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Robust Consensus of High-Order Systems under
Output Constraints: Application to Rendezvous

of Underactuated UAVs
Esteban Restrepo Antonio Lorı́a Ioannis Sarras Julien Marzat

Abstract— We address the output and state consensus
problems for multi-agent high-order systems in feedback
form under realistic conditions. First, under the premise
that measurements may be of different kinds, we con-
sider systems interconnected over undirected-topology
networks as well as directed spanning-trees and directed
cycles. Second, we assume that the systems may be sub-
ject to multiple restrictions in the form of output or state
constraints, such as limited-range measurements, physical
limitations imposed by the actuators or by the environment,
etc. In addition, we suppose that the systems may be sub-
ject to external disturbances, such as undesired forces or
modeling uncertainties. Under these conditions, we provide
a control framework and a formal analysis that establishes
robust stability in the input-to-state sense. The former relies
on a modified backstepping method and the latter on multi-
stability theory. In addition, we show how our approach ap-
plies to meaningful problems of physical systems through
a case-study of interest in the aerospace industry: safety-
aware rendezvous control of underactuated UAVs subject
to connectivity and collision-avoidance constraints.

I. INTRODUCTION

A. Problem description

Consensus control constitutes the basis of cooperative in-
teraction for multi-agent systems [1], [2]. For instance, in
the case of (robotic) vehicles the consensus objective is
fundamental to achieve complex formation maneuvering tasks
[3]. Hence, the literature is rife with works addressing diverse
consensus problems for a variety of dynamical systems, such
as linear systems [4]–[6], relative-degree-one nonholonomic
vehicles [7], or second-order Euler-Lagrange systems [8],
[9], to mention a few. However, such models may fall short
at representing many meaningful and complex engineering
problems in which the input-output relationship imposes a
high relative degree (with respect to an output of interest)
model. Consensus of high-order systems has been addressed,
for instance, in [10]–[13]. A good example of high-order
systems is that of certain autonomous vehicles —see [1], [2],
[14], and Section V in this paper.
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On the other hand, in realistic settings, physical sys-
tems operate under multiple restrictions in the form of
output or state constraints such as limited range measure-
ments/communication, physical limitations imposed by the
actuators (input saturation) or the environment (collisions,
bounded workspace). In addition, such systems are constantly
subject to disturbances such as external inputs, modeling
uncertainties, delays, etc. Thus, for consensus control laws
to be of practical use, constraints must be considered and
robustness with respect to disturbances must be guaranteed.
These pose significant challenges for control design and formal
analysis that we address in this paper.

A good example of a scenario of cooperative systems in
which a plethora of difficulties appear naturally is that of ren-
dezvous control of unmanned-autonomous vehicles (UAVs).
First, the systems’ dynamics are clearly nonlinear and under-
actuated [15]. Therefore, the literature on consensus tailored
for linear low-order systems [1], [16] does not apply. Second,
the measurements usually come from embedded relative-
measurement sensors, such as cameras, LiDAR, ultrasound,
etc. The use of such devices naturally imposes directed net-
work topologies [17], which add difficulty to the consensus-
control design. Third, autonomous vehicles moving “freely”
in the workspace are prone to undesired collisions among
themselves; therefore, guaranteeing the safety of the system
in the sense of inter-agent collision avoidance is a restriction
that must be considered as well. A fourth difficulty stems from
the use of on-board relative-measurement devices, which are
reliable only if used within a limited range. This translates
into guaranteeing that the UAVs do not drift “too far” apart
from their neighbors. Finally, UAVs are constantly subject to
external undesired forces and they may also be affected by
modeling uncertainties, etc.; these constitute external distur-
bances at different levels in the dynamic model.

B. Literature review

The characteristics described above coin a realistic scenario
of automatic control of multi-agent systems, not restricted to
UAVs. Consensus under such conditions has been addressed
in the literature, but to the best of our knowledge never
simultaneously.

There are many articles that address the constrained con-
sensus problem for low-order systems interconnected over,
both, undirected and directed topologies [16], [18]–[21]. Fewer
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works, however, address the consensus control problem with
constraints for high-order systems. In [22] a tracking con-
sensus controller is proposed for networked systems over
undirected graphs, but the constraints are considered on the
synchronization error and not directly on the inter-agent rela-
tive states. In [23] a synchronization control is designed using
an adaptation of the prescribed performance framework in
order to achieve consensus over directed graphs with desired
bounds on the transient response. Nevertheless, as in [22],
the prescribed-performance constraints are imposed on the
consensus error and not on the inter-agent relative states.
A consensus control for high-order systems with constraints
and interacting over strongly connected directed graphs is
presented in [24]. Yet, the constraints considered therein weigh
on each individual agent’s states (e.g., constraints on the
velocity, the acceleration, etc.), and do not reflect inter-agent
restrictions.

In the case of rendezvous of underactuated UAVs, only a
handful of works in the literature consider the problem under a
set of realistic assumptions while not at the expense of formal
analysis. A distributed controller is proposed in [25] based on
prescribed-performance control that achieves formation track-
ing with collision avoidance for multiple UAVs. Nonetheless,
the results therein apply only to undirected topologies. Based
on the attitude and thrust extraction algorithm, the authors in
[26] solve the formation problem for multiple UAVs subject
to connectivity constraints, but only undirected topologies
are considered and collision-avoidance constraints are not
addressed. In [8], [9], and [27] robust formation controllers
are proposed based on the prescribed-performance-control [28]
and edge-agreement frameworks [14], [29], guaranteeing, also,
collision avoidance and connectivity maintenance. However,
in these references only fully-actuated Lagrangian systems
interconnected over undirected-tree topologies are considered.

C. This paper’s contents in perspective

In this paper we propose a control method that applies to
nonlinear systems in feedback form and covers, simultane-
ously, all aspects evoked above. The systems’ model and the
problem formulation are described in detail in Section II.

As the study of networked systems over undirected graphs
is better covered by the literature, our main statements are for-
mulated only for directed spanning trees and directed cycles.
These directed topologies present practical interests of their
own as they appear naturally in leader-follower configurations
[1], [2] and in the context of cyclic pursuit [30]. Our control
approach, however, also applies to systems interconnected over
undirected graphs. To guarantee the systems’ safety as well
as the integrity of the topology through the maintenance of
connectivity, our controllers guarantee that output constraints
are respected. Essentially, these take the mathematical form
of a lower and an upper bound on the norm of relative-
error states, which are more natural inter-agent constraints
than those considered, e.g., in [22] and [23]. Then, the said
constraints are encoded in the control design via laws that are
derived as the gradient of barrier Lyapunov functions [31].
Loosely speaking, the control may be assimilated to a force

field that “explodes” near the limits to avoid. That is, the
control input as a function of the state grows unboundedly
as the vehicle approaches a specified region. This technique
is also reminiscent of potential/navigation functions used in
robot control [27], [32].

Now, because we consider systems in feedback form, the
control design also appeals to the popular passivity-based
backstepping method [33]. However, since in the presence of
constraints this may involve successive derivatives of functions
with multiple saddle points, we use the command-filtered
backstepping approach [34], in which the successive deriva-
tives are approximated by linear strictly-positive-real filters.
We describe our control-design framework for systems in
feedback form in Section III.

In regards to the formal analysis, it is important to stress that
in contrast to the more-often used nodes-based graph modeling
approach, our approach is based on the edge-agreement frame-
work introduced in [29]. Since in this framework the consensus
problem is recast as one of stabilization of the origin, it
constitutes a more natural setting for the consideration of inter-
agent constraints. Furthermore, since inter-agent constraints
may introduce undesired unstable equilibria within the edges’
perspective, the closed-loop system is analyzed relying on
the theory of multi-stable systems [35], [36]. Based on the
latter, we establish asymptotic convergence of the multi-agent
system to the consensus manifold, as well as robustness with
respect to external disturbances in the sense of practical-input-
to-state stability. This property cannot be overestimated; it is
stronger than mere convergence, which is more commonly
established in the literature —see, e.g., [24], [37]– [39], [40].
Indeed, input-to-state stability implies boundedness of the
systems’ state trajectories and the satisfaction of the inter-agent
output constraints may also be assessed, even in the presence
of external disturbances. The same cannot be ascertained if
in the absence of disturbances it is only known that the
errors converge. We provide a formal analysis of our control
approach in Section IV.

Beyond our main theoretical findings, in Section V we show
how our framework may be applied to the rendezvous control
problem for a group of underactuated UAVs, subject to con-
nectivity and collision avoidance constraints, using only local
information from its neighbors. This is a relevant problem to
the aerospace industry that is motivated by the increasing in-
terest for safety-aware fleet deployment. It is fitting to mention
that similar problems have been studied in the literature, as for
instance in [25], [26], but only for systems interconnected over
undirected graphs. A more detailed description of this problem
and of our contributions relative to the literature is presented
in Section V as well.

The paper is wrapped up with some Concluding remarks in
Section VI and complementary technical Appendices.

II. MODEL AND PROBLEM FORMULATION

We consider multi-agent nonlinear systems in feedback
form with high relative degree with respect to an output of
interest. Plants that fit in this category include fully feedback-
linearizable systems, but also a number of instances of physical
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systems, such as robot manipulators [41], flying vehicles [42],
spacecrafts [43], flexible-joint manipulators [44], [45], etc.

Now, for simplicity and without loss of generality, in the
following theoretical development we consider that each agent
is modeled as a high-order system in normal form subject to
additive disturbances. More precisely, we consider N multi-
variable systems in normal form and of relative degree ρ as
follows:

ẋi,l = xi,l+1 + θi,l(t), l ≤ ρ− 1 (1a)
ẋi,ρ = ui + θi,ρ(t) (1b)

where xi,l ∈ Rn, l ≤ ρ, i ≤ N , denotes the components of
the state of each agent, ui ∈ Rn is the control input, θi,l :
R≥0 7→ Rn is an essentially bounded function that represents
a disturbance, and xi,1 is considered an output of interest.

Note that many systems in feedback form can be trans-
formed into (1) through different nonlinear control approaches,
such as feedback linearization, input transformation, etc.
[33], [46]. The systems (1) cover, for instance, second-order
feedback linearizable systems in which the output-consensus
problem consists in driving all the positions xi,1 to a common
constant value and all the velocities xi,2 to zero. This problem
has been studied thoroughly in the literature [1], [2], [14], even
considering state constraints [16]. As mentioned previously, a
concrete non-trivial example is considered in Section V.

In terms of the systems’ interaction, it is assumed that each
agent has access only to local information from a limited
number of neighbors. This local interaction is represented
by a graph, denoted G = (V, E), where the set of nodes
V := {1, 2, . . . , N} corresponds to the labels of the agents
and the set of edges E ⊆ V2, of cardinality M , represents
the communication between a pair of nodes —an edge ek,
k ≤ M , is an ordered pair (i, j) ∈ E indicating that agent j
has access to information from node i, via measurement or
communication.

As mentioned in the Introduction, the exchange of informa-
tion among the agents may be bidirectional or unidirectional.
A bidirectional communication is represented by an undirected
graph while an unidirectional exchange is modeled using a
directed graph. In this paper we consider multi-agent systems
communicating over undirected graphs, or two classes of
directed graphs: spanning-trees or cycles. Furthermore, in
realistic scenarios multi-agent systems are commonly subject
to inter-agent constraints that may be defined as a set of
restrictions on the system’s output.

Without loss of generality, let the first component xi,1 be
the output for each agent, i ≤ N and define the relative-output
state as

zk := xi,1 − xj,1 ∀k ≤M, (i, j) ∈ E . (2)

For each k ≤ M , let ∆k and δk be, respectively, the upper
and minimal distances, satisfying 0 ≤ δk < ∆k. Then, the set
of inter-agent output constraints is defined as

D :=
{
z ∈ RnM : δk < |zk| < ∆k, ∀ k ≤M

}
. (3)

The control goal is for the agents to achieve output consen-
sus with a non-zero displacement, centered at a point of non-

predefined coordinates (as for instance in a formation control
problem), in the presence of output constraints as given by the
set D in (3). Mathematically, the consensus problem translates
into making xi,1 − xj,1 → zdk , or equivalently, zk → zdk in
the relative coordinates, where zdk ∈ Rn denotes the desired
relative state between a pair of neighboring agents i and j.
Note that setting zdk ≡ 0 corresponds to the output-consensus
problem.

To address the consensus problem under constraints we use
the edge-agreement framework for modeling of graphs [29].
In this framework the variables defined in (2) denote the states
of the interconnection arcs in the graph, instead of those of the
nodes, which are more commonly used. This has the advantage
of recasting the consensus objective as the stabilization of the
origin in error coordinates.

Let us denote the so-called incidence matrix of a graph by
E ∈ RN×M , which is a matrix with rows indexed by the
nodes and columns indexed by the edges. Its (i, k)th entry is
defined as follows: [E]ik := −1 if i is the terminal node of
edge ek, [E]ik := 1 if i is the initial node of edge ek, and
[E]ik := 0 otherwise. Let x>1 =

[
x>1,1 · · · x>N,1

]
∈ RnN be

the collection of the first states, i.e., l = 1, of all the agents
of the system. Then, the edge states in (2) satisfy

z := [E> ⊗ In]x1. (4)

where z> = [z>1 · · · zk · · · z>M ]> ∈ RnM , ‘⊗’ denotes the
Kronecker product, and In the identity matrix of dimension
n× n. Similarly, an error variable is given by

z̃ = [E> ⊗ In]x1 − zd, (5)

where zd> = [zd>1 · · · zd>M ] ∈ RnM . Now, as before, let each
x>l =

[
x>1,l · · · x>N,l

]
∈ RnN , l ∈ {2, . . . , ρ}, be the collection

of each state of all the agents of the system. Then, in the error
edge coordinates, the consensus objective is that

lim
t→∞

z̃(t) = 0 (6a)

lim
t→∞

xl(t) = 0, ∀l ∈ {2, . . . , ρ}. (6b)

Remark 1: Note that for ρ = 2 the objectives in (6) are
equivalent to the output consensus of second-order multi-agent
systems as it is commonly studied in the literature, e.g., on
robot manipulators, mobile robots, etc. •

One of the advantages of considering the edge states rather
than the node’s is that it is possible to obtain an equivalent
reduced system, easier to analyze using stability theory. Recall
that, as observed in [29], using an appropriate labeling of the
edges, the incidence matrix is expressed as

E = [ Et Ec ] (7)

where Et ∈ RN×(N−1) denotes the full-column-rank in-
cidence matrix corresponding to an arbitrary spanning tree
Gt ⊂ G and Ec ∈ RN×(M−N+1) represents the incidence
matrix corresponding to the remaining edges not contained in
Gt. Moreover, defining

R := [ IN−1 T ] (8)
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with IN−1 denoting the N − 1 identity matrix, and T :=(
E>t Et

)−1
E>t Ec, one obtains an alternative representation of

the incidence matrix of the graph given by

E = EtR. (9)

The identity (9) is useful to derive a reduced-order dynamic
model —cf. [29]. Now, as in the latter, the error edges’ states
may be split as

z̃ =
[
z̃>t z̃>c

]>
, z̃t ∈ Rn(N−1), z̃c ∈ Rn(M−N+1) (10)

where z̃t are the states corresponding to the edges of an
arbitrary spanning tree Gt and z̃c denote the states of the
remaining edges, ∈ G\Gt. Thus, after (4), (6), and (10),
denoting zdt ∈ Rn(N−1) as the vector of desired relative
displacements corresponding to Gt, we obtain

z̃ =
[
R> ⊗ In

]
z̃t. (11)

Now, collecting the inputs of the multiple agents into the
vector u> =

[
u>1 · · · u>N

]
∈ RnN and the disturbances

into θ>l =
[
θ>1,l · · · θ>N,l

]
∈ RnN , with l ∈ {1, . . . , ρ}, the

reduced-order system’s equations read

˙̃zt =
[
E>t ⊗ In

]
x2 +

[
E>t ⊗ In

]
θ1(t) (12a)

ẋl = xl+1 + θl(t), l ∈ {2, . . . , ρ− 1} (12b)
ẋρ = u+ θρ(t). (12c)

In these coordinates, output-consensus as defined in (6) is
achieved if the origin is asymptotically stabilized for the
reduced-order system (12). More precisely, consider the fol-
lowing problem.

Robust consensus problem with output constraints: Consider
a multi-agent system of agents with high relative-degree
dynamics given by (1), interacting over a connected undirected
graph, a directed spanning tree or a directed cycle. Assume, in
addition, that the systems are subject to inter-agent constraints
that consist in the outputs being restricted to remain in the
set defined in (3). Under these conditions, find a distributed
dynamic controller with outputs ui, i ≤ N , that, in the
absence of disturbances, i.e., θi,l ≡ 0, l ≤ ρ, i ≤ N ,
achieves the objective (6) and renders the constraints set (3)
forward invariant, i.e., z(0) ∈ D implies that z(t) ∈ D for
all t ≥ 0. Furthermore, in the presence of essentially bounded
disturbances, that is θl 6≡ 0, ui renders the origin of (12)
practically input-to-state stable and the set D in (3) forward
invariant. •

III. CONTROL DESIGN FOR CONSENSUS UNDER OUTPUT
CONSTRAINTS

The robust consensus problem with output constraints pre-
viously formulated is solved using a distributed dynamic non-
linear controller. Its design follows a backstepping approach
that naturally exploits the normal form of the system. Hence,
we start by defining a virtual control law for (12a), using x2

as input. Now, in order to account for the output constraints,
the design of the first virtual input for (12a), is based on the
gradient of a barrier Lyapunov function. It is well known,
however, that the backstepping approach may lead to an

increase of complexity of the control law due to the successive
differentiation of the virtual controllers [33]. This problem is
emphasized by the fact that the said virtual control is designed
as the gradient of a barrier function, which has multiple local
minima and is defined only in open subsets of the state
space. Therefore, in order to bypass these technical obstacles,
inspired by the command filtered backstepping approach [34],
we approximate the virtual inputs and their derivatives in each
step of the backstepping design by means of command filters.
This is explained in detail farther below.

A. Barrier Lyapunov function

Barrier Lyapunov functions are reminiscent of Lyapunov
functions, so they are positive definite, but their domain
of definition is restricted by design to open subsets of the
Euclidean space. Furthermore, they grow unbounded as zk
approaches the boundary of their domain. We define them as
follows —cf. [31].

Definition 1 (Barrier Lyapunov function): Consider the
system ẋ = f(x) and let J be an open set containing the
origin. A Barrier Lyapunov function is a positive definite,
function V : J → R≥0, x 7→ V (x), that is C1, satisfies

∇V (x)>f(x) :=
∂V (x)

∂x

>
f(x) ≤ 0,

and has the property that V (x) → ∞ and |∇V (x)| → ∞ as
x→ ∂J . �

Now, akin to (3), for each k ≤M , the inter-agent constraints
in terms of the error coordinates are given by the set

D̃k := {z̃k ∈ Rn : δk < |z̃k + zdk | < ∆k}.

Then, for each k ≤M , we define a barrier Lyapunov function
candidate Wk : D̃k → R≥0, of the form

Wk(z̃k) =
1

2

[
|z̃k|2 +Bk(z̃k + zdk)

]
, (13)

where Bk(z̃k + zdk) is a non-negative function that satisfies:
Bk(zdk) = 0, ∇Bk(zdk) = 0, and Bk(z̃k + zdk)→∞ as either
|z̃k + zdk | → ∆k or |z̃k + zdk | → δk. Therefore, the barrier
Lyapunov function candidate (13) satisfies: Wk(z̃k) → ∞ as
either |z̃k+zdk | → ∆k or |z̃k+zdk | → δk, or equivalently in the
original edge coordinates, as either |zk| → ∆k or |zk| → δk.

Remark 2: Note that the term Bk(z̃k + zdk) in (13) encodes
the constraints on the original edge coordinates zk in terms of
the error z̃k. This may lead to imposing conservative feasibility
conditions in terms of the initial conditions when using, e.g.,
logarithmic barrier Lyapunov functions [47]. To overcome this
limitation, B(z̃k + zdk) may be defined as an integral barrier
Lyapunov function [47] or as a weight recentered barrier
function [48], [49] —see also Section V. •

Remark 3: The functions defined in (13) are reminiscent
of scalar potential functions in constrained environments [32]
and, as for the latter, the appearance of multiple critical points
is inevitable. Indeed, the gradient of the barrier Lyapunov
function of the form (13), ∇Wk(z̃k), vanishes at the origin
and at an isolated saddle point separated from the origin —
see Appendix I. Therefore, when using the gradient of (13) for
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the control, the closed-loop system has multiple equilibrium
points. This prevents us from using the classical stability
tools for the analysis of the system. Such technical difficulty
is addressed using tools tailored for so-called multi-stable
systems—see [35], [36], and Appendix II. •

B. Control design for systems over directed graphs

Remark 4: For brevity, in the remainder of the paper we
assume that the graph G representing the interaction topology
is either a directed spanning tree or a directed cycle at the
initial time. Nonetheless we stress that, with appropriate mod-
ifications, the results in this section also hold for undirected
connected topologies. •

As mentioned earlier, the control design builds upon a
recursive backstepping approach. Consider, first, the edge
subsystem (12a) with x2 as an input. In order to cope with the
output constraints, a good choice of control law consists, as
mentioned previously, in the gradient of a barrier function [21],
[50], [51]. As it is defined here in edge coordinates, specific
notations are introduced.

Let us define the so-called in-incidence matrix E� ∈
RN×M , whose elements are defined as follows—cf. [52]—
: [E�]ik := −1 if i is the terminal node of edge ek and
[E�]ik := 0 otherwise. Similarly the elements of so-called
out-incidence matrix E⊗ ∈ RN×M are defined as follows:
[E�]ik := 1 if i is the initial node of edge ek and [E�]ik :=
0 otherwise. Then, in the edge agreement framework the
consensus control based on the gradient of the barrier function
is given by1

x∗2 := −c1[E� ⊗ In]∇W (z̃), (14)

where c1 is a constant that is positive by design and ∇W (z̃) is
the gradient of a barrier Lyapunov function for the multi-agent
system, which is defined as

W (z̃) =
∑
k≤M

Wk(z̃k), (15)

with Wk(z̃k) given in (13) for all k ≤ M . Indeed, the right-
hand side of (14) qualifies as a consensus control law that
guarantees connectivity maintenance for first-order multi-agent
systems ˙̃zt = u interconnected over directed graphs —cf. [53].
So, defining x̄2 := x2 − x∗2 and using (14), Equation (12a)
becomes2

˙̃zt = −c1[E>t E� ⊗ In]∇W (z̃) + [E>t ⊗ In] [x̄2 + θ1] . (16)

With aim at making x̄2 → 0 in (16), following a
backstepping-based design, we rewrite the second equation in
(12b), i.e., with l = 2, in error coordinates x̄2 and we consider
x3 as an input. We have

˙̄x2 = x3 − ẋ∗2 + θ2. (17)

Hence, the natural virtual control law at this stage is

x∗3 = −c2x̄2 + ẋ∗2, c2 > 0, (18)

1For undirected graphs this virtual control law takes the form x∗2 =
−c1[E ⊗ In]∇W (z̃), where E is the incidence matrix—cf. [21].

2To avoid a cumbersome notation we write ∇W (z̃) in place of the more
appropriate spelling ∇W (

[
R> ⊗ In

]
z̃t).

which requires the derivative of the right-hand side of (14).
Furthermore, a recursive procedure requires up to ρ − 2
successive derivatives of x∗2, which posses significant technical
and numerical difficulties. Thus, to avoid the use of successive
derivatives of ∇W (z̃) we approximate the derivatives of the
virtual controls x∗l , with l ∈ {2, . . . , ρ − 1} by means of
command filters. For simplicity, we use second-order systems
defined as in the figure below —cf. [34];

H1(s)
x∗l x∗lf

H1(s) :=
ω2
n

s2 + 2ωns+ ω2
n

Fig. 1: Command filter used for implementation. The dirty derivative
of x∗l may be obtained using ẋlf := sH1(s)x

∗
l which is equivalent

to ẋlf = H1(s)ẋ
∗
l .

The virtual controls are considered as the inputs of a
command filter, with the outputs corresponding to the ap-
proximated signals and their derivatives, denoted xlf and ẋlf ,
respectively. The filters’ natural frequency, ωn > 0, is a
control parameter which is chosen large enough so that the
approximation xlf converges to the desired virtual control x∗l
in a faster time-scale than that of the system’s dynamics —
see Section IV-A. Moreover, the filters are designed with unit
DC gain and unit damping coefficient so that the tracking
of the virtual signals is guaranteed without overshoot. This
ensures that, in the slower time-scale of the systems’ dy-
namics, the “filtered forms” act as the desired virtual signals,
corresponding to a classical backstepping control. Similarly,
ẋlf = H1(s)ẋ∗l approximates ẋ∗l .

Remark 5: For clarity, we use second-order command-
filters as defined in Fig. 1 above. However, the design is not
restricted to this particular choice. Indeed, other possibilities
include first-order low-pass filters [54] or high-order Levant
differentiators [26]. •

For the purpose of stability analysis, we write the command
filters’ dynamics in state form. To that end, let the filters’
variables be denoted as α>l−1 :=

[
α>l−1,1 α

>
l−1,2

]
∈ R2nN ,

for l ∈ {2, . . . , ρ}. Then, in state-space representation, the
command filters are written as

α̇l−1 = ωn [A⊗ InN ]αl−1 + ωn [B ⊗ InN ]x∗l (19a)[
x>lf ẋ

>
lf

]>
= [C ⊗ InN ]αl−1, l ∈ {2, . . . , ρ}, (19b)

A :=

[
0 1
−1 −2

]
, B :=

[
0
1

]
, C :=

[
1 0
0 ωn

]
(19c)

and the initial conditions are set to αl−1,1(0) = x∗l (0) and
αl−1,2(0) = 0.

Thus, the virtual control input, starting with (18), are
redefined using the filter variables as follows. First, we redefine

x∗3 := −c2x̃2 + ẋ2f (20)

where x̃2 := x2 − x2f and ẋ2f = ωnα1,2. Hence, in contrast
to (17), from

ẋ2 − ẋ2f = x3 − ẋ2f + θ2 + x∗3 − x∗3 + α2,1 − α2,1,
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defining x̃3 := x3 − x3f and using (20) and α2,1 = x3f , we
obtain

˙̃x2 = −c2x̃2 + x̃3 + (α2,1 − x∗3) + θ2.

Then, owing to the fact that the system is in feedback form,
we define

x∗l := −cl−1x̃l−1 +ωnαl−2,2− x̃l−2, l ∈ {4, . . . , ρ}, (21)

where c2, cl−1 are positive constants, and the tracking errors
are given by

x̃l := xl − xlf = xl − αl−1,1, l ∈ {2, . . . , ρ} (22)

—cf. Eq. (20). That is, the virtual controls x∗l starting from
l = 3 are redesigned to steer xl−1 towards the filtered virtual
input xl−1 f . Finally, the actual control input is set to

u = −cρx̃ρ + ωnαρ−2,2 − x̃ρ−1. (23)

Remark 6: The system being in feedback form, the third
term on the right-hand side of (21) and (23) are feedback
passivation terms —cf. [55]. These terms, that come from the
backstepping-as-recursive-feedback-passivation approach [56]
are used to render the system (12) passive with respect to the
output yρ := xρ − xρf . •

Thus, taking the derivative of the backstepping error vari-
ables defined in (22) and using the input (23), with (19)-(21),
we obtain the closed-loop system

˙̃zt =− c1[E>t E� ⊗ In]∇W (z̃)

+ [E>t ⊗ In] [x̃2 + (α1,1 − x∗2) + θ1] (24a)
˙̃x2 =− c2x̃2 + x̃3 + (α2,1 − x∗3) + θ2 (24b)
˙̃xl =− clx̃l + x̃l+1−x̃l−1 + (αl,1 − x∗l+1) + θl,

∀ l ∈ {3, . . . , ρ− 1} (24c)
˙̃xρ =− cρx̃ρ−x̃ρ−1 + θρ (24d)
α̇l =ωn [A⊗ InN ]αl + ωn [B ⊗ InN ]x∗l+1,

∀ l ∈ {1, . . . , ρ− 1}. (24e)

Consequently, solving the robust consensus problem with
output constraints comes to guaranteeing that z̃t(t), as part of
the solution to Eqs. (24), tends to zero. More precisely, that
the control law (23), with (14) and (19)-(21), solves the robust
consensus problem with output constraints for system (1) is a
fact established by the following statement.

Theorem 1: Consider the system (1) in closed loop with
the dynamic controller defined by (23), together with (14) and
(19)-(21). Then, the constraints set (3) is forward invariant.
Moreover, if θi,l ≡ 0, l ≤ ρ, i ≤ N , (6) holds for almost all
initial conditions satisfying z(0) ∈ D. Otherwise, if θl 6≡ 0,
the closed-loop system is almost-everywhere practically input-
to-state stable with respect to θ := [θ>1 · · · θ>ρ ]>. �

For clarity of exposition, the proof of Theorem 1 is pre-
sented in Section IV, but in anticipation of the latter we
underline the following. As mentioned earlier, part of the
control approach consists in choosing ωn sufficiently large,
so that αl−1,1 → x∗l faster than the dynamics of the system.
Note that, setting ε := 1/ωn as a singular parameter in (39a),
the closed-loop system (24) may be separated into two time
scales, where the fast system corresponds to the command

filters. Hence, when αl−1,1 = x∗l and αl−1,2 = 0, the
reduced slow system, corresponding to the actual system with
the backstepping control, effectively achieves consensus with
respect of the output constraints.

The proposed controller and stability analysis offer some
advantages with respect to previous results in the literature.
Using the reduction of the edge system considering only the
states of a spanning tree contained in the graph, we are able to
analyze the system using Lyapunov and input-to-state stability
theory (in a multi-stability sense [35], [36]) of the reduced
slow system. The latter is significant since the reduced slow
system corresponds to a high-order system in closed-loop
with a classical backstepping controller solving the output-
constrained consensus problem. On the other hand, relying on
the multi-stability framework for singularly perturbed systems,
it is possible to establish not only convergence to the consensus
manifold but also explicit robustness properties in the sense
of practical input-to-state stability with respect to bounded
disturbances.

C. Extension to partial- and full-state consensus with
output constraints

The control design methodology presented above can be
directly extended to consider consensus in all or part of the
high-order states xl. This is useful, for instance, in the context
of flocking in formation, attitude consensus, etc.

Suppose that, besides achieving the output-consensus goal
as defined in (6a), it is additionally required to achieve
consensus of a number of states r ≤ ρ. For convenience, and
without loss of generality, suppose that 3 < r < ρ. Then, akin
to the edge transformation (4), we define the edge states

zl := [E> ⊗ In]xl, l ∈ {2, . . . , r} (25)

and, accordingly, let the objectives in (6) be replaced with

lim
t→∞

z̃(t) = 0 (26a)

lim
t→∞

zl(t) = 0, ∀l ∈ {2, . . . , r} (26b)

lim
t→∞

xl(t) = 0, ∀l ∈ {r + 1, . . . , ρ}. (26c)

Furthermore, let

z̃l :=zl − [E> ⊗ In]xlf ∀ l ∈ {2, . . . , r} (27)
x̃l :=xl − xlf ∀ l ∈ {r + 1, . . . , ρ}; (28)

we recall that xlf = αl−1,1. Then, to achieve the new
consensus objectives (26) the virtual control inputs, at each
step, are redefined as

z∗l := [E>⊗ In]x∗l , ∀ l ∈ {2, . . . , r} (29)

with x∗2 as in (14), x∗3 := −c2[E� ⊗ In]z̃2 + ωnα1,2,

x∗l := −cl−1[E� ⊗ In]z̃l−1 + ωnαl−2,2 − x̃l−2

for all l ∈ {4, . . . , r}, and

x∗r+1 := −cr[E�⊗In]z̃r+ωnαr−1,2− [E�⊗In]z̃r−1, (30)

x∗l := −cl−1x̃l−1 + ωnαl−2,2 − x̃l−2, l ∈ {r + 2, . . . , ρ}.
(31)
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Finally, the actual control input is set to

u := −cρx̃ρ + ωnαρ−2,2 − x̃ρ−1. (32)

Then, we have the following.
Theorem 2: Consider the system (1) in closed loop with the

dynamic controller defined by (32), together with (29)-(31)
and (19). Then, the constraints set (3) is forward invariant.
Moreover, if θi,l ≡ 0, l ≤ ρ, i ≤ N , the limits in (26)
hold for almost all initial conditions satisfying z(0) ∈ D.
Otherwise, if θl 6≡ 0, the closed-loop system is almost-
everywhere practically input-to-state stable with respect to
θ := [θ>1 · · · θ>ρ ]>. �

Modulo the change to the reduced-edge coordinates—see
(11)—for the higher-order edge states, the proof is identical
to the proof of Theorem 1, which is presented next.

IV. PROOF OF THEOREM 1

The proof is organized in two main parts. In the first part,
we show how the closed-loop system (24) can be written as
a singularly-perturbed system with singular parameter ε :=
1/ωn and in which the fast systems correspond to the dynam-
ics of the command filters and the slow system corresponds
to the high-order dynamics of the original multi-agent system.
In the second part we analyze the stability and the robustness
of the singularly perturbed system, using analysis tools multi-
stable systems theory [35], [36].

A. Singular perturbation model

Define α> :=
[
α>1 · · · α>ρ−1

]
∈ R2nN(ρ−1), ξ> :=[

z̃>t x̃>2 · · · x̃ρ
]> ∈ Rn(ρN−1), and θ> := [θ1 · · · θρ] ∈

RnρN . Then, the filter subsystem (24e) can be rewritten as

α̇ = ωnÃ
[
α− χ(ξ, α)

]
, Ã := blockdiag{[A⊗ InN ]}, (33)

χ(ξ, α) :=
[
x∗>2 0> x∗>3 0> · · · x∗>ρ 0>

]>
.

Now, as mentioned in the previous section, with ε := 1/ωn
as the singular parameter, the closed-loop system (24) may be
written in the singular-perturbation form

ξ̇ = f(ξ, α, θ, ε) (34a)
εα̇ = g(ξ, α, θ, ε). (34b)

Setting ε = 0 in (34) we obtain the so-called quasi-state
model

ξ̇ = f(ξ, α, θ, 0) (35a)
0 = g(ξ, α, θ, 0) (35b)

in which (35b) becomes an algebraic equation. Hence, the
analysis of the singular perturbation model (34) is normally
conducted studying its dynamic properties in different time
scales [46].

Denote αs = h(ξ) the unique root of the algebraic equation
(35b),

h(ξ) =
[
(−c1[E� ⊗ In]∇W (z̃))> 0> − c2x̃>2 0> · · ·

−cρ−1x̃
>
ρ−1 0>

]>
.

(36)

Then, defining the coordinate transformation

α̃ :=
[
α̃>1,1 α̃

>
1,2 · · · α̃>ρ−1,1 α̃

>
ρ−1,2

]>
= α− h(ξ), (37)

and using (24) we obtain the singularly perturbed system

˙̃zt =− c1[E>t E� ⊗ In]∇W (z̃) + [E>t ⊗ In] [x̃2 + α̃1,1 + θ1]

(38a)
˙̃x2 =− c2x̃2 + x̃3 + α̃2,1 + θ2 (38b)
˙̃xl =− clx̃l + x̃l+1−x̃l−1 + α̃l,1 + θl, l = 3, . . . , ρ− 1

(38c)
˙̃xρ =− cρx̃ρ−x̃ρ−1 + θρ (38d)

ε ˙̃α =Ãα̃− ε∂h(ξ)

∂ξ
ξ̇. (38e)

In turn, the reduced system ξ̇ = f(ξ, h(ξ), θ, 0) takes the form

˙̃zt =− c1[E>t E� ⊗ In]∇W (z̃) + [E>t ⊗ In] [x̃2 + θ1] (39a)
˙̄x =− [H ⊗ InN ]x̄+ θ̄, (39b)

where x̄> :=
[
x̃>2 · · · x̃>ρ

]
, θ̄> :=

[
θ>2 · · · θ>ρ

]
, and

H :=


c2 −1 0 · · · 0
1 c3 −1 · · · 0
...

. . . . . . . . .
...

0 . . . 1 cρ−1 −1
0 . . . 0 1 cρ

 . (40)

On the other hand, the boundary layer system, (dα̃/dτ) =
g(ξ, α̃ + h(ξ), θ, 0), with τ = t/ε and with ξ considered as
fixed, is

dα̃

dτ
= Ãα̃ (41)

where Ã is a Hurwitz matrix —see Eqs. (33) and (19c).
Even though the system (38) appears to be in the familiar

form (34), its analysis is stymied by the fact that the function
∇W vanishes at multiple separate equilibria. Therefore, we
rely on perturbation theory for multi-stable systems, developed
in [35]. The stability analysis is provided below and some def-
initions and statements from [35] are recalled in Appendix II,
for convenience.

B. Stability and robustness analysis

Denote z̃∗t ∈ Rn(N−1) as the vector containing the saddle
points of the barrier Lyapunov function for each edge (13).
Then, the equilibrium points of subsystem (38a) are collected
into a disjoint set, denoted by

W := {0} ∪ {z̃∗t }, (42)

which is an acyclic W-limit set3 of (38a). This means that
asymptotic stability of the origin of (38a) may be guaranteed,
at best, almost everywhere in D, that is, for all initial condi-
tions in D except for a set of measure zero corresponding to
the domain of attraction of the unstable critical point.

3In the settings of this paper an acyclic limit set corresponds to an invariant
set of isolated points in Euclidean space. See [35] for a complete definition.
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Now, we first analyze the stability of (38) with respect to
the set of equilibria WΘ := W × {0}ρ−1. For this purpose
we use Theorem 3 in Appendix II, which is essentially a
reformulation of [35, Theorem 2] adapted to the contents of
this paper. Theorem 3 establishes sufficient conditions for a
practical input-to-state multi-stability property to hold for a
singularly perturbed system with respect to WΘ and to a
bounded external input θ, granted that the reduced system (39)
is input-to-state stable with respect to set WΘ and input θ
and that the origin for (41) is globally asymptotically stable.
Therefore, the stability and robustness analysis is conducted
in the following steps:

1) We show that the origin is asymptotically stable for the
boundary layer system (41).

2) Relying on the results on cascaded multi-stable systems
in [36], we show that the reduced system (39) is input-
to-state stable with respect to set WΘ and input θ.

3) Using Theorem 3 in Appendix II, we prove that, for a
sufficiently small ε, the singularly perturbed system (38)
is practically input-to-state stable with respect to the set
WΘ × {0} and a bounded external input θ. Moreover,
using [35, Theorem 3], in the absence of disturbances,
we show convergence to the set of equilibria.

4) Using the practical input-to-state multi-stability prop-
erty, we establish almost-everywhere-practical-input-to-
state stability of the origin of (38). Similarly, if θ ≡ 0,
we establish convergence to the origin.

5) Finally, we show that the output-constraints set defined
in (3) is forward invariant.

Step 1) Since Ã is Hurwitz by design, the origin α̃ = 0 is
exponentially stable for the boundary-layer system (41).

Step 2) Consider the reduced system (39). Note that it has
the form of a cascaded system, in which (39b) is the “driving”
system and the “driven” system (39a) has multiple equilibria
given by the set W in (42). In order to prove input-to-state
stability of (39) with respect to set WΘ and input θ, as per
in [36], we need to show that (39a) is input-to-state stable
with respect to the set W and the inputs x̃2 and θ1 whereas
the system (39b) is input-to-state stable with respect to θ̄. We
start with the latter.

Input-to-state stability with respect to θ̄ for the system (39b)
follows directly from Lyapunov theory since (39b) is a linear
time-invariant system and −[H ⊗ InN ] is Hurwitz matrix,
since so is −H .

Consider, in turn, the reduced subsystem (39a). For this
system we use the barrier Lyapunov function W (z̃) given by
(15). First note that W (z̃) consists in a sum of the barrier
Lyapunov functions defined for each edge in the initial graph.
Yet, from the identity (11) it is possible to express W in terms
of the edges corresponding to a spanning tree contained in the
graph. Hence, define the candidate Lyapunov function

Vz(z̃t) = W
( [
R> ⊗ In

]
z̃t
)
.

On the other hand, for consistency in the notation, we define
the constraint set (3) in terms of the edges of the spanning
tree zt as

Dt :=
{
zt ∈ Rn(N−1) :

∣∣[r>k ⊗ In] zk∣∣ ∈ (δk,∆k), ∀ k ≤M
}

where rk is the kth column of R in (8). For the time-being,
assume that D (equivalently Dt) is forward invariant; this
hypothesis is relaxed below. Then, for all z̃t ∈ Dt, Vz(z̃t)
satisfies

1

2
|z̃t|2W ≤ Vz(z̃t), (43)

where |z̃t|W = min{|z̃t|, |z̃t− z̃∗t |}. Furthermore, from (39a),
the derivative of Vz is given by

V̇z =−c1∇W (z̃)
[
R>E>t E� ⊗ In

]
∇W (z̃)

+∇W (z̃)>
[
R>E>t ⊗ In

]
[x̃2 + θ1] , (44)

where R is defined in (8). Equation (44) holds for, both,
directed-spanning-tree and directed-cycle topologies. Next, we
analyze the two considered topologies separately.

Case 1 (Directed spanning tree). In this case we have G =
Gt. Therefore, z = zt, E = Et, and R = IN−1. Hence, (44)
becomes

V̇z =−c1∇W (z̃t)
[
E>t E� ⊗ In

]
∇W (z̃t)

+∇W (z̃t)
> [E>t ⊗ In] [x̃2 + θ1] (45)

Define Lse := 1
2

(
E>t E� + E>�Et

)
, which is the symmetric

part of the so-called directed edge Laplacian E>t E�. As it is
shown in the proof of Proposition 1 in [53], Lse is positive
definite. Therefore, applying Young’s inequality to the second
term in the right-hand side of (45), we have

V̇z ≤− c′1|∇Vz(z̃t)|2 +
1

2γ

[
|x̃2|2 + |θ1|2

]
, (46)

where c′1 :=
[
c1 λmin(Lse)−

γλmax(E>
t Et)

2

]
is positive for

a sufficiently small γ > 0, λmin(Lse) > 0 is the smallest
eigenvalue of Lse, and λmax(E>t Et) is the largest eigenvalue
of E>t Et.

Case 2 (Directed cycle). Consider equation (44). Using the
identity (9), we have

V̇z =−c1∇W (z̃)
[
E>E� ⊗ In

]
∇W (z̃)

+∇W (z̃)>
[
E> ⊗ In

]
[x̃2 + θ1] . (47)

Now, for a directed-cycle topology, the following identity
follows —cf. [53]—

E>E� + E>�E = E>E. (48)

Therefore, using (48) and (9) again, we have

V̇z=−
c1
2
∇W (z̃)

[(
E>E� + E>�E

)
⊗ In

]
∇W (z̃)

+∇W (z̃)>
[
R>E>t ⊗ In

]
[x̃2 + θ1]

=−c1
2
∇W (z̃)

[
R>E>t EtR

> ⊗ In
]
∇W (z̃)

+∇W (z̃)>
[
R>E>t ⊗ In

]
[x̃2 + θ1] . (49)

Denote

∇Vz(z̃t) :=
∂Vz(z̃t)

∂z̃t
= [R⊗ In]∇W (

[
R> ⊗ In

]
z̃t). (50)

Then, applying Young’s inequality to the second term of the
right-hand side of (49), we have

V̇z ≤− c′1|∇Vz(z̃t)|2 +
1

2γ

[
|x̃2|2 + |θ1|2

]
, (51)
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where c′1 :=
λmin(E>

t Et)
2 [c1 − γ] is positive for a sufficiently

small γ > 0. Note that, λmin(E>t Et) is positive since it is
the smallest eigenvalue of the edge Laplacian of an undirected
spanning tree —cf. [21].

Thus, for either the spanning tree or the cycle case, the
derivative of Vz(zt) satisfies

V̇z ≤− c′1|z̃t|2W +
1

2γ

[
|x̃2|2 + |θ1|2

]
. (52)

It follows from (43), (52), and Theorem 4 in Appendix II, that
the subsystem (39a) is input-to-state stable with respect to the
set of equilibria W , and the inputs x̃2 and θ1.

Thus, after [36, Theorem 3.1], the reduced system (39)
is input-to-state stable with respect to WΘ and input θ.
Furthermore, WΘ qualifies as a W-limit set for (39).

Step 3) Since the reduced system (39) is input-to-state stable
with respect to WΘ and θ, and the origin of (41) is asymp-
totically stable, it follows, after Theorem 3 in Appendix II,
that the singularly perturbed system (38) is practically input-
to-state stable with respect to setWΘ×{0}2nN(ρ−1) and input
θ. More precisely, for any pair of constants d1, d2 > 0, there
exists an ε∗ > 0 such that, for any ε ∈ (0, ε∗], the solutions
of (38) satisfy

lim sup
t→∞

|ξ(t)|WΘ
≤ ηθ(‖θ‖∞) + d2 (53a)

|α̃(t)| ≤ βα

(
|α̃(0)|, t

ε

)
+ d2, ∀ t ≥ 0, (53b)

provided that

max{|ξ(0)|WΘ
, |α̃(0)|, ‖θ‖∞, ‖θ̇‖∞} ≤ d1,

where ‖θ‖∞ := lim sup
t→∞

‖θ(t)‖ and |ξ|WΘ
:= inf

a∈WΘ

|ξ − a|.
Now consider the case in which the disturbance θ ≡ 0. From

property (53a) we may conclude that the origin of the reduced
system (39) is multi-stable with respect to WΘ. Therefore,
from the latter and the exponential stability of the boundary
layer system (41) all the assumptions of [35, Theorem 3] are
satisfied and the solutions of (38) satisfy

lim
t→∞

|ξ(t)|WΘ
=0 (54a)

lim
t→∞

|α̃(t)| =0. (54b)

Step 4) Since the critical point z̃∗t of the barrier function is
a saddle point —see Appendix I, after [57, Proposition 11], it
follows that the region of attraction of the unstable equilibrium
z̃∗t has zero Lebesgue measure. Therefore, we conclude that
the bound in (53a) and the limit in (54a) are satisfied for the
origin {ξ = 0}. More precisely, we have

lim sup
t→∞

|ξ(t)| ≤ ηθ(‖θ‖∞) + d2

and, for θ ≡ 0,
lim
t→∞

|ξ(t)| = 0.

Step 5) Up to this point we have assumed that the inter-
agent constraints are satisfied for all time, that is, z(t) ∈ D
for all t ≥ 0. Then, in order to prove the forward invariance
of the constraints set we proceed by contradiction as follows.

Assume that the state constraints are not respected. Therefore,
from continuity of the solutions, there exists a time T > 0
such that zt(T ) ∈ ∂Dt. Now, from the previous analysis of
the singularly perturbed system, we have that in the interval
[0, T ), condition (91b) holds. Moreover, since α̃(0) = 0 by
design, the solutions of the filter error satisfy α̃(t) ≤ d2, for
t ∈ [0, T ). Consider the derivative of the Lyapunov function
(43) along the trajectories of (38a), which satisfies

V̇z(z̃t) ≤ −c′1|∇Vz(z̃t)|2 +
1

2γ

[
|x̃2|2 + |θ1|2 + |α̃|2

]
Therefore, since α̃(t) ≤ d2, θ1(t) is bounded and the system

in (39b) is input-to-state stable, x̃2(t) is bounded, for all t ∈
[0, T ). Then, we have

V̇z(z̃t(t)) ≤ −c′1|∇Vz(z̃t(t))|2 + d, ∀t ∈ [0, T )

where d is a positive constant. By Definition 1 we have
|∇V (z̃t(t))| → ∞ as zt(t) approaches the border of the
constraints set, ∂Dt. Therefore, if |z̃t(t)| grows, there exists
a time 0 < T ∗ < T such that V̇z(z̃t(T ∗)) ≤ 0. The latter,
in turn means that Vz(z̃t(t)) is bounded for all t ∈ [0, T ),
which contradicts the initial assumption that the constraints are
not respected. By resetting the initial conditions, the previous
reasoning can be repeated for t ≥ T . Therefore, the interval
where Vz(z̃t(t)) is bounded can be extended to infinity. The
boundedness of Vz(z̃t(t)) means, based on the definition of
the barrier Lyapunov function, that the constraints are always
respected or, equivalently, that the set Dt is forward invariant.

V. FORMATION CONTROL OF COOPERATIVE
THRUST-PROPELLED UAVS WITH OUTPUT CONSTRAINTS

We assert above that systems in strict feedback form (1)
cover many models of physical systems, the most obvious
instance being that of fully feedback-linearizable (hence fully-
actuated) systems, such as second-order Lagrangian systems
with n degrees of freedom and n control inputs. In this
section we solve a problem of robust consensus for multi-
agent constrained 3rd-order systems, which has relevance in
certain robotics applications.

The case-study consists in designing robust distributed
controllers to solve the position-consensus-based formation
of multiple thrust-propelled UAVs under a set of realistic
assumptions. It is assumed that the drones are equipped with
relative-measurement sensors, so the graph representing the
interaction between the agents is directed (either a directed
spanning tree of a directed cycle). Furthermore, we assume
that the system is subject to inter-agent constraints of the form
(3). These constraints come, for one part from the embedded
measurements devices, which are reliable only if used within
a limited range. Hence, in order to maintain the connectivity
of the graph, the UAVs must remain within a limited distance
from their neighbors. On the other hand, in order to guarantee
the safety of the systems, inter-agent collision avoidance must
also be ensured. Finally, we assume that the agents are subject
to bounded time-varying disturbances generated, e.g., by wind
gusts, aerodynamic effects or unmodeled dynamics, which are
common in applications involving cooperative UAVs.
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In the following we present the model and the mathematical
formulation of the problem at hand. We emphasize that the
dynamic model of a UAV does not, a priori, fit in the class
of systems characterized by Eq. (1), but we show that using
a preliminary control loop it may be transformed into one
with relative degree ρ = 3. The implementation of such
controller, however, imposes the incorporation of saturations
to the control method described in Section III-B. Thus, this
meaningful case-study shows both the applicability and the
versatility of our framework. Its efficacy is illustrated via brief
numerical simulations.

A. UAV’s model and problem formulation

..
B1

T1

ωx,1

ωy,1

ωz,1

.

T2

∆2

.

δ3

T3

.I e1

e2
e3

−→p1

zd2

zd3

Fig. 2: Group of thrust propelled vehicles and Inertial frame

We consider a swarm of N UAVs as illustrated in Fig. 2;
each vehicle’s motion being described by a so-called “mixed”
model that consists in a second-order Cartesian dynamics
equation on E(3) and a first-order attitude kinematics equation
on SO(3) —see, e.g., [15], [58], and [59]. This underactuated
model describes some commercial UAVs, which accept only
thrust and angular rates as the control inputs. It is also well-
suited for control design and analysis since, in view of the
fully-actuated and passive nature of the attitude dynamics,
angular torques can be easily defined in order to track the
designed angular rates.

The model for the ith agent is given by the equations

ṗi = vi (55a)

v̇i = − Ti
mi

Rie3 + ge3 + θi,2(t) (55b)

Ṙi = RiS(ωi), (56)

where mi is the mass of the quadrotor, e3 = [0 0 1]> is the
unitary vector in the vertical direction of the inertial frame I,
pi ∈ R3 and vi ∈ R3 are respectively the inertial position
and inertial velocity, Ri ∈ SO(3) is the rotation matrix
of the body-fixed frame Bi with respect to I, g is gravity
acceleration, and θi,2 : R≥0 → R3 is an essentially bounded
disturbance. The inputs are the thrust force produced by the
propellers, Ti ∈ R, and the angular rate of the vehicle ωi ∈ R3

in the body-fixed frame Bi —see Figure 2 for an illustration.
The control goal is for the robots to achieve a predetermined

formation in the three-dimensional space, centered at a point

of non-predefined coordinates. More precisely, let the output
of the multi-agent system be the relative position between pairs
of connected agents. That is, in the way of (4)-(5), the edge
states and error-edge states are defined as

z := [E> ⊗ I3]p (57)

and
z̃ = [E> ⊗ I3]p− zd, (58)

respectively, where p> = [p>1 · · · p>N ] ∈ R3N and zd> =
[zd>1 · · · zd>M ] ∈ R3M are the relative displacements of the
desired formation. Therefore, the control objective is that

lim
t→∞

z̃k(t) =0 ∀k ≤M (59a)

lim
t→∞

vi(t) =0 ∀i ≤ N. (59b)

Now, in accordance to the realistic setting described previ-
ously, it is assumed that the robots are equipped solely with
relative-measurements sensors. On one hand, this naturally
leads to considering directed-topology graphs. Only directed-
spanning-tree and directed-cycle topologies are considered but,
alluding to Remark 4, we stress that the following results also
apply to connected undirected graphs. On the other hand, the
sensors are reliable only if “neighboring” agents remain within
a certain range and, in order to guarantee the safety of the
systems, these must also avoid collisions with one another.

Let ∆k denote the maximal distance between the nodes i
and j, such that the node j has access to information from the
node i through the arc ek = (i, j). Similarly, let δk denote
the minimal distance among neighbors such that collisions
are avoided. Then, the connectivity and collision-avoidance
constraints are encoded by the constraints set given in (3).

We also stress that the UAV model (55)-(56) is a nonlinear
underactuated system. Indeed, the UAVs have six degrees
of freedom (three-dimensional displacements and three rota-
tions), but only four dimensions can be directly actuated using
the actual inputs Ti and ωi. To address this difficulty, some
hierarchical approaches have been reported in the literature,
using the natural cascaded structure of the UAVs’ dynamics
[15], [59]–[61]. Such designs have been used to solve the
formation problem of swarms of UAVs interconnected through
undirected and directed communication topologies —cf. [59],
[60], [62]–[65]. Nonetheless, none of these works address the
problem under inter-agent constraints, as stated next.

Robust formation problem with output constraints: Consider
a multi-agent system composed of N quadrotor UAVs with
underactuated dynamics described by (55)-(56). Let the inter-
actions of the vehicles be modeled by a connected undirected
graph, a directed spanning tree or a directed cycle. Moreover,
let the output inter-agent constraints be given by the set (3).
Find distributed controllers Ti and ωi, i ≤ N , that, in the
absence of disturbances, that is, with θi,2 ≡ 0 for all i ≤ N ,
achieve the objective (59) and render the constraints set (3)
forward invariant, i.e., z(0) ∈ D implies that z(t) ∈ D for
all t ≥ 0. Furthermore, in the presence of disturbances, that is
θi,2 6≡ 0, the control law must render the formation practically
input-to-state stable with respect to the disturbances and the
set D in (3) forward invariant. •
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In the following, we present the control approach that solves
the robust formation problem with output constraints. It is
based on a change of variables, inspired by the hierarchical
backstepping approach of [59], that allows us to consider
the underactuated system (55)-(56) as a system in the form
(1) with ρ = 3. Then, a slightly modified version of the
controller designed in Section III-B may be used in order
to obtain the desired formation under the connectivity and
collision-avoidance constraints and with the desired robustness
properties.

B. Control approach

The control architecture follows a hierarchical approach
that exploits the natural cascaded interconnection between the
translational dynamics (55) and the rotational kinematics, (56)
—see Fig. 3. The design builds on the method proposed in
the previous sections, but we must start by applying an im-
plementable feedback transformation to represent the system
(55) in the form (1). To that end, first note that (55) may be
assimilated to a second-order integrator

ṗi = vi (60a)
v̇i = ζi + θi,2, (60b)

with
ζi := − Ti

mi
Rie3 + ge3. (61)

Nonetheless, the implementation of a virtual controller for
(60), through the input ζi, is subject to the possibility of
solving (61) for Ti, which is the actual control input. Because
of the underactuation of (55), however, this is far from
acquired. Indeed, note from (61) that the virtual input ζi ∈ R3

cannot take an arbitrary value since Ti ∈ R and its direction
are determined by the vehicle’s orientation, Ri. In order to
overcome the underactuation, we solve equation (61) dynam-
ically, inspired by the distributed-backstepping approach in
[59]. More precisely, we design the angular rates ωi and an
update law for the thrust Ti, so that ζi in (61) satisfies the
dynamic equation

ζ̇i = ui, i ≤ N, (62)

where ui ∈ R3 is a new input. Note that now the system
defined by (60) and (62) has the form (1) with ρ = 3. Hence,
in the sequel, in (62), ui is assumed to correspond to an
output-constrained consensus control law designed as per the
framework described in Section III.

Differentiating (61) with respect to time, and using (56), the
left-hand side of (62) becomes

− Ṫi
mi

Rie3 −
Ti
mi

RiS(ωi)e3 = ui. (63)

Then, for a given ui, we define νi ∈ R3 as

νi := ui −
c3
mi

TiRie3, (64)

where c3 is a positive control gain. Next, replacing (64) into
(63), we obtain

− 1

mi

[
ṪiRi + TiRiS(ωi)

]
e3 = νi +

c3
mi

TiRie3

⇐⇒
[
(Ṫi + c3 Ti)Ri + TiRiS(ωi)

]
e3 = −miνi. (65)

Left-multiplying by (the full-rank rotation matrix) R>i , we see
that the dynamic equation (65) is equivalent to[

Tiωyi, −Tiωxi, Ṫi + c3 Ti

]>
= −miR

>
i νi. (66)

Now let ν̃i := [ν̃i,x ν̃i,y ν̃i,z]
> = R>i νi. Then, (66) holds

if the angular rates are set to

ωi =

[
miν̃i,y
Ti

− miν̃i,x
Ti

ωzi

]>
, (67)

and the thrust is given by the update law

Ṫi = −c3 Ti −miν̃i,z. (68)

Remark 7: Note that by transforming the UAV model (55)
using (61)-(62), only the three translational dimensions are
directly controlled. Therefore, only three of the four available
inputs are needed to solve the formation problem. Indeed, note
that from equation (66), the yaw component of the angular rate
ωzi is not needed for the control. Hence it may be considered
as an additional degree of freedom and may be designed so
that the vehicle follows a desired yaw trajectory. •

Thus, applying the previous transformation, the underactu-
ated system (55) may be rewritten in the form (1), as desired,
that is,

ṗi = vi (69a)
v̇i = ζi + θi (69b)

ζ̇i = ui. (69c)

Furthermore, denoting v> = [v>1 · · · v>N ] ∈ R3N and ζ> =
[ζ>1 · · · ζ>N ] ∈ R3N , and using the edge transformation (58),
the multi-agent system in the reduced error-edge coordinates
becomes

˙̃zt =
[
E>t ⊗ I3

]
v (70a)

v̇ = ζ + θ2 (70b)

ζ̇ = u. (70c)

The transformed system (70) is in the form of (12) with
ρ = 3. To apply the robust control law (23), designed in
the previous section for the constrained-consensus problem of
high-order systems, we define the backstepping error variables

ṽ = v − vf and ζ̃ = ζ − ζf . (71)

The filtered signals vf and ζf are the outputs of command
filters given in (19), with inputs v∗ and ζ∗, respectively,
corresponding to the desired virtual controllers given by

v∗ := −c1[E� ⊗ I3]∇W (z̃) (72)

and
ζ∗ := −c2ṽ + ωnα1,2, (73)

where ∇W (z̃) is the gradient of the barrier Lyapunov function
defined in (15) and (13) with the weight recentered barrier
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Translational
dynamics

pj

j ∈ Ni

Gradient
control

v∗iFilter
H1(s)

vf,i, v̇f,iAcceleration
control

ζ∗iFilter
H1(s)

ζf,i, ζ̇f,iBackstepping
control

ui Dynamic
feedback

transformation
ωi Rotational

kinematics

Ti

Ri

Eq. (61)
ζi +

+

⊗
θi,2

High-order output-constrained consensus control

Preliminary control loop
UAV attitude and thrust extraction

Fig. 3: Block diagram of the hierarchical control approach.

function given by

Bk(zk) =κ1,k

[
ln

(
∆2
k

∆2
k − |zk|2

)
− ln

(
∆2
k

∆2
k − |zdk |2

)]
+ κ2,k

[
ln

(
|zk|2

|zk|2 − δ2
k

)
− ln

(
|zdk |2

|zdk |2 − δ2
k

)]
,

(74)

κ1,k :=
δ2
k

|zdk |2(|zdk |2 − δ2
k)
, κ2,k :=

1

∆2
k − |zdk |2

. (75)

This function and its gradient are equal to zero at the desired
formation configuration, i.e., Bk(zdk) = 0, ∇Bk(zdk) = 0.
Moreover it directly encodes the constraints in terms of the
original edge-state zk, i.e., Bk(zk)→∞ as either |zk| → ∆k

or |zk| → δk —see Remark 2.
Then, akin to (23), the new input u is given by

u := −c3ζ̃ + ωnα2,2 − ṽ. (76)

After the developments in Section III and Theorem 1, the
transformed controller (76), with (72)-(73) and (19), solves the
robust formation problem with output constraints for system
(69). However, a closer inspection shows that there is one
more technical difficulty to circumvent. Note that, from (67),
the dynamic solution to the equation (61) is valid if and only
if Ti 6= 0. In order to address this additional constraint, we
perform a control redesign which respects the control method
and the stability analysis in Sections III-B and IV.

Note that, from (61), the condition Ti 6= 0 is satisfied if the
desired virtual control ζ∗i satisfies ζ∗i 6= ge3, for all i ≤ N .
Therefore, the virtual control input ζ∗ is modified to

ζ∗ := sat (−c2ṽ + ωnα1,2) , (77)

where sat( · ) is a saturation function RN → RN defined
element-wise, i.e., sat(s) =

[
σ(s1)> · · · σ(sN )>

]>
, where,

e.g., σ(si) = sign(si) min{|si|, ζ̄M}, with ζ̄M < g, or any
other odd monotonic function, bounded in absolute value.

Then, we have the following.
Proposition 1: For almost any initial conditions satisfying

z(0) ∈ D, except for a set of measure zero, there exists ε∗,
such that, for ε ∈ (0, ε∗] where ε := 1/ωn, the control law
(67)-(68) and (76), with (19), (72) and (77), solves the robust
formation problem with output constraints for system (55). �

Proof: The proof follows the same arguments as the
proof of Theorem 1. First, following the same arguments used
in Section IV-A, the system (70) in closed-loop with (76) may
be written in singular-perturbation form

˙̃zt =− c1[E>t E� ⊗ In]∇W (z̃) + [E>t ⊗ In] [ṽ + α̃1,1]

(78a)
˙̃v =− sat(−c2ṽ + ωnα̃1,2) + ζ̃ + α̃2,1 − ωnα̃1,2 + θ2

(78b)
˙̃
ζ =− c3 ζ̃ − ṽ (78c)

ε ˙̃α =Ãα̃− ε∂h(ξ)

∂ξ
ξ̇, ξ> =

[
z̃>t ṽ> ζ̃>

]
. (78d)

Now, proceeding as in Section IV-B, in order to apply the
singular-perturbation result for multi-stable systems derived in
[35, Theorem 2], we need to show that the boundary layer
system is asymptotically stable and that the reduced slow
system is input-to-state stable with respect to the setW×{0}2
and input θi,2, i ≤ N .

Since Ã is Hurwitz, the origin for the boundary-layer system
(41) is exponentially stable. Now consider the reduced system

˙̃zt = −c1[E>t E� ⊗ In]∇W (z̃) + [E>t ⊗ In]ṽ (79a)
˙̃v = −sat(c2ṽ) + ζ̃ + θ2 (79b)
˙̃
ζ = −c3 ζ̃ − ṽ. (79c)

From (52) the subsystem (79a) is input-to-state stable with
respect to the set W and to the input ṽ. Next, consider
the subsystem (79b)-(79c). Let εu ∈ (0, 1) and define the
Lyapunov function

V2(ṽ, ζ̃) =
(1 + c3 εu)

2
|ṽ|2 +

1

2
|ζ̃|2 + εu ζ̃

>ṽ, (80)

which is positive definite. Its derivative along (79b)-(79c)
satisfies
V̇2(ṽ, ζ̃) ≤− (1 + εuc3 − γv)|ṽ|sat(c2|ṽ|)

−
(
c3 − εu −

ε2
u

1 + c3 εu

)
|ζ̃|2 +

2εu
1 + c3 εu

|θ|2.
(81)

Hence, choosing γv > 0 and εu > 0 small enough so that

γ2 := c3 − εu −
ε2
u

1 + c3 εu
> 0
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and γ1 := 1 + εuc3 − γv > 0, we have

V̇2(ṽ, ζ̃) ≤ −γ1|ṽ|sat(c2|ṽ|)− γ2|ζ̃|2 + γ3|θ2|2 (82)

where γ3 := 2εu/(1 + c3 εu). The inequality (82) implies
input-to-state stability of (79b)-(79c) with respect to the origin
and to θ2. Using [36, Theorem 3.1] we conclude that, for all
initial conditions ξ(0) such that zt(0) ∈ Dt and all essentially
bounded inputs θ2, the reduced system (79) is input-to-state
stable with respect to WΘ :=W × {0}2 and to the input θ2.
Furthermore, WΘ qualifies as a W-limit set for (79).

Now, since the boundary layer system is exponentially
stable and the reduced system is input-to-state stable with
respect to WΘ and θ2, using Theorem 1, we conclude that
the controller (76), with (19), (72), and (77) solves the robust
consensus problem with output constraints for system (70).
This, in turn, implies that the actual controllers (67)-(68) solve
the robust formation problem with output constraints for multi-
agent system (55).

C. Simulation results

In this section we illustrate the performance of the con-
troller (67)–(68) via a numerical example consisting in the
rendezvous of six UAVs, subject to inter-agent collision avoid-
ance and connectivity restrictions. It is assumed that the
measurement range of each agent is different and that they
are equipped with proximity sensors. Under these conditions,
it is natural to model the network using a directed topology
as in Fig. 4. It is assumed, however, that only at the initial
time the vehicles are interconnected, so the controller must
preserve such connectivity.

The initial conditions and constraint parameters are pre-
sented in Table I. The desired formation corresponds to a
hexagon and is determined by the desired relative position
vector zdk = (zdk,x, zdk,y, zdk,z), for each k ≤ 5, set to
(1, 0.5, 0), (−1, 1.5, 0), (−1, 0.5, 0), (−2, 1, 0), (−1, 0.5, 0).

1 2

3

4

5

6

e2

e3

e1
e4

e5

Fig. 4: Interaction topology: directed spanning tree

The saturation limit for the desired controller of the transla-
tional dynamics was set to ζ̄M = 7 m/s2, the controller gains
to c1 = 1, c2 = 0.8, c3 = 3, and the filter natural frequency
to ωn = 350 rad/s. We consider the mass of each drone to be
mi = 0.4 kg.

TABLE I: Initial conditions and constraint parameters

Index px py pz vx vy vz ∆k δk
1 2.4 0 -1 0.6 -0.8 0 2.5 0.2
2 -0.58 -0.9 0 -0.3 0 0 3.4 0.2
3 4 1.8 0 1.1 0.3 0 3.8 0.2
4 5 -2 0 0.1 0 0 3.5 0.2
5 -4.2 -0.45 0 0 0 0 3.7 0.2
6 -2 -4.2 2 -0.8 0 0 4.2 0.2

It is also assumed that the UAVs are subject to a disturbance
modeled as a smoothed vanishing step, that is,

θi(t) =− σi(t) [1 1 0]>

σi(t) =


−0.6

[
tanh(2(t− 15))− 1

]
if i ∈ {3, 5}

0.6
[

tanh(2(t− 15))− 1
]

if i = 2

0 if i ∈ {1, 4, 6}.

In Fig. 5 are illustrated the paths of each agent as well as the
final desired formation for the multi-agent system. In Fig. 6
are presented the trajectories of the inter-agent distances. As
can be seen from the figure, both connectivity and collision
avoidance constraints (dashed lines) are always respected, even
in the presence of the disturbance. Furthermore, as soon as the
disturbance vanishes after 15 seconds, the agents converge to
the desired static formation.
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Fig. 5: Paths of the agents.
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Fig. 6: Distances between neighbor UAVs. The dashed lines repre-
sent the connectivity and collision avoidance constraints.

VI. CONCLUSIONS

We presented a control framework of broad applicability
to solve the consensus problem for systems of high relative
degree in feedback form, subject to inter-agent constraints.
The design is based on the gradient of barrier Lyapunov
functions and on the command filtered backstepping approach.
From a theoretical viewpoint, it is important to emphasize that
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beyond mere convergence to the consensus manifold, we also
established robustness in the sense of practical input-to-state
multi-stability with respect to external disturbances. Moreover,
our results hold for both undirected and directed graphs.

Furthermore, we showed that our control framework is
versatile in that it serves as basis for consensus control
design of systems that are not, a priori, in the assumed strict-
feedback form. In particular, we solved the rendezvous (open)
problem for a group of UAVs subject to connectivity and
inter-agent collision-avoidance constraints. From a control-
practice viewpoint, it is remarked that each agent’s control
input requires only its own velocity and orientation, as well
as the relative position of its neighbors. In that light, we
believe that our theoretical results may pave the way for
solving other consensus-based problems in realistic settings
for different types of dynamical systems. Current research fo-
cuses on solving the consensus-tracking problem with limited
measurements and the generalization of our main theoretical
statements to multiagent systems interconnected over arbitrary
directed graphs (containing an underlying spanning tree).

APPENDIX I
CRITICAL POINTS OF THE BARRIER LYAPUNOV FUNCTION

First note that the gradient of the barrier Lyapunov function
(13) with (74) may be written as

∇Wk(z̃k) :=
∂Wk(z̃k)

∂z̃k
= %k(z̃k + zdk)

[
z̃k + zdk

]
− zdk , (83)

where

%k(sk) = 1 +
κ1,k

∆2
k − |sk|2

−
κ2,kδ

2
k

|sk|2(|sk|2 − δ2
k)
. (84)

Then the Hessian of the barrier Lyapunov function reads

Hk(z̃k) :=
∂

∂z̃k

[
∇Wk(z̃k)

]
=%k(z̃k + zdk)IN + 2%̃k(z̃k + zdk)

[
z̃k + zdk

][
z̃k + zdk

]>
(85)

where

%̃k(sk) :=
κ1,k(

∆2
k − |sk|2

)2 +
κ2,k(

|sk|2 − δ2
k

)2 − κ2,k

|sk|4
. (86)

From a straightforward computation, we see that the eigen-
values of Hk(z̃k) are

λi,k(z̃k)=%k(z̃k + zdk), i ∈ {1, . . . , n− 1} (87a)

λn,k(z̃k)=%k(z̃k + zdk) + 2%̃k(z̃k + zdk)|z̃k + zdk |2. (87b)

To show that z̃∗k is a saddle point it suffices to prove that at
least one of these eigenvalues is negative. From (84), (86), and
(75), it follows that for all δk < |z̃k + zdk | < ∆k,

%k(sk) + 2%̃k(sk)|sk|2 =1 +
κ1,k(∆2

k + |sk|2)

(∆2
k − |sk|2)2

+
κ2,kδ

2
k(3|sk|2 − δ2

k)

|sk|2(|sk|2 − δ2
k)2

> 1.

(88)

Hence, we show that λi,k(z̃∗k) = %k(z̃∗k + zdk) < 0. To that
end, note that from (83), since z̃∗k is a singular point of Wk,

%k(z̃∗k + zdk)
[
z̃∗k + zdk

]
= zdk . (89)

Now, since δk < |z̃∗k + zdk | < ∆k, we have
[
z̃∗k + zdk

]
6= 0.

Also, zdk 6= 0. Therefore, %k(z̃∗k + zdk) 6= 0. It follows that[
z̃∗k + zdk

]
=: z∗k , which is the critical point expressed in

the original relative-position coordinates, is aligned with zdk .
Furthermore, for each k ≤ M the barrier-Lyapunov function
Wk may possess only two singular points belonging to {zk ∈
Rn : δk < |zk| < ∆k}, but these must have opposite sign.
Consequently, there exists a > 0 such that z∗k = −a zdk or,
equivalently,

%k(z∗k) = −1

a
< 0, (90)

as required.
On the other hand, we have from (84) that %k(zdk) = 1, so

from (87), we can conclude that zdk is a minimum.

APPENDIX II
STABILITY OF MULTIPLE INVARIANT SETS

Terminology: A function γ : R≥0 → R≥0 is said to be of
class K, if it is continuous, strictly increasing and zero at zero.
If moreover γ(s) → ∞ as s → ∞, we say that γ ∈ K∞. A
function β : R≥0 × R≥0 7→ R≥0 is said to be of class KL
if, for each fixed t, the function β(·, t) is of class K and for
each fixed s, the function β(s, ·) is non-decreasing and tends
to zero as t→∞.

The following results on practical input-to-state stability of
multi-stable systems is adapted from [35, Theorem 2] to the
notation used in this paper.

Theorem 3: Consider a singularly perturbed system of the
form (38). Assume that:

1) the reduced system (39) is input-to-state stable with
respect to an acyclic W-limit set WΘ and an input θ;

2) the equilibrium α̃ = 0 of the boundary layer system (41)
is globally asymptotically stable.

Then, there exist a class KL function βα and a class K∞
function ηθ and, for any pair d1, d2 > 0, there exists an ε∗ > 0
such that, for any ε ∈ (0, ε∗], any essentially bounded function
θ(t), and any initial condition ξ(0) ∈ Dt × RnN(ρ−1), and
max{|ξ(0)|WΘ

, |α̃(0)|, ‖θ‖∞, ‖θ̇‖∞} ≤ d1, it holds that

lim sup
t→+∞

|ξ(t)|WΘ
≤ ηθ(‖θ‖∞) + d2 (91a)

|α̃(t)| ≤βα
(
|α̃(0)|, t

ε

)
+ d2. ∀t ≥ 0 (91b)

�
For completeness we include the following elements on

input-to-state multi-stability adapted, respectively, from [36,
Definition 2.7] and [36, Theorem 2.8].

Definition 2: A C1 function V : M → R≥0 is a practical
ISS-Lyapunov function for a system ẋ = f(x, θ) if there exist
K∞ functions η1, η, γ and q ≥ 0 such that, for all x ∈ M
and all θ, the following holds:

η1(|x|W) ≤V (x)

∇V (x)>f(x, θ) ≤− η(|x|W) + γ(|θ|) + q.
(92)

If (92) holds with q = 0, then V is said to be an ISS-Lyapunov
function. �
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Theorem 4: Consider a system ẋ = f(x, θ) and an acyclic
W-limit set W . Then, system ẋ = f(x, θ) is input-to-state
stable with respect to input θ and to the set W if and only if
it admits an ISS-Lyapunov function. �
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