejk
(ξ) =

`(ξ, yjk)/ξ is continuous, non-negative and non-
decreasing in ξ so as to respect the non-negativity and
the non-decrease of the cost functions of the associ-
ated congestion game. Moreover, it is assumed that
`(ξ, yjk)/ξ is well defined in 0. We discuss later how
these assumption can be shown to cover some loss
functions used in practice.

Let us now give the main theorem of the paper.

Theorem 1. Under the assumptions of Lemma 1, let
`(ξ, yjk) = Ajkξ

β with Ajk ≥ 0, β ≥ 2. Then, given
a neural network N , every local minimum of the loss
function loss(·) associated to N is a Wardrop equilib-
rium of the associated congestion game NCGloss

N .
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F

e11
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Figure 2: Illustration of how a non-atomic congestion game is constructed from a given DNN. (upper left)
Example of a DNN with a number d = 2 of input neurons, C = 3 of output neurons and one hidden layer;
(upper right) Graph associated to the DNN presented on the left for a learning sample of size M = 2. B is the
set of black edges, J is the set of blue edges and T is the set of red edges. (bottom left) and (bottom right)
are the intermediate steps.

Proof sketch. We start by relating the weight W of the
neural network N to the flow in the associated conges-
tion game such that the loss of the neural network
becomes equal to the social cost of the associated con-
gestion game. Then, we show how a local minimum
W of the loss function induces a distribution zW which
is a Wardrop equilibrium of the associated congestion
game. To this end, we use the result from [Kinder-
lehrer and Stampacchia, 2000] showing that every lo-
cal minimum x∗ of a function h belonging to class C1

and defined on a closed and convex subset X ⊆ Rn
verifies the following variational inequality:

〈∇h(x∗), x− x∗〉 ≥ 0, ∀x ∈ X.

On the other hand, we can characterize the Wardrop
equilibrium of a non-atomic congestion game by prov-
ing that a distribution z∗ is a Wardrop equilibrium of
NCGloss

N if and only if, by denoting cjk := cejk
we have :∑

i

∑
k

∑
j

xji c
j
k(z̃j∗k )(zk,i − z∗k,i) ≥ 0, ∀z ∈ Z,

where zk,i =
∑
S∈Si∩pk zS with pk being the set of

paths which include (ej
′

k )1≤j′≤M and z̃jk =
∑
i x

j
izk,i.

For the considered family of loss functions, we fur-
ther show that variational characterization of a local
minimum implies that of a Wardrop equilibrium. The
desired result is obtained by establishing that the flow
associated to a local minimum W is a Wardrop equi-
librium of the associated game.

This theorem is important as it allows to deduce two
corollaries, one on neural networks and the second
about congestion games.

Corollary 1. Under the assumptions of Theorem 1,
every local minimum of loss(·) is a global optimum.

Proof. For a loss of this type, we have shown that a lo-
cal minimum of the linear neural network is a Wardrop
equilibrium of the associated congestion game. As a
local minimum, the global minimum is also a Wardrop
equilibrium. It is known that for non-atomic conges-
tion games, the Wardrop equilibria have the same so-
cial cost. Because the value of the loss function at
W is equal to the value of the social cost of the as-
sociated congestion game at zW , local minimums and
global ones have the same value which is the value of
the Wardrop equilibria.

We now comment on the differences between our re-
sults and those obtained in [Kawaguchi, 2016]. First,
we note that Corollary 1 and Theorem 2.3 from
[Kawaguchi, 2016] both establish the equivalence of lo-
cal minima to the global optimum for linear DNNs (the
same holds for Corollary 4 from our paper proved later
for non-linear DNNs and Corollary 3.2 of [Kawaguchi,
2016]). This, however, is achieved under the assump-
tions that require 1) XXT and Y Y T to be full rank
(X ∈ Rdx×m is the learning sample, Y ∈ Rdy×m
are labels), 2) Y XT (XXT )−1XY T to have dy distinct
eigenvalues, and 3) dy ≥ dx. One may note that these
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assumptions cannot be compared directly with ours
in general. For instance, our assumptions are satis-
fied for any positive data sample, a network with non-
negative normalized weights for the task of binary clas-
sification with squared loss, while the assumptions of
[Kawaguchi, 2016] are violated whenever the data fed
to the neural-network lies in a low-dimensional mani-
fold. As for the loss function considered, [Kawaguchi,
2016] considers squared loss only while our loss is more
general and includes squared loss as a special case.

Corollary 2. Under the assumptions of Theorem 1,
PoA(NCGloss

N ) = 1.

Proof. A global minimum of the loss of N is a social
optimum of the associated congestion game. Global
minima are also Wardrop equilibria. Then, because
the value of the loss function at W is equal to the
value of the social cost of the associated congestion
game at zW , we get WE = SO and PoA = 1.

4.3 Learning with Loss Function from
Theorem 1

We now explain how we can use the loss studied in
Theorem 1 in practice when dealing with classification
task where yj is a binary vector with only one coor-
dinate equal to 1 and the rest being equal to 0. For
each j, let us denote by ej the coordinate of the vector

yj which is equal to 1, i.e., yjej = 1 and yjk = 0 for
k 6= ej . Moreover, we consider normalized inputs such

that
∑
i x

j
i = 1 for all j. Then, we can use our loss

functions in the following way:

1. We fix β ≥ 2.

2. For each j, we impose Ajk = 1 for k 6= ej and

Ajk = 0 if k = ej . By this way, we penalize the
outputs of the network which have to be equal to
0, while putting no penalty on the outputs that
need to be equal to 1.

We can deduce the following corollary.

Corollary 3. Under the assumptions of Theorem 1,
let C = 2 and let ` be the squared loss. Then, a local
minimum of loss(·) is a global minimum.

Proof sketch. We rewrite our loss and the squared loss
and show that for C > 2 they differ by a constant. We
then analyze this constant and prove that for C = 2
it reduces to the squared loss thus leading to the same
optimization objective.

4.4 Extension to DNNs with ReLUs

We now proceed to a study of non-linear DNNs with
activation functions F given by ReLUs defined as:

fv : R −→ R
x 7−→ max(0, x).

(2)

Such a non-linear DNN can be seen as a linear DNN
where some paths of the graph underlying the network
fail and thus can be also seen as non-atomic congestion
game where edges of J , which represent the activation
functions, can fail depending on the congestion that
occurs on them. More precisely, one can show that for
a non-linear DNN with ReLUs, its kth output for the
instance xj is given by:

ojk =
∑
p∈pk

zjpx
j
pwp,

where pk is the set of paths that end to output k, wp
is the product of the weights on the path p and xjp is

the value of the coordinate of xj from which the path
p starts. As for zjp, it is a variable that is equal to
1 if all ReLUs fv encountered in the path p are such
that fv(g

j
v) = gjv where gv is the value of the node v

on the example xj and 0, otherwise. In other words,
the variable zjp reflects whether the path p is active

(zjp = 1) or not (zjp = 0) depending on the ReLU

activation on the path p for the instance xj .

As non-linear DNNs are notoriously hard to study,
most papers introduce simplifications to model non-
linearities in order to analyze the simplified models
afterwards. One prominent example of such modeliza-
tion was introduced by [Choromanska et al., 2014] and
further improved by [Kawaguchi, 2016] who success-
fully discarded several of the unrealistic assumptions
of the original model and lightened others. For our
analysis, we use some of the lighter assumptions made
in the latter paper. The first assumption, denoted by
A1pm in the corresponding paper, states that zjp are
Bernoulli random variables with the same probabil-
ity of success ρ. The second assumption, called A5um,
states that zjp are independent from the inputs {xj}Mj=1

and the weight parameters W . These assumptions, al-
though remaining unrealistic in case of A5um, allow
us to write the expected output ojk as follows:

E(ojk) =
∑
p∈pk

ρxjpwp = ρ
∑
p∈pk

xjpwp. (3)

One can remark that the output of the network has
simply been multiplied by ρ. Given a non-linear DNN
N , let lin(N) be the linear DNN associated to N where
all activation functions are replaced by the function:

fv : R −→ R
x 7−→ x.
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We now show how we can reduce non-linear DNNs to
congestion games with failures by adapting the results
obtained for atomic congestion games with failures in
the paper [Li et al., 2017] to a non-atomic case.

Lemma 2. Assume A1-4, A1pm, A5um, let N =
(V,E, I,O, F ) with O and F defined as in (3) and
(2), respectively. Let loss(·) be its associated loss func-
tion and let L = {(xj , yj)}Mj=1 be the available learning
sample. Then, N can be reduced to a non-atomic con-
gestion game with failures NCGFloss

N = (E, c, S, n, a)
fully defined in terms of N , L and loss(·).

Proof. E,S, n, a remain the same as for NCGloss
N from

Lemma 1. The only modification is that if a player
chooses a path with no failures, then its cost is cS(z) =∑
e∈S aS,ece(ze) where z is the flow of the game such

that failures are taken into account. Otherwise, we
impose cS(z) = wi where wi is a constant associated
to a player type i. NCGFloss

N is now defined.

Given W and our set of assumptions, we study the
same loss as in the linear case but on the expected
outputs of the neural networks, ie,

loss(W ) =
∑
j

∑
k

`(E(ojk), yjk), (4)

where ojk is the kth output of N for instance j. We
further let β = 2 in the definition of ` as done in
[Kawaguchi, 2016] for the squared loss. We now es-
tablish the equivalence between the local minima of
the non-linear model to those of the linear one.

Lemma 3. Under the assumptions of Lemma 2, let
β = 2 and let the loss function be as in (4). Then, a
local minimum of loss(W ) of N is a local minimum of
the loss function of the corresponding linear network
from Lemma 1.

The final result obtained through the transitivity of
properties shown in Theorem 1 is stated as follows.

Corollary 4. Under the assumptions of Lemma 3, a
local minimum of a loss function in (4) is a Wardrop
equilibrium of the game associated to the linear net-
work from Lemma 1.

Note that out of 7 assumptions used in [Choroman-
ska et al., 2014] to prove a similar result, we keep
only two in addition to Assumptions A1-4. Also, their
main result is different from ours as it states that the
number of poor local minimum may be not too large,
while our result states that there is no local minima
in such setting. Finally, [Choromanska et al., 2014]
consider squared loss with dy = 1 (note that it does
not correspond to commonly used one-hot label encod-
ings). On a higher level, this corollary suggests that

the model introduced for non-linear DNNs in [Choro-
manska et al., 2014] is equivalent to studying a linear
DNN.

Overall, our contributions establish the state-of-the-
art results related to the analysis of the loss surface
of both linear and non-linear DNNs following a com-
pletely novel approach. While this is an important
contribution in itself, we believe that it further paves
the way to several other highly promising research di-
rections presented below.

5 OPEN PROBLEMS

In the introduction we claimed that our analysis can
be used as a tool to prove other fundamental results
about DNNs by modelling them as congestion games.
Below, we aim to highlight this claim by rigorously
formulating three open problems for future research.

Impact of DNNs architecture Characterizing
PoA depending on the network topology and the used
cost function is commonly done in the field of con-
gestion games and we expect it to be very useful for
DNNs as well. Indeed, it is known that PoA of non-
atomic congestion games is independent of network
topology [Colini-Baldeschi et al., 2017] when cost func-
tions are polynomials of an arbitrary degree. Con-
sequently, one may wonder whether our results can
be extended beyond multi-layer networks to take into
account other network architectures, such as U-Nets
[Ronneberger et al., 2015], with potentially different
activation and/or loss functions. More formally, we
propose the following open problem.

Open Problem 1. For a DNN N = (V,E, I,O, F ),
let NCG be a congestion game such that every local
minimum/critical point and global minima of loss(·)
associated to N are Wardrop equilibrium and social
optimums of NCG, respectively. Then, PoA(NCG) =
1 and does not depend on G = (V,E), F and loss(·).

We note that this open problem can also lead to a neg-
ative result where the local minima inefficiency can be
proved to be arbitrary high. To obtain such result, one
will have to consider atomic congestion games CG for
which, contrary to Wardrop equilibria, different Nash
equilibria can lead to outcomes with different costs. If
there exists a DNN such that its associated atomic con-
gestion game has PoA(CG) > 1 for a particular choice
of G, F and loss(·), then such neural architectures may
exhibit an arbitrary bad behaviour during the opti-
mization. One such example is the PoA in atomic
splittable games with polynomial cost functions of de-
gree d for which there exists particular network topolo-
gies with PoA behaving as ((1+

√
d+ 1)/2)d+1 [Rough-

garden and Schoppmann, 2011].
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Speed of convergence Apart from the geometric
approach that relies on the equivalence between lo-
cal minima and the global optimum, another way to
analyze DNN’s behaviour is to study directly the op-
timization dynamics of SGD and its variations. In the
context of games, this latter can be modelled by re-
peating the one-shot game, i.e., the game with one
data point or a mini batch, over T time steps and ana-
lyzing the average of the costs associated with the out-
comes of each step. In our work, we provided a char-
acterization of the PoA for one-shot non-atomic con-
gestion game, but this analysis can be further applied
to repeated games using the extension theorems and
the notion of (λ, µ)−smoothness developed in [Rough-
garden, 2015]. In line with what we discussed above,
we now consider atomic congestion games to allow
for Nash equilibria with different costs. Such games
can be characterized by the notion of a robust PoA
ρ defined in terms of the parameters λ and µ and
coinciding with the traditional PoA in several cases
of interest. For these games, extension theorems en-
sure that the sequence of outcomes of a smooth game
where every player experiences vanishing average (ex-
ternal) regret converges to the optimal outcome times
the robust PoA. This is due to the fact that for ev-
ery pure/mixed/correlated/coarse-correlated equilib-

rium z′, Ez∼z′ [SC(z)]
SO(CG) ≤ ρ. Then, as a sequence of out-

comes with vanishing external regret converges to a
correlated equilibrium, we have the following.

Open Problem 2. For a deep neural network
N = (V,E, I,O, F ), let CG be its corresponding
(λ, µ)−smooth congestion game such that

1. loss(W ) is equal to the social cost SC(zW ).

2. SO(CG) is the global optimum of loss(·).

Then, if loss(W i) are social costs associating to a van-
ishing average (external) regret, the following holds:

1

T

T∑
i=1

loss(W i) ≤ (ρ(CG) + o(1))loss(W ∗) as T 7→ ∞

where W i is the outcome of iteration i and W ∗ is a
global optimum.

Moreover, if each critical point W of the loss function
is either pure, mixed, correlated or coarse-correlated
equilibrium of CG, then lossW

lossW∗ ≤ ρ(CG).

Note that [Balduzzi, 2016] related the coarse-
correlated equilibrium to critical points of a non-linear
DNN, but their arguments were shown to be flawed
in [Schuurmans and Zinkevich, 2016]. This latter
work managed to draw the equivalence between crit-
ical points and Nash equilibrium correctly and used

a popular regret matching algorithm to successfully
learn DNNs. Unfortunately, their proposed learning
strategy is applied to games solved on each vertex of a
DNN and thus is not guaranteed to converge to a glob-
ally optimal strategy. In this regard, congestion games
offer a more convenient alternative as they benefit from
the convergence guarantees and allow to characterize
the speed of this convergence based on the character-
istics of the considered game.

Beyond backprop As discussed above, game-
theoretical interpretation of DNNs had already led to
new learning strategies used to find equilibrium points
in the corresponding games. As shown in [Schuurmans
and Zinkevich, 2016], regret matching algorithm out-
performs widely-used SGD and Adam methods and
leads to sparser networks with higher accuracy when
deployed on the test set. In the context of our work, we
would like to make a step further and go beyond the re-
gret matching algorithm mentioned above by propos-
ing a new learning strategy based on optimal transport
[Villani, 2009]. Optimal transport considers a problem
of transforming one probability measure into another
following the principle of the least effort. While tradi-
tionally optimal transport does not account for conges-
tion effects, several recent works studied this variation
and showed that in this case the solution can be re-
lated to the notion of the equilibria of Wardrop type
[Carlier et al., 2008, Blanchet and Carlier, 2016]. This
leads to the following open problem.

Open Problem 3. For a deep neural network N =
(V,E, I,O, F ), let NCG be its corresponding conges-
tion game with equilibria given by:

η∗ ∈ argminηWc(µ, η) + E(η), (5)

where Wc is the Wasserstein distance between a mea-
sures defined on the input flow of NCG and E(η) is
a function of congestion for an action distribution η.
Then, η∗ is a critical point of loss(·).

We note that several papers [Chizat and Bach, 2018,
Rotskoff and Vanden-Eijnden, 2018, Mei et al., 2018]
used the notion of the Wasserstein gradient flow to
show the convergence of convex optimization meth-
ods for overparametrized models. Their underlying
idea was to consider a problem of learning a mea-
sure that minimizes the DNN’s loss function and to
study the dynamics of the gradient descent performed
on its weights and positions. One question to answer
thus is whether the Wasserstein gradient flow of solv-
ing (5) is naturally linked to the Wasserstein gradient
flow considered in previous work? Such an equivalence
may well indicate that the game-theoretical interpre-
tation of DNNs reconciles both geometric approaches
for studying DNNs loss surface and those based on
analyzing their optimization dynamics.
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