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Introduction

The reduction problem was originally posed by P. Seibert in 1969 in the context of semidynamical systems [START_REF] Seibert | On stability relative to a set and to the whole space[END_REF][START_REF] Seibert | Relative stability and stability of closed sets[END_REF]. In its most elementary formulation it concerns a differential equation with locally-Lipschitz righthand side, ẋ = f (x),

x ∈ R n , (1) 
with no particular structure, and two nested subsets of the state space, Γ 1 ⊂ Γ 2 , that are both positively invariant and have the property that Γ 1 is asymptotically stable relative to Γ 2 . Loosely speaking, this means that solutions generated by [START_REF] Bathia | Stability Theory of Dynamical Systems[END_REF] starting from initial states that are restricted to lie in Γ 2 converge, and remain close, to the set Γ 1 . Then, the problem consists in finding conditions under which Γ 1 is asymptotically stable. Hence, in particular, attractive to solutions starting away from 1 M. Maggiore's research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). This research was performed while M. Maggiore was at first on sabbatical leave at the Laboratoire des Signaux et Systèmes, Gif sur Yvette, France, and later an invited professor at the same institution. 2 A. Loría's and E. Panteley's work is supported, in part, by the ANR (project HANDY, contract number ANR-18-CE40-0010).

3 E. Panteley's research is further supported by Government of Russian Federation (grant 074-U01).

the set Γ 2 . In addition, several refinements may be of interest; for instance, to admit arbitrarily large initial conditions, as well as versions addressing the properties of stability and attractivity, in place of asymptotic stability. Such problems are far from being of pure academic interest. The solution leads to the reduction theorems on stability, which are technical statements that form a framework of analysis and design of dynamical systems, based on breaking down a complex problem into a prioritized sequence of simpler sub-problems -one step at a time. Instances of following such a natural methodology in popular control methods such as backstepping [START_REF] Kristić | Nonlinear and Adaptive Control Design[END_REF] and sliding-modes [START_REF] Utkin | Sliding modes in control optimization[END_REF], as well as in stability theory for cascaded systems, ẋ1 = f 1 (x 1 , x 2 ) (2a) ẋ2 = f 2 (x 2 ).

(2b) Cascaded systems illustrate well the essence of the reduction problem. The basic (stability analysis) problem is to find conditions under which asymptotic stability of {x 1 = 0} for f 1 (x 1 , 0) and of {x 2 = 0} for f 2 (x 2 ) leads to conclude that {x = 0} is asymptotically stable for [START_REF] Bathia | Stability Theory of Dynamical Systems[END_REF] with f := [f 1 f 2 ] . The extensive literature on cascaded systems originates, for timeinvariant systems, with work by Vidyasagar in [START_REF] Vidyasagar | Decomposition techniques for largescale systems with nonadditive interactions: Stability and stabilizability[END_REF] focusing on local asymptotic stability of the zero equilibrium, followed by research aimed at establishing global results, e.g., [START_REF] Seibert | Global stabilization of nonlinear cascaded systems[END_REF][START_REF] Saberi | Global stabilization of partially linear systems[END_REF][START_REF] Ortega | Passivity properties for stabilization of cascaded nonlinear systems[END_REF][START_REF] Lozano | Passivity and global stabilization of cascaded nonlinear systems[END_REF][START_REF] Coron | Feedback stabilization of nonlinear systems: Sufficient and necessary conditions and Lyapunov input-output techniques[END_REF][START_REF] Janković | Constructive Lyapunov stabilization of nonlinear cascade systems[END_REF][START_REF] Mazenc | Adding integrators, saturated controls and global asymptotic stabilization of feedforward systems[END_REF][START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF]. Now, the stability questions investigated in the literature on time-invariant cascaded systems are, as a matter of fact, reduction problems such as asking under which conditions Γ 1 = {(x 1 , x 2 ) = (0, 0)} is asymptotically stable provided that so is Γ 2 = {(x 1 , x 2 ) : x 2 = 0}.

Stability analysis of cascaded systems is also important for control design; for instance, when one considers not only the control of a plant itself, but also of the actuators [START_REF] Panteley | Cascaded control of feedback interconnected systems: Application to robots with AC drives[END_REF]. The central idea consists in constructing a controller that ensures that the systems trajectories converge asymptotically to an invariant manifold having the property that trajectories contained in it converge to the origin (or a set for that matter).

This rationale however, is not bound to cascaded systems. For instance, it is also reminiscent of the wellknown result in [START_REF] Byrnes | Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems[END_REF] that a passive system is stabilizable via static output feedback if it is zero-state detectable (namely, if the state trajectories converge to the origin provided that so does the output). This connection was explored in [START_REF] El-Hawwary | Reduction principles and the stabilization of closed sets for passive systems[END_REF]. Another clear example where the same rationale holds is the Slotine & Li Controller [START_REF] Slotine | Adaptive manipulator control: a case study[END_REF], one of the first tracking controllers for robot manipulators ensuring global asymptotic stability. The operation and stability properties of this controller can be naturally understood using the reduction viewpoint, and this is illustrated in Section 5.1.

In the previous discussion we have motivated the study of the reduction problem only for the case in which two sets, Γ 1 ⊂ Γ 2 are involved. Some control problems, however, may be conveniently broken down into a prioritized sequence of more than two elementary subproblems, which are then solved separately. That is, in general, the control specification of asymptotically stabilize a subset Γ of the state space may be solved by breaking it down in sub-tasks and defining a suitable collection of nested subsets Γ 1 ⊂ • • • ⊂ Γ l ⊂ Γ l+1 := R n (a hierarchy of control specifications), with Γ 1 = Γ. Then, by asymptotically stabilizing Γ i relative to Γ i+1 , for i = 1, . . . , l. The reduction theorems allow to recursively deduce the asymptotic stability of Γ. Following such premise, in [START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] was introduced the hierarchical control framework, which has direct implications on backstepping control.

Existing literature on the reduction problem is focused entirely on time-invariant systems. Reduction theorems for stability and asymptotic stability of compact sets were developed by Seibert and Florio in [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF] in the context of time-invariant semidynamical systems. See also work by B.S. Kalitin [START_REF] Kalitin | B-stability and the Florio-Seibert problem[END_REF] and co-workers [START_REF] Iggidr | Semidefinite Lyapunov functions stability and stabilization[END_REF]. The work in [START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] presents reduction theorems for non-compact sets and a new reduction theorem for attractivity. Recently, reduction theorems for hybrid dynamical systems were presented in [START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF].

Contributions of this paper. The literature on the reduction problem is focused entirely on time-invariant systems. This paper presents three reduction theorems for time-varying systems, focusing on the properties of uniform stability, uniform attractivity, and uniform asymptotic stability. Both local and global versions of these properties are characterized. These theorems recover analogous results for time-invariant systems found in [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF][START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF], as well as statements on uniform global asymptotic stability of cascaded time-varying systems. In addition to presenting reduction theorems, this paper presents Lyapunov characterizations of certain key qualitative properties invoked in the most general formulation of the reduction theorems.

Organization. In Section 2 we present definitions of relative stability properties and other stability notions. Section 3 provides a precise formulation of the reduction problem. In Section 4 we present our reduction theorems for uniform stability, uniform attractivity, and uniform asymptotic stability; then, some useful implications of these theorems; and finally, Lyapunov characterizations of the key stability properties used in the reduction theorems. In Section 5 we provide examples illustrating the use and rationale of reduction theory, and in Section 6 we prove the three reduction theorems. The paper is wrapped up with concluding remarks in Section 7, and completed with two technical appendices used in the proofs of our main statements. Notation. We denote by 0 k , k ∈ N, the vector of zeros in R k , and if x ∈ R k , we denote by x := (x x) 1/2 , the Euclidean norm of x. We denote by S 1 the set of real numbers modulo 2π. If Γ ⊂ R n is a closed set and • : R n → R is a vector norm, we denote by

x Γ := inf y∈Γ x -y the point-to-set distance of x ∈ R n to Γ. If A, B ⊂ R n , we define d(A, B) := sup x∈A { x B }. If δ > 0, we let B δ (Γ) := {x ∈ R n : x Γ < δ}.
For a set K, ∂K denotes the boundary of K, int(K) its interior, and K its closure. For t 0 ∈ R, we denote R ≥t0 := {t ∈ R : t ≥ t 0 }. A function α : [0, r) → R, with r > 0, belongs to class K if it is continuous, strictly increasing, and α(0

) = 0. A function α : R ≥0 → R belongs to class K ∞ if it belongs to class K and α(s) → ∞ as s → ∞.
Table 1 summarizes the notational conventions of this paper. Table 2 summarizes all stability-related acronyms used in this paper.

Preliminaries

In this paper we investigate the time-varying differ-

ential equation ẋ = f (t, x), (3) 
with state space4 R n . We denote by x(t, t 0 , x 0 ) the solution of (3) satisfying x(t 0 ) = x 0 , where t 0 is the initial time and x 0 is the initial state. The pair (t 0 , x 0 ) is called the initial data of the solution. We denote by T + t0,x0 the right maximal interval of existence of the solution with initial data (t 0 , x 0 ), i.e., the maximal interval contained in R ≥t0 on which the solution x(t, t 0 , x 0 ) is defined. If I ⊂ R and U ⊂ R n , we define x(I, t 0 , U ) := 

Symbol

Meaning Where

k

The vector of zeros in R k Section 1

BS

Set of in. cond. giving t0-uniformly bounded sol'ns Defn. 8

x Γ Point-to-set distance of x to Γ Section 1 B δ (Γ)
The set {x ∈ R n : x Γ < δ} Section 1

B(Γ) Basin of t0-uniform attraction of Γ Defn. 5 d(A, B)
The maximum distance of set

A to set B Section 1 int(K) Interior of set K Section 1 ∂K Boundary of set K Section 1 K Closure of set K Section 1 R ≥t 0 The closed half-line [t0, ∞) Section 1 x(t, t0, x0) Maximal solution of (3) from (t0, x0) Section 2 T + t 0 ,x 0
Right maximal int. of existence of the solution with initial data (t0, x0) Section 2 {x(t, t 0 , x 0 ) ∈ R n : t ∈ I, x 0 ∈ U }. This set is welldefined as long as I ⊂ T + t0,x0 for all (t 0 , x 0 ) ∈ R × U . We require the time-varying vector field f in (3) to possess a basic continuity property, stated in the next assumption. Basic Assumption. The function f : R × R n → R n is piecewise continuous with respect to its first argument and satisfies the following Lipschitz continuity property with respect to its second argument. For any compact set K ⊂ R n , there exists a constant L > 0 such that for each

x 1 , x 2 ∈ K and for each t ∈ R, f (t, x 1 ) -f (t, x 2 ) ≤ L x 1 -x 2 . We refer to L as a Lipschitz constant of f on K. Remark 1. The Basic Assumption holds, for instance, if f (t, x) has the form f (t, x) = f 1 (x, f 2 (t)), where f 1 : R n × D → R n is C 1 , D ⊂ R k is
a bounded open set, and f 2 : R → D is a piecewise continuous function whose image is contained in a compact subset of D. This is the setup used in [START_REF] Lin | A smooth converse Lyapunov theorem for robust stability[END_REF] to prove a converse Lyapunov theorem for uniform global asymptotic stability of compact sets. When f does not depend on t, the Basic Assumption reduces to the familiar notion of local Lipschitz continuity.

Definition 2 (positive invariance). A set Γ ⊂ R n is positively invariant for (3) if x(T + t0,x0 , t 0 , x 0 ) ⊂ Γ for all t 0 ∈ R and all x 0 ∈ Γ. In other words, for any initial data (t 0 , x 0 ) ∈ R × Γ, the solution remains in Γ for all t ≥ t 0 for which the solution is defined.

Next, we present some notions of uniform stability and uniform attractivity of compact sets. Definition 3 (uniform stability and attractivity of compact sets). Consider system (3) and let Γ ⊂ R n be a compact, positively invariant, set.

• Γ is uniformly stable (US) if for each ε > 0 there exists δ > 0 such that x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R. • Γ is uniformly globally stable (UGS) if Γ is US
and for each δ > 0 there exists ε > 0 such that x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R. • Γ is uniformly attractive (UA) if there exists r > 0 such that for each ε > 0 there exists T > 0 such that x(R ≥t0+T , t 0 , B r (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R. • Γ is uniformly globally attractive (UGA) if the UA property holds for all r > 0.

• Γ is uniformly asymptotically stable (UAS) if it is US and UA. • Γ is uniformly globally asymptotically stable (UGAS)

if it is UGS and UGA.

Remark 4. All properties in Definition 3 are analogous to familiar definitions concerning equilibria found in [START_REF] Khalil | Nonlinear systems[END_REF]Section 4.5], and the definition that a compact set Γ is UGAS is equivalent to the one found, e.g., in [START_REF] Lin | A smooth converse Lyapunov theorem for robust stability[END_REF].

Next, we present some notions of stability and attractivity of closed, but not necessarily compact sets. The notion of t 0 -UA used in this paper is taken from [START_REF] Rouche | Stability theory by Liapunov's direct method[END_REF].

Definition 5 (t 0 -uniform stability and t 0 -uniform attractivity of closed sets). Consider system (3), and let Γ ⊂ R n be a closed, positively invariant set.

• Γ is t 0 -uniformly stable (t 0 -US) if for each ε > 0 there exists an open set U ⊂ R n such that Γ ⊂ U , and for each x 0 ∈ U , for each t 0 ∈ R, and each t ∈ T + t0,x0 , it holds that x(t, t 0 , x 0 ) ∈ B ε (Γ).

• The basin of t 0 -uniform attraction of Γ is the set B(Γ) of initial states for which solutions converge to Γ uniformly with respect to t 0 :

B(Γ) := {x 0 ∈ R n : (∀ε > 0)(∃T > 0)(∀t 0 ∈ R) t 0 + T ∈ T + t0,x0 and x(R ≥t0+T ∩ T + t0,x0 , t 0 , x 0 ) ⊂ B ε (Γ) . • Γ is t 0 -uniformly attractive (t 0 -UA) if Γ ⊂ int(B(Γ)). • Γ is t 0 -uniformly globally attractive (t 0 -UGA) if B(Γ) = R n . • Γ is t 0 -uniformly asymptotically stable (t 0 -UAS) if Γ
is t 0 -US and t 0 -UA. • Γ is t 0 -uniformly globally asymptotically stable (t 0 -UGAS) if Γ is t 0 -US and t 0 -UGA.

Remark 6. US is defined for compact sets only (See Def. 3), but an identical definition may be formulated for closed and unbounded sets. In such case US implies t 0 -US, but not vice versa; only for compact sets these properties are equivalent -see item (i) of Proposition 9 below. More precisely, for the US property, given ε > 0 one requires the existence of a neighborhood of initial states of the form B δ (Γ) whose associated solutions remain in B ε (Γ) for arbitrary initial times. For the t 0 -US property, the neighborhood of initial states is only required to be an open set U containing Γ. When Γ is compact, there is no loss of generality in assuming that U has the form B δ (Γ), which is the reason why US and t 0 -US are equivalent properties for compact sets. On the other hand, if Γ is unbounded then Γ may be t 0 -US without being US. This is illustrated in Figure 1, in which it is showed that solutions starting close to U , or even to Γ but laying out of U , may leave the band B ε (Γ). Also, note that in the definition of the US property in Definition 3 it is tacitly assumed that T + t0,x0 = R ≥t0 for each x 0 ∈ B δ (Γ) and each t 0 ∈ R. This is because if a solution remains in the bounded set B ε (Γ), then its right-maximal interval of ex-istence is R ≥t0 . On the other hand, if Γ is unbounded and t 0 -US, then we can no longer assume that T + t0,x0 = R ≥t0 , and indeed Definition 5 allows for finite escape times.

Γ B ε (Γ) U Fig. 1. The set Γ is t0-US but not US.
The notions of UA and t 0 -UA (and their global counterparts) are both uniform with respect to the initial time t 0 , but differ in their requirements on initial states. For the UA property, all solutions with initial states in a neighborhood B r (Γ) get to an arbitrarily small neighborhood B ε (Γ) of Γ in some time T > 0 which depends on ε and is independent of t 0 . For the t 0 -UA property, the time T depends on x 0 and ε, and is independent of t 0 . Even when Γ is compact, UA and t 0 -UA are nonequivalent properties. In particular, UA implies t 0 -UA, but not vice versa.

Remark 7. If system (3) is time-invariant, i.e., f does not depend on t, the t 0 -UA property in Definition 5 coincides with the notion of semi-attractivity in [START_REF] Bathia | Stability Theory of Dynamical Systems[END_REF], and in this case B(Γ) defined above coincides with the basin of attraction of Γ in [START_REF] Bathia | Stability Theory of Dynamical Systems[END_REF].

Definition 8 (uniform boundedness of solutions). Let x 0 ∈ R n . The solutions with initial state x 0 are t 0uniformly bounded if there exists a constant c > 0 such that x(R ≥t0 , t 0 , x 0 ) ⊂ B c (0) for all t 0 ∈ R. The set of initial states giving rise to t 0 -uniformly bounded solutions is defined as

BS := {x 0 ∈ R n : (∃c > 0)(∀t 0 ∈ R) x(R ≥t0 , t 0 , x 0 ) ⊂ B c (0) . (4) 
The next result clarifies the relationships between the concepts of stability and attractivity in Definitions 3 and 5. Proposition 9. Consider the differential equation (3), in which the vector field f : R × R n → R n satisfies the Basic Assumption. Let Γ ⊂ R n be a compact positively invariant set. Then: We conclude this section with definitions of local uniform stability, local t 0 -uniform attractivity, and relative stability and attractivity. These are adaptations of notions found in [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF][START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF][START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF] to the time-varying setting. Unlike the stability notions reviewed earlier, the notions in the next definitions are not widespread in the stability theory literature, but they turn out to be important for the formulation and solution of the reduction problem investigated in this paper.

(i) Γ is US if and only if Γ is t 0 -US; (ii) Γ is UAS if and only if Γ is UA; (iii) Γ is UGAS if
Definition 10 (local uniform stability). Let Γ 1 ⊂ Γ 2 be two closed subsets of R n , with Γ 1 compact. The set Γ 2 is locally uniformly stable near Γ 1 (LUS-Γ 1 ) for (3) if there exists r > 0 such that for each ε > 0 there exists δ > 0 such that for any t 0 ∈ R and any x 0 ∈ B δ (Γ 1 ) the following implication holds:

(∀t ∈ T + t0,x0 ) (x([t 0 , t], t 0 , x 0 ) ⊂ B r (Γ 1 ) =⇒ x([t 0 , t], t 0 , x 0 ) ⊂ B ε (Γ 2 )) . ( 5 
)
Definition 11 (t 0 -uniform attractivity near a set). Consider system (3). The closed set Γ 2 ⊂ R n is t 0 -uniformly attractive near Γ 1 (t 0 -UA near Γ 1 ) if there exists r > 0 such that B r (Γ 1 ) ⊂ B(Γ 2 ).

Definition 12 (relative properties). Consider system (3), and let Γ 1 ⊂ Γ 2 be two closed positively invariant subsets of R n , with Γ 1 compact.

• Γ 1 is US relative to Γ 2 for (3) if for each ε > 0 there ex- ists δ > 0 such that x(R ≥t0 , t 0 , B δ (Γ 1 ) ∩ Γ 2 ) ⊂ B ε (Γ 1 ) for all t 0 ∈ R. • Γ 1 is UGS relative to Γ 2 if Γ 1 is US relative to Γ 2
and for each δ > 0 there exists ε > 0 such that

x(R ≥t0 , t 0 , B δ (Γ 1 ) ∩ Γ 2 ) ⊂ B ε (Γ 1 ). • Γ 1 is UA relative to Γ 2 if
there exists r > 0 such that for each ε > 0 there exists T > 0 such that

x(R ≥t0+T , t 0 , B r (Γ 1 ) ∩ Γ 2 ) ⊂ B ε (Γ 1 ) for all t 0 ∈ R. • Γ 1 is UGA 5 relative to Γ 2 if r > 0 can be chosen arbitrarily large in the definition of UA relative to Γ 2 . • Γ 1 is, respectively, UAS relative to Γ 2 or UGAS relative to Γ 2 , if Γ 1 is US (resp.
, UGS) and UA (resp., UGA) relative to Γ 2 .

Problem formulation and motivation

Consider the system (3) under the Basic Assumption and let Γ 1 ⊂ Γ 2 be two closed, positively invariant sets, with Γ 1 compact. Suppose that Γ 1 is P relative to Γ 2 , where P corresponds to any of the following properties: US, t 0 -UA, t 0 -UGA, UAS, or UGAS. In its general form, the reduction problem consists in finding conditions under which the property P holds in R n . As it turns out, however, this problem is meaningful only if it is assumed that Γ 1 is UAS or UGAS relative to Γ 2 . The reason is that the properties of uniform stability of Γ 1 relative to Γ 2 and t 0 -uniform attractivity of Γ 1 relative to Γ 2 are fragile, in the sense that, in general, they may fail to hold in the whole R n , even if Γ 2 possesses strong stability properties. This was first pointed out in [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF][START_REF] El-Hawwary | Passivity methods for the stabilization of closed sets in nonlinear control systems[END_REF] in the timeinvariant setting and, for the purpose of motivation, it is illustrated below with two examples.

Example 1. (Uniform stability of Γ 1 relative to Γ 2 is a fragile property). Consider the cascade-connected system with state (

x 1 , x 2 ) ∈ R × R, ẋ1 = x 2 f (t) ẋ2 = -x 3 2 , where f (t) is a continuous bounded function such that f (t) ≥ 1. Let Γ 1 = {0 2 } and Γ 2 = {(x 1 , x 2 ) : x 2 = 0}.
The set Γ 2 is positively invariant because x 2 = 0 is an equilibrium of the subystem with state x 2 . On Γ 2 , the subsystem with state x 1 reduces to ẋ1 = 0, and therefore Γ 1 is US relative to Γ 2 .

Since the equilibrium x 2 = 0 is globally asymptotically stable for the differential equation ẋ2 = -x 3 2 , and since the system has no finite escape times, the set Γ 2 is t 0 -UGAS (in fact, UGAS). Yet, Γ 1 is unstable. To see why this is the case, pick > 0 and t 0 ∈ R, and let (x 1 (t), x 2 (t)) be the solution with initial state x(t 0 ) = [0 ] . Then x 2 (t) → 0 at a rate of t -1/2 , and using the fact that x 2 (t) > 0, we deduce that

x 1 (t) = t t0 x 2 (τ )f (τ )dτ ≥ t t0 x 2 (τ )dτ → ∞ as t → ∞.
Since > 0 is arbitrary, the origin is unstable.

In conclusion, Γ [START_REF] Kalitin | B-stability and the Florio-Seibert problem[END_REF]] it is shown that the integrability of t → x 2 (t) plays a crucial role in the UGS property. Example 2. (t 0 -Uniform attractivity of Γ 1 relative to Γ 2 is a fragile property). This example is adapted from [START_REF] El-Hawwary | Reduction principles and the stabilization of closed sets for passive systems[END_REF]. Consider the time-varying system ẋ1 = x 2 (x 1 -1) -

1 is US relative to Γ 2 and Γ 2 is t 0 - UGAS, but Γ 1 is not US in R 2 because t → x 2 (t) is not integrable. In [20, Theorem 1, condition
x 1 (x 2 1 + x 2 2 -1) -x 2 x 3 sin(t) 2 (6a) ẋ2 = -x 1 (x 1 -1) -x 2 (x 2 1 + x 2 2 -1) + x 1 x 3 sin(t) 2 (6b) ẋ3 = -x 3 3 , (6c) and let Γ 1 = {(x 1 , x 2 , x 3 ) = (1, 0, 0)} and Γ 2 = {(x 1 , x 2 , x 3 ) : x 3 = 0}
. As in the previous example, Γ 2 is positively invariant and t 0 -UGAS. We claim that Γ 1 is t 0 -UA relative to Γ 2 . To see why this is the case, let (r, θ) ∈ R >0 × S 1 be polar coordinates for the (x 1 , x 2 ) plane, excluding the origin, so that x 1 = r cos θ, x 2 = r sin θ. In (r, θ, x 3 ) coordinates, the above timevarying system reads as

ṙ = -r(r 2 -1) (7a) θ = 1 -r cos(θ) + x 3 sin(t) 2 (7b) ẋ3 = -x 3 3 .
(7c) In (r, θ, x 3 ) coordinates, the sets Γ 1 , Γ 2 are given by, respectively, Γ1 = {(r, θ, x 3 ) = (1, 0, 0)} and Γ2 = {(r, θ, x 3 ) : x 3 = 0}. The dynamics on Γ2 are described by the time-invariant system ṙ = -r(r 2 -1) (8a) θ = 1 -r cos(θ).

(8b) For each t 0 ∈ R, if r(t 0 ) = 0 then the solution r(t) → 1 uniformly with respect to t 0 , and if θ(t 0 ) = π, then θ(t) → (0 mod 2π). This proves that Γ 1 is t 0 -UA relative to Γ 2 . On the other hand, Γ 1 is not US relative to Γ 2 because the unit circle is a homoclinic orbit of system [START_REF] Iggidr | Semidefinite Lyapunov functions stability and stabilization[END_REF] (see the left-hand side of Figure 2) which implies that there are initial states in Γ 2 arbitrarily close to Γ 1 leading to solutions following the whole circle before converging to Γ 1 . On the left-hand side, the phase portrait of system ( 8) in (x1, x2) = (r cos(θ), r sin(θ)) coordinates, representing the dynamics on Γ2. The set Γ1, an equilibrium, is t0-UA relative to Γ2, but unstable. On the right-hand side, an orbit of the time-varying system (6) converging to Γ2, but not to Γ1.

Consider initial data (t 0 , x 0 ) where t 0 ∈ R is arbitrary and x 0 ∈ R 3 is a vector whose third component is positive and whose first two components lie on the unit circle, i.e., in (r, θ, x 3 ) coordinates, r(t 0 ) = 1, x 3 (t 0 ) > 0. The corresponding solution (r(t), θ(t), x 3 (t)) has the property that r(t) ≡ 1, and x 3 (t) tends to zero with rate t -1/2 . Thus, Equation (7b) may be rewritten as θ = 1 -cos(θ) + µ(t),

where µ(t) ≥ 0 converges to 0 with rate t -1/2 . The solution θ(t) satisfies

θ(t) = θ(t 0 ) + t t0 1 -cos(θ(τ ))dτ + t t0 µ(τ )dτ ≥ θ(t 0 ) + t t0 µ(τ )dτ → ∞ as t → ∞.
Thus, in (x 1 , x 2 , x 3 ) coordinates, the solution does not converge to Γ 1 , and in fact it converges to the unit circle on Γ 2 , see the right-hand side of Figure 2. This proves that Γ 1 is not t 0 -UA.

In conclusion, Γ 1 is t 0 -UA relative to Γ 2 and Γ 2 is t 0 - UGAS, but Γ 1 is not t 0 -UA in R 3 .
We are now ready to precisely state the reduction problem. Reduction Problem. Suppose that Γ 1 is UAS or UGAS relative to Γ 2 . Find conditions under which a property P ∈ {US, t 0 -UA, t 0 -UGA, UAS, UGAS} holds in R n .

Remark 13. Note that in the list of properties P of interest, we did not include uniform attractivity (UA). The reason is that, by Proposition 9, uniform attractivity of compact sets is equivalent to uniform asymptotic stability, therefore there is no need to state a separate reduction problem for uniform attractivity. The t 0 -uniform attractivity property (t 0 -UA), on the other hand, is complementary to uniform stability (US) in that, together, these two properties are equivalent to uniform asymptotic stability (see Proposition 9, parts (i) and (iv)). An analogous remark holds for the global version of these properties. and (iv) all solutions are t 0 -uniformly bounded, i.e., BS = R n . Finally, if assumptions (i)', (ii), and (iii)' hold, then Γ 1 is UAS and all initial states giving rise to t 0 -uniformly bounded solutions are contained in the basin of t 0 -uniform attraction of Γ, i.e., BS ⊂ B(Γ 1 ).

(i) Γ 1 is UAS relative to Γ 2 , (ii) Γ 2 is LUS-Γ 1 , and (iii) Γ 2 is t 0 -UA near Γ 1 . Moreover, Γ 1 is UGAS if and only if (i)' Γ 1 is UGAS relative to Γ 2 , (ii) Γ 2 is LUS-Γ 1 , (iii)' Γ 2 is t 0 -UGA,
Theorem 17 is proved in Section 6.3.

Remark 18. Theorems 14, 15, and 17 may be used recursively to analyze the stability of chains of nested closed positively invariant sets

Γ 1 ⊂ • • • ⊂ Γ k ⊂ R n in which Γ 1 is compact.
This was done in the context of the hierarchical control problem in [7, Proposition 14] and then applied to backstepping. See also [START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF]Theorem 4.9]. Furthermore, the results of this paper can be directly used to extend the method proposed in [START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] to the context of time-varying systems with minimal modifications.

Remark 19. Theorems 14, 15, and 17 establish uniform stability and attractivity properties in 

R n . If X ⊂ R n is a positively invariant set such that Γ 1 ⊂ Γ 2 ⊂ X ,

Consequences of the reduction theorems

We present now some useful consequences of the reduction theorems above. The first statement, which is a straightforward consequence of the reduction theorem for UGAS (Theorem 17), replaces Assumption (ii) in that (v) all solutions are t 0 -uniformly bounded, i.e., BS = R n . Finally, if assumptions (iii) and (iv) hold, then Γ 1 is UAS and all initial states giving rise to t 0 -uniformly bounded solutions are contained in the basin of t 0 -uniform attraction of Γ, i.e., BS ⊂ B(Γ 1 ).

PROOF. Assumption (ii) implies that Γ 2 is t 0 -US and t 0 -UA, while if Γ 2 is t 0 -UA then it is also t 0 -UA near Γ 1 .
Therefore, conditions (i) and (iii) of Theorem 17 hold. That is, in order to prove the first statement, that Γ 1 is UAS, it suffices to establish the implication

(Γ 2 is t 0 -US) =⇒ (Γ 2 is LUS-Γ 1 ). (9) 
Similarly, Assumption (iv) implies that Γ 2 is t 0 -US and t 0 -UGA. Therefore, the remaining statements in the proposition also follow directly from Theorem 17, provided that the implication (9) holds. Thus, to show that this is the case, assume Γ 2 is t 0 -US. Then for each ε > 0, there exists an open set U ⊂ R n such that Γ 2 ⊂ U and for each (t 0 , x 0 ) ∈ R × U and each t ∈ T + t0,x0 , x(t, t 0 , x 0 ) ∈ B ε (Γ 2 ). By the compactness of Γ 1 and the fact that Γ 1 ⊂ Γ 2 , there exists δ > 0 such that B δ (Γ 1 ) ⊂ U . Then we have

(∀x 0 ∈ B δ (Γ 1 ))(∀t 0 ∈ R)(∀t ∈ T + t0,x0 ) x([t 0 , t], t 0 , x 0 ) ⊂ B ε (Γ 2 ).
(10) Comparing with [START_REF] El-Hawwary | Global path following for the unicycle and other results[END_REF] in the definition of local uniform stability, we see that (10) implies (5) for arbitrary r > 0, and thus Γ 2 is LUS-Γ 1 .

From the proposition above we recover a well-known result concerning the stability of equilibria for cascadeconnected systems (see [START_REF] Seibert | Global stabilization of nonlinear cascaded systems[END_REF]Theorem 1.1] for the timeinvariant case, and Lemma 2 in [START_REF] Panteley | Growth rate conditions for uniform asymptotic stability of cascaded time-varying systems[END_REF] for the time-varying case). Corollary 22 (Cascade-connected systems). Consider the cascade-connected system

ẋ1 = f 1 (t, x 1 , x 2 ) ẋ2 = f 2 (t, x 2 ) ( 11 
)
where

f 1 : R × R n × R m → R n and f 2 : R × R m → R m satisfy the Basic Assumption and f 1 (•, 0 n , 0 m ) ≡ 0 n , f 2 (•, 0 m ) ≡ 0 m . Then the equilibrium (x 1 , x 2 ) = (0 n , 0 m ) is UGAS for (11) if and only if (i) the equilibrium x 1 = 0 n is UGAS for ẋ1 = f 1 (t, x 1 , 0 m ), (ii) the equilibrium x 2 = 0 m is UGAS for ẋ2 = f 2 (t, x 2 )
, and (iii) all solutions of (11) are t 0 -uniformly bounded, i.e., BS = R n × R m . On the other hand, if only Assumptions (i) and (ii) hold and the set BS of t 0 -uniformly bounded solutions is only a subset of R n × R m , then the equilibrium (x 1 , x 2 ) = (0 n , 0 m ) is UAS and the set BS is contained in the basin of t 0 -uniform attraction of the equilibrium (0 n , 0 m ), i.e., BS ⊂ B((0 n , 0 m )).

PROOF. The sufficiency part follows directly from Proposition 21 by setting Γ

1 := {(0 n , 0 m ) ∈ R n × R m } and Γ 2 := {(x 1 , x 2 ) ∈ R n × R m : x 2 = 0 m }. Then assumption (i) implies that Γ 1 is UGAS relative to Γ 2 , while assumption (ii) implies that Γ 2 is t 0 -UGAS.
For the necessity part, assuming (x 1 , x 2 ) = (0 n , 0 m ) is UGAS for the cascaded system [START_REF] Khalil | Nonlinear systems[END_REF], we need to show that properties (i)-(iii) hold. Property (iii) follows from Theorem 17. As for property (i) and (ii), we will only prove their uniform stability component. The proofs for the remaining components use analogous arguments. Denote by B δ (0 n ), B δ (0 m ), and B δ (0 n × 0 m ) the open δ balls centred at the origin in R n , R m , and R n × R m , respectively, and partition the solution map as x(t, t 0 , x 0 ) = (x 1 (t, t 0 , x 0 ), x 2 (t, t 0 , x 0 )) ∈ R n × R m . Then the following set inclusions hold:

0 n × B δ (0 m ) ⊂ B δ (0 n , 0 m ); B δ (0 n )×0 m ⊂ B δ (0 n , 0 m ); and, B δ (0 n ×0 m ) ⊂ B δ (0 n )× B δ (0 m ).
For any ε > 0, there exists δ > 0 such that

x(R ≥t0 , t 0 , B δ (0 n × 0 m )) ⊂ B ε (0 n × 0 m ) for all t 0 ∈ R. Then, x(R ≥t0 , t 0 , 0 n × B δ (0 m )) ⊂ B ε (0 n × 0 m ) ∀ t 0 ∈ R, (12) x(R ≥t0 , t 0 , B δ (0 n ) × 0 m ) ⊂ B ε (0 n × 0 m ) ∀ t 0 ∈ R. (13)
Since the x 2 subsystem is decoupled from the x 1 dynamics, from [START_REF] Kristić | Nonlinear and Adaptive Control Design[END_REF] we deduce that x 2 (R ≥t0 , t 0 , 0 n ×B δ (0 m )) ⊂ B ε (0 m ) for all t 0 ∈ R, and thus the equilibrium 0 m is

US for ẋ2 = f 2 (t, x 2 ). Since x(R ≥t0 , t 0 , B δ (0 n ) × 0 m ) = x 1 (R ≥t0 , t 0 , B δ (0 n )×0 m )×0 n , from (13) we deduce that x 1 (R ≥t0 , t 0 , B δ (0 n ) × 0 m ) ⊂ B ε (0 n ) for all t 0 ∈ R, and therefore the equilibrium x 1 = 0 n is US for ẋ1 = f 1 (t, x 1 , 0).

Lyapunov characterizations

The reduction theorems in Section 4 and Proposition 21 rely on assumptions that are somewhat unusual in the stability theory literature:

• Γ 2 is LUS-Γ 1 .
Used in Theorems 14 and 17.

• Γ 2 is either t 0 -UA near Γ 1 or t 0 -UGA. Used in Theorems 15 and 17. • Γ 2 is either t 0 -UAS or t 0 -UGAS. Used in Proposition 21.

In this section we give Lyapunov characterizations of the properties listed above. Even though these characterizations are more conservative in general, they may result easier to verify in concrete cases. An example that illustrates this assertion is given in Section 5.1. Proposition 23 (Lyapunov characterization of LUS-Γ 1 property). Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such that Γ 1 ⊂ Γ 2 ⊂ R n . Suppose there exist r, s > 0 and a C 1 nonnegative function

V : R × B r (Γ 1 ) → R such that α( x Γ2 ) ≤ V (t, x) ≤ β( x Γ1 ) (14) ∂ t V (t, x) + ∂ x V (t, x)f (t, x) ≤ 0, ( 15 
)
for all (t, x) ∈ R × B r (Γ 1 ), where α : [0, s) → R and β : [0, r) → R are two class K functions. Then, Γ 2 is LUS-Γ 1 .
PROOF. Let V : R × B r (Γ 1 ) → R be a function satisfying the hypotheses of the proposition. Since α and β are class-K functions, so is the function

β -1 • α : [0, c) → R, for suitable c > 0. For each ε > 0, pick δ > 0 such that δ < β -1 • α(min{c, ε}). By prop- erty (15), for each (t 0 , x 0 ) ∈ R × B δ (Γ 1 ) and each t ∈ T + t0,x0 , if x([t 0 , t], t 0 , x 0 ) ⊂ B r (Γ 1 ), then the function t → V (t, x(t, t 0 , x 0 )) is nonincreasing for t ∈ [t 0 , t]. By property (14) we have α( x(t, t 0 , x 0 ) Γ2 ) ≤ V (t, x(t, t 0 , x 0 )) ≤ V (t 0 , x 0 ) ≤ β( x 0 Γ1 ) ≤ β(δ),
for all t ∈ [t 0 , t]. From the above we deduce that x(t, t 0 , x 0 ) Γ2 ≤ α -1 • β(δ) < ε for all t ∈ [t 0 , t]. We have thus shown that for each ε > 0 there exists δ > 0 such that for any

(t 0 , x 0 ) ∈ R × B δ (Γ 1 ), if x([t 0 , t], t 0 , x 0 ) ⊂ B r (Γ 1 ) then x([t 0 , t], t 0 , x 0 ) ⊂ B ε (Γ 2 ). This proves that Γ 2 is LUS-Γ 1 .
Next, we provide a Lyapunov characterization of the t 0 -UA, t 0 -UGA, and t 0 -UGAS properties for closed, but not necessarily compact sets. Proposition 24 (Lyapunov characterization of t 0 -UA, t 0 -UGA, and t 0 -UGAS properties). Consider the timevarying system (3) under the Basic Assumption. Let Γ ⊂ R n be a closed, positively-invariant set, and

U ⊂ R n be an open set such that Γ ∩ U = ∅. Let V : R × U → R be a C 1 nonnegative function such that W 1 (x) ≤V (t, x) ≤ W 2 (x) (16) ∂ t V (t, x) + ∂ x V (t, x)f (t, x) ≤ -W 3 (x), ( 17 
)
for all (t, x) ∈ R × U , where W 1 , W 2 , W 3 : U → R are continuous nonnegative functions such that W -1 1 (0) = W -1 2 (0) = W -1 3 (0) = Γ ∩ U . Let U ⊂ U be defined as 6 U := x 0 ∈ U : (∀t 0 ∈ R) x(T + t0,x0 , t 0 , x 0 ) ⊂ U .
Then, the following implications hold: (a) All initial states in U giving rise to solutions that are t 0 -uniformly bounded are contained in the basin of t 0 -uniform attraction of Γ, i.e.,

BS ∩ U ⊂ B(Γ). (b) If U = R n and Γ ⊂ int(BS), then Γ is t 0 -UA. (c) If U = R n
and all solutions are t 0 -uniformly bounded, i.e., U = BS = R n , then Γ is t 0 -UGA. (d) If U = BS = R n , and there exist r > 0 and a class

K function α 1 : [0, r) → R such that α 1 ( x Γ ) ≤ W 1 (x) for all x ∈ B r (Γ), then Γ is t 0 -UGAS.
PROOF. Part (a). Letting x 0 ∈ BS∩U be arbitrarily fixed, we want to show that

x 0 ∈ B(Γ), that is (∀ε > 0)(∃T > 0)(∀t 0 ∈ R) t 0 + T ∈ T + t0,x0 and x(R ≥t0+T ∩ T + t0,x0 , t 0 , x 0 ) ⊂ B ε (Γ). ( 18 
)
If x 0 ∈ Γ, then x 0 ∈ B(Γ) because Γ is positively invariant. Suppose x 0 ∈ U \ Γ. Since x 0 ∈ BS, by definition there exists c > 0 such that x(R ≥t0 , t 0 , x 0 ) ⊂ B c (0) for all t 0 ∈ R, which implies that T + t0,x0 = R ≥t0 for all t 0 ∈ R. Letting K := B c (0), a compact set and using the fact that x 0 ∈ BS ∩ U , we have

(∀t 0 ∈ R) x(R ≥t0 , t 0 , x 0 ) ⊂ K ∩ U. (19) 
Let ε > 0 be arbitrarily fixed and define

δ 1 := min x∈K, x Γ≥ε/2 W 1 (x), δ2 := min x∈K,W2(x)≥δ1 W 1 (x), δ 2 := min{ δ2 , W 2 (x 0 )}.
Since W 1 and W 2 are continuous nonnegative functions and the set K is compact, the constants δ 1 , δ2 exist and are nonnegative. Moreover, since W 1 = 0 on the set {x ∈ K : x Γ ≥ ε/2}, we have that δ 1 > 0. Further, since W 2 (x) ≥ δ 1 implies that x ∈ Γ, and since W 1 (x) = 0 for all x ∈ Γ, it follows that δ2 > 0. Finally, since x 0 ∈ Γ, W 2 (x 0 ) > 0, so δ 2 > 0 as well. Next, let k := min

x∈K,W1(x)≥δ2/2 W 3 (x). ( 20 
)
Following similar arguments as above, we conclude that k > 0. Furthermore, in view of the definition of δ 1 and δ 2 , were defined we have

x ∈ K : W 1 (x) ≤ δ 1 ⊂ B ε/2 (Γ) ⊂ B ε (Γ), (21) 
x

∈ K : W 1 (x) ≤ δ 2 ⊂ x ∈ K : W 2 (x) ≤ δ 1 . (22) 
We claim that

(∃T > 0)(∀t 0 ∈ R) W 1 (x(t 0 + T, t 0 , x 0 )) ≤ δ 2 . ( 23 
)
By way of contradiction, suppose that

(∀T > 0)(∃t 0 ∈ R) W 1 (x(t 0 + T, t 0 , x 0 )) > δ 2 . ( 24 
)
Using ( 19) and ( 24), we get x([t 0 , t

0 + T ], t 0 , x 0 ) ⊂ K ∩ {x ∈ R n : W 1 (x) ≥ δ 2 /2}. Let T := (W 2 (x 0 ) -δ 2 )
/k ≥ 0, and let t 0 ∈ R be such that (24) holds. Using ( 17), [START_REF] Ortega | Passivity properties for stabilization of cascaded nonlinear systems[END_REF], and the definition of k in (20), we have

V (t 0 + T, x(t 0 + T, t 0 , x 0 )) ≤ V (t 0 , x 0 ) -kT ≤ W 2 (x 0 ) -kT = δ 2 .
By the first inequality in ( 16), W 1 (x(t 0 +T, t 0 , x 0 )) ≤ δ 2 , contradicting [START_REF] Saberi | Global stabilization of partially linear systems[END_REF]. Thus (23) holds. Henceforth, fix T ≥ 0 such that (23) holds. Since W 1 (x(t 0 + T, t 0 , x 0 )) ≤ δ 2 , by ( 19) and ( 22) we have that W 2 (x(t 0 + T, t 0 , x 0 )) ≤ δ 1 for any t 0 ∈ R. Since for any t 0 ∈ R the function t → V (t, x(t, t 0 , x 0 )) is nonincreasing, and since V (t 0 + T, x(t 0 + T, t 0 , x 0 )) ≤ W 2 (x(t 0 + T, t 0 , x 0 )) ≤ δ 1 , we have that V (t, x(t, t 0 , x 0 )) ≤ δ 1 for all t 0 ∈ R and all t ≥ t 0 + T . Using the first inequality in ( 16), we deduce that W 1 (x(t, t 0 , x 0 )) ≤ δ 1 for all t 0 ∈ R and all t ≥ t 0 +T . By ( 19) and ( 21), we conclude that for all t 0 ∈ R, x(R ≥t0+T , t 0 , x 0 ) ⊂ B ε (Γ), and thus (18) holds. We have thus shown that for each x 0 ∈ BS ∩ U , x 0 ∈ B(Γ). This concludes the proof of part (a). Part (b). If U = R n and Γ ⊂ int(BS), then U = R n , and by part (a), Γ ⊂ int(BS) ⊂ int(B(Γ)), which implies that Γ is t 0 -UA.

Part (c). If U = BS = R n then U = R n , and by part (a), B(Γ) = R n , which implies that Γ is t 0 -UGA.

Part (d). Now suppose that U = BS = R n so that, by part (c), Γ is t 0 -UGA, and there exist r > 0 and a class K function α 1 : [0, r) → R such that α 1 ( x Γ ) ≤ W 1 (x) for all x ∈ B r (Γ). We need to show that Γ is t 0 -US. Let ε > 0 be arbitrary, without loss of generality ε ∈ (0, r). Define the open set U := {x ∈ R n : W 2 (x) < α 1 (ε)}. For any initial data (t 0 , x 0 ) ∈ R × U , we have W 2 (x 0 ) < α 1 (ε), and by ( 16) and ( 17) we have that

W 1 (x(t, t 0 , x 0 )) < α 1 (ε) for all t ∈ T + t0,x0 . Since W 1 (x) ≥ α 1 ( x Γ ), x(t, t 0 , x 0 )) Γ < ε for all t ∈ T + t0,x0
. This proves that Γ is t 0 -US. In conclusion, we have shown that Γ is both t 0 -UGA and t 0 -US, which implies that Γ is t 0 -UGAS. This concludes the proof of the proposition.

Part (a) of Proposition 24 yields the next Lyapunov characterization of the property that a set Γ 2 is t 0 -UA near Γ 1 , used in Theorems 15 and 17. Corollary 25 (Lyapunov characterization of the property that Γ 2 is t 0 -UA near Γ 1 ). Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such that Γ 1 ⊂ Γ 2 ⊂ R n . Suppose that Γ 1 is US, and for some open set U ⊂ R n such that Γ 1 ⊂ U , there exists a C 1 nonnegative function V : R × U → R satisfying ( 16) and [START_REF] Mazenc | Adding integrators, saturated controls and global asymptotic stabilization of feedforward systems[END_REF], where

W 1 , W 2 , W 3 : U → R are continuous nonnegative functions such that W -1 1 (0) = W -1 2 (0) = W -1 3 (0) = Γ ∩ U . Then Γ 2 is t 0 -UA near Γ 1 .
PROOF. Since Γ 1 is compact and contained in the open set U , there exists ε > 0 such that

B ε (Γ 1 ) ⊂ U . Since Γ 1 is US, there exists δ > 0 such that (∀t 0 ∈ R) x(R ≥t0 , t 0 , B δ (Γ 1 )) ⊂ B ε (Γ 1 ) ⊂ U, (25) 
which implies that B δ (Γ 1 ) ⊂ U , with U defined in the statement of Proposition 24. Moreover, since Γ 1 is compact the set B ε (Γ 1 ) is bounded, and thus property [START_REF] Seibert | On stability relative to a set and to the whole space[END_REF] implies that B δ (Γ 1 ) ⊂ BS. We have thus established that B δ (Γ 1 ) ⊂ BS ∩ U . By part (a) of Proposition 24,

B δ (Γ 1 ) ⊂ BS ∩ U ⊂ B(Γ 2 )
, and thus Γ 2 is t 0 -UA near Γ 1 .

Examples

In this section we present three examples demonstrating the utility of the theoretical results in Section 4. In the first example we revisit the Slotine & Li controller mentioned in the introduction, considering (for simplicity) the special case of one degree-of-freedom mechanical systems, and we propose a reduction viewpoint to understand its operation. We show, in particular, that its uniform global tracking properties can be derived using Propositions 23, 24, and Theorem 17. The second example illustrates the reduction theorem for t 0 -uniform attractivity (Theorem 15). Finally, in the third example we use Proposition 21 to derive a global path following controller for a kinematic unicycle meeting a position tracking requirement on the path. Consider the following Lagrangian control system d(q)q + c(q) q2 + g(g) = u, where, for simplicity of exposition, we assume that q ∈ R. The function q → d(q) denotes the system's inertia and it is bounded, smooth and bounded away from zero uniformly for all q ∈ R, i.e., 0

The Slotine & Li controller

< d m ≤ d(•) ≤ d M ;
the function q → c(q) is uniformly bounded and satisfies 2c(q) := ḋ(q); the function q → g(q) denotes forces stemming from potential energy and it is also uniformly bounded. Consider the problem of making the generalized positions and velocities q and q follow some given desired smooth bounded reference trajectories q d (t) and qd (t). This problem was solved (for systems with q ∈ R n , n ≥ 1) in [START_REF] Slotine | Adaptive manipulator control: a case study[END_REF], where the now well-known Slotine & Li controller was proposed. This is defined as follows. Let λ, k d > 0 be two design parameters and let u = d(q)q r + c(q) q qr + g(g) -k d s (26a) s := q -qr (26b) qr := qd -λq, q := q -q d .

(26c)

Then, the closed-loop nonlinear time-varying system is given by d q + q d (t) ṡ + c(q + q d (t)) s + qd + λq s + k d s = 0 (27a) q = -λq + s.

(27b)

It is well known that for the system (27) the origin, {(q, s) = (0, 0)}, is uniformly globally asymptotically stable; this may be established via various methods, including Lyapunov's first [START_REF] Spong | Comments on "Adaptive Manipulator Control: A Case Study[END_REF]. We revisit the analysis of this system because the rationale that leads to the design of this controller in [START_REF] Slotine | Nonlinear Control Analysis[END_REF] captures well the essence of the reduction theorems. Indeed, the controller is designed in a manner to steer the trajectory q(t) to the artificially-defined reference qr generated by (26c).

Given that q = qr is equivalent to s = 0, the controller is designed to steer the trajectories towards the set Γ 2 := {(q, s) : s = 0} (see Figure 3 for an illustration with λ = 1 and k d = 3) on which the dynamics is reduced to q = -λq. More precisely, the function

V (t, q, s) := 1 2 d q + q d (t) s 2 , ( 28 
) satisfies 1 2 d m s 2 ≤ V (t, q, s) ≤ d M s 2 + q2 (29a) V (t, q, s) ≤ -k d s 2 (29b)
in view of the assumption that 0 < d m ≤ d(•) ≤ d M and ḋ(q) = 2c(q) q. From these inequalities, it follows that s → 0 for any k d > 0. That is, the trajectories tend to the set Γ 2 on which they satisfy q = -λq, so q → 0 for any λ > 0. It is important to stress that, although intuitive, this argument tacitly relies on the set Γ 2 being reached in finite time, which is not the case for this controller; the trajectories only tend asymptotically to Γ 2 . A formal argument may be made using Theorem 17 even if the convergence to Γ 2 is only asymptotic. To this end, letting Γ 1 := {(q, s) = (0, 0)} and Γ 2 := {(q, s) : s = 0}, the following remarks are in order:

• All solutions of ( 27) are t 0 -uniformly bounded. This follows from [START_REF] Slotine | Adaptive manipulator control: a case study[END_REF] and from the fact that (27b) constitutes an exponentially stable linear time-invariant system with uniformly bounded input s(t).

• The set Γ 2 is LUS-Γ 1 . This follows from Proposition 23. Clearly, Γ 1 ⊂ Γ 2 ⊂ R 2 .
Also, Γ 2 is positively invariant since s = 0 is a solution of (27a). Finally, ( 14) and ( 15) hold in view of (29

) with α( x Γ2 ) = (1/2)d m s 2 , β( x Γ1 ) = d M s 2 + q2 .
The property is also illustrated in the zoomed plot in Figure 3: solutions that start in a neighbourhood of the origin 7 , B δ (Γ 1 ), remain in a neighbourhood of Γ 2 , B ε (Γ 2 ), the gray band. • The set Γ 2 is t 0 -UA near Γ 1 = {(q, s) = (0, 0)}. This follows from part (b) of Proposition 24, in view of the t 0 -uniformly boundedness of the solutions, with V as in ( 28), U = R, and Γ = Γ 2 . Also, the property is illustrated in the zoomed plot in Figure 3: solutions starting in a neighbourhood of the origin Γ 1 , are attracted to Γ 2 . • The set Γ 1 is UGAS relative to Γ 2 . This follows from the fact that, for the system (27b) with s = 0, {q = 0} is UGAS. • By Theorem 17, we conclude that Γ 1 is UGAS.

• One can also use part (d) of Proposition 24 with V as in ( 28), Γ = Γ 2 , U = R 2 , and α 1 ( x Γ2 ) = (1/2)d m s 2 to arrive at the conclusion that Γ 2 is t 0 -UGAS, then use Proposition 21 to conclude that Γ 1 is UGAS. From the left plot in Figure 3 it is appreciated that solutions with larger initial conditions, tend asymptotically to Γ 2 , the line on the plane { q = -q}. Even though the Slotine-Li controller does not make trajectories s(t) converge to zero in finite time, the reduction argument presented above captures the intuition behind the operation of the controller presented at the beginning of this discussion, namely the idea that the controller makes solutions approach the line s = 0, that on this line solutions converge exponentially to the origin, and that these two properties imply that solutions converge to the origin. Consider the time-varying system ẋ1 =

Illustration of reduction theorem for t 0 -uniform attractivity

x 2 (x 1 -1) -x 1 (x 2 1 + x 2 2 -1) (30a) ẋ2 = -x 1 (x 1 -1) -x 2 (x 2 1 + x 2 2 -1) (30b) ẋ3 = -x 3 3 + (x 1 -1) 2 + x 2 2 f (t), ( 30c 
)
where f (t) is a continuous bounded function. This system satisfies the Basic Assumption. Letting Γ 2 = {(x 1 , x 2 , x 3 ) :

x 1 = 1, x 2 = 0} and Γ 1 = {(x 1 , x 2 , x 3 ) =
(1, 0, 0)}, we claim that Γ 1 is t 0 -UA with basin of attraction given by the whole state space minus a set of measure zero (i.e., it is almost globally t 0 -UA). On Γ 2 the dynamics are described by the differential equation ẋ3 = -x 3 3 , whose origin represents the set Γ 1 , and therefore Γ 1 is UGAS relative to Γ 2 . In Example 2 we showed that the equilibrium (

x 1 , x 2 ) = (1, 0) of the subsystem ẋ1 = x 2 (x 1 -1) -x 1 (x 2 1 + x 2 2 -1) (31a) ẋ2 = -x 1 (x 1 -1) -x 2 (x 2 1 + x 2 2 -1) (31b)
is t 0 -UA with basin of attraction given by R 2 \ {(0, 0)}.

In particular, all its solutions are bounded, and in fact t 0 -uniformly bounded because this system is timeinvariant. Since the control system ẋ3 = -x 3 3 + u is input-to-state stable, all solutions of the subsystem ẋ3 = -x 3 3 + (x 1 -1) 2 + x 2 2 f (t), are also t 0 -uniformly bounded because the pair (x 1 (t), x 2 (t)) and the function f (t) are bounded. The considerations above show that all solutions of system (30) are t 0 -uniformly bounded, i.e., BS = R 3 . Letting X := R 3 \ {(x 1 , x 2 , x 3 ) : x 1 = x 2 = 0}, X has full measure in R 3 , and it positively invariant because its complement, the set {(x 1 , x 2 , x 3 ) : x 3 = 0}, is invariant. Since, for system [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF], B({(1, 0)}) = R 2 \ {(0, 0)}, we have that, for system [START_REF] Slotine | Nonlinear Control Analysis[END_REF], B(Γ 2 ) = X , i.e., Γ 2 is t 0 -UGA relative to X . To summarize, we have determined that (a) Γ 1 is UGAS relative to Γ 2 , (b) Γ 2 is t 0 -UGA relative to X , and (c) BS = X . By Theorem 15, Γ 1 is t 0 -UGA relative to X or, what is the same, Γ 1 is almost globally t 0 -UA, as claimed. A few solutions of the system with f (t) = sin(t) 2 and t 0 = 0 are depicted in Figure 4. Note that Γ 1 is unstable, and indeed Figure 4 shows an initial state very close to Γ 1 giving rise to an orbit with a large excursion away from Γ 1 .

Circular path following for a kinematic unicycle

This example illustrates the use of reduction theorems in the context of hierarchies of control specifications that were mentioned in the introduction. Consider the kinematic unicycle ẋ1 = u 1 cos(θ)

(32a) ẋ2 = u 1 sin(θ) (32b) θ = u 2 , ( 32c 
)
where x ∈ R 2 are the Cartesian coordinates of the unicycle in the plane, θ ∈ S 1 is the unicycle heading, and (u 1 , u 2 ) ∈ R × R, the linear and angular speeds of the unicycle, are the control inputs. We denote by χ := (x, θ) the state of the unicycle, and by X := R 2 × S 1 its state space. For a vector x ∈ R 2 , we denote by angle(x) the angle that the vector makes with the positive x 1 axis. Let C r := {x ∈ R 2 : x x = r 2 } denote the circle of radius r > 0 centred at the origin, and consider the following list of control specifications: (a) For each initial position x(0) ∈ C r and initial heading θ(0) = angle(x(0)) + π/2 (i.e., heading tangent to C r with counterclockwise orientation), x(t) must remain on C r for all t ≥ 0. (b) For all other initial states, the unicycle position, x(t), must asymptotically converge to C r . (c) For each initial state in some neighborhood of the reference signal

χ d (t) = r cos(α d (t)), r sin(α d (t)), α d (t) + π/2 ,
where α d : R → S 1 is a given C 1 function, the unicycle state must asymptotically converge to χ d (t). In essence, for any initial state we want the unicycle to approach and follow the circle C r counterclockwise, rendering the circle invariant for the position dynamics. Moreover, we want to ensure that, on C r , the motion of the unicycle matches a prescribed reference signal. This latter specification is only required to be met locally.

A controller meeting specifications (a) and (b) was presented in [START_REF] El-Hawwary | Global path following for the unicycle and other results[END_REF]. Using Proposition 21, we now enhance the controller in [START_REF] El-Hawwary | Global path following for the unicycle and other results[END_REF] to meet also specification (c). Define the set Γ = {χ = (x 1 , x 2 , θ) ∈ X :

x x = r 2 , θ = angle(x) + π/2} = {χ = (x 1 , x 2 , θ) ∈ X : x 1 = r sin(θ), x 2 = -r cos(θ)}.
The set Γ corresponds to the situation when the unicycle position is on C r and its heading is tangent to C r with counterclockwise orientation. It is clear that in order to meet specifications (a) and (b), we need to render Γ UGAS. The controller in [5, Proposition III.1] does just that. For any v ∈ R, the smooth feedback

u 1 = v (33a) u 2 = u 1 r + r (x 1 cos(θ) + x 2 sin(θ)) , (33b) 
renders Γ UGAS. One can replace v ∈ R by any smooth real-valued function without affecting the result. In order to meet specification (c), we assign v in the feedback (33a) so as to incorporate an additional stabilization mechanism. Define θ d (t) := α d (t) + π/2, and note that, having met specifications (a) and (b), specification (c) corresponds to making θ → θ d (t) for suitable initial states. This control objective can be attained without affecting the UGAS property of Γ, as follows. On Γ, the feedback (33) reduces to (u 1 , u 2 ) = (v, v/r), and therefore the evolution of θ(t) is governed by θ = v/r.

Letting v = r θd (t) -sin(θ -θ d (t)) , i.e., letting

u 1 = r θd -sin(θ -θ d (t)) (34a) 
u 2 = u 1 r + r [x 1 cos(θ) + x 2 sin(θ)] , (34b) 
makes θ(t) → θ d (t) for almost all initial states on Γ. Of course, this does not yet imply that specification (c) is met, since we need to allow initial states outside of Γ, but Proposition 21 will allow us to obtain the desired result. In order to formulate a reduction problem, we define the error state χ ∈ X as χ := (x, θ), with x := (x 1 -r sin(θ), x 2 +r cos(θ)) and θ = θ-θ d (t). The closedloop system in error coordinates reads as ẋ1 = -r 2 x1 cos( θ + θ d (t))

+ x2 sin( θ + θ d (t)) cos( θ + θ d (t)) (35a) ẋ2 = -r 2 x2 sin( θ + θ d (t)) + x1 sin( θ + θ d (t)) cos( θ + θ d (t)) (35b) θ = -sin( θ) + r x1 cos( θ + θ d (t)) + x2 sin( θ + θ d (t)) . (35c) 
The system above satisfies the Basic Assumption (see Remark 1), and in χ-coordinates the set Γ becomes Γ 2 = { χ ∈ X : x = 0}, and meeting specification (c) corresponds to stabilizing the equilibrium Γ 1 = {0 ∈ X }. Clearly, Γ 1 is compact, Γ 2 is closed, and Γ 1 ⊂ Γ 2 . By [5, Proposition III.1], the feedback (34) renders Γ 2 UGAS, and to meet specification (c), we need to show that Γ 1 is UAS. On Γ 2 , the dynamics are described by the differential equation θ = -sin( θ). The equilibrium θ = 0 is asymptotically stable for the above differential equation, which means that Γ 1 is UAS relative to Γ 2 . By Proposition 21, Γ 1 is UAS. In conclusion, the feedback (34) simultaneously renders Γ 2 UGAS and Γ 1 UAS, therefore meeting specifications (a)-(c). Figure 5 shows simulation results for r = 1 and α d (t) = t + sin(t). As expected, all solutions converge to the circle, and move counterclockwise around it. The corresponding tracking errors (specification (c)) converge to zero. One of the displayed solutions (the one in magenta) corresponds to the unicycle being initialized on the circle, with heading tangent to it. In accordance with specification (a), the unicycle remains on the circle even though its initial tracking error is not zero. In accordance with specification (c), the unicycle adjusts its linear speed to synchronize with the reference signal without leaving the circle.

As a final remark, the closed-loop system (35) does not have a cascade-connected structure, because the x dynamics depend on θ. Therefore, in this example one cannot use the cascade systems theory of [START_REF] Panteley | On global uniform asymptotic stability of nonlinear time-varying systems in cascade[END_REF][START_REF] Panteley | Growth rate conditions for uniform asymptotic stability of cascaded time-varying systems[END_REF] or Corollary 22 of this paper.

6 Proofs of Theorems 14, 15, and 17

Proof of Theorem 14

Before proving Theorem 14, we need the following result on continuous dependence of solutions on initial data. It is not an original statement of this paper but, for completeness, we present the proof in Appendix B. Lemma 26. Assume the differential equation (3) satisfies the Basic Assumption. Then for each compact set K ⊂ R n , each ε > 0, and each T > 0, there exists δ > 0 such that for any initial data (t 0 , x 0 ) ∈ R × K such that

x([t 0 , t 0 + T ], t 0 , x 0 ) ⊂ K, the property x(t, t 0 , x 0 )x(t, t 0 , x 1 ) < ε holds for all x 1 ∈ B δ (x 0 ) and for all t ∈ [t 0 , t 0 + T ].

The proof of Theorem 14 follows similar lines of an analogous statement for time-invariant systems in [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF], and is divided into two parts. First, we prove that uniform attractivity of Γ 1 relative to Γ 2 implies the so-called threshold property, in the terminology of [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF]. Then, we prove that the threshold property and the assumption that Γ 2 is LUS-Γ 1 together imply that Γ 1 is US. Lemma 27. Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such that

Γ 1 ⊂ Γ 2 ⊂ R n . If Γ 1 is UA relative to Γ 2 ,
then the threshold property holds:

(∀ε > 0)(∃δ, η > 0)(∀x 0 ∈ B δ (Γ 1 )(∀t 0 ∈ R)(∀t ≥ t 0 ) x([t 0 , t], t 0 , x 0 ) ⊂ B η (Γ 2 ) =⇒ x([t 0 , t], t 0 , x 0 ) ⊂ B ε (Γ 1 ). ( 36 
)
PROOF. Suppose, by way of contradiction, that property (36) does not hold, so that

(∃ε > 0)(∀δ, η > 0)(∃x 0 ∈ B δ (Γ 1 )(∃t 0 ∈ R)(∃t ≥ t 0 )
x([t 0 , t], t 0 , x 0 ) ⊂ B η (Γ 2 ) and (∃s ∈ [t 0 , t])x(s, t 0 , x 0 ) ∈ B ε (Γ 1 ). (37) Fix ε > 0 as in (37), and pick sequences {δ n } n∈N ⊂ (0, ε), {η n } n∈N such that δ n , η n → 0. Then by (37) there exist sequences {x 0n } n∈N , {t 0n } n∈N , and {t n } n∈N such that t n > t 0n for all n ∈ N, and the following properties hold:

x 0n Γ1 → 0 as n → ∞, (38) x([t 0n , t n ), t 0n , x 0n ) ⊂ B ε (Γ 1 ), (39) x(t n , t 0n , x 0n ) ∈ B ε (Γ 1 ), (40) d(x([t 0n , t n ], t 0n , x 0n ), Γ 2 ) → 0 as n → ∞.

(41) Since Γ 1 is UA relative to Γ 2 , we have that

(∃σ > 0)(∃T > 0)(∀t 0 ∈ R) x(R ≥t0+T , B σ (Γ 1 ) ∩ Γ 2 ) ⊂ B ε/2 (Γ 1
). (42) Let σ and T be as above. Since (37) continues to hold if ε is replaced by any smaller number, and since σ in (42) is independent of ε, we may assume that ε < σ. Let β ∈ R be such that β > σ > ε.

(43) By the Basic Assumption, and using Lemma 26 with K := B β (Γ 1 ) (a compact set), we have:

(∀T > 0)(∃δ > 0)(∀t 0 ∈ R)(∀x 0 ∈ B β (Γ 1 )) if x([t 0 , t 0 + T ], t 0 , x 0 ) ⊂ B β (Γ 1 ) then (∀x 1 ∈ B δ (x 0 ))(∀t ∈ [t 0 , t 0 + T ]) x(t, t 0 , x 0 ) -x(t, t 0 , x 1 ) < ε/2. ( 44 
)
Let the UA property of Γ 1 generate, through (42), a constant T > 0 that, in turn, generates δ > 0 such that (44) holds. If necessary, reduce δ such that δ < σ -ε.

(45) By (38), x 0n Γ1 → 0. Since Γ 1 is positively invariant, (40) and (44) imply that t n -t 0n → ∞ as n → ∞, so we may assume that (∀n ∈ N) t n -t 0n > T.

(46) Define x n := x(t n -T, t 0n , x 0n ), and note that, by ( 39) and ( 46), x n ∈ B ε (Γ 1 ) for all n ∈ N. By (41), x n Γ2 → 0 as n → ∞, so we may assume that x n Γ2 < δ for all n ∈ N. Then there exists a sequence {x n } n∈N ⊂ Γ 2 such that x n -x n < δ for all n ∈ N. For each n ∈ N, we have that

x n ∈ B δ (x n ) ∩ Γ 2 . By (45), x n ∈ B σ-ε (x n ) ∩ Γ 2 ,
and since x n ∈ B ε (Γ 1 ), we conclude that

x n ∈ B σ (Γ 1 ) ∩ Γ 2 . ( 47 
)
This fact and (42) imply that (∀n

∈ N) x(t n , t n -T, x n ) ⊂ B ε/2 (Γ 1 ). ( 48 
)
By the definition of x n we have that

x([t n -T, t n ], t n -T, x n ) = x([t n -T, t n ], t 0n , x 0n ) ⊂ (46) 
x([t 0n , t n ], t 0n , x 0n )

⊂ (39) B ε (Γ 1 ) ⊂ (43) 
B β (Γ 1 ).

Since x n -x n < δ , using (44) we deduce that

x(t n , t n -T, x n ) -x(t n , t n -T, x n ) < ε/2. ( 49 
)
By ( 48) and (49) we conclude that x(t n , t n -T, x n ) ∈ B ε (Γ 1 ). However, in view of (40), x(t n , t n -T, x n ) = x(t n , t 0n , x 0n ) ∈ B ε (Γ 1 ), which leads to a contradiction. Lemma 28. Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such that

Γ 1 ⊂ Γ 2 ⊂ R n . If Γ 2 is LUS-Γ 1
and the threshold property (36) holds, then Γ 1 is US.

PROOF. Suppose, by way of contradiction, that Γ 1 is not US, so that

(∃ε > 0)(∀δ > 0)(∃x 0 ∈ B δ (Γ 1 ))(∃t 0 ∈ R)(∃t ≥ t 0 ) x(t, t 0 , x 0 ) ∈ B ε (Γ 1 ). ( 50 
)
Let ε > 0 be as in (50), and consider a sequence {δ n } n∈N ⊂ (0, ε) such that δ n → 0 as n → ∞. Then there exist sequences

{x 0n } n∈N ⊂ R n , {t 0n } n∈N ⊂ R, {t n } n∈N ⊂ R such that t n > t 0n and x([t 0n , t n ), t 0n , x 0n ) ⊂ B ε (Γ 1 ), (51) x(t n , t 0n , x 0n ) ∈ B ε (Γ 1 ), (52) x 0n Γ1 → 0 as n → ∞. ( 53 
)
By the threshold property (36) we have (∃δ

, η > 0)(∀x 0 ∈ B δ (Γ 1 )(∀t 0 ∈ R)(∀t ≥ t 0 ) if x([t 0 , t], t 0 , x 0 ) ⊂ B η (Γ 2 ) then x([t 0 , t], t 0 , x 0 ) ⊂ B ε (Γ 1 ).
(54) By (53) we may assume that {x 0n } n∈N ⊂ B δ (Γ 1 ). From the definition that Γ 2 is LUS-Γ 1 (Definition 10), with ε replaced by η, we have

(∃r > 0)(∃δ > 0)(∀t 0 ∈ R)(∀x 0 ∈ B δ (Γ 1 ))(∀t ∈ T + t0,x0 ) if x([t 0 , t], t 0 , x 0 ) ⊂ B r (Γ 1 ) then x([t 0 , t], t 0 , x 0 ) ⊂ B η (Γ 2 ).
(55) Fix r, δ as in (55), and note that (50) continues to hold if ε is replaced by a smaller number, so we may assume that ε < r. By (53), we may assume that x 0n Γ1 < min{δ, δ } for all n ∈ N. Thus we have that for all n ∈ N, x 0n ∈ B δ (Γ 1 ) and

x([t 0n , t n ], t 0n , x 0n ) ⊂ (51) B ε (Γ 1 ) ⊂ B r (Γ 1 ). By (55), the above implies that x([t 0n , t n ], t 0n , x 0n ) ⊂ B η (Γ 2 ). By (54) and the fact that x 0n ∈ B δ (Γ 1 ), we deduce that x([t 0n , t n ], t 0n , x 0n ) ⊂ B ε (Γ 1 ), which contradicts (52).

PROOF OF THEOREM 14. By assumption (i), Γ 1 is UAS relative to Γ 2 , and therefore UA relative to Γ 2 . By Lemma 27, the threshold property (36) holds. By Lemma 28, the threshold property and assumption (ii) that Γ 2 is LUS-Γ 1 imply that Γ 1 is US.

Proof of Theorem 15

Suppose assumptions (i)-(iii) in Theorem 15 hold and let x 0 ∈ B δ (Γ 1 ) be arbitrarily fixed. We need to show that x 0 ∈ B(Γ 1 ), or

(∀ε > 0)(∃T > 0)(∀t 0 ∈ R) x(R ≥t0+T , t 0 , x 0 ) ⊂ B ε (Γ 1 ).
(56) By assumption (ii), the basin of attraction B(Γ 2 ) contains a neighbourhood of Γ 1 . Therefore, without loss of generality we may assume that δ in assumption (iii) is small enough so that

B δ (Γ 1 ) ⊂ B(Γ 2 ). (57) 
By the definition of K δ in the theorem statement, we have that for each t 0 ∈ R, x(R ≥t0 , t 0 , x 0 ) ⊂ K δ . Since, by assumption, K δ is compact, for each t 0 ∈ R, T + t0,x0 = R ≥t0 .

Let ε > 0 be arbitrary, and pick ε ∈ (0, ε). By assumption (i), Γ 1 is UA relative to Γ 2 , so by Lemma 27 the threshold property (36) holds, i.e., (∃δ , η

1 > 0)(∀x 0 ∈ B δ (Γ 1 ))(∀t 0 ∈ R)(∀t ≥ t 0 ) if x([t 0 , t], t 0 , x 0 ) ⊂ B η1 (Γ 2 ) then x([t 0 , t], t 0 , x 0 ) ⊂ B ε (Γ 1 ).
(58) By assumption (i), Γ 1 is UAS relative to Γ 2 , and by assumption (iii), K δ ∩ Γ 2 ⊂ B(Γ 1 ). Since K δ is compact, by Corollary 30 in Appendix A the set K δ ∩ Γ 2 enjoys the uniform attraction property (A.5) in the Appendix, and thus

(∃T 2 > 0)(∀t 0 ∈ R) x(R ≥t0+T2 , t 0 , K δ ∩Γ 2 ) ⊂ B δ /2 (Γ 1 ).
(59) By the Basic Assumption, and using Lemma 26 with K replaced by K δ and T 2 > 0 given as in (59), we have:

(∃η 2 > 0)(∀t 0 ∈ R)(∀z 0 ∈ B η2 (x 0 ))(∀t ∈ [t 0 , t 0 + T 2 ]) x(t, t 0 , x 0 ) -x(t, t 0 , z 0 ) < δ /2. ( 60 
)
Let η := min{η 1 , η 2 }. From (57) we get

(∃T 1 > 0)(∀t 0 ∈ R) x(R ≥t0+T1 , t 0 , x 0 ) ⊂ B η (Γ 2 ). ( 61 
)
Let t 0 ∈ R be arbitrary. By (61), and since x(t 0 + T 1 , t 0 , x 0 ) ∈ K δ , there exists z 0 ∈ K δ ∩ Γ 2 such that x(t 0 + T 1 , t 0 , x 0 ) -z 0 < η. By (60),

x(t 0 + T 1 + T 2 , t 0 + T 1 , x(t 0 + T 1 , t 0 , x 0 )) -x(t 0 + T 1 + T 2 , t 0 + T 1 , z 0 ) < δ /2 (62)
and, since z 0 ∈ K δ ∩ Γ 2 , by (59) it follows that

x(t 0 + T 1 + T 2 , t 0 + T 1 , z 0 ) ∈ B δ /2 (Γ 1 ). (63) 
Next, combining (62) and (63) we get

x(t 0 + T 1 + T 2 , t 0 , x 0 ) = x(t 0 + T 1 + T 2 , t 0 + T 1 , x(t 0 + T 1 , t 0 , x 0 )) ∈ B δ (Γ 1 ) (64) 
and from (61) we have

x(R ≥t0+T1+T2 , t 0 , x 0 ) = x(R ≥t0+T1+T2 , t 0 + T 1 + T 2 , x(t 0 + T 1 + T 2 , t 0 , x 0 )) ⊂ B η (Γ 2 ). ( 65 
)
By the threshold property in (58), ( 64) and (65

) imply that x(R ≥t0+T1+T2 , t 0 , x 0 ) = x(R ≥t0+T1+T2 , t 0 + T 1 + T 2 , x(t 0 + T 1 + T 2 , t 0 , x 0 )) ⊂ B ε (Γ 1 ) ⊂ B ε (Γ 1 ). ( 66 
)
Setting T := T 1 + T 2 , (66) implies that property (56) holds. Hence, B δ (Γ 1 ) ⊂ B(Γ 1 ) so we conclude that Γ 1 is t 0 -UA. Now suppose that conditions (i)'-(ii)' hold and let x 0 ∈ BS be arbitrary, so that the set K := t0∈R x(R ≥t0 , t 0 , x 0 ) is compact. By (i)', Γ 2 ⊂ B(Γ 1 ), and therefore K ∩ Γ 2 ⊂ B(Γ 1 ). Now repeating the proof above with K δ replaced by K we reach the conclusion that (56) holds, thereby implying that BS ⊂ B(Γ 1 ). This concludes the proof of Theorem 15.

Proof of Theorem 17

(=⇒) Suppose that Γ 1 is UAS. Since Γ 1 ⊂ Γ 2 , Γ 1 is UAS relative to Γ 2 , hence condition (i) holds. Since Γ 1 is UA, there exists r > 0 such that B r (Γ 1 ) ⊂ B(Γ 1 ). Since Γ 1 ⊂ Γ 2 , B(Γ 1 ) ⊂ B(Γ 2 ), and thus B r (Γ 1 ) ⊂ B(Γ 2 ), implying that condition (iii) holds. Since Γ 1 is US, we have (∀ε > 0)(∃δ > 0)(∀t 0 ∈ R) x(R ≥t0 , t 0 , B δ (Γ 1 )) ⊂ B ε (Γ 1 ).
Hence condition [START_REF] El-Hawwary | Global path following for the unicycle and other results[END_REF] in the definition of LUS-Γ 1 holds for arbitrary r > 0, so condition (ii) holds.

Next, suppose Γ 1 is UGAS. Then it is UGAS relative to Γ 2 , so condition (i)' holds. Since B(Γ 1 ) = R n and since B(Γ 1 ) ⊂ B(Γ 2 ), Γ 2 is t 0 -UGA and hence condition (iii)' holds. As for condition (iv), let x 0 ∈ R n be arbitrary and define δ := 2 x 0 Γ1 , so x 0 ∈ B δ (Γ 1 ). Since Γ 1 is UGS, there exists ε > 0 such that x(R ≥t0 , t 0 , B δ (Γ 1 )) ⊂ B ε (Γ 1 ) for all t 0 ∈ R. Since Γ 1 is compact, there exists c > 0 such that B ε (Γ 1 ) ⊂ B c (0). Thus for each t 0 ∈ R, x(R ≥t0 , t 0 , x 0 ) ⊂ B c (0), implying that x 0 ∈ BS. Since x 0 is arbitrary, BS = R n and condition (iv) holds.

(⇐=) Suppose conditions (i)-(iii) hold. By Theorem 14, conditions (i) and (ii) imply that Γ 1 is US. To prove that Γ 1 is UAS, in view of item (iv) of Proposition 9 it suffices to show that Γ 1 is t 0 -UA. To this end, we invoke Theorem 15. Conditions (i) and (ii) of Theorem 15 correspond to conditions (i) and (iii) of Theorem 17, which hold by assumption. It is only left to show that there exists δ > 0 such that the set

K δ := t0∈R x(R ≥t0 , t 0 , B δ (Γ 1 )) is compact and K δ ∩ Γ 2 ⊂ B(Γ 1 ). By assumption (i), there exists ε > 0 such that B ε (Γ 1 ) ∩ Γ 2 ⊂ B(Γ 1 ). Since Γ 1 is US, there exists δ > 0 such that (∀t 0 ∈ R) x(R ≥t0 , t 0 , B δ (Γ 1 )) ⊂ B ε (Γ 1 )
. The above implies that for the value of δ just discussed, K δ ⊂ B ε (Γ 1 ), and therefore

K δ ∩ Γ 2 ⊂ B ε (Γ 1 ) ∩ Γ 2 ⊂ B(Γ 1 ). Moreover, since Γ 1 is compact and K δ ⊂ B ε (Γ 1 ), K δ is compact too.
Thus assumption (iii) of Theorem 15 holds, and Γ 1 is t 0 -UA. By part (iv) of Proposition 9, Γ 1 is UAS. Now suppose that assumptions (i)', (ii), (iii)', and (iv) hold. By Theorem 14, Γ 1 is US, and by Theorem 15 it is t 0 -UGA. Part (v) of Proposition 9 implies that Γ 1 is UGAS.

Finally, suppose that assumptions (i)', (ii), and (iii)' hold. By the first part of Theorem 17, Γ 1 is UAS. By Theorem 15, assumptions (i)' and (iii)' imply that all initial states giving rise to t 0 -uniformly bounded solutions are contained in the basin of t 0 -uniform attraction of Γ, i.e., BS ⊂ B(Γ 1 ). This concludes the proof of the theorem.

Conclusion

In this paper we presented reduction theorems for uniform stability, t 0 -uniform attractivity, and uniform asymptotic stability of compact sets, as well as a number of consequences. We also presented Lyapunov characterizations of the properties of local uniform stability near a set and t 0 -uniform attractivity. Further research on Lyapunov characterizations might provide useful extensions and new stability results. In an example we illustrated how in certain simple cases, reduction theorems can be used to assess the property of almost global t 0 -uniform attractivity. The development of general reduction theorems for almost global uniform asymptotic stability remains an open problem.

A Proof of Proposition 9

Part (i). ( =⇒) If Γ is US then for each ε > 0 there exists δ > 0 such that x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R. Letting U = B δ (Γ), the above property implies that Γ is t 0 -US.

(⇐=) If Γ is t 0 -US then for each ε > 0 there exists an open set U ⊂ R n such that Γ ⊂ U , and for each x 0 ∈ U , for each t 0 ∈ R, and each t ∈ T + t0,x0 , it holds that x(t, t 0 , x 0 ) ⊂ B ε (Γ). Since Γ is compact, B ε (Γ) is bounded, and hence T + t0,x0 = R ≥t0 for all (t 0 , x 0 ) ∈ R × U . By the compactness of Γ and the fact that Γ ⊂ U with U open, there exists δ > 0 such that B δ (Γ) ⊂ U . It then follows that x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R, proving that Γ is US. Part (ii). ( =⇒) By definition, if Γ is UAS then it is UA.

( ⇐=) Assume Γ is UA. We will show that Γ is US. Let ε > 0 be arbitrary. By definition of UA, we have (∃r > 0)(∀ε > 0)(∃T > 0)(∀t 0 ∈ R)

x(R ≥t0+T , t 0 , B r (Γ)) ⊂ B ε (Γ). (A.1) Let ε > 0 be arbitrary, and let T > 0 be such that (A.1) holds.

By the positive invariance of Γ, for all x 0 ∈ Γ we have that x([t 0 , t 0 + T ], t 0 , x 0 ) ⊂ Γ. By the Basic Assumption and Lemma 26, and since Γ is compact, there exists δ 1 > 0 such that x(t, t 0 , x 0 ) -x(t, t 0 , x 1 ) < ε for all x 0 ∈ Γ, all x 1 ∈ B δ1 (x 0 ), all t 0 ∈ R, and all t ∈ [t 0 , t 0 + T ]. Therefore, x([t 0 , t 0 +T ], t 0 , B δ1 (x 0 )) ⊂ B ε (Γ) for all x 0 ∈ Γ and all t 0 ∈ R. Since Γ is compact, there exists δ 2 > 0 such that B δ2 (Γ) ⊂ x0∈Γ B δ1 (x 0 ), using which we obtain that

x([t 0 , t 0 + T ], t 0 , B δ2 (Γ)) ⊂ B ε (Γ), (A.2) for all t 0 ∈ R. Picking δ = min{r, δ 2 }, (A.1) and (A.2) imply that x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R, so that Γ is US. This proves that UA implies UAS.

Part (iii). ( =⇒) If Γ is UGAS then by definition it is UGA and UGS. This latter property implies that all solutions are t 0 -uniformly bounded, so that BS = R n . ( ⇐=) Now suppose that Γ is UGA and BS = R n . We need to show that Γ is UGS. We have already shown in part (ii) that Γ is US, so we need to show that for each δ > 0 there exists ε > 0 such that x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R. Let δ > 0 be arbitrary, and pick ε 1 > 0. Since Γ is UGA, there exists T > 0 such that x(R ≥t0+T , t 0 , B δ (Γ)) ⊂ B ε1 (Γ) (A.3) for all t 0 ∈ R. Since BS = R n , for each x 0 ∈ B δ (Γ) there exists a constant c(x 0 ) such that x(R ≥t0 , t 0 , x 0 ) ⊂ B c(x0) (0) for all t 0 ∈ R. By continuous dependence on initial data, there exists a constant µ(x 0 ) > 0 such that x([t 0 , t 0 + T ], t 0 , B µ(x0) (x 0 )) ⊂ B 2c(x0) (0) for all t 0 ∈ R.

The collection of open balls {B µ(x0) (x 0 ) : x 0 ∈ B δ (Γ)} is an open cover of B δ (Γ), and since this latter set is compact, it has a finite subcover, so that there exists a finite collection of points x i ∈ B δ (Γ), i ∈ k, such that B δ (Γ) ⊂ i∈k B µ(xi) (x i ). Let M = max i∈k 2c(x i ).

Then for each t 0 ∈ R, x([t 0 , t 0 + T ], t 0 , B δ (Γ)) ⊂ B M (0). Letting ε 2 > 0 be such that B M (0) ⊂ B ε2 (Γ), we get x([t 0 , t 0 + T ], t 0 , B δ (Γ)) ⊂ B ε2 (Γ) (A.4) for all t 0 ∈ R. Setting ε = max{ε 1 , ε 2 }, by (A.3) and (A.4) we conclude that x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ) for all t 0 ∈ R. Thus Γ is UGS, and therefore also UGAS.

Part (iv). ( =⇒) If Γ is UAS then by definition it is UA and US. The former property implies that Γ is t 0 -UA and, by part (i), the latter property implies that Γ is t 0 -US. Being t 0 -US and t 0 -US, Γ is t 0 -UAS. ( ⇐=) Assume Γ is t 0 -UAS. Since Γ is t 0 -UA, Γ ⊂ int(B(Γ)), where B(Γ) is the basin of t 0 -uniform attraction of Γ. This fact and the assumption that Γ is compact imply that there exists r > 0 such that B r (Γ) ⊂ int(B(Γ)). The set K = B r (Γ) ⊂ B(Γ) is compact, and by Lemma 29 below it enjoys the uniform attraction property (A.5):

(∀ε > 0)(∃T > 0)(∀t 0 ∈ R) x(R ≥t0+T , t 0 , B r (Γ)) ⊂ B ε (Γ).

The above property implies that Γ is UA.

Part(v). ( =⇒) If Γ is UGAS, then by definition it is UGA and UGS. By part (i), we deduce that Γ is t 0 -US. Moreover, the UGS property implies that all solutions are t 0 -uniformly bounded, so that BS = R n . The UGA property implies that Γ is t 0 -UGA. In conclusion, Γ is t 0 -UGAS and BS = R n . ( ⇐=) Assume Γ is t 0 -US and t 0 -UGA, and BS = R n . Since Γ is compact and t 0 -UGA, we have B(Γ) = R n , so we may repeat the argument in the proof of part (iv) with arbitrary r > 0 to conclude that Γ is UGA. Then, in light of part (iii), Γ is UGAS. This concludes the proof of Proposition 9. Lemma 29. Consider the differential equation (3), in which the vector field f : R × R n → R n satisfies the Basic Assumption. Let Γ ⊂ R n be a compact positively invariant set that is t 0 -UAS. Then, for each compact set K ⊂ B(Γ) the following uniform attraction property holds: (∀ε > 0)(∃T > 0)(∀t 0 ∈ R) x(R ≥t0+T , t 0 , K) ⊂ B ε (Γ).

(A.5)

Proof. Let ε > 0 be arbitrarily fixed. By part (i) of Proposition 9, since Γ is t 0 -US it is also US, and we have (∃δ > 0)(∀t 0 ∈ R) x(R ≥t0 , t 0 , B δ (Γ)) ⊂ B ε (Γ). (A.6) By t 0 -uniform attractivity of Γ and the fact that K ⊂ B(Γ), we have (∀x 0 ∈ K)(∃T > 0)(∀t 0 ∈ R) t 0 + T ∈ T + t0,x0 and x(t 0 + T, t 0 , x 0 ) ⊂ B δ/2 (Γ). (A.7) Let x 0 ∈ K be arbitrary, and let T > 0 be as in (A.7). Using Lemma 26 with K in the lemma given by the set {x([t 0 , t 0 + T ], t 0 , x 0 )}, we have that (∃δ > 0)(∀z 0 ∈ B δ (x 0 ))(∀t ∈ [t 0 , t 0 + T ]) x(t, t 0 , x 0 ) -x(t, t 0 , z 0 ) < δ/2. (A.8) By (A.7) and (A.8) we have that x(t 0 + T, t 0 , B δ (x 0 )) ⊂ B δ (Γ), and by (A.6) we conclude that x(R ≥t0+T , t 0 , B δ (x 0 )) ⊂ B ε (Γ). (A.9)

By property (A.9) and the fact that the set K is compact, there exists a finite cover of K by balls B δi (x i ), i ∈ k, where x i ∈ K, and associated times T i > 0, i ∈ k, such that (∀t 0 ∈ R) x(R ≥t0+Ti , t 0 , B δi (x i )) ⊂ B ε (Γ). (A.10)

Letting T := max{T 1 , . . . , T n }, we conclude that (∀t 0 ∈ R) x(R ≥t0+T , t 0 , K) ⊂ B ε (Γ), proving that (A.5) holds.

Corollary 30. In the setup of Lemma 29, let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such that Γ 1 ⊂ Γ 2 ⊂ R n . If Γ 1 is UAS relative to Γ 2 , then for each compact set K ⊂ B(Γ 1 ) ∩ Γ 2 the uniform attraction property (A.5) holds.

The proof of this corollary follows by repeating the argument of the proof of Lemma 29, replacing B δ (Γ) in (A.6) by B δ (Γ) ∩ Γ 2 , and making analogous changes in (A.9) and (A.10).

B Proof of Lemma 26

Fix arbitrary ε > 0, T > 0, and a compact set K ⊂ R n . Define K ε := B ε (K). Let L ε > 0 be the Lipschitz constant of f on K ε in the Basic Assumption. Pick δ ∈ (0, ε exp(-L ε T )), and let (t 0 , x 0 ) ∈ R × K be such that x([t 0 , t 0 + T ], t 0 , x 0 ) ⊂ K. For any x 1 ∈ B δ (x 0 ), we have that x 1 ∈ int K ε because x 0 ∈ K and x 1 -x 0 < δ < ε. We claim that x([t 0 , t 0 + T ], t 0 , x 1 ) ⊂ int K ε . By way of contradiction, suppose there exists a time t 1 ∈ (t 0 , t 0 +T ] such that x([t 0 , t 1 ), t 0 , x 1 ) ⊂ int(K ε ) and x(t 1 , t 0 , x 1 ) ∈ ∂K ε . Then for each t ∈ [t 0 , t 1 ] we have x(t, t 0 , x 0 ) -x(t, t 0 , x 1 ) =

x 0 -x 1 + t t0 f (s, x(s, t 0 , x 0 )) -f (s, x(s, t 0 , x 1 ))ds

≤ δ + L ε t t0
x(s, t 0 , x 0 ) -x(s, t 0 , x 1 ) ds.

By the Bellman-Gronwall Lemma we deduce that for all t ∈ [t 0 , t 1 ],

x(t, t 0 , x 0 ) -x(t, t 0 , x 1 ) ≤ δ exp(L ε (t -t 0 )) ≤ δ exp(L ε T ) < ε. (B.1)

Then, since x(t 1 , t 0 , x 0 ) ∈ K, x(t 1 , t 0 , x 1 ) ∈ int(K ε ) contradicting the assumption that x(t 1 , t 0 , x 1 ) ∈ ∂K ε . Thus we have proved that x([t 0 , t 0 + T ], t 0 , x 1 ) ⊂ int K ε . This implies that inequality (B.1) holds for all t ∈ [t 0 , t 0 + T ], and therefore x(t, t 0 , x 0 ) -x(t, t 0 , x 1 ) < ε for all x 1 ∈ B δ (x 0 ) and all t ∈ [t 0 , t 0 + T ]. This concludes the proof of the lemma.

  Fig.2. On the left-hand side, the phase portrait of system[START_REF] Iggidr | Semidefinite Lyapunov functions stability and stabilization[END_REF] in (x1, x2) = (r cos(θ), r sin(θ)) coordinates, representing the dynamics on Γ2. The set Γ1, an equilibrium, is t0-UA relative to Γ2, but unstable. On the right-hand side, an orbit of the time-varying system (6) converging to Γ2, but not to Γ1.
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 3 Fig. 3. Trajectories generated by the Slotine-and-Li controller represented on the plane
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 124 Fig.4. A few solutions for the example in Section 5.2. The equilibrium Γ1 is almost globally t0-UA but unstable.

1 Fig. 5 .

 15 Fig.5. Unicycle path following with simultaneous trajectory tracking. On the left-hand side, behaviour of the unicycle on the plane for three different initial conditions, including one of the circle. On the right-hand side, the corresponding norm of the tracking error for each solution.

Table 1

 1 Mathematical notation used in the paper.

Table 2

 2 List of stability-related acronyms used in the paper.

	Acronym	Meaning	Where
	US	uniformly stable	Defn. 3
	of attraction of set UGS	uniformly globally stable	Defn. 3
	in. cond. giving UA	uniformly attractive	Defn. 3
	Point-to-set distance of UGA uniformly globally attractive	Defn. 3
	UAS	uniformly asymptotically stable	Defn. 3
	of UGAS	uniformly globally asymptotically stable	Defn. 3
	t0-US	t0-uniformly stable	Defn. 5
	half-line t0-UA	t0-uniformly attractive	Defn. 5
	t0-UGA	t0-uniformly globally attractive	Defn. 5
	t0-UAS	t0-uniformly asymptotically stable	Defn. 5
	t0-UGAS	t0-uniformly globally asymptotically stable Defn. 5
	LUS-Γ	locally uniformly stable near Γ	Defn. 10

The main results of this paper continue to hold if the state space is a smooth complete Riemannian manifold, seeRemark 20. 

Similarly, one may define the notion that Γ1 is t0-UA or t0-UGA relative to Γ2, but it is not used in this paper.

The reduction theoremsIn this section we first present three reduction theorems for the properties of uniform stability, t 0 -uniform attractivity, uniform attractivity, and their global counterparts for time-varying systems. Then, we present useful consequences of these theorems. For clarity of exposition, the proofs of the main statements are provided in Section 6.4.1 Main statements for time-varying systemsTheorem 14 (Reduction theorem for uniform stability). Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such thatΓ 1 ⊂ Γ 2 ⊂ R n . Then Γ 1 is US if (i) Γ 1 is UAS relative to Γ 2 , and (ii) Γ 2 is LUS-Γ 1 .Theorem 14 is proved in Section 6.1. Assumption (ii) is a necessary condition for Γ 1 to be US. Theorem 15 (Reduction theorem for t 0 -uniform (global) attractivity). Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such thatΓ 1 ⊂ Γ 2 ⊂ R n . Assume that (i) Γ 1 is UAS relative to Γ 2 , (ii) Γ 2 is t 0 -UA near Γ 1, and (iii) there exists δ > 0 such that the setK δ := t0∈R x(R ≥t0 , t 0 , B δ (Γ 1 ))is compact and such that K δ ∩ Γ 2 ⊂ B(Γ 1 ). Then, Γ 1 is t 0 -UA and B δ (Γ 1 ) ⊂ B(Γ 1 ).Moreover, if (i)' Γ 1 is UGAS relative to Γ 2 , and (ii)' Γ 2 is t 0 -UGA, then all initial states giving rise to t 0 -uniformly bounded solutions are contained in the basin of t 0 -uniform attraction of Γ, i.e., BS ⊂ B(Γ 1 ). In particular, if all solutions of (3) are t 0 -uniformly bounded, i.e., BS = R n , then Γ 1 is t 0 -UGA.Theorem 15 is proved in Section 6.2. Remark 16. Assumption (ii) is a necessary condition for Γ 1 to be t 0 -UA, and assumption (ii)' is necessary for Γ 1 to be t 0 -UGA. Assumption (iii) is hard to check in general, but the first part of Theorem 15, which asserts that Γ 1 is t 0 -UA, is useful to establish other statements, such as the first one in Theorem 17 below. Theorem 17 (Reduction theorem for uniform (global) asymptotic stability). Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such that Γ 1 ⊂ Γ 2 ⊂ R n . Then Γ 1 is UAS if and only if

theorem (Γ 2 is LUS-Γ 1 ) with the assumption that Γ 2 is t 0 -US. Even though the latter is more conservative, it is generally easier to verify than Assumption (ii) in Theorem 17. Proposition 21. Consider the time-varying system (3) under the Basic Assumption. Let Γ 1 be a compact set and Γ 2 be a closed set, both positively invariant and such thatΓ 1 ⊂ Γ 2 ⊂ R n . If (i) Γ 1 is UAS relative to Γ 2 , and (ii) Γ 2 is t 0 -UAS, then Γ 1 is UAS. Moreover, Γ 1 is UGAS if (iii) Γ 1 is UGAS relative to Γ 2 , (iv) Γ 2 is t 0 -UGAS,

The set U may be empty. If U = R n , then U = R n .

Strictly speaking, in Figure3Γ1 is represented as the point {(q, q) = (0, 0)} which is equivalent to {(q, s) = (0, 0)}