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Deep Neural Networks Are Congestion Games: From Loss Landscape to Wardrop Equilibrium and Beyond

The theoretical analysis of deep neural networks (DNN) is arguably among the most challenging research directions in machine learning (ML) right now, as it requires from scientists to lay novel statistical learning foundations to explain their behaviour in practice. While some success has been achieved recently in this endeavour, the question on whether DNNs can be analyzed using the tools from other scientific fields outside the ML community has not received the attention it may well have deserved. In this paper, we explore the interplay between DNNs and game theory (GT), and show how one can benefit from the classic readily available results from the latter when analyzing the former. In particular, we consider the widely studied class of congestion games, and illustrate their intrinsic relatedness to both linear and non-linear DNNs and to the properties of their loss surface. Beyond retrieving the state-of-the-art results from the literature, we argue that our work provides a very promising novel tool for analyzing the DNNs and support this claim by proposing concrete open problems that can advance significantly our understanding of DNNs when solved.

INTRODUCTION

Since the very seeding of the machine learning (ML) field, the ML researchers have constantly drawn in-spiration from other areas of science both to develop novel approaches and to better understand the existing ones. One such notable example is a longstanding fruitful relationship of ML with game theory (GT) that manifested itself by the novel insights regarding the analysis of such different learning settings as reinforcement learning [START_REF] Peshkin | Learning to cooperate via policy search[END_REF], Hu and Wellman, 2003, Claus and Boutilier, 1998], boosting [START_REF] Freund | Game theory, on-line prediction and boosting[END_REF] and adversarial classification [START_REF] Liu | A game theoretical model for adversarial learning[END_REF], Brückner and Scheffer, 2011, Dritsoula et al., 2017] to name a few. While the interplay between ML and GT in the above-mentioned cases is natural, ie, reinforcement learning is a game played between the agent and the environment, boosting is a repeated game with rewards and adversarial learning can be seen as a traditional minimax game, very few works studied the connection between the deep neural networks (DNNs) and GT despite the omnipresence of the former in the ML field. Indeed, in recent years, deep learning has imposed itself as the state of the art ML method in many real-world tasks, such as computer vision or natural language processing to name a few [START_REF] Goodfellow | Deep Learning[END_REF]. While achieving impressive performance in practice, training DNNs requires optimizing a non-convex non-concave objective function even in the case of linear activation functions and can potentially lead to local minima that are arbitrary far from global minimum. This, however, is not the typical behaviour observed in practice, as several works [Dauphin et al., 2014, Goodfellow and[START_REF] Goodfellow | [END_REF] showed empirically that even in the case of training the state-of-the-art convolutional or fullyconnected feedforward neural networks one does not converge to suboptimal local minima. Such a mysterious behaviour made studying the loss surface of DNNs and characterizing their local minima one of the topics of high scientific importance for the ML community.

In this paper, we propose a novel approach for analyzing DNNs' behaviour by modelling them as congestion games, a popular class of games first studied by [Rosenthal, 1973] in the context of traffic routing. To this end, we first prove that linear DNNs can be cast as special instances of non-atomic congestion games defined entirely in terms of the DNNs main characteristics. This result allows us to successfully draw the parallel between local minima of the loss function of a linear DNN and the Wardrop equilibria of the corresponding non-atomic congestion game under some mild assumptions on the considered loss function. As a consequence, we prove the well-known result provided by [Kawaguchi, 2016] for linear networks regarding the equivalence between the local minima of the loss function optimized by a linear DNN and its global optimum. Second, we study the case of nonlinear DNNs with rectified linear activation function (ReLU) by considering the model proposed in the seminal work of [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF]. We model such networks as congestion games where some resources available to the agents in the game can fail. In this latter setting, we show that the seminal model of [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF] is essentially equivalent to the linear DNN model studied before and thus enjoys the same guarantees. To the best of our knowledge, the proposed approach for the analysis of DNNs has never been studied in the literature before and we expect it to have a very strong scientific impact due to the established formal connection between one of the most studied ML models and one of the most rich areas of GT in terms of the number of available results.

The rest of this paper is organized as follows. In Section 2, we review other existing works on the analysis of DNNs and their loss surface and convergence properties. In Section 3, we provide the required preliminary knowledge related to both DNNs and congestion games. Section 4 contains our main contributions that analyze both linear and non-linear DNNs. Finally, in Section 5 we emphasize the importance of the established connection between DNNs and congestion games and pose several open problems.

RELATED WORK

Below, we briefly review the main related works with a particular emphasis on contributions analyzing the loss surface of DNNs1 and those linking DNNs to GT.

Analysis of DNNs' loss surface While strong empirical performance of DNNs make of them a number one choice for many ML practitioners, it has been shown that training a neural network is NP-hard [START_REF] Blum | Training a 3-node neural network is np-complete[END_REF] as it requires finding a global minimum of a non-convex function of high dimensionality. To circumvent this difficulty, the methods for convex optimization are widely used to train DNNs, but the reasons why these methods work well in practice remain unknown as, in principle, nothing restricts them from converging to poor local minima arbitrary far from the global minimum. To shed light on this, several works adapted a geometric approach to provide a justification for optimizing DNNs using convex optimization methods. This latter consists in studying the general class of non-convex optimization problems with desired geometric properties, i.e., equivalence of local minima to global optimum and negative curvature for every saddle point, and showing that DNNs belong to this class. In the case of the linear networks, such notable result was provided in the works of [START_REF] Baldi | Neural networks and principal component analysis: Learning from examples without local minima[END_REF]] and [Kawaguchi, 2016] who proved that local minima are global minimum when a squared loss function is considered. This statement was proved for non-linear networks as well, first by [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF] who showed that the number of bad local minima decreases quickly with the distance to the global optimum and then by several other more recent follow-up works considering different NN's configurations [START_REF] Hardt | Identity matters in deep learning[END_REF], Freeman and Bruna, 2017, Soudry and Hoffer, 2018, Safran and Shamir, 2018]. An important consequence for DNNs having these properties is that (perturbed) gradient descent provably converges to a global optimum in this case [START_REF] Ge | Escaping from saddle points -online stochastic gradient for tensor decomposition[END_REF], Jin et al., 2017, Du et al., 2017]. Contrary to the works using the above-mentioned geometric approach, we obtain the same results for a family of loss functions resembling the squared loss relying solely on the properties of non-atomic congestion games.

Game theory and ML To the best of our knowledge, only two other studies have reduced learning of DNNs to game playing. In [Balduzzi, 2016], the author studied DNNs with non-differentiable activation functions in order to explain why methods designed for convex optimization are guaranteed to converge on modern convnets with non-convex loss functions2 . On the other hand, the authors of [START_REF] Schuurmans | Deep learning games[END_REF] showed how supervised learning of a DNN with differentiable convex gates can be seen as a simultaneous move two-person zero-sum game in order to further establish the equivalence between the Karush-Kuhn-Tucker (KKT) points of a DNN and Nash equilibria of the corresponding game. With these results in hand, the authors illustrated empirically that a wellknown regret matching algorithm often used to find coarse-correlated Nash equilibria can be used successfully to train DNNs. It is worth noticing that in both papers, the games considered by the authors were designed for their specific purpose and have not been studied independently in the game theory field. On the contrary, in this paper we aim to study DNNs as instances of arguably one of the most studied classes of games in order to make the rich body of existing theoretical results proved for them readily available for the ML researchers. Also, unlike the two other papers, we study non-atomic games which are infinite-person games with each player having an infinitesimal impact on the game's analysis and Wardrop equilibria specific to such games contrary to games with a finite number of players and Nash equilibria considered before.

BACKGROUND KNOWLEDGE

In this section, we briefly review the main definitions related to DNNs and congestion games.

Deep Neural Networks Let us consider a DNN defined as N = (V, E, I, O, F ), where 1) V is a set of vertices, i.e., the total number of units in the neural network; 2) E ⊆ V × V is a set of edges; 3) I = {i 1 , . . . , i d } ⊂ V is a set of input vertices equal to the number of input features; 4) O = {o 1 , . . . , o C } ⊂ V is a set of output vertices of size equal to number of outputs and 5) F = {f v : v ∈ V } is a set of activation functions, where f v : R → R.

In the graph defined by G = (V, E) and having a layered structure with L layers, a path p = (v 1 , ..., v L ) with v 1 ∈ I and v L ∈ O consists of a sequence of vertices such that (v j , v j+1 ) ∈ E for all j. We assume that G is directed and contains no cycles, the input vertices have no incoming edges and the output vertices have no outgoing edges. We let n l denote the number of neurons at each layer l ∈ [1, . . . , L] where n 1 = d and n L = C. We further associate a (trainable) weight w (l) ij to an edge between vertex v (l) i of layer l and v (l-1) j of layer l -1 and denote by w (l) the matrix of all weights between the two layers. W = {w ( ) , ∀ } is the set of all parameters associated to the network. For each vertex v (l) i , we also associate a value (activation function) g

(l) i = f v (l) i (z (l) i ) with z (l) i=1 = n l-1 k w (l) ik g (l-1) k . Given a training set L = {(x j , y j )} M j=1 drawn from distribution D on X × Y with X ⊆ R d and |Y| = C,
the task of the neural network is to produce a predictor h : X → Y that assigns a label close to y j ∈ Y to each x j ∈ X . This is done by solving the following optimization problem:

min W loss(W ) = min W 1 M M j=1 (o L (x j ), y j ), (1) 
where : R × R → R + is a convex loss function. Stochastic gradient descent (SGD) is commonly used to solve Problem (1) where the weights are updated either for each example x or for a mini-batch.

Congestion Games We consider a non-atomic version of the congestion games [Schmeidler, 1973] that were first defined in [Rosenthal, 1973] to model road traffic. All along the paper, we use the definition of non-atomic congestion games from [START_REF] Roughgarden | Bounding the inefficiency of equilibria in nonatomic congestion games[END_REF] and use some of the results established in this paper. A non-atomic congestion game illustrated in Figure 1 is composed of the following five elements:

• n: the size of each population of players. In nonatomic game, the number of players is infinite and the significance of one player is negligible. Consequently, players are distributed into populations and we denote by d the number of such populations. Each population i ∈ [[d]] has a size n i and must be seen as a flow of players.

• E(G): the set of resources of the game which are available for players when choosing a strategy. In the setting we study, the resources are the edges of a graph G that players can use when choosing a path from their starting point to the ending one.

• S: the set of strategies. Each population of players needs to travel from the starting to the ending point in the graph using the graph paths between them. Then, for a population i with a starting point d i and an ending point f i , the set of strategies S i of the players from population i are the set of paths that link d i to f i .

• c: the cost functions. To each edge of the graph e ∈ E(G), we associate a non-negative, continuous cost function c e (•) on R + which denotes the cost paid by the players using this edge. The cost function depends on the flow of players that use e and can be viewed as time spent by players to travel so that more players using the same edge leads to them spending more time on it.

• a: the rates of consumption. As non-atomic congestion games were designed to model road traffic, they can also take into account the possible types of roads (i.e., edges) and the types of users in the game. The non-negative coefficients a S,e are created for this aim (with the convention a S,e = 0 if e / ∈ S and a S,e > 0 otherwise). Then, for each population i, a strategy S i ∈ S and an edge e, we associate a coefficient a S,e which is used while defining the flow of users on this edge and the cost a player pays.
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These five elements define a non-atomic congestion game NCG = (E(G), c, S, n, a).

The decisions of players are modelled through the action distribution z = (z S ) S∈S i i∈ [[d]] that lists all possible strategies and is given by a vector of non-negative reals such that S∈Si z S = n i for each player type i. One can see z S as the measure of the set of players that selects strategy S. We call ze the total amount of congestion on element e produced by the action distribution z:

ze = d i=1 S∈Si a S,e z S .
The cost c S (z) incurred by a player of type i selecting strategy S ∈ S i is defined with respect to the action distribution z as follows:

c S (z) = e∈S a S,e c e (z e ).
One would have noticed that this cost is the sum over all edges used by the player of the costs of these edges. The social cost SC(z) w.r.t. an action distribution z and the social optimum SO of a game are given respectively by:

SC(z) = d i=1 S∈Si c S (z)z S , SO = min z SC(z).
The social cost can be seen as the sum over all players of the costs payed the players while the social optimum is the optimal social cost. In what follows, when we speak about the value of an action distribution, we mean the value of the social cost associated to this distribution.

An action distribution z is a Wardrop equilibrium (WE) if for each player type i = 1, 2, ..., d and strategies S a , S b ∈ S i such that z Sa > 0, we have c Sa (z) ≤ c S b (z). The Wardrop equilibrium is a situation in which no player intends to switch to another strategy because each of the players has already chosen the cheaper strategy with respect to the choices of the other players.

The main results about non-atomic congestion games needed further are the followings: P1. Social cost SC(z) can be rewritten as: 

SC(z) =

MAIN CONTRIBUTIONS

We start by introducing the assumptions needed to model DNNs as non-atomic congestion games. We argue that these assumptions are not restrictive in practice and have been used in the literature before. Then, we proceed by formally proving the equivalence between DNNs and non-atomic congestion games and by relating the local minima of the former to the Wardrop equilibria of the latter.

Problem Setup

Hereafter, we consider the following assumptions:

A1. ∀i, j, l, w (l) 
ji ≥ 0 and ∀i, l, j w

(l) ji = 1.
A2. X ⊆ R d + , ie, all learning samples are positive vectors.

A3. ∀l ≥ 2, n l ≥ C, ie, all hidden layers are wider than the output layer.

A4. The loss can be written as:

loss(W ) = j k (o j k , y j k )
with o j k the value of the k th output of the DNN for the instance x j .

Regarding A1, one should note that the normalization of the weights have been commonly used both to study DNNs' properties and even to accelerate their training (see [START_REF] Salimans | Weight normalization: A simple reparameterization to accelerate training of deep neural networks[END_REF]). On the other hand, the non-negativity constraint, which at first glance might seem too restrictive, has also been used by [START_REF] Gautier | Globally optimal training of generalized polynomial neural networks with nonlinear spectral methods[END_REF] where the authors empirically demonstrate the lack of its negative impact on the NNs' expressiveness. A2 is naturally satisfied by numerous real-world data sets used to train DNNs, such as image collections or text corpora. A3 implies for the hidden layers to be wider than the output layer and was used in [START_REF] Nguyen | The loss surface of deep and wide neural networks[END_REF] under the name of pyramidal structure assumption. While the importance of depth is often required for DNNs to have good approximation properties, the width of DNNs should be constrained to be wide enough to achieve disconnected decision regions as shown in [START_REF] Nguyen | Neural networks should be wide enough to learn disconnected decision regions[END_REF]. Finally, A4 restricts us to consider only those losses that are computed output-wise thus including many popular norm-based loss function. Note that considering this assumption is less restrictive than many other previous works on the subject that explicitly analyze only the least square loss.

Analysis of Linear DNNs

We start by proving a first result related to linear DNNs. We recall that while being quite restrictive in practice, the theoretical analysis of this setting is still challenging as it represents a non-convex optimization problem. Furthermore, we use it as a cornerstone result for our future developments as it allows to illustrate our proposed construction.

Lemma 1. Assume A1-4, let DNN be defined as N = (V, E, I, O, F ) with F = {f : ∀z, f (z) = z}, let loss(•) be its associated loss function and let L = {(x j , y j )} M j=1 be the learning sample. Then, one can construct a nonatomic congestion game NCG loss N = (E, c, S, n, a) fully defined in terms of N , loss(•) and L.

Proof. We start by defining E of the corresponding congestion game by applying a set of predefined rules to the network N as follows:

1. Each edge of N becomes an edge of NCG loss N . Denote by B the set of these edges.

2. Each node of N with an activation function (nodes of the hidden layers and of the output layer) becomes an edge of the NCG loss N . Denote by J the set of these edges.

3. Each node of the output layer becomes a concatenation of M edges of NCG loss N which are added to the edge of J so that the last edge points to a common node of the congestion game F . Denote by T the set of these edges such that T = {e j k : e j k associated to o k for a tuple (x j , y j )}. The index k is used for the output number which is considered 1 ≤ k ≤ C and for a fixed k the index j is the number of the arc which is considered 1 ≤ j ≤ M . Let p k be the set of the paths of the neural network (seen as a DAG) that include the concatenation of the M edges associated to output k.

4. The i th node of the input layer become a node of the congestion game named d i for 1 ≤ i ≤ d.

An illustrative example of such transformation is given in Figure 2. We now define S, n, c and a as follows.

S,n. One population of players i is created for each node i of the input layer. The set of strategies of the player i, S i , is the set of the paths from d i to F . The size of the population i is 1 for each i, ie, n i = 1.

c. We define the cost of the edges as follows:

c e (ξ) = 0, if e ∈ B ∪ J (ξ, y j k )/ξ, if e = e j k ∈ T.
a. We define the rate of consumption as follows:

∀S ∈ S i , a S,e = 1, if e ∈ B ∪ J x j i , if e = e j k ∈ T.
The congestion game is entirely defined.

Remark 1. We implicitly assume that c e j k (ξ) = (ξ, y j k )/ξ is continuous, non-negative and nondecreasing in ξ so as to respect the non-negativity and the non-decrease of the cost functions of the associated congestion game. Moreover, it is assumed that (ξ, y j k )/ξ is well defined in 0. We discuss later how these assumption can be shown to cover some loss functions used in practice.

Let us now give the main theorem of the paper.

Theorem 1. Under the assumptions of Lemma 1, let (ξ,

y j k ) = A j k ξ β with A j k ≥ 0, β ≥ 2.
Then, given a neural network N , every local minimum of the loss function loss(•) associated to N is a Wardrop equilibrium of the associated congestion game NCG loss N .
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Step 4 o1 o2 o3

Step 3 Proof sketch. We start by relating the weight W of the neural network N to the flow in the associated congestion game such that the loss of the neural network becomes equal to the social cost of the associated congestion game. Then, we show how a local minimum W of the loss function induces a distribution z W which is a Wardrop equilibrium of the associated congestion game. To this end, we use the result from [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF] showing that every local minimum x * of a function h belonging to class C 1 and defined on a closed and convex subset X ⊆ R n verifies the following variational inequality:

i 1 i 2 F e 1 1 e 2 
∇h(x * ), x -x * ≥ 0, ∀x ∈ X.
On the other hand, we can characterize the Wardrop equilibrium of a non-atomic congestion game by proving that a distribution z * is a Wardrop equilibrium of NCG loss N if and only if, by denoting c j k := c e j k we have :

i k j x j i c j k (z j * k )(z k,i -z * k,i ) ≥ 0, ∀z ∈ Z,
where z k,i = S∈Si∩p k z S with p k being the set of paths which include (e j k ) 1≤j ≤M and zj k = i x j i z k,i . For the considered family of loss functions, we further show that variational characterization of a local minimum implies that of a Wardrop equilibrium. The desired result is obtained by establishing that the flow associated to a local minimum W is a Wardrop equilibrium of the associated game. This theorem is important as it allows to deduce two corollaries, one on neural networks and the second about congestion games.

Corollary 1. Under the assumptions of Theorem 1, every local minimum of loss(•) is a global optimum.

Proof. For a loss of this type, we have shown that a local minimum of the linear neural network is a Wardrop equilibrium of the associated congestion game. As a local minimum, the global minimum is also a Wardrop equilibrium. It is known that for non-atomic congestion games, the Wardrop equilibria have the same social cost. Because the value of the loss function at W is equal to the value of the social cost of the associated congestion game at z W , local minimums and global ones have the same value which is the value of the Wardrop equilibria.

We now comment on the differences between our results and those obtained in [Kawaguchi, 2016]. First, we note that Corollary 1 and Theorem 2.3 from [Kawaguchi, 2016] both establish the equivalence of local minima to the global optimum for linear DNNs (the same holds for Corollary 4 from our paper proved later for non-linear DNNs and Corollary 3.2 of [Kawaguchi, 2016]). This, however, is achieved under the assumptions that require 1) XX T and Y Y T to be full rank (X ∈ R dx×m is the learning sample, Y ∈ R dy×m are labels), 2) Y X T (XX T ) -1 XY T to have d y distinct eigenvalues, and 3) d y ≥ d x . One may note that these assumptions cannot be compared directly with ours in general. For instance, our assumptions are satisfied for any positive data sample, a network with nonnegative normalized weights for the task of binary classification with squared loss, while the assumptions of [Kawaguchi, 2016] are violated whenever the data fed to the neural-network lies in a low-dimensional manifold. As for the loss function considered, [Kawaguchi, 2016] considers squared loss only while our loss is more general and includes squared loss as a special case.

Corollary 2. Under the assumptions of Theorem 1, PoA(NCG loss N ) = 1.

Proof. A global minimum of the loss of N is a social optimum of the associated congestion game. Global minima are also Wardrop equilibria. Then, because the value of the loss function at W is equal to the value of the social cost of the associated congestion game at z W , we get WE = SO and PoA = 1.

Learning with Loss Function from Theorem 1

We now explain how we can use the loss studied in Theorem 1 in practice when dealing with classification task where y j is a binary vector with only one coordinate equal to 1 and the rest being equal to 0. For each j, let us denote by e j the coordinate of the vector y j which is equal to 1, i.e., y j ej = 1 and y j k = 0 for k = e j . Moreover, we consider normalized inputs such that i x j i = 1 for all j. Then, we can use our loss functions in the following way:

1. We fix β ≥ 2.

2. For each j, we impose A j k = 1 for k = e j and A j k = 0 if k = e j . By this way, we penalize the outputs of the network which have to be equal to 0, while putting no penalty on the outputs that need to be equal to 1.

We can deduce the following corollary.

Corollary 3. Under the assumptions of Theorem 1, let C = 2 and let be the squared loss. Then, a local minimum of loss(•) is a global minimum.

Proof sketch. We rewrite our loss and the squared loss and show that for C > 2 they differ by a constant. We then analyze this constant and prove that for C = 2 it reduces to the squared loss thus leading to the same optimization objective.

Extension to DNNs with ReLUs

We now proceed to a study of non-linear DNNs with activation functions F given by ReLUs defined as:

f v : R -→ R x -→ max(0, x). (2) 
Such a non-linear DNN can be seen as a linear DNN where some paths of the graph underlying the network fail and thus can be also seen as non-atomic congestion game where edges of J, which represent the activation functions, can fail depending on the congestion that occurs on them. More precisely, one can show that for a non-linear DNN with ReLUs, its k th output for the instance x j is given by:

o j k = p∈p k z j p x j p w p ,
where p k is the set of paths that end to output k, w p is the product of the weights on the path p and x j p is the value of the coordinate of x j from which the path p starts. As for z j p , it is a variable that is equal to 1 if all ReLUs f v encountered in the path p are such that f v (g j v ) = g j v where g v is the value of the node v on the example x j and 0, otherwise. In other words, the variable z j p reflects whether the path p is active (z j p = 1) or not (z j p = 0) depending on the ReLU activation on the path p for the instance x j .

As non-linear DNNs are notoriously hard to study, most papers introduce simplifications to model nonlinearities in order to analyze the simplified models afterwards. One prominent example of such modelization was introduced by [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF] and further improved by [Kawaguchi, 2016] who successfully discarded several of the unrealistic assumptions of the original model and lightened others. For our analysis, we use some of the lighter assumptions made in the latter paper. The first assumption, denoted by A1p m in the corresponding paper, states that z j p are Bernoulli random variables with the same probability of success ρ. The second assumption, called A5u m , states that z j p are independent from the inputs {x j } M j=1 and the weight parameters W . These assumptions, although remaining unrealistic in case of A5u m , allow us to write the expected output o j k as follows:

E(o j k ) = p∈p k ρx j p w p = ρ p∈p k x j p w p . (3) 
One can remark that the output of the network has simply been multiplied by ρ. Given a non-linear DNN N , let lin(N ) be the linear DNN associated to N where all activation functions are replaced by the function:

f v : R -→ R x -→ x.
We now show how we can reduce non-linear DNNs to congestion games with failures by adapting the results obtained for atomic congestion games with failures in the paper [START_REF] Li | Congestion game with agent and resource failures[END_REF] to a non-atomic case.

Lemma 2. Assume A1-4, A1p m , A5u m , let N = (V, E, I, O, F ) with O and F defined as in (3) and

(2), respectively. Let loss(•) be its associated loss function and let L = {(x j , y j )} M j=1 be the available learning sample. Then, N can be reduced to a non-atomic congestion game with failures NCGF loss N = (E, c, S, n, a) fully defined in terms of N , L and loss(•).

Proof. E, S, n, a remain the same as for NCG loss N from Lemma 1. The only modification is that if a player chooses a path with no failures, then its cost is c S (z) = e∈S a S,e c e (z e ) where z is the flow of the game such that failures are taken into account. Otherwise, we impose c S (z) = w i where w i is a constant associated to a player type i. NCGF loss N is now defined.

Given W and our set of assumptions, we study the same loss as in the linear case but on the expected outputs of the neural networks, ie,

loss(W ) = j k (E(o j k ), y j k ), (4) 
where o j k is the k th output of N for instance j. We further let β = 2 in the definition of as done in [Kawaguchi, 2016] for the squared loss. We now establish the equivalence between the local minima of the non-linear model to those of the linear one.

Lemma 3. Under the assumptions of Lemma 2, let β = 2 and let the loss function be as in (4). Then, a local minimum of loss(W ) of N is a local minimum of the loss function of the corresponding linear network from Lemma 1.

The final result obtained through the transitivity of properties shown in Theorem 1 is stated as follows.

Corollary 4. Under the assumptions of Lemma 3, a local minimum of a loss function in (4) is a Wardrop equilibrium of the game associated to the linear network from Lemma 1.

Note that out of 7 assumptions used in [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF] to prove a similar result, we keep only two in addition to Assumptions A1-4. Also, their main result is different from ours as it states that the number of poor local minimum may be not too large, while our result states that there is no local minima in such setting. Finally, [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF] consider squared loss with d y = 1 (note that it does not correspond to commonly used one-hot label encodings). On a higher level, this corollary suggests that the model introduced for non-linear DNNs in [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF] is equivalent to studying a linear DNN.

Overall, our contributions establish the state-of-theart results related to the analysis of the loss surface of both linear and non-linear DNNs following a completely novel approach. While this is an important contribution in itself, we believe that it further paves the way to several other highly promising research directions presented below.

OPEN PROBLEMS

In the introduction we claimed that our analysis can be used as a tool to prove other fundamental results about DNNs by modelling them as congestion games. Below, we aim to highlight this claim by rigorously formulating three open problems for future research.

Impact of DNNs architecture Characterizing

PoA depending on the network topology and the used cost function is commonly done in the field of congestion games and we expect it to be very useful for DNNs as well. Indeed, it is known that PoA of nonatomic congestion games is independent of network topology [START_REF] Colini-Baldeschi | The asymptotic behavior of the price of anarchy[END_REF] when cost functions are polynomials of an arbitrary degree. Consequently, one may wonder whether our results can be extended beyond multi-layer networks to take into account other network architectures, such as U-Nets [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], with potentially different activation and/or loss functions. More formally, we propose the following open problem.

Open Problem 1. For a DNN N = (V, E, I, O, F ), let NCG be a congestion game such that every local minimum/critical point and global minima of loss(•) associated to N are Wardrop equilibrium and social optimums of NCG, respectively. Then, PoA(NCG) = 1 and does not depend on G = (V, E), F and loss(•).

We note that this open problem can also lead to a negative result where the local minima inefficiency can be proved to be arbitrary high. To obtain such result, one will have to consider atomic congestion games CG for which, contrary to Wardrop equilibria, different Nash equilibria can lead to outcomes with different costs. If there exists a DNN such that its associated atomic congestion game has PoA(CG) > 1 for a particular choice of G, F and loss(•), then such neural architectures may exhibit an arbitrary bad behaviour during the optimization. One such example is the PoA in atomic splittable games with polynomial cost functions of degree d for which there exists particular network topologies with PoA behaving as ((1+ √ d + 1)/2) d+1 [Roughgarden and Schoppmann, 2011].

Speed of convergence Apart from the geometric approach that relies on the equivalence between local minima and the global optimum, another way to analyze DNN's behaviour is to study directly the optimization dynamics of SGD and its variations. In the context of games, this latter can be modelled by repeating the one-shot game, i.e., the game with one data point or a mini batch, over T time steps and analyzing the average of the costs associated with the outcomes of each step. In our work, we provided a characterization of the PoA for one-shot non-atomic congestion game, but this analysis can be further applied to repeated games using the extension theorems and the notion of (λ, µ)-smoothness developed in [Roughgarden, 2015]. In line with what we discussed above, we now consider atomic congestion games to allow for Nash equilibria with different costs. Such games can be characterized by the notion of a robust PoA ρ defined in terms of the parameters λ and µ and coinciding with the traditional PoA in several cases of interest. For these games, extension theorems ensure that the sequence of outcomes of a smooth game where every player experiences vanishing average (external) regret converges to the optimal outcome times the robust PoA. This is due to the fact that for every pure/mixed/correlated/coarse-correlated equilibrium z , E z∼z [SC(z)] SO(CG) ≤ ρ. Then, as a sequence of outcomes with vanishing external regret converges to a correlated equilibrium, we have the following.

Open Problem 2. For a deep neural network N = (V, E, I, O, F ), let CG be its corresponding (λ, µ)-smooth congestion game such that 1. loss(W ) is equal to the social cost SC(z W ).

SO(CG) is the global optimum of loss(•).

Then, if loss(W i ) are social costs associating to a vanishing average (external) regret, the following holds:

1 T T i=1 loss(W i ) ≤ (ρ(CG) + o(1))loss(W * ) as T → ∞
where W i is the outcome of iteration i and W * is a global optimum.

Moreover, if each critical point W of the loss function is either pure, mixed, correlated or coarse-correlated equilibrium of CG, then lossW lossW * ≤ ρ(CG).

Note that [Balduzzi, 2016] related the coarsecorrelated equilibrium to critical points of a non-linear DNN, but their arguments were shown to be flawed in [START_REF] Schuurmans | Deep learning games[END_REF]. This latter work managed to draw the equivalence between critical points and Nash equilibrium correctly and used a popular regret matching algorithm to successfully learn DNNs. Unfortunately, their proposed learning strategy is applied to games solved on each vertex of a DNN and thus is not guaranteed to converge to a globally optimal strategy. In this regard, congestion games offer a more convenient alternative as they benefit from the convergence guarantees and allow to characterize the speed of this convergence based on the characteristics of the considered game.

Beyond backprop As discussed above, gametheoretical interpretation of DNNs had already led to new learning strategies used to find equilibrium points in the corresponding games. As shown in [START_REF] Schuurmans | Deep learning games[END_REF], regret matching algorithm outperforms widely-used SGD and Adam methods and leads to sparser networks with higher accuracy when deployed on the test set. In the context of our work, we would like to make a step further and go beyond the regret matching algorithm mentioned above by proposing a new learning strategy based on optimal transport [Villani, 2009]. Optimal transport considers a problem of transforming one probability measure into another following the principle of the least effort. While traditionally optimal transport does not account for congestion effects, several recent works studied this variation and showed that in this case the solution can be related to the notion of the equilibria of Wardrop type [Carlier et al., 2008, Blanchet and[START_REF] Blanchet | [END_REF]. This leads to the following open problem. Open Problem 3. For a deep neural network N = (V, E, I, O, F ), let NCG be its corresponding congestion game with equilibria given by:

η * ∈ argmin η W c (µ, η) + E(η), (5) 
where W c is the Wasserstein distance between a measures defined on the input flow of NCG and E(η) is a function of congestion for an action distribution η.

Then, η * is a critical point of loss(•).

We note that several papers [START_REF] Chizat | On the global convergence of gradient descent for over-parameterized models using optimal transport[END_REF], Rotskoff and Vanden-Eijnden, 2018, Mei et al., 2018] used the notion of the Wasserstein gradient flow to show the convergence of convex optimization methods for overparametrized models. Their underlying idea was to consider a problem of learning a measure that minimizes the DNN's loss function and to study the dynamics of the gradient descent performed on its weights and positions. One question to answer thus is whether the Wasserstein gradient flow of solving ( 5) is naturally linked to the Wasserstein gradient flow considered in previous work? Such an equivalence may well indicate that the game-theoretical interpretation of DNNs reconciles both geometric approaches for studying DNNs loss surface and those based on analyzing their optimization dynamics.
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 1 Figure 1: Example of a non-atomic congestion game with three populations of players.

  e∈E c e (z e )z e with ze = i S∈Si a S,e z S . P2. Each NCG admits a Wardrop equilibrium. P3. All Wardrop equilibria have the same value. P4. For a given game NCG, we define the price of anarchy (PoA) of a game as: PoA(NCG) = WE(NCG) SO(NCG) .

Figure 2 :

 2 Figure 2: Illustration of how a non-atomic congestion game is constructed from a given DNN. (upper left) Example of a DNN with a number d = 2 of input neurons, C = 3 of output neurons and one hidden layer; (upper right) Graph associated to the DNN presented on the left for a learning sample of size M = 2. B is the set of black edges, J is the set of blue edges and T is the set of red edges. (bottom left) and (bottom right) are the intermediate steps.
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For more results on the theoretical analysis of gradient descent convergence for over-parametrized models including Recurrent and Convolutional NNs, we refer the interested reader to[Du et 

al., 2017, Section 2] and [Allen-Zhu et al., 2019, Section 1.2].

While being highly insightful, this work was shown to have several flaws[Schuurmans and Zinkevich, 2016, Supp. material, Section J] that remain unaddressed up to now.