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Abstract—Many data science problems can be efficiently
addressed by minimizing a cost function subject to various
constraints. In this paper a new method for solving large-
scale constrained differentiable optimization problems is pro-
posed. To account efficiently for a wide range of constraints,
our approach embeds a subspace algorithm into an exterior
penalty framework. The subspace strategy, combined with a
Majoration-Minimization step search, takes great advantage of
the smoothness of the penalized cost function. Assuming that the
latter is convex, the convergence of our algorithm to a solution
of the constrained optimization problem is proved. Numerical
experiments carried out on a large-scale image restoration
application show that the proposed method outperforms state-
of-the-art algorithms in terms of computational time.

Index Terms—Differentiable optimization, Exterior penalty
method, Majoration-Minimization, Subspace algorithm, Large-
scale problems

I. INTRODUCTION

In the context of inverse problems, the signal/image to
recover is usually estimated through the resolution of an
optimization problem of the form:

minimize
x∈S

Φ(x) + λΨ(x), (1)

where Φ: RN −→ R is a data fidelity term, Ψ : RN −→ R
is a regularization term, and S a subset of RN accounting for
constraints, for instance box-constraints. However, the regu-
larization parameter λ > 0 leading to the best signal/image
restoration quality may be difficult to estimate. Instead, the
problem may be formulated as

minimize
x∈RN

Ψ(x),

subject to Φ(x) ≤ α and x ∈ S,
(2)

with α > 0 [1], [2]. This last formulation may be preferred
to (1) since an upper bound on α is often available based on
statistical assumptions. For large-scale constrained problems
of the form (2), such as those encountered in signal and
image recovery, one major concern is to find an optimization
algorithm able to deliver reliable numerical solutions in a
reasonable time.

In this paper, motivated by Problem (2), we tackle the
general optimization problem

P : minimize
x∈C

Ψ(x), (3)

where C is a nonempty closed convex subset of RN .1 We
focus on the case when Ψ is convex and differentiable.

1The extension of our method to a constraint set decomposed as the
intersection of an arbitrary number of convex sets is possible.

Although classical regularization functions such as `1 or
total variation semi-norms, are usually nonsmooth they can
often be replaced by a smoothed version without altering the
recovery performance [3]. In the context of the resolution of
unconstrained differentiable problems (i.e. Problem P with
C = RN ), subspace acceleration [4]–[9] is a well known
strategy to speed-up iterative descent methods. A famous
subspace minimization approach consists in updating, at each
iteration, the current vector in a low dimensional affine space
of RN , spanned by the gradient direction and few additional
vectors such as the difference between two past iterates (also
called momentum term, and used for instance in the classi-
cal NLCG solver [10], [11]) and/or the difference between
past gradients (see, for e.g., limited-memory quasi-Newton
schemes such as L-BFGS [12]). In its general formulation [6],
one iteration of a subspace method involves the computation of
a multidimensional stepsize, requiring an adequate strategy for
limiting computation times. An efficient trade-off, assessed in
the survey paper [13] is reached by adopting the Majorize-
Minimize Memory Gradient (3MG) algorithm initially pro-
posed in [14], in which the step search is performed by
minimizing a quadratic surrogate of the cost function within
the subspace. Convergence guarantees on 3MG iterates were
provided under mild assumptions on Ψ [15], and the algorithm
was shown to compare very favorably with respect to state-
of-the-art algorithms, such as FISTA, primal-dual Chambolle-
Pock, NLCG, and L-BFGS on several large scale image
processing applications [14]–[16]. Nevertheless, combining
subspace acceleration with constrained formulations like Prob-
lem P is not straightforward. One can only mention the L-
BFGS-B [12], and the coordinate subspace method from [5],
however they are both limited to bound constraints.

The main contribution of this paper is to propose a 3MG-
based algorithm to solve efficiently the constrained problem
(3). In the continuity of the experimental work in [17],
we propose a local variant of the existing 3MG algorithm,
combined with a novel exterior penalty strategy. The resulting
algorithm consists in two nested loops, which are detailed in
Algorithms 1 and 2.

The rest of the paper is organized as follows: Section II
introduces the exterior penalty framework. In Section III, the
3MG method is briefly explained and a new accelerated variant
for this algorithm is proposed. Section IV is dedicated to the
convergence analysis of our method and Section V to the
comparison of the algorithm with state-of-the-art schemes on
an image restoration application.



II. PROPOSED EXTERIOR PENALTY FRAMEWORK

A. Exact exterior penalty method

Penalty methods are well-known strategies to solve the
constrained optimization Problem (3) by recasting it into a
sequence of unconstrained subproblems [18], [19]. We focus
more specifically on exterior penalty methods, by contrast
with interior penalty methods [20], which are probably the
easiest to handle. Let R : RN −→ R+ be a function verifying
Argmin R = C and min R = 0. The function R is referred
to as an exterior penalty function as it assigns a positive cost
to every point which is exterior to C. When the constrained set
C is the lower zero-level set of a function f , typical examples
of such functions are R = max(0, f) or R = max(0, f)2 [18],
[21]. Let (γj)j∈N be a real sequence of positive numbers,
called penalty parameters, such that limj→+∞ γj = +∞.
Then, for all x ∈ RN , γjR(x) −→

j→+∞
ιC(x), where ιC is

the indicator function of C, namely ιC(x) = 0 if x ∈ C,
ιC(x) = +∞ otherwise. This motivates the introduction, for
every j ∈ N, of the subproblems:

Pγj : minimize
x∈RN

Ψγj (x) := Ψ(x) + γjR(x). (4)

Solutions to Problem P , defined in (3), can be approached by
solutions of problems Pγj . More precisely, let us denote, for
any j ∈ N, xj a solution of Pγj . Then, under mild assumptions
on Ψ and R, the sequence (xj)j∈N is bounded and any of its
cluster points is a solution to P [18], [19], [21].

However, solving exactly each subproblem Pγj with a
given algorithm is practically impossible and not desirable for
computational time reasons. When R is differentiable, the fol-
lowing proposed inexact exterior penalty method, inspired by
[22], [23], allows an inexact resolution (i.e., early stopping) for
the sequence of subproblems (Pγj )j∈N, while still benefiting
from the same convergence properties as above.

B. Inexact exterior penalty method

Let (γ, ε) ∈]0,+∞[2, let x0 ∈ RN , and let A(x0, γ, ε)
denote an iterative algorithm to minimize the penalized cost
function Ψγ := Ψ + γR. More precisely, starting from the
initial point x0, this inner algorithm generates, at each iteration
k ∈ N, a vector xk ∈ RN until the stopping criterion

‖∇Ψγ(xk)‖ ≤ ε (5)

is met. It then returns its current iterate.
Let (εj)j∈N be a sequence of positive numbers correspond-

ing to the adopted stopping precision in (5) when solving
Problems (Pγj )j∈N. Intuitively, εj needs to get smaller as the
penalty parameter grows. This leads to our inexact exterior
penalty method detailed in Algorithm 1.

Algorithm 1: Inexact exterior penalty

Inputs: (γj)j∈N ∈ (R+)N, (εj)j∈N ∈ (R+)N, x0 ∈ RN .
for j = 0, 1, . . . do

xj+1 = A(xj , γj+1, εj+1)
end
return xj+1;

There remains to define a strategy for the construction of
the minimization algorithm A, which will be at the core of
the next section.

III. PROPOSED MAJORATION-MINIMIZATION ALGORITHM
FOR SOLVING THE SUBPROBLEMS

In this section, we first recall the principles of the 3MG
algorithm [14], [15]. Then, we propose an improved variant
for it, leading to our final choice for the inner Algorithm A.
Recall that, for a given penalty parameter γ > 0, Algorithm
A must minimize the differentiable penalized function Ψγ .

A. Notation and definitions

We denote by SN+ (R) the set of symmetric positive semi-
definite matrices of RN×N , and IN the identity operator of
RN .

Definition 1. Let f : RN −→ R be a differentiable function
and x′ ∈ RN . A function x 7→ Q(x, x′) is said to be a tangent
majorant of f at x′ if, for every x ∈ RN ,

f(x) ≤ Q(x, x′), f(x′) = Q(x′, x′). (6)

Moreover x 7→ Q(x, x′) is said to be a tangent quadratic
majorant if it reads

(∀x ∈ RN ) Q(x, x′) = f(x′) +∇f(x′)>(x− x′)
+(x− x′)>A(x′)(x− x′),

(7)

with A(x′) ∈ SN+ (R). In this case, A(x′) is called the
curvature matrix of function Q at point x′.

B. Majoration-Minimization Memory Gradient algorithm
(3MG)

As mentioned earlier, 3MG is an instance of a subspace
optimization algorithm [4], [5] which combines the memory
gradient subspace reminescent from the conjugate gradient
approach [11] with a low complexity stepsize rule based on the
Majoration-Minimization (MM) principle. At each iteration
k ∈ N, the current solution xk is moved along a subspace,
so generating

(∀k ∈ N) xk+1 = xk +Dkuk, (8)

where Dk = [d1
k, . . . , d

M
k ] ∈ RN×M is the search direction

matrix and uk ∈ RM is a multivariate step size. The memory
gradient search direction matrix adopted in this algorithm
reads

(∀k ≥ 1) Dk = [−∇Ψγ(xk), xk − xk−1] ∈ RN×2. (9)

Instead of the Newton-based step search strategy, used for
instance in [6], [7], [24], to minimize Ψγ,k : u 7→ Ψγ(xk +
Dku), the 3MG algorithm minimizes instead a more tractable
quadratic surrogate for the latter, following a MM scheme [25].
Assuming that both Ψ and R can be majorized by quadratic
functions following the relations of Definition 1 (see [13], [15]
for rules of construction of such majorants), a quadratic upper
bound for Ψγ,k can be simply characterized by the curvature
matrix

Bk = D>k (AΨ(xk) + γAR(xk))Dk, (10)



where, for every x ∈ RN , AΨ(x) (resp. AR(x)) is the
curvature of a majorant of Ψ (resp. R) at point x. The step
search then reduces to minimizing the resulting quadratic
majorant function over R2, so leading to a fast and closed
form computation of the step-size uk at each iteration.

C. Variant with local majorants

As seen in Section II, the penalty parameter γ involved
in Ψγ will be modified sequentially so as to tend towards
infinity. However, large values of γ may slow down 3MG as
they would lead to a large spectral norm for the curvature
matrix Bk. To prevent this possible slowdown, we propose a
modified strategy relying on local majorants rather than global
ones. Such kind of local majorization strategy has already been
successfully used for another MM algorithm in [26], leading
to a significant speed up.

The local strategy is based on the following observations.
When γ is large, the iterates generated by the proposed
algorithm are likely to satisfy the constraint, as the penalty
function takes more weight. Thus, when xk belongs to C, the
tangent majorant of Ψ at xk is locally (i.e., in a neighborhood
of xk) a tangent majorant of Ψγ at xk. It follows that a local
quadratic tangent majorant of Ψγ,k at u′ = 0 is given by the
modified curvature

Bloc
k = D>k (AΨ(xk) + γAR(xk)1C̄(xk))Dk, (11)

where 1C̄(xk) = 1 if xk /∈ C and 0 otherwise. If the new
iterate xk+1 obtained using the curvature matrix (11) belongs
to C, then it is accepted since it means the local majorant
resulting from (11) remains valid at this point. Otherwise, the
update is recalculated using the global (i.e. classic) majorant
(10). This strategy allows, in particular, to preserve the validity
of the majorization property along the iterations, which is
key for preserving the decrease of Ψγ along iterations. The
resulting local variant of 3MG for the minimization of Ψγ is
detailed in Algorithm 2, where † denotes the pseudo-inverse
operation. The iterates of this inner algorithm are indexed by
k ∈ N in order to differentiate them from the iterates of the
outer Algorithm 1, indexed by j ∈ N.

Algorithm 2: 3MGloc(x0, γ, ε)

Inputs: (γ, ε) ∈]0,+∞[2, x0 ∈ RN
for k = 0, 1, . . . ... do

uk = −(Bloc
k )†D>k ∇Ψγ(xk)

if xk ∈ C and xk +Dkuk /∈ C then
uk = −B†kD>k ∇Ψγ(xk)

end
xk+1 = xk +Dkuk
Stop if ‖∇Ψγ(xk+1)‖ ≤ ε

end

IV. CONVERGENCE OF THE GLOBAL METHOD

We now give sufficient conditions for the convergence of
our proposed algorithm, when A is chosen as 3MGloc.

The first assumption is useful, in particular, to ensure the
existence of a solution to (Pγj )j∈N, and P .

Assumption 1.
(i) Ψ is coercive, convex, differentiable on RN and semi-

algebraic,
(ii) R is convex, differentiable on RN and semi-algebraic,

(iii) C is a nonempty closed convex set of RN .

Note that the semi-algebraic assumption 2 is satisfied by
a wide class of functions, such as the distance to a semi-
algebraic set, polynomial functions, and square root.

Our MM strategy is then based on the following central
assumption:

Assumption 2. There exists a quadratic tangent majorant
of Ψ and R at every point in RN . Moreover, for every γ > 0,
the curvature matrix of the resulting majorant of Ψγ has a
bounded spectrum.

Finally, a last assumption is made on the sequences of
penalty parameters (γj)j∈N and precisions (εj)j∈N.

Assumption 3. The sequence (γj)j∈N is nondecreasing, pos-
itive, and lim

j→+∞
γj = +∞. The sequence (εj)j∈N is positive

and lim
j→+∞

εj = 0.

The following result can then be established concerning the
convergence of Algorithms 1 and 2.

Theorem 1.
(i) Let γ > 0 and x0 ∈ RN . Under Assumptions 1 and 2, the

sequence (xk)k∈N generated by Algorithm 2 converges
towards a minimizer x∗γ of Ψγ when ε = 0. Moreover, the
sequence (Ψγ(xk))k∈N is nonincreasing and converges to
Ψγ(x∗γ).

(ii) Under Assumptions 1-3, the sequence (xj)j∈N generated
by Algorithm 1 is bounded. In addition, any cluster point
of (xj)j∈N is a solution to P .

V. APPLICATION TO IMAGE RESTORATION

A. Problem formulation

For illustrating the benefit of our approach, we consider
a simple image restoration scenario aiming at recovering an
original image x ∈ RN given the observation model

y = Hx+ w, (12)

with H ∈ RM×N a matrix modelling a blur kernel, and w ∈
RM a zero-mean white Gaussian additive noise.

As explained in Section I, we can estimate x by solving
Problem (2) using S = [0, xmax]N where xmax > 0 is
the maximal expected pixel intensity. We opt for a least
squares data-fidelity term, defined, for every x ∈ RN as
Φ(x) = ‖Hx − y‖2 and a smooth semi-local total variation
regularization [27], given, for every x ∈ RN , by

Ψ(x) =

6∑
`=1

χ(L`Gx) + ν χ(Gx), (13)

2This assumption can be replaced by a Kurdyka-Lojasiewicz property on
Ψγj for all j ∈ N.



where for all u ∈ R2N , χ(u) =
∑N
i=1

√
δ + ‖[u]i‖2, G ∈

R2N×N is a 2D-discrete gradient operator, (L`)1≤`≤6 = (I`−
S`)1≤`≤6 with (S`)1≤`≤6 shift operators defined as in [28, Fig.
1], 0 < δ � 1 a smoothing parameter, and ν ≥ 0.

B. Proposed algorithm

In order to apply the proposed penalized 3MGloc algorithm
to the resolution of Problem (2), we choose the following
penalty functions to enforce constraints Φ(x) ≤ α and
x ∈ [0, xmax]N , respectively:

R1(x) = d2
B(y,
√
α)(Hx), R2(x) = d2

[0,xmax]N (x). (14)

Then, R = R1 + R2. Assumption 1 is satisfied and one can
show [15] that quadratic tangent majorants for Ψ is given by
the curvature matrix defined, for every x ∈ RN , as

AΨ(x) =

6∑
`=1

G>L>` D(L`Gx)L`G + νG>D(Gx)G,

with

(
∀u ∈ R2N

)
D(u) = BDiag


(

I2√
δ + ‖[u]i‖2

)
1≤i≤N

 ,

where BDiag generates an N block diagonal matrices of
2 × 2 elements. The curvature matrix for R is simply equal
to AR(x) = 2(H>H + IN ), for every x ∈ RN . Assump-
tion 2 is thus satisfied. Finally, we choose for every j ∈ N,
γj+1 = γj(1 + 2/j), εj = 1300/(1 + 4.10−1)j , γ0 = 200, so
that Assumption 3 is satisfied and our convergence theorem
applies.

C. Numerical results

We consider the 256 × 256 tiffany image, blurred by
a Gaussian 7× 7 kernel with symmetric boundary conditions
and corrupted with a Gaussian noise with standard deviation
σ = 0.08 (Fig. 1(left)). We compare the practical convergence
speed of our penalized 3MG algorithm (P-3MG) and its
local version, the penalized 3MGloc algorithm (P-3MGloc),
with three state-of-the-art algorithms, namely the primal-dual
Condat-Vũ algorithm (CV) [29]–[31], the parallel proximal
algorithm (PPXA+) [32], and FISTA [33]. The latter one is
known to have the optimal convergence rate O

(
1/k2

)
and it is

implemented by using the improved scheme [34], where subit-
erations for computing the proximity operator are performed
with an accelerated dual Forward-Backward algorithm [28].
Note that PPXA+ is similar to a parallel version of ADMM
[35], [36].

The algorithms are implemented in Python 3 and the com-
putations are performed on a desktop having an Intel Xeon
3.2 GHz processor and 16 GB of RAM. The hyper-parameters
are set to δ = 10−5, xmax = 1, α = 0.98×σ2N , ν = 6 so as
to reach an optimal image quality, measured in terms of peak
signal to noise ratio (PSNR).

The restored image is displayed in Fig. 1(right). We evaluate
the convergence speed in terms of the distance to the limit
point x∞, computed after a very large number of iterations,

as shown in Fig. 2(top), and the PSNR evolution along time,
see Fig. 2(bottom). One can notice that the PSNR increases
faster with P-3MG and P-3MGloc than with the three other
competitors. The sequences generated by P-3MG and P-
3MGloc also converge faster to their limit point x∞ than the
iterates produced by the three other algorithms. The local
variant, P-3MGloc outperforms all the other algorithms.

Fig. 1. (left) Degraded image, PSNR = 20.00 dB. (right) Restored image,
PSNR = 24.03 dB.
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Fig. 2. (top) Distance to the optimum versus time. (bottom) PSNR versus
time.

VI. CONCLUSION

In this paper, we have introduced a new MM algorithm for
minimizing a differentiable convex function subject to convex
constraints. The algorithm (P-3MG) and its local variant (P-
3MGloc) benefit from sound convergence guarantees. We have
shown that they compare favorably with the state-of-the-art
on an image restoration problem involving two constraints.
A future direction for further improvements is to waive the
convexity assumptions so as to widen the scope of application
of the proposed approach.
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