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Abstract

In presence of friction, the frequency response function of a metallic assembly is strongly depen-

dent on the excitation level. The local stick-slip behavior at the friction interfaces induces energy

dissipation and local stiffness softening. These phenomena are studied both experimentally and

numerically on a test structure named “Harmony”.

Concerning more specifically the numerical part of the present paper, a classical complete method-

ology from the finite element and friction modeling to the prediction of the nonlinear vibrational

response is implemented. The well-known Harmonic Balance Method with a specific condensation

process on the nonlinear frictional elements is achieved.

Also, vibration experiments are performed to validate not only the finite element model of the test

structure named “Harmony” at low excitation levels but also to investigate the nonlinear behavior

of the system on several excitation levels. One of the original contributions of the present study is

the use of the a scanning laser vibrometer to measure the nonlinear behavior and the local stick-slip

movement near the contacts. It gives the opportunity to compare the predicted numerical nonlinear

responses with the experimental ones.

1 Introduction

In the past, the vibration responses of industrial structures were mainly studied using a linear analysis.

Indeed, numerical simulations for both modal analysis and Frequency Response Function of linear

systems are implemented in every Finite Element software and are widely used in industry. However,
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experimentally, the frequency response of an assembly often appears to be strongly dependent on the

excitation level which cannot be explained by a classical linear analysis. This nonlinear evolution may

be due in particular to friction in the joints, large displacements, non-elastic materials or contacts

[1, 2].

Therefore, the incorporation of nonlinear phenomena into complex mechanical systems currently

gives rise to major problems during the design of industrial mechanical structures. It is clear that

optimizing mechanical structures with respect to their vibration behavior requires a detailed under-

standing of the structures along with a highly refined model. Including the set of nonlinear elements

that play a predominant role in the dynamic behavior of structures, proves essential not only to study-

ing the dynamic behavior of systems, but also to devising robust and reliable system designs able to

withstand the range of loadings potentially applied. So both an efficient modeling of the nonlinear

behavior of mechanical systems and the development of nonlinear computational techniques are es-

sential in order to proceed with an efficient and quick analysis of complex problems. It is known

that various computational techniques in the treatment of nonlinear differential equations have been

proposed in a wide range of mechanical engineering problems [3, 4, 5]. According to Sarrouy and

Sinou [6] the Harmonic Balance Method is one of the most popular methods for approximating the

stationary nonlinear responses of mechanical systems. The main idea of this numerical process is to

approximate the nonlinear responses and the nonlinear forces in dynamical systems by their Fourier

series. This method was implemented in a previous work of the authors [7] and compared with the

method of multiple scales and the shooting method for the computation of the nonlinear response

of nonlinear systems. It was illustrated that the Harmonic Balance Method gave excellent results in

terms of both precision and computation time. This is the reason why this method has been chosen

for the present study. In the recent years, many efforts have also been done to increase the numerical

efficiency of this nonlinear approach for vibration damping by dry friction [8, 9, 10, 11, 12, 13]. Among

them, we can cite the Dynamic Lagrangian Frequency Time method (DLFT), proposed by Nacivet et

al. [14] that enables to handle directly the non-smooth unilateral and frictional contact laws.

Also, conducting studies with experiments, modeling and numerical simulation seems necessary nowa-

days in order to better understand the limitation of modeling and to increase the confidence of the

numerical models with nonlinear frictional elements. One of the primary objectives is also that the

numerical model can be used to minimize the need for conducting expensive experiments for optimiz-

ing such mechanical structures. Some previous works have already presented this type of study that

combines experimentation and simulation in the field of structures with friction joints. This is more

specifically the case in the field of turbomachinery bladed disks for which significant vibration damp-

ing by friction forces can occur. Therefore the friction damping concept has been frequently applied

in turbomachinery applications and various research works for analyzing the dynamic characteristics

of structures with friction joints have been undertaken. For example we can mention researches on

structures with underplatform dampers [15, 16, 17, 18, 19], approach for characterizing the dynamic

behavior of a friction damper [20], shrouds with a frictional interface to reduce the dynamic stresses in

turbine blades via the comparison between measured and calculated frequency response functions for

bending and torsional vibrations of the blade [21], optimization of interblade friction damper design

with respect to an optimal damper geometry and damper mass[22], impact of friction in blade with

root joints [23] or friction rings [24]. More generally, the review papers of Gaul and Nitsche [25] and
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Feeny et al. [26] provided also a historical overview of structural and mechanical systems on the

general topic of friction damping.

In the present study, we propose to investigate the nonlinear behavior of a complex structure, “Har-

mony”, which includes nonlinear frictional elements. Results from the nonlinear numerical simulations

are compared with those from various experiments. Even if the primary objective of the present study

is the validation of existing numerical methods, one of the main contributions is to be able to per-

form measurements of nonlinear vibrations near the contacts by using a scanning laser vibrometer,

providing the opportunity to compare experiments with the numerical results.

The paper is divided into three parts. Firstly, a brief description of the test structure and the

analysis of various experimental data from vibrational tests on a bench in the CEA laboratory are

presented. Secondly, the paper focuses on the finite element modeling (linear elements, model reduction

and frictional modeling) and the global updating procedure. The nonlinear simulation based on the

well-known Harmonic Balance Method with a condensation process is then explained in Section 4.

Finally, results from the nonlinear numerical simulations are compared with those from experiments.

Multi-harmonic comparisons are performed [7] and a local analysis of the stick-slip movement is also

proposed. This last part is one of the originality and peculiarities of the study that proposes to increase

the confidence in the numerical models currently used for friction damping simulation by providing

comparisons between experiments and simulations in the neighborhood of the contact interface.

2 Experiments

2.1 Motivations

In presence of friction, the Frequency Response Function (FRF) of an assembly evolves while increasing

the excitation level. The resonance peaks may flatten or sharpen with the increase of the excitation

level when the resonance frequencies are lowered. The objective of the experimental part of this

study is to reproduce experimentally these phenomena on a structure where the origins of friction

are obvious. This objective led to the design of a specific test structure named “Harmony”. This

proposed test structure includes four contact joints (identified a priori) where friction is expected at

high excitation levels. “Harmony” is designed with a minimal number of joints so as to be able to limit

the sources of nonlinear behaviors and energy dissipation. Therefore, it enables to fully understand

the concept of modeling nonlinear friction connections and their impacts through experimental tests

and comparisons with numerical simulation. Yet the structure is complex enough to demonstrate the

ability of the proposed simulation method to be applied on real industrial structures with nonlinear

friction connections. The experiments are performed in an industrial way, with an industrial shaker

and accelerometers to measure experimental FRF. In addition, specific instrumentation is used to

record the local stick-slip movement related to friction in a joint zone. A scanning laser vibrometer

is thus additionally deployed. The two main substructures of the assembly are tested separately at

low excitation level to be able to update a finite element model before the modeling of joints. The

assembly is then tested with increasing excitation levels to observe the effect of friction.
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External envelope

Central body

Base plate
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Figure 1: Cross-section schema (left) and picture (right) of the “Harmony” structure.

Part Material Dimensions (mm) Mass (kg)

Max radius, height

Central Body Stainless steel 304L 160, 300 11.92

External envelope Stainless steel 304L 204, 420 44,88

Base plate Aluminium 2017A 204, 40 9,47

Blade (x4) High resistance steel 65, 118 0,1086

Z8-cnd17-04

Table 1: Parts characteristics.

2.2 Experimental Set-Up

The “Harmony” structure is presented in Fig. 1. The bottom of the central body is clamped to the

external envelope and its top is in contact with this envelope through 4 blades. The characteristics

of each part of the assembly are detailed in Table 1, and the mass values are measured. During the

assembly, the central body is inserted inside the envelope from the bottom. The blades are compressed,

so that contact is never broken, even during vibration experiments. This structure is designed to have

a fundamental axial mode that stresses the contact joints between the 4 blades and the external

envelope, initiating friction at high excitation levels. The structure is tested with the base clamped

to a shaker. Swept sine experiments are realized in the vicinity of the first axial mode. Two sweep

rates have been used. The general sweep rate is 10Hz.s−1. At high excitation level, the sweep rate

is reduced to 1Hz.s−1 in the frequency range where friction occurs. This low sweep rate minimizes

transient phenomena. 10 three-dimensional accelerometers measure the structure response. 4 strain

gages are placed under the blades. The location of these sensors is detailed in Fig. 2. The shaker is
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Figure 2: Location of the sensors. Accelerometers are represented with red squares. 4 strain gages,

depicted in red, are placed under the blades.

piloted with a constant input tension amplitude.

2.3 Substructure modal analysis

Before the main tests on the assembly, the two main substructures -the central body with blades and

the external envelope- are tested separately. The corresponding experimental set-ups are depicted in

Fig. 3. The first vertical modes of these substructures are then used to update the finite element

model of each substructure. The experimental eigenfrequencies are presented in Table 2. For the tests

on the substructure composed of the central body with blades, the strain gages’ signal is unable to

identify whether the resonance involves the blades and how. A mode where the blades and the body

movements are synchronous in phase is identified at 218.7Hz. Then, between 247Hz and 251.5Hz,

several resonance peaks are observed. The 4 blades are not synchronous in phase in this frequency

range, and it is difficult to identify separated modes.

2.4 Frequency Response Functions

The frequency responses of the “Harmony” assembly are recorded with the shaker piloted with a

constant input tension amplitude. To be able to compare with the simulation, this input is modeled

as a constant force input. Piloting the shaker with a force measurement was not possible in the

experimental installation. In the narrow frequency range considered, the force amplitude is assumed

to be independent from the excitation frequency. The amplitude of the force for each excitation level is

identified. A first identification of the force has been realized at low excitation level. This comparison
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Figure 3: Schema of the substructure experimental set-ups.

Substructure Mode Resonance frequency

Substructure 1: Envelope 1st vertical mode 889Hz

Substructure 2: 1st vertical mode (blades and 218.7Hz

Central Body + Blades central body synchronous)

Substructure 2: Several modes involving blades [247-251.5]Hz

Central Body + Blades asynchronously

Table 2: Substructure eigenfrequencies.

will be presented in Section 3.2. Close to the resonance, the simulated results obtained with a 70N

excitation force fit the measurements obtained with a 20mV tension amplitude. At 100Hz, away from

any resonance, the system behaves linearly. That is the reason why the amplitude at the response at

100Hz is used to identify the excitation force. The method used is the following:

Excitation level = 70N .
Response level at 100Hz

Response level at 100Hz, obtained with a 70N excitation
(1)

The Frequency Response Function (FRF) for a given physical point of the structure is the vertical

response acceleration divided by the force excitation level. The obtained experimental FRF ampli-

tudes with increasing excitation levels are plotted in Fig. 6 and Fig. 7. The friction phenomenon is

characterized by an increasing dissipation and a decreasing resonance frequency. The effect of friction

is obvious in the 2 different response points depicted in Fig. 6 and Fig. 7. The nonlinear behavior is

observed both at the top of the central body (Fig. 6) and on the base plate (Fig. 7). This reveals that

friction influences the global frequency response of the structure even if the phenomenon is local. For

each FRF measurement, two successive tests have been performed in the same experimental setting

to check the repeatability of the results obtained for a given configuration. In Fig. 6 and Fig. 7, it

is remarkable that the variance of experimental results increases when friction occurs. The very low

variance away from friction apparition (< 1% for sufficiently high response levels) characterizes the
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Figure 4: Experimental FRF at the top of the central body with increasing excitation level. The

excitation levels are 70N (black), 1070N (blue), 1875N (red) and 2910N (green). For each excitation

level the first experimental results obtained are plotted with crosses and the second with circles.

measurement uncertainties. The higher variance in the friction frequency range (up to 30%) reveals

that the local behavior and the frictional mechanisms at junctions play a predominant role in test

repeatability. However it is observed that, at all events, this variance is still low in comparison with

the difference between two results with different excitation levels. A deterministic model method is

thus relevant and sufficient for this study.

2.5 Laser vibrometry

The main objectives of the use of a scanning laser vibrometer for the present work are twofold.

First, the possibility to observe friction through the deformation of the contact zones. Second, the

opportunity to compare the predicted numerical results with experiments. This second objective will

be explained and carried out in Section 5.3.

The laser vibrometer is positioned vertically above the structure. A 238Hz fixed frequency sinusoidal

excitation is applied, the stationary regime is observed. The 52 measurement points depicted in Fig. 8

are successively scanned by the vibrometer. In each point the instant vertical velocity is measured

and recorded during a few periods (50kHz sampling). Assuming the stationary regime, the different

responses are then synchronized using the excitation signal phase. A video of the blade movement

over an excitation period is thus obtained. This video is illustrated in Fig. 9. The 9 images correspond

to a regular sampling over an excitation period. The color and the position of the points represent the

instant velocity. A red and high position corresponds to a positive vertical velocity while a green and

low position corresponds to a negative vertical velocity. When the colors of the top of the blade and

the envelope are different, it reveals slipping. Otherwise the blade is stuck to the envelope. Fig. 9 thus

enables an appreciation of the alternating stick-slip phenomenon that characterizes friction. The top
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Figure 5: Experimental FRF on the base plate with increasing excitation level. The color legend is

the same that in Fig. 6.

of the blade is deformed during slipping (frame 2, 3, 4, 8 and 9). Partial slipping happens in frame 2.

In Section 3, the top of the blade is assumed not to be deformable and partial slipping is not enabled.

This assumption that simplifies calculations is not fully in agreement with the real local behavior.

3 Modeling

3.1 Finite Element Model

The structure is modeled with the finite element software Abaqus. Fig. 10 presents this model which

includes solid, shell and thick shell elements, depicted respectively in green, yellow and grey. The

excitation force is applied at the bottom of the moving part of the shaker. In the frequency range

considered ([170-300]Hz), the shaker is modeled by an inertial mass whose transverse and rotational

degrees of freedom are blocked. This mass is connected to the bottom of the base plate through a

structural coupling. A soft spring (Ksoft = 22800N.m according to the vibrator manufacturer) links

this mass to the ground.

Each contact zone at the top of a blade is controlled by a unique reference node, named “Contact

Zone”, depicted in Fig. 10. All the degrees of freedom of the 10 nodes of this contact zone are rigidly

controlled by this reference node. In the same way, the 11 nodes of the upper edge of the blade are

rigidly driven by the reference node named “Top Blade”. The contact is modeled by a strong stiffness

connector (1010N.m−1 for each component) between these two reference nodes. Vertical slipping may

then be simply described as the cancellation of the vertical component of this connector. At this step,

in this linear model, all the blades remain stuck to the envelope. This modeling is in agreement with

the very low excitation level experiments where friction is not activated. The same kind of modeling
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Figure 6: Experimental FRF at the top of the central body with increasing excitation level. The

excitation levels are 70N (black), 1070N (blue), 1875N (red) and 2910N (green). For each excitation

level the first experimental results obtained are plotted with crosses and the second with circles.

Instance Numerical mass Error with experiments

Base plate 9.57kg 1%

Envelope 44.79kg 0.2%

Central body 11.92kg < 0.1%

Blade 108.8 10−3kg 0.2%

Table 3: Instances’ model mass and comparison with measurements.

with connectors and reference nodes is used to model the joint between the blade and the central body.

These two instances are connected through 2 screws. The screws are modeled using strong stiffness

connectors between 2 reference nodes (named “Screw 1” and “Screw 2”). Each reference node drives

the movement of an influence zone of radius 0.01m. The influence zones on the blade are depicted in

red in Fig. 10. In mirror, the same influence zones are defined on the central body.

With this model, friction is localized in the vertical component of the connector between the points

“Top Blade” and “Contact Zone”. The nonlinear contact model can then be a 1 dimension model.

This modeling significantly simplifies nonlinear simulations but assumes that the top of the blade is

not deformable which is not truly in agreement with vibrometry observation (see Section 2.5).

3.2 Modal analysis and model validation

First, the finite element instances’ mass of the assembly is compared with the measured mass. Table 3

presents this comparison. The higher error, in the base plate, is due to the threaded holes that are

not modeled. The modeling of the central body and the blades is validated with the substructure
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Figure 7: Experimental FRF on the base plate with increasing excitation level. The color legend is

the same that in Fig. 6.

Substructure Mode Numerical resonance Error with

frequency experiments

Substructure 1: 1st vertical mode 880.4Hz 1%

Envelope

Substructure 2: 1st vertical mode (blades and 210.8Hz 3.6%

Central Body + Blades central body synchronous)

Substructure 2: 4 modes involving blades [254.0-260.0]Hz ' 3%

Central Body + Blades asynchronously

Table 4: Substructure resonance frequencies of the numerical model and comparison with tests.

experimental results (Sect. 2.3). For the second substructure, in the range [254-260]Hz, there are 4

modes involving blades that are due to the fact that there are 4 blades mounted on the central body

with an axial symmetry. These 4 modes can be correlated to the several frequency peaks experimentally

observed in a narrow frequency range (see Section 2.3). The eigenfrequencies obtained are compared

with experimental results in Table 4.

Then the assembly model is validated with experiments at low excitation level. At low excitation

level, friction is not initiated and the joints behave linearly. The numerical resonance frequencies are

compared with tests in Table 5 for the two first resonances of the structure. The deformed shapes are

plotted in Fig. 11. A deformed shape correlation analysis is performed, taking into account the 3× 10

experimental acceleration signals. The results are presented in Table 5. Shape correlation calculations
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Figure 8: Location of the measurement points for the laser vibrometry.

Mode Numerical resonance Error with Shape correlation

frequency experiments DAC

1st vertical mode 237.6Hz 0.1% 99.8

2nd vertical mode 878.4Hz 0.6% 88.9

Table 5: Assembly resonance frequencies of the numerical model and comparison with tests.

are performed using the Displacement Assurance Criterion definition [27]:

DAC = 100

∣∣∣T {Ψexp}{Ψfem}
∣∣∣2

|T {Ψfem}{Ψfem}| |T {Ψexp}{Ψexp}|
(2)

where Ψexp is the vector of experimental complex response amplitude, Ψfem is the vector of the complex

response amplitude calculated from the finite element model, the complex conjugate transposed vector

is denoted T .

A modal shape correlation was not possible because of the pilot signal. The complex force input

signal that should be used for an experimental modal analysis was not available. In the narrow

frequency range considered, the amplitude of the pilot tension is assumed to be proportional to the

amplitude of the force. This assumption is wrong for the phase of the input signal, whereas the input

signal phase is necessary for modal analysis. The force-tension equivalence assumption is tested in

Fig. 12. Experimental data, plotted with crosses, is the measured response to a constant excitation

tension amplitude of 20mV. Three measurement points are plotted: top of the body (in blue), top

edge of the envelope (in green) and center of the base plate (in red). The simulation results in the

same points are plotted with plain curves. These results are obtained with a constant excitation force

amplitude of 70N. Simulation and experimental resonance and anti-resonance frequencies match with

less than 0.1% errors. The correlation is very good in the vicinity of the resonance but the asymptotic

behaviors at 170Hz and 300Hz are different, revealing the limits of the assumption.
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Figure 9: Deformed shape evolution of the blade during friction. Measurements obtained using laser

vibrometry with a fixed sinusoidal excitation (238Hz, 3420N).
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Figure 10: Cross-section view of the finite element model (left) and focus on the contact zone (right)

3.3 Model reduction

Nonlinear simulations are computationally expensive, which is incompatible with a detailed finite

element model. The model presented in the previous section includes 278,848 degrees of freedom

(DOFs). In practical terms the calculation results are of interest on only a few physical DOFs but

the dynamic behavior of the full system is needed. The substructuring methods serve to reduce the

size of a substructure model, keeping only the boundary DOFs and a few internal DOFs to keep the

good dynamic behavior. Substructuring is used here as a reduction method; only one substructure

is considered and the retained DOFs are not necessarily situated at the boundaries of the structure.

The “Harmony” structure is considered as one substructure. The DOFs of the nodes corresponding

to the 10 accelerometers’ locations are retained. The vertical displacement of the inertial mass is also

retained to apply the excitation force. For each blade, 3 nodes are retained to be able to introduce a

nonlinear joint model between them. The 2 reference nodes driving the screw influence zones on the

blade and the one driving the contact zone on the envelope are retained (see Fig. 10). Note that the

reference node driving the top of the blade, where slipping actually occurs, is voluntarily not retained.

The explanation is given in Section 4.4.

The most commonly used substructuring method is the one proposed by Craig and Bampton [28].

13
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Figure 11: Cross-section view of the first (left) and second (right) axial mode (237.6Hz and 878.4Hz).

The color represents the vertical displacement.

The reduction vectors are the static modes and the eigenmodes calculated with the retained DOFs

blocked. The static modes, also called constraint modes, are the static response of the structure to

a unit displacement imposed on one DOF and all the others blocked. The eliminated and retained

DOFs are denoted respectively e and r. The static modes are denoted Ψr and satisfy the relations:

Ψr =

{
Ψr|e
1r

}
and Kfull.Ψr =

[
Kee Ker
TKer Krr

]{
Ψr|e
1r

}
=

{
0

Fr

}
(3)

so

Ψr =

{
−Kee

−1Ker 1r
1r

}
(4)

where 1r = T [0, ..., 0, 1, 0, ..., 0] with 1 in the rth position and Kfull is the stiffness matrix of the full

model.

The substructuring method employed is a variant of the Craig-Bampton method. The eigenmodes

Φα are calculated with no additional boundary conditions on the retained DOFs. As only one sub-

structure is considered, these eigenmodes are exactly the ones of the structure studied. The method is

specific to Abaqus code and is patented [29]. In the code, the family of vectors consisting of the static

vectors Ψr and the eigenvectors Φα are modified through linear combinations to become a reduction

basis compatible with the Craig-Bampton method. The static vectors are not modified. The values

of eigenvectors at the retained DOFs are canceled using the static modes:

Φα → Φ∗α = Φα −
∑
r

Φα,r Ψr =

[
Φ∗α,e
0r

]
(5)
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Figure 12: Comparison between experimental (crosses) and finite element simulation (plain curves)

results on three distinct experimental points for a low excitation level : top of the body (blue), top

edge of the envelope (green) and center of the base plate (red).

The obtained family of vectors is orthogonalized with respect to the inner product < a |b >= Ta K b

and becomes the reduction basis. This basis has the same properties as a Craig-Bampton obtained

basis:

• The static modes are unitary on 1 retained DOF and null on the others.

• The modified eigenmodes are null on the retained DOFs.

• The basis is orthogonal with respect to the inner product < a |b >= Ta K b

The only difference with Craig-Bampton is that the retained eigenmodes of the reduced model are

exactly those of the full model. For the “Harmony” structure, 103 nodal DOFs are retained and 34

eigenvectors are added. The linear dynamic behavior of the full and the reduced models are identical

in the range [0-2000]Hz. The difference between the full and the reduced model’s dynamical behavior

appears with friction. The eigenvectors are calculated with the joints modeled by hard connectors,

friction changes this condition and thus the modal basis. An alternative reduction method adapted

to this kind of problem has been presented by Zucca and Epureanu [30]. The eigenvectors obtained

with a free slipping condition in the joints are added to the reduction basis. As friction is a transition

between stuck and slipping conditions in the joints, such addition will lower the precision losses due to

reduction. This “advanced” reduction method has not been implemented for an industrial reason; the
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Figure 13: Schema (a) and force-displacement diagram (b) of a Jenkins friction model.

substructuring method presented is directly proposed by the industrial finite element code “Abaqus”,

it is thus easy to use from an engineering point of view, and yet precise enough. Anyway, no linear

reduction method (such as the ones proposed by Craig and Bampton, by the software ABAQUS or by

Zucca and Epureanu) provide an exact reduction of this nonlinear problem that include friction with

such a few DOFs retained. All these linear reduction methods converge to the results given by the

complete model if enough modes are considered.

Finally, the dynamical equation is written in the reduced basis:

MÜ + DU̇ + KU = Fexcit cos(Ωt) (6)

where U is the displacement in the reduced basis, M, D and K are respectively the reduced mass,

damping and stiffness matrices and Fexcit is the projection of the excitation vector in the reduced

basis (the excitation is along the vertical DOF of the inertial mass that is retained in the reduced

basis). The damping matrix is defined according to a mass-proportional scheme : D = αM. α has

been updated using the low excitation level experiments in the vicinity of the first vertical mode.

3.4 Friction modeling

Different empirical/heuristic friction models have been proposed and developed to simulate the friction

effects on mechanical systems and to predict restoring forces in mechanical contacts: the Coulomb

friction model, the Dahl model [31], the Iwan model [32], the Valanis model [33] and the LuGre

friction model [25] for example. In the present study, the numerical simulations are carried out with a

1-dimensional Masing friction model (also called Jenkins element, elastic Coulomb model or Prandtl

model) for every blade. This model allows a better representation of the measured hysteresis than the

Coulomb friction model. The idea of this well-known Masing model is to replace the blade stiffness

by a Jenkins element, composed of a linear spring in series with a Coulomb slider (as illustrated in

Fig. 13(a)). The slider remains in the stuck position until the force in the spring reaches the friction
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force when slipping begins. This force threshold FCoulomb is the unique parameter of the model.

The first step consists in defining the application vector of the Masing model in the reduced model. In

the full finite element model, slipping is obtained by canceling the vertical component of the connector

linking the points “Top Blade” and “Contact Zone” (see Fig. 13(b)). This component is defined as the

application vector of the friction model in the complete model. The application vector of friction in

the reduced model VJenkins is obtained by a projection in the reduced basis. VJenkins is normalized.

The associated stiffness is denoted kJenkins, and the associated displacement is denoted u.

kJenkins = TVJenkins K VJenkins (7)

u = TVJenkins U (8)

where T defines the transposed vector.

The frictional force is calculated using the iterative formulation introduced by Guillen and Pierre

[34]. For each time iteration i, in a first step, a trial force is estimated assuming that the friction slider

remains in the stuck position between the iteration i− 1 and i:

trf = fi−1 + kJenkins (ui − ui−1) (9)

Then the friction threshold FCoulomb is applied to calculate the force in the Jenkins element at the

iteration i. This threshold creates 2 states; slip and stick. When the slip threshold is reached, we

assumed a classical friction behavior. In the reverse case, no energy is dissipated and the contact

behavior is purely elastic, as illustrated in Fig. 13(b).

fi =

{
trf if |trf | < FCoulomb stick

sgn
(
trf
)
FCoulomb if |trf | ≥ FCoulomb slip

(10)

Once applied to a periodic motion, the force-displacement diagram depicted in Fig. 13(b) is obtained.

As the Jenkins model replaces the linear model of the blade, the nonlinear force at iteration i is

defined as:

Fnl(ui) = (kJenkins.ui − fi)VJenkins (11)

The dynamical equation (6) become:

MÜ + DU̇ + KU = Fexcit.cos(Ωt) + Fnl(U) (12)

4 Nonlinear simulation

As seen in the previous section, the frictional model is nonlinear and requires specific methods to

compute nonlinear responses to forced excitation. In the present study, the stationary solution of

the non-linear equation (12) is sought. In a previous work, the authors compared different nonlinear

vibration simulation methods [7]. The well-known Harmonic Balance Method appears to be an efficient

numerical method in order to calculate directly the system response on several harmonics. This method

is coupled to a continuation method to browse the entire frequency range. As nonlinear calculations are

computationally expensive, a condensation method is introduced to reduce the size of the nonlinear
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problem to its minimum. It is worth noting that the assumed steady-state periodic character of

the vibrational response may be restrictive in context of mechanical systems with frictional junctions.

Sometimes, non-periodic steady-state vibrations are reported which cannot be addressed and simulated

by the use of the Harmonic Balance Method. In fact, the choice of estimating a stationary periodic

solution can be seen as a limitation for comparisons between the numerical simulations and experiments

in the present study.

4.1 Harmonic Balance Method

In this subsection, the methodology and use of the well-known Harmonic Balance Method [35] is briefly

presented in the case of the present study.

As the excitation term is periodic, it is assumed that the nonlinear dynamical response and the

force vector may be approximated by finite Fourier series with Ω as fundamental frequency.

U(t) = B0 +
∑m
k=1 (Bk cos(kΩt) + Ak sin(kΩt))

Fnl(t) = C0 +
∑m
k=1 (Ck cos(kΩt) + Sk sin(kΩt))

(13)

m, the order of the Fourier series is selected on the basis of the number of significant harmonics

expected in the nonlinear dynamical response. For our application, N = 7 has been chosen. Then,

considering the fact that Fexcit(t) = C1, excit cos(Ωt), the equation (12) is rewritten in the Fourier

basis:
KB0 = C0[

K− Ω2Id −ΩD

ΩD K− Ω2Id

] [
A1

B1

]
=

[
S1

C1

]
+

[
0

C1, excit

]
[

K− (kΩ)2Id −kΩD

kΩD K− (kΩ)2Id

] [
Ak

Bk

]
=

[
Sk
Ck

]
∀k ∈ [2, N ]

(14)

where Id is the identity matrix.

The coefficients C0, Sk and Ck are calculated by applying the Alternating Frequency Time domain

method (AFT-method) that has been presented by Cameron and Griffin [36]. This method is summed

up by the following scheme, where DFT means Discrete Fourier Transform:

X = [B0A1B1 . . .ANBN ]
DFT−1

→ U→ F(U)
DFT→ [C0S1C1 . . .SNCN ] (15)

The Discrete Fourier Transform has been performed using 300 time steps over an excitation period.

Finally, the discrete dynamical equation in the Fourier Basis can be rewritten:

A X = Wexcit + Wnl(X) (16)

with
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A = Diag

K,

{[
K− (kΩ)2Id −kΩD

kΩD K− (kΩ)2Id

]}
k=1,N

 (17)

Wexcit = [0 0 C1, excit 0 ...0]2N+1 (18)

Wnl(X) = [C0S1C1 . . .SNCN ]2N+1 (19)

4.2 Condensation procedure

The computation time depends on the size of the nonlinear problem (16). A condensation procedure

similar to the one proposed by Sinou [35], is introduced to reduce the size of the nonlinear problem.

As the nonlinearity is local (in the contact region), many DOFs are not affected by Fnl(U) and are

thus related to the other DOFs through linear relations. The condensation procedure takes advantage

of this localization of the nonlinearity to reduce the size of the problem to the number of DOFs

actually affected by the nonlinear force. A basis change is necessary. First, the nonlinear DOFs are

identified. The friction model introduced in Section 3.4 is a 1-dimension model with an application

vector. As there are 4 blades, there are 4 independent nonlinear models. Each model is associated with

a normalized application vector Vi. In order to be more general, the number of nonlinear application

vectors is denoted q (here q=4). The q vectors {Vi}i=1..q are chosen to be the first vectors of the new

basis. The new basis is obtained by applying the Gram-Schmit orthonormalization algorithm to the

family of vectors {Vi}i=1..n+q =
{
{Vi}i=1..q , [Id]n

}
:

Ṽi =


V̂i

||V̂i||
if V̂i 6= 0

0 otherwise
with V̂i = Vi −

i−1∑
k=1

(Vi|Ṽk)Ṽk (20)

At the end, the vectors that are null are eliminated and an orthonormal basis {Ṽi}i=1..n is obtained. In

this new basis, only the DOFs associated with the first vectors {Ṽi}i=1..q are subjected to a nonlinear

force. The application vectors {Vi}i=1..q are expressed with only the {Ṽi}i=1..q vectors:

Vi =
i−1∑
k=1

(Vi|Ṽk)Ṽk +

∥∥∥∥∥Vi −
i−1∑
k=1

(Vi|Ṽk)Ṽk

∥∥∥∥∥ Ṽi ∀i = 1..q (21)

The displacement vector U is expressed in the new basis, and separated between the q first nonlinear

DOFs and the p next ones.

{T Ṽi}i=1..nU =

[
Uq

Up

]
(22)

T ṼMṼ

[
Üq

Üp

]
+ T ṼDṼ

[
U̇q

U̇p

]
+ T ṼKṼ

[
Uq

Up

]
= T ṼFexcit +

[
Fnl(Uq)

0

]
(23)

The same separation is done in the Fourier domain.

Λ = Diag
(
Ṽq, Ṽq, ..., Ṽq, Ṽp, Ṽp, ..., Ṽp

)
(2N+1)n

with Ṽq = {Ṽi}i=1..q , Ṽp = {Ṽi}i=q..n (24)
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TΛX =

[
Xq

Xp

]
TΛWexcit =

[
Wexcit,q

Wexcit,p

]
TΛAΛ =

[
Aqq Aqp

Apq App

]
(25)

The dynamical equation in the Fourier basis (16) becomes:[
Aqq Aqp

Apq App

] [
Xq

Xp

]
=

[
Wexcit,q

Wexcit,p

]
+

[
Wnl(Xq)

0

]
(26)

This expression serves to write a linear relation between Xp and Xq:

Xp = App
−1 (Wexcit,p −ApqXq) (27)

Then Eq. (26) is expressed as an equation in Xq:(
Aqq −AqpApp

−1Apq

)
Xq = Wexcit,q −AqpApp

−1Wexcit,p + Wnl(Xq) (28)

This last expression is solved in the same manner as Eq. (16). From equation (28), an optimization

function H is defined:

H(Xq,Ω) =
(
Aqq −AqpApp

−1Apq

)
Xq −Wexcit,q + AqpApp

−1Wexcit,p −Wnl(Xq) (29)

The nonlinear dynamical equation has been transformed into the optimization problem:

H(Xq,Ω) = 0 (30)

The condensation procedure has reduced the size of the nonlinear problem from (2N+1)n to (2N+1)q

DOFs. For this application, with N = 7, the size is reduced from 2055 to 60 DOFs. The full solution

X is then linearly computed from Xq using Eqs. (27) and (25).

4.3 Continuation procedure

The problem (28) is solved using a continuation method, to browse the frequency range continuously.

A predictor-corrector scheme has been implemented. The pseudo-arclength continuation method is

chosen [6]. The arc length between two consecutive points (Xq
(i),Ω(i)) and (Xq

(i+1),Ω(i+1)) is defined

as:

∆si+1 =
√
‖Xq

(i+1) −Xq
(i)‖2 + α|Ω(i+1) − Ω(i)|2 (31)

α is a numerical coefficient introduced in order to take into account the difference of magnitude between

Ω (∼ 103 s−1) and ‖Xq‖ (∼ 10−4 m).

The continuation method is illustrated in Fig. 14. It starts with a prediction step. Considering

that 3 points are already computed (Yi−2, Yi−1 and Yi, where Yi = [Xq
(i),Ω(i)]), the next point

is extrapolated. A second degree Lagrangian polynomial prediction is chosen. The calculation step

∆s between the prediction and the previous point is a fixed parameter of the algorithm. In case of

convergence issues, an adaptive calculation step can be introduced.

Then comes the correction step. The Newton algorithm is used to move Y
(0)
i+1 closer to a zero of H.

In the pseudo-arclength scheme, the direction of research Yi+1 −Y
(0)
i+1 is orthogonal to the direction

of the prediction Y
(0)
i+1 −Yi, as illustrated in Fig. 14. Every correction step is given by the equation:

Y
(k+1)
i+1 = Y

(k)
i+1 −

 JXH
(
Y

(k)
i+1

)
JΩH

(
Y

(k)
i+1

)
2
(
T {Xq}(0)

i+1 − T {Xq}i
)

2α
(

Ω
(0)
i+1 − Ωi

) −1 [
H(Y

(k)
i+1)

0

]
(32)
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Figure 14: Schema of the continuation process.
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Figure 15: 1 degree of freedom friction system (left) and equivalent 2 degrees of freedom friction

system (right)

The Newton iteration process is stopped when the numerical error is low enough:
∣∣∣H (

Y
(k)
i+1

)∣∣∣ < ε

with ε the chosen numerical error level.

4.4 Simulation of the blade movement

A priori, the easiest way to calculate the movement of the top of the blade is to retain the corresponding

DOF in the reduced model and then directly read its movement in the response vector. Doing this, a

numerical convergence issue appears. In order to point out this issue and justify the modeling chosen,

explanations are given on a very simple analogous system. In the vicinity of the first vertical mode,

the “Harmony” system can be roughly modeled by the 1-DOF model presented in Fig. 15 (left). In
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Parameter Value

M 10 kg

m 0.001 kg

k 2.24 107 kg.s−2

kJenkins 8.11 106 kg.s−2

khard 109 kg.s−2

d 350 kg.s−1

FCoulomb 1000N

Fexcit 1000N

Table 6: Parameters’ values for the 1-DOF and 2-DOFs models.
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Figure 16: Simulated harmonic response of point A (see Fig. 15) in the 1-DOF system (black) and

in the 2-DOFs system with different number N of harmonics taken into account in the HBM. N=1

(blue) N=5 (green) N=11(red).

this model, including the top of the blade as a retained DOF leads to the 2-DOFs model presented in

Fig. 15 (right). The parameter values chosen for these models are given in Table 6. The value of the

little mass m introduced is chosen to have a negligible influence on the response of the system (i.e.

the numerical results are the same with m divided by 10 or 100). With such a negligible additional

mass, these two models should give exactly the same results on the DOF “u”. Fig. 16 presents the

results obtained with the 1-DOF model and those obtained with the 2-DOFs model. The results

obtained with the 1-DOF model -plotted in black- are not sensitive to N , the number of harmonics

chosen in the Harmonic Balance Method. On the contrary, with the 2-DOFs model, the calculated

FRF evolves a lot with the number of harmonics chosen. The results obtained with N = 1, 5 and

11 are plotted in Fig. 16. The results plotted are always the FRF deducted from the amplitude of

harmonic 1, the difference is that the calculations have been performed with various values of N for the
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Figure 17: Time response of point P with the 1-DOF model. The response signal is calculated at

238Hz.
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Figure 18: Schema of the blade model: a 2-nodes Jenkins element

Fourier truncation. The computation time appears to grow exponentially with N and for N > 11, the

optimization algorithm fails to converge. In order to understand this issue, the velocity of the point

P is computed. This computation is easy using the iterative formulation presented in Section 3.4:

vP (i) =

{
0 if stuck

u̇(i) if slipping
(33)

The velocity of point P in the 1-DOF model is depicted in Fig. 17. The velocity is discontinuous when

slipping occurs. If a point very close to P is added to the model (Fig. 15, right), then this point and P

have almost the same movement. In the Harmonic Balance Method, the displacements of all the DOFs

are approximated by their truncated Fourier transform. The discontinuity revealed in Fig. 17, cannot

be correctly approximated by a low order Fourier series. That is the reason why, even though the

two models presented in Fig. 15 seem equivalent, their solutions using the Harmonic Balance Method,

are strongly different. In the first case, the velocity of point P is free to be discontinuous whereas

in the second case, it is constrained to behave as a truncated Fourier series. To avoid this issue, the

number of harmonics can be increased but this directly leads to major convergence difficulties. The

solution that has been chosen in this study is a workaround. The top of the blade is not retained in

the reduced model. The convergence issue in the Harmonic Balance Method is thus avoided. The

nonlinear calculations are performed with a 2-nodes blade model that is illustrated in Fig. 18. vP is

calculated using Eq. (33). This velocity vP can then be directly compared with velocity measurements
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performed on the top of a blade using the scanning laser vibrometer. These comparisons are presented

in Section 5.3. Alternative methods have been developed to overcome the problem presented in this

section. Poudou [13, 37] has pointed out exactly the same issue, dealing with the computation of the

frequency response of the 2-DOFs model presented in Fig. 15. He proposed to solve iteratively the

problem with increasing values of khard. Another method developed by Nacivet et al. [14] is based on

a Lagrangian formulation of the nonlinear force, coupled with a frequency-time method.

5 Test-simulation comparison

Experiments and simulations are compared at 3 different levels. The first comparison uses the FRF.

Simulation reproduces the flattening and softening effect observed in experimental FRF (see Sect. 2.4).

Then the appearance of multi-harmonic signals is studied. This onset is evidence of nonlinear vibration

response that can be both measured and simulated. Last, the local movement of the blade during

friction, measured using the scanning laser vibrometer (see Section 2.5), provides the opportunity to

compare the predicted numerical results with experiments for the specific vibrational behavior near

the contacts

5.1 Frequency Response Functions

The obtained simulated Frequency Response Functions are compared to experiments in Fig. 19 and

20. The Coulomb force is the unique updated parameter of the model, its updated value is FCoulomb =

290N. Simulations reproduce the flattening of the resonance peak presented in Section 2.4 very well.

The response of the structure is also simulated at higher excitation levels, where experiments are not

available due to the threat of damaging the structure. Simulations at 6000N and 10000N excitation

levels are plotted respectively in brown and violet dashed curves. An important softening effect is

observed. The maximal resonance frequency is lowered. An asymptotic resonance at 190Hz is observed.

It corresponds to a mode where the blades slip freely on the envelope. Friction induces a transition

from a resonant mode with the sliders in the stuck position to another with free slipping of the sliders.

Al Sayed and al. [11] showed that the maximal flattening of the resonance peak is obtained when the

percentage stick/slip over a period is around 50%.

5.2 Multi-harmonic comparison

Beyond the study of the harmonic response presented in Section 5.1, a multi-harmonic comparison has

been performed following the method previously published by the authors [7]. The different harmonics

are directly calculated in the Harmonic Balance Method. The 1st, 3rd, 5th and 7th harmonics are

plotted respectively in blue, green, red and black in Fig 21(a). Experimental harmonics are extracted

using a signal processing tool [7] and plotted in Fig 21(b). The excitation level chosen for this multi-

harmonic comparison is 2910N. Friction occurs in the range [210-260]Hz. An increase of the 3rd, 5th

and 7th harmonic levels happens in this range. Experimental and simulated results are very similar.

Simulation reproduces the harmonics generated by friction. In the 5th harmonic simulated response,

a resonance and an anti-resonance are observed at 238Hz and 243Hz; these phenomena are not fully

in agreement with measurements. This difference reveals the limits of the proposed Finite Element
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Figure 19: Comparison between experimental (crosses) and simulated (plain curves) FRF at the top of

the central body for increasing excitation levels: 70N (black), 1070 N (blue), 1875N (red) and 2910N

(green). Simulation results at higher excitation level are plotted with dashed curves: 6000N (brown)

and 10000N (violet).

Model in simulating the dynamic behavior of the real structure around 5 × 238 = 1190Hz. Away

from the frequency range where friction happens, the simulation model is linear so the 3rd, 5th and

7th harmonics are not simulated. The experimental levels observed in this zone must be the harmonic

components of the measurement noise, or can be explained by a non-ideal multi-harmonic excitation

signal [7]. The accelerometer measurements are thus very well reproduced by simulation.

5.3 Local stick-slip movement

The use of the laser vibrometer presented in Section 2.5 enables a local study of the stick-slip movement.

The mean vertical displacement of the top of the blade and the external envelope are plotted in Fig. 22

respectively in red and blue. In a stuck period, the two curves overlap. The separation of the two

curves reveals slipping. The stick-slip movement is readable in Fig. 22. The movement of the top

of the blade is then simulated using the workaround presented in Section 4.4. Fig. 23 presents these

simulation results. The blade model used for this simulation is the 2-nodes Jenkins model illustrated

in Fig. 18. The velocities of the slider (point P) and of the envelope (point B) in Fig. 23 are directly

comparable with the measurements in Fig. 22. In Fig. 23, the discontinuous velocity of the sliding

point P highlights the difficulty presented in Section 4.4. This sliding point P has a strongly non-

harmonic and non-smooth movement that is very difficult to approximate with truncated Fourier

series. Including such a point in the full nonlinear problem leads to strong convergence issues. The

comparison with measurements shows that the simulated stick-slip movement of point P is in agreement

with experiments.
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Figure 20: Comparison between experimental (crosses) and simulated (plain curves) FRF at the center

of the base plate for increasing excitation levels. The color legend is the same as in Fig. 19.

6 Conclusion

A nonlinear vibration simulation method is successfully applied to a test structure with friction joints.

The presented method is based on 4 main steps: finite element modeling, model reduction, nonlinear

simulation and comparison with experimental results. The nonlinear simulation process uses the har-

monic balance method coupled with continuation and condensation algorithms. It is observed that

simulations reproduce the experimental flattening and shifting of the resonance peak when increasing

the excitation level. The simulated multi-harmonic response due to friction is also in agreement with

measurements. One of the original contributions of the present study is the use of a scanning laser

vibrometer to measure the nonlinear behavior near the contacts. Thereby, comparison between exper-

iments and predicted vibrations allows to increase the confidence in (or to understand the limitations

of) the numerical models currently used for friction damping simulation. In our present study, the

local analysis of the stick-slip movement in the friction zone using laser vibrometry shows that the

simplified one-dimension and one-parameter friction model chosen (i.e. a macro character of the joint

behavior) can be sufficient to reproduce the physical friction movement. This study demonstrates that

the presented nonlinear simulation method is relevant in simulating the evolution of the frequency re-

sponse due to friction in assemblies (frequency shifts and energy dissipation). It is an important step

toward the actual use of such nonlinear simulation methods in industry. However, it may be recalled

that these conclusions are only valuable for the proposed test structure “Harmony” for which all the

contacts experience gross slip during vibration. In case of more complex behaviors at frictional in-

terface such as microslip, a more accurate contact model would be necessary for the friction joint.

Similarly, in some cases, a contact interface has to be described in details, with several nodes, in order
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Figure 21: Simulated response (a) and measurements (b) at the top of the central body, with a 2910N

excitation level, on different harmonics: 1st (blue), 3rd (green), 5th (red) and 7th (black).

to reproduce experimental results. Modeling and detailed understanding of the behavior at interfaces

remain the key factors for a fair and reliable prediction of the vibration behavior of mechanical systems

with frictional interfaces.
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Figure 22: Measured velocities in the contact zone. The movement of the envelope (blue) and the top

of the blade (red) are measured using the laser vibrometer.
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