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SEMICLASSICAL SPECTRUM
OF THE DIRICHLET-PAULI OPERATOR

ON AN ANNULUS

E. LAVIGNE BON

Abstract. This paper is devoted to the semiclassical analysis of the spectrum of the
Dirichlet-Pauli operator on an annulus. We assume that the magnetic field is strictly
positive and radial. We give an explicit asymptotic expansion at the first order of the
lowest eigenvalues of this operator in the semiclassical limit. In particular, we exhibit
the Aharonov-Bohm effect that has been revealed, for constant magnetic field, in a
recent paper by Helffer and Sundqvist.
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1. Introduction

This paper deals with the low-lying spectrum of the Dirichlet-Pauli operator. This
operator is the Hamiltonian of the Pauli’s equation, which models non-relativistic spin-
1/2 particules interacting with a magnetic field. For a particle of mass and electric
charge equal to 1, in a pure magnetic field perpendicular to the domain, the Pauli’s
equation reads

ih∂tΨ = PhΨ,

where Ψ : R × Ω → C2 is the state of the system, Ω a smooth bounded domain of
R2 and h > 0 the semiclassical parameter. We associate to the magnetic field (which
is assumed to be smooth), denoted by B, a magnetic vector potential A = (A1, A2)
satisfying B = ∂xA2 − ∂yA1.
The Dirichlet-Pauli operator acts as

Ph =
[
σ · (−ih∇− A)

]2
on H2

(
Ω,C2

)
∩ H1

0

(
Ω,C2

)
,

with σ = (σ1, σ2), the Pauli matrices (Hermitian, unitary)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.1)

and σ · v = σ1v1 + σ2v2 for v = (v1, v2) ∈ C2. Notice that to ensure its selfadjointness
we assume that boundary carries Dirichlet conditions. Let

(
λk(h)

)
k∈N∗ be the real

non-decreasing sequence of eigenvalues of Ph counting multiplicity.

The Dirichlet-Pauli operator has been the subject of many recent works. In particular,
the paper [4] presents a new approach, for simply connected domains, leading to very
accurate estimates of the low-lying spectrum. Helffer and Sundqvist [13] proved the
exponential decay rate of the ground state in the case of a connected domain. They
also given, in the same paper, numerical results describing the behavior of the first
eigenvalues on an annulus with a constant magnetic field.

Here, we consider an annulus Ω and we assume that the magnetic field is strictly
positive and radial. We give explicitly the first term of the asymptotic expansion for
the first eigenvalues. Let us informally describe our main result. We prove in this paper
that, for all k ∈ N∗,

λk(h) = min
V ⊂ Z
#V = k

max
m∈V

f

(
m− c0

h

) √
h e

2ϕmin
h (1 + oh→0(1)) ,

with c0 ∈ R, ϕmin a strictly negative constant and f : R → R a coercive function known
explicitly according to the magnetic field and Ω.

The prefactor in λk(h) encodes two kinds of gauge invariance. Of course, the standard
magnetic gauge invariance (adding a gradient to the magnetic potential) leaves ϕmin, f
and c0 invariant. The presence of the hole introduces another degree of freedom given
by conjugating the operator by eip arg (p ∈ Z, arg being the argument). The invariance
by translation by an integer of the prefactor of λk(h) is reminiscent of this invariance
(see Section 2.2).

Note that the constant c0 depends mainly on the circulation of the magnetic potential
on the interior boundary. When it does not vanish, we observe an oscillation of the
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eigenvalues in the semiclassical limit through the 1-periodicity of

d 7−→ min
V ⊂ Z
#V = k

max
m∈V

f (m− d) .

This influence of the circulation of the magnetic potential on the eigenvalues evokes the
Aharonov-Bohm effect. It has already been mentioned in [13], for more details on this
phenomenon see the original reference [1], for a new point of view see also [2].
This result highlights some phenomena that should also appear in doubly connected
case (without symetry) and in multiconnected domains.

1.1. Hypothesis and definition of the Dirichlet-Pauli operator.
Let Ω ⊂ R2 be an annulus centered at the origin with radius 0 < ρ1 < ρ2. We let

∂Ω = ∂Ωint

⊔
∂Ωext, (1.2)

with ∂Ωint = C(0, ρ1) and ∂Ωext = C(0, ρ2).
Consider a magnetic field B ∈ C∞

(
Ω,R

)
. Despite the presence of a hole, there exists

a regular vector potential denoted by A = (A1, A2), which satisfies

B = rot (A) = ∂xA2 − ∂yA1. (1.3)

Note however that two Pauli operators with two vector potentials associated with B
are not necessarily unitarily equivalent (see Section 2).

Assumption 1.1. The magnetic field is radial and strictly positive.

1.1.1. The Dirichlet-Pauli operator. We are interested in the Dirichlet-Pauli operator(
Ph,Dom (Ph)

)
defined for all h > 0 as

Ph =
[
σ · (p− A)

]2
=

(
|p− A|2 − hB 0

0 |p− A|2 + hB

)
=

(
L−

h 0
0 L+

h

)
,

acting on the domain

Dom (Ph) = H2
(
Ω,C2

)
∩ H1

0

(
Ω,C2

)
.

Here p = −ih∇. This operator is non-negative, self-adjoint with compact resolvent.
By the spectral theorem, the spectrum of

(
Ph,Dom (Ph)

)
is real, discrete and can be

written as a sequence tending to +∞.
The purpose of this paper is to investigate the behavior of the lowest eigenvalues in the
semiclassical limit. Since B > 0 on Ω, it is enough to study the spectrum of L−

h .

Notation 1. Let
(
λk(h)

)
k∈N∗ denote the non-decreasing sequence of eigenvalues of Ph.

By the min-max theorem, we have the following characterization

λk(h) = inf
V⊂H1

0 (Ω,C2)
dimV =k

sup
u∈V \{0}

∥∥σ · (p− A)u
∥∥2
L2(Ω)

∥u∥2L2(Ω)

. (1.4)
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1.1.2. Scalar potential. The choice of A will play an important role. A particular choice
is associated with the scalar potential, ϕ being the unique solution in H1

0 (Ω,R) (cf. [9,
Theorem 6, p.326]) of the Poisson equation{

∆ϕ = B on Ω
ϕ = 0 in ∂Ω.

(1.5)

Since B is positive, ϕ is subharmonic and satisfies

max
x∈Ω

ϕ = max
x∈∂Ω

ϕ = 0 ,

by the maximum principle. In particular, the minimum of ϕ is negative and attained
in Ω. We note that the exterior normal derivative of ϕ, denoted ∂nϕ, is strictly positive
on ∂Ω from [9, Hopf’s Lemma, p.330].

Remark 1.2. Assumption 1.1 on the magnetic field and the uniqueness of ϕ ensures
that ϕ is radial and admits a unique circle of minimum centered at the origin and of
radius rmin ∈]ρ1, ρ2[. We note ϕmin the minimum of ϕ. In polar coordinates, ϕ is the
solution of {

ϕ′′(r) + 1
r
ϕ′(r) = B(r) on ]ρ1, ρ2[

ϕ (ρ1) = ϕ (ρ2) = 0 .

so that ϕ′′(rmin) = B(rmin) ⩾ B0 = inf{B(x) : x ∈ Ω}.

1.2. Results and discussions. Some recent works have investigated the semiclassical
limit of the bottom of the spectrum:

(1) In the non-simply connected case, Helffer and Sundqvist have proved, in [13],
that if the magnetic field is positive, then

λ1(h) = exp

(
2ϕmin

h
+ oh→0

(
1

h

))
.

The techniques employed for the lower bound are mainly based on those used
by Ekholm, Kovař́ık and Portmann in [8]. The main novelty of their proof is
the combination of some gauge invariances and the Hodge-de Rham theory to
control the oscillations induced by the circulation of the magnetic potential.
In [13, Section 7], a numerical analysis of the smallest eigenvalues is realized
in the case of a constant magnetic field on the annulus, by means of a finite
difference method. It relies on a Fourier decomposition, parametrized by the
circulation of the magnetic potential.

(2) In the simply connected case, Barbaroux, Le Treust, Raymond and Stockmeyer
have proved, in [4], that for all k ∈ N∗, there exist Cinf (k), Csup(k) > 0 such
that

Cinf (k)h
1−ke2ϕmin/h(1 + oh→0(1)) ⩽ λk(h) ⩽ Csup(k)h

1−ke2ϕmin/h(1 + oh→0(1)) ,

under the assumption that B is positive and that ϕ has a unique minimum,
which is non-degenerate. The prefactors Cinf (k) and Csup(k), are given explicitly.
Their strategy is based on the Riemann mapping theorem and the connection
between the spectral analysis of Dirichlet-Pauli operator and Cauchy-Riemann
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operators. In particular, the lower bound, established by a holomorphic ap-
proximation result [4, Proposition 5.4], is a consequence of the ellipticity of
Cauchy-Riemann operators.

The main result of this article is the following.

Theorem 1.3. Let B ∈ C∞
(
Ω,R

)
be radial such that

B0 = inf{B(x), x ∈ Ω} > 0,

and A ∈ C∞
(
Ω,R2

)
be an associated vector potential.

Then, for all fixed k ∈ N∗, we have

λk(h) = αk(h)
√
h e2ϕmin/h(1 + oh→0(1)),

where

αk(h) = min
V ⊂ Z
#V = k

max
m∈V

f

(
m− c0

h

)
and c0 = ρ1∂rϕ (ρ1)−

1

2π

∫
∂Ωint

A ,

with f : R → R given by

f(m) = 2

√
B(rmin)

π

(
∂nϕ (ρ1)

(
ρ1
rmin

)2m+1

+ ∂nϕ (ρ2)

(
ρ2
rmin

)2m+1
)
.

Remark 1.4. We note that, unlike [4, Theorem 1.3], the decreasing behavior in h is
the same for each of the eigenvalues. This comes from the fact that the scalar potential
does not admit a unique non-degenerate minimum.

We give here a brief outline of the ideas to establish the main theorem.

i. In Section 2, we follow [13] to select a useful gauge. The explicit description
of the Hodge-de Rham theory reveals the role of circulations when writing the
magnetic potential, see Proposition 2.3. In Section 3, we make a fibration of the
Dirichlet-Pauli operator by means of Fourier series:

L−
h =

⊕
m∈Z

L−
h,m.

ii. Techniques used in [4] and in Sections 5 and 6 share common features. First, we
prove uniform ellipticity inequalities for the Dirac operator for fixedm. Then, we
deduce a lower bound for k ⩾ 2 of the k-th eigenvalue λk,m(h) of L−

h,m. Finally,
with the upper bound on λ1,m(h), we deduce a localization and a monomial
approximation for the eigenfunctions associated to λ1,m(h).

iii. The proof of Theorem 1.3 relies on Proposition 4.1:
(a) The lowest eigenvalues of L−

h are, in the semiclassical limit, ground states
of L−

h,m, see Lemma 4.6.
(b) The sequence of renormalized eigenvalues,

f1,h(m) =
λ1,m(h)√
h e2ϕmin/h

,
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with ϕmin defined in Remark 1.2, converges uniformly (inm) on any compact
of R, when h tends to 0. Moreover, it also verifies a property of weak
coercivity with respect to m.

Finally, if m(h) is such that λ1,m(h)(h) = λk(h), the upper bound of Lemma
4.5 implies that m(h) is uniformly bounded with respect to h. The min-max
formula on integers with the uniform convergence on any compact ends the proof
of Theorem 1.3.

2. Choice of gauges on the annulus

When the domain is simply connected the vector potential A can be chosen, via gauge
invariance, equal to ∇⊥ϕ, where ϕ is a solution of (1.5), modulo the gradient of a regular
function [4].
In this section we slightly revisit [13] by describing explicitly an equivalence class of
magnetic potentials defined in such a way that the set of associated Pauli operators are
unitarily equivalent.

2.1. Selection of vector potential. Recall that A is fixed and satisfies (1.3). By
gauge invariance, we can choose a new magnetic potential Ǎ such that{

rot(Ǎ) = B and div(Ǎ) = 0 on Ω,
Ǎ · n = 0 in ∂Ω.

(2.1)

In fact, consider f a solution of{
−∆f = div(A) on Ω
∇f · n = −A · n in ∂Ω,

Such a solution exists but is not unique, see [3, Theorem 5.2.18].
We can easily check that Ǎ = A+∇f verify (2.1).
The unitary transformation to be carried out on the operator to make such a modifica-
tion is the following

σ ·
(
p− Ǎ

)
= exp

(
i
f

h
Id

)
σ · (p− A) exp

(
−if
h
Id

)
.

2.2. A class of admissible vectors potential. Let us describe a family of vector
potentials associated with B. To do so, we will need the following two lemmas, conse-
quences of the Hodge de-Rham theory, whose proofs are provided in Appendix A.

Lemma 2.1. Let F ∈ C∞ (Ω,R2
)
a vector potential satisfying (2.1) with B = 0 and∫

∂Ωint

F = 0,

where ∂Ωint is defined in (1.2).
Then, F = 0.

Lemma 2.2. Let θ the unique solution of{
∆θ = 0 on Ω
θ = 1 in ∂Ωint and θ = 0 in ∂Ωext.
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Then, ∇⊥θ verifies (2.1) with B = 0 and we have in polar coordinates, for all (r, s) ∈
[ρ1, ρ2]× [0, 2π[,

∇⊥θ(r, s) =
1

r ln(ρ1/ρ2)

(
− sin(s)
cos(s)

)
.

Moreover ∫
∂Ωint

∇⊥θ =
2π

ln
(
ρ1/ρ2

) ,
with ∂Ωint defined in (1.2).

We have a family of vector potentials that give rise to unitarily equivalent operators.

Notation 2. We note arg(·) the principal value of the argument that lies within the
interval [0, 2π[.

Proposition 2.3. Recall that ϕ is defined in (1.5) and θ in Lemma 2.2.
For all p ∈ Z and h > 0, consider

Ah,p = ∇⊥ϕ + h γh,p ln

(
ρ1
ρ2

)
∇⊥θ ,

with γh,p = p+ c0/h and c0 = ρ1∂rϕ (ρ1)− 1
2π

∫
∂Ωint

A.
Then, we have [

σ ·
(
p−Ah,p

)]2
= eip arg

[
σ ·
(
p− Ǎ

)]2
e−ip arg.

Proof.

(1) Let us show that there exists c ∈ R such that Ǎ = ∇⊥ϕ+ c∇⊥θ.
Let α ∈ R to be determined, consider

F = Ǎ−∇⊥ϕ− α∇⊥θ.

The vector field F verifies (2.1). By linearity, we have rot (F ) = div (F ) =
0. Moreover, since ϕ and θ are constant on each connected component of the
boundary we have

∇⊥ϕ · n = − d

dt
ϕ(γ(t)) = 0 and similarly ∇⊥θ · n = 0,

with γ a parametrization of a connected component of the boundary and n =(
0 1
−1 0

)
γ′ the associated unit normal.

If we find α such that
∫
∂Ωint

F = 0, then by Lemma 2.1 we have F = 0.

On the one hand we have for (r, s) ∈ [ρ1, ρ2]× [0, 2π[

∇⊥ϕ(r, s) = ∂rϕ(r)

(
− sin(s)
cos(s)

)
,

thus ∫
∂Ωint

∇⊥ϕ = 2πρ1∂rϕ(ρ1).
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On the other hand,∫
∂Ωint

Ǎ =

∫
∂Ωint

A+∇f =

∫
∂Ωint

A .

Finally, the choice

α = ln

(
ρ2
ρ1

)(
ρ1∂rϕ(ρ1)−

1

2π

∫
∂Ωint

A

)
,

gives the desired result.
(2) Let us now take p ∈ Z and h > 0.

For (x, y) ∈ Ω, the function exp(ip arg(x, y)) is smooth. We can change the
magnetic potential by conjugating with the unitary operator exp(ip arg).
Note that for all (r, s) ∈ R∗

+ × [0, 2π[

−ih∇ = −ih

((
cos (s)
sin (s)

)
∂r +

1

r

(
− sin (s)
cos (s)

)
∂s

)
and eip arg(x,y) = eips .

For (x, y) ∈ Ω, we have, in polar coordinates, for all (r, s) ∈ [ρ1, ρ2]× [0, 2π[,

−ih∇ eip arg(x,y) =
hp

r

(
− sin (s)
cos (s)

)
eips = hp ln

(
ρ1
ρ2

)
∇⊥θ eip arg(x,y),

where we used Lemma 2.2.
Finally, we have[

σ ·
(
p−Ah,p

)]2
= eip arg

[
σ ·
(
p− Ǎ

)]2
e−ip arg

with

Ah,p = Ǎ + ih eiparg ∇e−iparg = Ǎ + hp ln

(
ρ1
ρ2

)
∇⊥θ.

□

Remark 2.4. Taking p = 0, in Proposition 2.3, we see that Ǎ = Ah,0.
Thus, we have

Ǎ = ∇⊥ϕ + c0 ln

(
ρ1
ρ2

)
∇⊥θ ,

with c0 = ρ1∂rϕ (ρ1)− 1
2π

∫
∂Ωint

A.

Remark 2.5. The unit operator exp(ip arg) of Proposition 2.3 is an explicit version
of the one given in [10, Proposition 2.1.3]. By Lemma 2.2, it is easy to see that the
composition by exp(ip arg) modifies the circulations of the magnetic potential, i.e.∫

∂Ωint

Ah,p =

∫
∂Ωint

Ǎ+ 2πhp.
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3. Fibration of the Dirichlet-Pauli operator

In this section, we decompose the Dirichlet-Pauli operator, with potential Ah,p, into
Fourier series.
Under the assumption that the magnetic field is radial, the Dirichlet-Pauli operator in

polar coordinates, denoted by P̃h, acting on L2
(
]ρ1, ρ2[×[0, 2π[,C2; r dr

)
as

P̃h =

−h2(∂2rr +
1

r
∂r

)
+

(
h

(
−i∂s − γh,p

)
r

− ∂rϕ(r)

)2
 I2 − hB(r)σ3, (3.1)

with γh,p defined in Proposition 2.3.
Details are given in Appendix B.

Thanks to the change of function u(r) =
√
r v(r), we get a new operator acting now

on L2
(
]ρ1, ρ2[×[0, 2π[,C2; dr ds

)
as

P̂h =

−h2(∂2rr +
1

4r2

)
+

(
h

(
−i∂s − γh,p

)
r

− ∂rϕ(r)

)2
 I2 − hB(r)σ3. (3.2)

Consider F , the Fourier isomorphism between L2
(
]ρ1, ρ2[×[0, 2π[,C2; dr ds

)
and

ℓ2
(
L2
(
]ρ1, ρ2[,C2; dr

))
. Equation (3.2) ensures that P̂h and F commute. We have the

following diagram

H1
0 ∩H2

(
]ρ1, ρ2[×[0, 2π[,C2; dr ds

) F //

P̂h

��

ℓ2
(
H1

0 ∩H2
(
]ρ1, ρ2[,C2; dr

))
⊕

m∈Z Ph,m

��

L2
(
]ρ1, ρ2[×[0, 2π[,C2; dr ds

)
F

// ℓ2
(
L2
(
]ρ1, ρ2[,C2; dr

))
, (3.3)

where the operator Ph,m is defined as follows.

Definition 3.1. Let h ∈]0, 1] andm, p ∈ Z. We define the operator
(
Ph,m,Dom

(
Ph,m

))
on L2

(
[ρ1, ρ2],C2

)
as the operator acting as

Ph,m =

−h2(∂2rr +
1

4r2

)
+

(
h

(
m− γh,p

)
r

− ∂rϕ(r)

)2
 I2 − hB(r)σ3 , (3.4)

with γh,p defined in Proposition 2.3.
Moreover, Dom

(
Ph,m

)
= H1

0 ∩ H2
(
[ρ1, ρ2],C2

)
. We also note L−

h,m and L+
h,m, the

operators given by

Ph,m =

(
L−

h,m 0
0 L+

h,m

)
.

We give in the next lemma the connection between the spectrum of Ph and that of
Ph,m for m ∈ Z. A proof of this result is given in Appendix B.
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Lemma 3.2. Under the assumptions made in Section 1, we have for all h ∈]0, 1] :

Sp (Ph) =
⋃
m∈Z

Sp
(
Ph,m

)
, (3.5)

with Ph,m given in Definition 3.1.
Moreover, if vm is eigenfunction of Ph,m then (r, s) 7→

√
r vm(r)e

ims is an eigenfunction

of P̃h associated with the same eigenvalue, with P̃h given in (3.1).

Remark 3.3. In the same way as in Lemma 3.2, we have

Sp
(
L−

h

)
=
⋃
m∈Z

Sp
(
L−

h,m

)
and Sp

(
L+

h

)
=
⋃
m∈Z

Sp
(
L+

h,m

)
.

3.1. Extension of the definition of known operators. The definition of Ph,m, see
Definition 3.1, naturally leads us to consider real moments (and not only integer mo-
ments). Indeed, in (3.4), the factor m− γh,p is no more an integer.
Section 3.1.1 is devoted to the study of some remarkable operators with real angular
momentum.

3.1.1. Real angular momentum operators. All the results of this section will be demon-
strated in the case where the magnetic potential is equal to A0 = ∇⊥ϕ. We will see in
the next subsection that it is sufficient when considering real moments.

Let us define the magnetic gradient, magnetic Laplacian and magnetic Dirac operators
appearing during the manipulation of the Pauli operator. This definition allows us to
have a better overview of the operator Ph,m.

Remark 3.4. Let h ∈]0, 1] and m ∈ Z. We will show that by defining Ph,m with the
potential A0, we have

L−
h,m = dh,md

×
h,m , L+

h,m+1 = d×h,mdh,m,

where dh,m given in Definition 3.5.

Definition 3.5. Let m ∈ R and h > 0.

We define
(
ph,m, Dom

(
ph,m

))
,
(
dh,m, Dom

(
dh,m

))
,
(
Mh,m, Dom

(
Mh,m

))
the op-

erators on L2
(
[ρ1, ρ2],C

)
acting as

ph,m = −iher
(
∂r −

1

2r

)
+ es

(
hm

r
− ∂rϕ

)
,

dh,m = −ih
(
∂r +

m+ 1/2

r
− ∂rϕ

h

)
,

Mh,m = p×
h,m · ph,m = −h2

(
∂2r +

1

4r2

)
+

(
hm

r
− ∂rϕ

)2

,

where the family of vectors (er, es) constitutes a direct orthonormal basis of R2 and
p×
h,m is the formal adjoint of ph,m.

Moreover,

Dom
(
dh,m

)
= Dom

(
ph,m

)
= H1

0

(
[ρ1, ρ2],C

)
and Dom

(
Mh,m

)
= H1

0∩H2
(
[ρ1, ρ2],C

)
.
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The operators ph,m, dh,m, Mh,m are actually related to each other as one can see in
the following.

Proposition 3.6. Let A0 = ∇⊥ϕ where ϕ is the unique solution of the Poisson’s equa-
tion (1.5).
For m ∈ R and h > 0, we have

d×h,mdh,m = Mh,m+1 + hB ,

dh,md
×
h,m = Mh,m − hB ,

(3.6)

where d×h,m is the formal adjoint of dh,m (in the distribution meaning).
When m is an integer, the operators ph,m and dh,m acting on the radial functions

verify

ph,m = e−imsr1/2 (p−A0) r
−1/2eims ,

Mh,m = e−imsr1/2 |p−A0|2 r−1/2eims ,
(3.7)

and(
0 dh,m

d×h,m 0

)
=

(
e−ims 0
0 e−i(m+1)s

)
r1/2σ · (p−A0)r

−1/2

(
eims 0
0 ei(m+1)s

)
, (3.8)

where p = −ih∇ = −iher∂r − ihes
∂s
r

is the momentum operator in polar coordinates

(er(s) = (cos(s), sin(s)), es(s) = (− sin(s), cos(s))), |p−A0|2 is the magnetic Lapla-
cian.

Proof. Let u ∈ C∞
c (R,C) and v = (v1, v2) ∈ C∞

c

(
R,C2

)
.

(i) Let us start with (3.6). We have

d×h,mdh,m u = −h2
(
∂r −

m+ 1/2

r
+
∂rϕ

h

)(
∂r +

m+ 1/2

r
− ∂rϕ

h

)
u

= −h2
(
∂2r −

m+ 1/2

r2
− ∂2rϕ

h
−
(
m+ 1/2

r

)2

+ 2
m+ 1/2

r

∂rϕ

h
−
(
∂rϕ

h

)2
)
u ,

and then

d×h,mdh,m u = −h2
(
∂2r −

(m+ 1)− 1/2

r2
− ∂2rϕ

h
−
(
(m+ 1)− 1/2

r

)2

+2
(m+ 1)− 1/2

r

∂rϕ

h
−
(
∂rϕ

h

)2
)
u

= Mh,m+1u+ h

(
∂2rϕ+

1

r
∂rϕ

)
u

=
(
Mh,m+1 + hB

)
u .
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In the same way,

dh,md
×
h,m u = −h2

(
∂r +

m+ 1/2

r
− ∂rϕ

h

)(
∂r −

m+ 1/2

r
+
∂rϕ

h

)
u

= −h2
(
∂2r +

m+ 1/2

r2
+
∂2rϕ

h
−
(
m+ 1/2

r

)2

+ 2
m+ 1/2

r

∂rϕ

h
−
(
∂rϕ

h

)2
)
u

= Mh,mu− h

(
∂2rϕ+

1

r
∂rϕ

)
u

=
(
Mh,m − hB

)
u .

(ii) Let us then establish (3.7). On the one hand, we have
r1/2∂rr

−1/2u = ∂ru−
1

2r
u ,

r1/2∂2rr
−1/2u = ∂2ru−

1

r
∂ru+

3

4r2
u ,

(3.9)

on the other hand, we deduce from the radialness of ϕ that

A0 = ∇⊥ϕ =

(
er∂r + es

∂s
r

)⊥

ϕ = es∂rϕ . (3.10)

The magnetic gradient becomes

e−imsr1/2 (p−A0) r
−1/2eimsv = e−imsr1/2

(
−ih

(
er∂r + es

∂s
r

)
− es∂rϕ

)
r−1/2eimsv

= −iherr1/2∂rr−1/2v + es

(
hm

r
− ∂rϕ

)
v

= ph,mv .

Then, the magnetic Laplacian satisfies

|p−A0|2 u = −h2∆ u+ 2ihA0 · ∇ u+ |A0|2 u .

In polar coordinates, we have

r1/2∆ r−1/2u =

(
∂2r +

1

4r2
+
∂2s
r2

)
u ,

r1/2A0 · ∇ r−1/2u =

(
0
∂rϕ

)
·
(
∂r − 1

2r
∂s
r

)
u = ∂rϕ

∂s
r
u ,

r1/2 |A0|2 r−1/2u = (∂rϕ)
2 u .

Thus,

e−imsr1/2 |p−A0|2 r−1/2eimsu = −h2
(
∂2r +

1

4r2
− m2

r2

)
u− 2

hm

r
∂rϕu+ (∂rϕ)

2 u

= Mh,mu .
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(iii) Let us finish with (3.8). Using (3.10) and the properties of Pauli matrices, we
have

σ · (p−A0) = σ ·

(
−iher∂r + es

{
−ih∂s
r

− ∂rϕ

})

= σ · er

(
−ih∂r Id2+iσ3

{
−ih∂s
r

− ∂rϕ

})

=

(
0 e−is

eis 0

)−ih∂r + i
{

−ih∂s
r

− ∂rϕ
}

0

0 −ih∂r − i
{

−ih∂s
r

− ∂rϕ
}


=

 0 −ihe−is
(
∂r +

−i∂s
r

− ∂rϕ
h

)
−iheis

(
∂r − −i∂s

r
+ ∂rϕ

h

)
0

 .

From Equation (3.9), we have

r1/2σ · (p−A0)r
−1/2

(
eims 0
0 ei(m+1)s

)(
v1
v2

)

=

 0 −ihe−is
(
∂r +

−i∂s−1/2
r

− ∂rϕ
h

)
−iheis

(
∂r − −i∂s+1/2

r
+ ∂rϕ

h

)
0

( v1e
ims

v2e
i(m+1)s

)

=

(
eims 0
0 ei(m+1)s

)(
0 dh,m

d×h,m 0

)(
v1
v2

)
.

□

The following lemma will be important when studing the adjoint of dh,m and to
determine elliptic estimates.

Lemma 3.7. Let h ∈]0, 1], m ∈ R and u ∈ H1
0

(
[ρ1, ρ2],C

)
. We have

∥∥dh,mu∥∥2 = h2

∥∥∥∥∥
(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

+ h
∥∥∥√Bu∥∥∥2

∥∥∥d×h,(m+1)u
∥∥∥2 = h2

∥∥∥∥∥
(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

− h
∥∥∥√Bu∥∥∥2 ,

Proof. Let h ∈]0, 1], m ∈ R and u ∈ H1
0

(
[ρ1, ρ2],C

)
. By using Proposition 3.6, one

easily checks that∥∥dh,mu∥∥2 = ∥∥∥ph,m+1u
∥∥∥2 + h

∥∥∥√B u
∥∥∥2

= h2

∥∥∥∥∥
(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

+ h
∥∥∥√Bu∥∥∥2 .
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We proceed in the same way for
∥∥∥d×h,(m+1)u

∥∥∥2. □

Next proposition gives an explicit description of the kernel of the adjoint of dh,m and
of its orthogonal.

Proposition 3.8.

(i) The operator
(
dh,m, Dom

(
dh,m

))
is closed with closed range.

(ii) The adjoint

(
d∗h,m, Dom

(
d∗h,m

))
acts as d×h,m on Dom

(
d∗h,m

)
= H1

(
[ρ1, ρ2],C

)
and

ker
(
d∗h,m

)
= Vect

(
r 7→ e−ϕ/hrm+1/2

)
.

(iii) We have, ker
(
d∗h,m

)⊥
∩Dom

(
d∗h,m

)
=
{
dh,mw; w ∈ H1

0 ∩H2
(
[ρ1, ρ2],C

)}
.

Proof.

(i) Lemma 3.7 ensures the equivalence between the norm H1
0

(
[ρ1, ρ2],C

)
and the

graph norm of dh,m. Thus, the operator
(
dh,m, Dom

(
dh,m

))
is closed. The

closed image property follows from the same lemma. Indeed, for any u ∈
H1

0

(
[ρ1, ρ2],C

)
∥∥dh,mu∥∥ ⩾

√
2hB0 ∥u∥ ,

with B0 = infx∈ΩB(x) > 0 by assumption.
(ii) By definition,

Dom
(
d∗h,m

)
⊂
{
u ∈ L2; d×h,mu ∈ L2

}
= H1

(
[ρ1, ρ2],C

)
.

On the other hand, if v ∈ H1
(
[ρ1, ρ2],C

)
we have for all w ∈ C∞

c

(
[ρ1, ρ2],C

)
〈
v, dh,mw

〉
=
〈
d×h,mv, w

〉
,

and d×h,mv ∈ L2
(
[ρ1, ρ2],C

)
. Finally, we can extend by density this result to

Dom
(
dh,m

)
to obtain v ∈ Dom

(
d∗h,m

)
and d∗h,m = d×h,m.

Moreover,

ker
(
d∗h,m

)
=
{
u ∈ L2; d×h,mu = 0

}
=

{
e−ϕ/hv, v ∈ L2;

(
∂r −

m+ 1/2

r

)
v = 0

}
= Vect

(
r 7→ e−ϕ/hrm+1/2

)
.
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(iii) The following equalities are consequences of Proposition 3.6,

ker
(
d∗h,m

)⊥
∩Dom

(
d∗h,m

)
= Im

(
dh,m

)
∩Dom

(
d∗h,m

)
=
{
dh,mw; w ∈ H1

0 and d×h,mdh,mw =
(
Mh,m+1 + hB

)
w ∈ L2

}
=
{
dh,mw; w ∈ H1

0 ∩H2
(
[ρ1, ρ2],C

)}
.

□

3.2. Back to the Pauli operator and symmetry of the Dirac operator. Fol-
lowing the same idea as in Remark 3.4, we can now extend the definition of the Pauli
operator for real moments with a magnetic potential equal to Ah,p, with p ∈ Z and
h ∈]0, 1]. The main result of this part is Proposition 3.12 that give us an explicit formula
for the spectrum of L−

h,m.

Definition 3.9. Let h > 0, m ∈ R and p ∈ Z.

Consider

(
L±

h,m, Dom
(
L±

h,m

))
, the self-adjoint operators acting as

L−
h,m = dh,m̃d

×
h,m̃ , L+

h,m+1 = d×h,m̃dh,m̃ and Dom
(
L±

h,m

)
= H1

0 ∩H2
(
[ρ1, ρ2],C

)
,

where dh,m̃ defined in Definition 3.5, with m̃ = m − γh,p and γh,p defined in Proposi-
tion 2.3. Moreover, we let

(
λk,m̃(h)

)
k∈N∗ be the non-decreasing sequence of eigenvalues

associated to L−
h,m.

Remark 3.10. By using the min-max theorem, we have

λk,m(h) = inf
V⊂Dom

(
d×h,m

)
dimV =k

sup
v∈V \{0}

∥∥∥d×h,m v∥∥∥2
2

∥v∥22
.

with d×h,m defined in Definition 3.5.

The next result (see [4, Lemma 3.11]) ensures that it is possible to modify the magnetic
field of the Dirac operator by composing with well chosen matrices. This explains the
choice, made in subsection 3.1.1, to define the Dirac operator for the magnetic potential
A0 = ∇⊥ϕ. We invite the reader to consult the paper [4] for a proof of the next lemma.

Lemma 3.11. We have the following relation

eσ3
Ψ
h σ · p eσ3

Ψ
h = σ ·

(
p−∇Ψ⊥

)
, (3.11)

with Ψ ∈ C1
(
Ω
)
and σ3 defined in (1.1).

We use this lemma to make the change of function v = e−ϕ/hu.
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Proposition 3.12. Let k ∈ N∗, m ∈ R and h ∈]0, 1]. We have

λk,m(h) = inf
V⊂H1

0([ρ1,ρ2],C)
dimV =k

sup
v∈V \{0}

h2
∫ ρ2

ρ1

e−2ϕ/h

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)
v(r)

∣∣∣∣∣
2

dr∫ ρ2

ρ1

e−2ϕ/h
∣∣v(r)∣∣2 dr . (3.12)

4. Proof of Theorem 1.3

In this section we establish Theorem 1.3.

Notation 3. Let j ∈ N∗, h > 0 and m ∈ R, we consider

fj,h(m) =
λj,m(h)√

h
e−2ϕmin/h .

The following proposition will be proved in Sections 6 and 7 (for the first two points)
and Section 5 (for the last point).

Proposition 4.1. We have

(1)
(
f1,h
)
h∈]0,1] is uniformly convergent on any compact to f : R → R+ when h tends

to 0 where

f : m 7−→ 2

√
ϕ′′
min

π

(
∂nϕ (ρ1)

(
ρ1
rmin

)2m+1

+ ∂nϕ (ρ2)

(
ρ2
rmin

)2m+1
)
. (4.1)

(2) Let K > 0 and h0 > 0. There exists g : R → R+ coercive such that for all
h ∈]0, h0] , and m ∈ R satisfying

f1,h(m) ⩽ K ,

one has f1,h(m) ⩾ g(m).
(3) For all h > 0, j ⩾ 2 and m ∈ R, we have

fj,h(m) ⩾ 2B0

√
he−2ϕmin/h .

Remark 4.2. For all m ∈ R ,
f(m) ⩾ c > 0 ,

with c = 2

√
ϕ′′
min

π
min

(
∂nϕ (ρ1) , ∂nϕ (ρ2)

)
.

Thus, let us temporarily admit that Proposition 4.1 holds.

Now we can use Proposition 2.3 and choose, for each h > 0, a good magnetic potential.
For all h > 0 , we consider the Dirichlet-Pauli operator associated to the vector potential

Ah = ∇⊥ϕ+ hγ(h)ln

(
ρ1
ρ2

)
∇⊥θ ,

with γ(h) = c0
h
−
⌊
c0
h

⌋
in such a way that γ(h) ∈ [0, 1].

Definition 3.9 and Remark 3.3 ensure that

Sp
(
L−

h

)
=
{
λj,m−γ(h)(h) ,m ∈ Z , j ∈ N∗} . (4.2)

The following lemma justifies the existence of the prefactor given in Theorem 1.3.
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Lemma 4.3. Let h > 0, k ∈ N∗, we consider the non-decreasing sequence

αk(h) = inf
V ⊂ Z
#V = k

sup
m∈V

f(m− γ(h)) . (4.3)

Then, there exists a k-tuple

Vk(h) = {µ1(h), . . . , µk(h)}
which realizes the infimum. Moreover, the functions h 7→ αk(h) and h 7→ µj(h) are
bounded for j ∈ {1, . . . , k}.

Proof. Let k ∈ N∗ and h > 0 fixed. Let (Wj)j⩾1 a minimizing sequence of (4.3), i.e. for
j ∈ {1, . . . , k} Wj is a k-tuple in Z. Since the function m 7→ f(m − γ(h)) is coercive,
the sets Wj are uniformly bounded with respect to j. There exists a subset of Z which
realizes the infimum. The continuity of f ensures that h 7→ αk(h) is bounded.
The sequence

(
αk(h)

)
k⩾1

is non-decreasing, in fact for all W ⊂ Zk+1 we have

αk(h) = sup
m∈Vk

f(m− γ(h)) ⩽ sup
m∈W

f(m− γ(h)).

By taking the infimum on the set of k-tuple, we have

αk(h) ⩽ αk+1(h).

□

Proposition 4.4. Let k ∈ N∗, h > 0, we have

λk(h) ⩽ αk(h)
√
he2ϕmin/h(1 + oh→0(1)) .

Proof. Let k ⩾ 1 and h > 0. We have

λk(h) ⩽ max
µ∈Vk(h)

λ1, µ−γ(h)(h) = max
µ∈Vk(h)

f(µ− γ(h))
√
h e2ϕmin/h.

Proposition 4.1 (1) and the boundedness of h 7→ µk(h) (Lemma 4.3) give the conclusion.
□

Lemma 4.5. Let h > 0, k ∈ N∗, consider the non-decreasing sequence

βk(h) = inf
V ⊂ Z
#V = k

sup
m∈V

f1,h(m− γ(h)) . (4.4)

Assume that there exists h0 > 0 such that

sup
h∈]0,h0]

βk(h) < +∞.

Then, for all h ∈]0, h0], there exists a k-tuple

Wk(h) = {m1(h), . . . ,mk(h)} ⊂ Z
which realizes the infimum. Moreover, the functions h 7→ mj(h) are bounded for j ∈
{1, . . . , k}.

Proof. Let k ∈ N∗ fixed. There exists h0 > 0 such that

K = sup
h∈]0,h0]

βk(h) < +∞
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i) For all ε ∈]0, 1] and for all h ∈]0, h0], there existsXε(h) ⊂ Z such that ♯Xε(h) = k
and

βk(h) ⩽ max
m∈Xε(h)

f1,h(m− γ(h)) ⩽ βk(h) + ε ⩽ K + 1 .

Thus, for all h ∈]0, h0] and for all m ∈
⋃

(h,ε)∈]0,h0]×]0,1]Xε(h), we have

f1,h(m− γ(h)) ⩽ K + 1 .

Proposition 4.1 (2) ensures that there exists g : R → R+ coercive such that for
all h ∈]0, h0] and for all m ∈

⋃
(h,ε)∈]0,h0]×]0,1]Xε(h)

g(m− γ(h)) ⩽ f1,h(m− γ(h)) .

Thus there exist Mk ∈ N∗ independent of h and ε such that for any ε ∈]0, 1] and
for any h ∈]0, h0], Xε(h) ⊂ [−Mk,Mk].

ii) Let us consider for all h ∈]0, h0],
(
X1/n(h)

)
n∈N∗ the minimizing sequence of (4.4).

From the point i), the k-tuple X1/n(h) are uniformly bounded with respect to
n and h. Consequently there exists a k-tuple, bounded in h, which realizes the
infimum.

In the same way as for
(
αk(h)

)
k⩾1

, the sequence
(
βk(h)

)
k⩾1

is non-decreasing, see the

proof of Lemma 4.3. □

Lemma 4.6. Let k ∈ N∗ , there exists h0 > 0 , such that

sup
h∈]0,h0]

βk(h) < +∞,

and for all h ∈]0, h0] ,
λk(h) = max

m∈Wk(h)
λ1,m−γ(h)(h) .

Proof. Let k ∈ N∗. According to (4.2), there exists nk(h) ∈ Z , jk(h) ∈ N∗ such that

λk(h) = λjk(h),nk(h)−γ(h)(h) .

However, Proposition 4.1 (3) ensures that for all h > 0, j ⩾ 2 and m ∈ R,
λj,m(h) ⩾ 2B0h .

By using Proposition 4.4 and the boundedness of h 7→ αk(h) (Lemma 4.3), we have the
existence of h0 > 0 such that for all h ∈]0, h0], jk(h) = 1 then

λk(h) = inf
V ⊂ Z
#V = k

sup
m∈V

λ1,m−γ(h)(h) = βk(h)
√
h e2ϕmin/h.

Finally, by using Proposition 4.4 and Lemma 4.5, we have

sup
h∈]0,h0]

βk(h) < +∞ and λk(h) = max
m∈Wk(h)

λ1,m−γ(h)(h) .

□

Proof of Theorem 1.3.
Let k ∈ N∗. From Lemma 4.6, we have for all h ∈]0, h0],

λk(h) = max
m∈Wk(h)

λ1,m−γ(h)(h) = max
m∈Wk(h)

f1,h(m− γ(h))
√
h e2ϕmin/h . (4.5)
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Moreover, Lemma 4.5 states that for any j ∈ J1, kK , the functions h 7→ mj(h) − γ(h)
are uniformly bounded.
Proposition 4.1 (1) and Remark 4.2 ensures that

max
m∈Wk(h)

f1,h(m− γ(h)) = (1 + oh→0(1)) max
m∈Wk(h)

f(m− γ(h))

⩾ (1 + oh→0(1))αk(h) .
(4.6)

Using (4.5) and (4.6), we have the following lower bound

λk(h) ⩾ αk(h)
√
h e2ϕmin/h(1 + oh→0(1)) .

The upper bound of Proposition 4.4 completes the proof. □

5. Elliptic estimates

In this section we give elliptic estimates related to the Dirac operator with real fixed
angular momentum, see Definition 3.5. These results complete the study realized in [4]
and make it possible to establish, for example, Proposition 4.1 (3) (cf. Corollary 5.6).

5.1. Ellipticity results on the Dirac operator. The main result of this section is
Proposition 5.1. It is one of the main ingredients to prove a monomial approximation
of the associated eigenfunctions (in a neighborhood of Ω), see Proposition 6.8.

Notation 4. Let us denote for δ ∈ (0, δ0)

Iδ = [ρ1 + δ, ρ2 − δ] ,

with δ0 = min
(
(rmin − ρ1)/2, (ρ2 − rmin)/2

)
.

Proposition 5.1. There exist δ0, h0 > 0 and C > 0 such that for all δ ∈]0, δ0], for all

h0 ∈]0, h0] and for all u ∈ Dom
(
d×h,m

)
∩ ker

(
d×h,m

)⊥
∥∥∥d×h,mu∥∥∥2

L2(Iδ)
⩾ 2hB0 ∥u∥2L2(Iδ)

∥d×h,mu∥
2
L2(Iδ) ⩾ Ch3/2

(
∂nϕ(ρ1)

∣∣u (ρ1 + δ)
∣∣2 + ∂nϕ(ρ2)

∣∣u (ρ2 − δ)
∣∣2) ,

with Iδ defined in Notation 4.

For convenience, we will use, in this section, the following convention ∥·∥ = ∥·∥L2(Iδ).

We will need the next lemma later. Note that it implies that the spectrum of L+
h,m is

a subset of [2hB0,+∞[.

Lemma 5.2. Let h ∈]0, 1], m ∈ R and u ∈ H1
0 ∩H2 (Iδ,C), we have∥∥∥d×h,mdh,mu∥∥∥ ⩾ 2hB0 ∥u∥ and

∥∥∥d×h,mdh,mu∥∥∥ ⩾
√

2hB0

∥∥dh,mu∥∥ .
Moreover, the spectrum of d×h,mdh,m is a subset of [2hB0,+∞[.
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Proof. Let h ∈]0, 1], m ∈ R and u ∈ H1
0 ∩ H2 (Iδ,C). The second identity of Lemma

3.7 ensures that

h2

∥∥∥∥∥
(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

⩾ h
∥∥∥√Bu∥∥∥2 .

Hence 〈
u, d×h,mdh,mu

〉
⩾ 2hB0 ∥u∥2 ,

i.e. according to the min-max theorem, the spectrum of d×h,mdh,m is a subset of [2hB0,+∞[.
And therefore ∥∥∥d×h,mdh,mu∥∥∥ ⩾ 2hB0 ∥u∥ .
Finally,

2hB0

∥∥dh,mu∥∥2 ⩽ 2hB0

〈
u, d×h,mdh,mu

〉
⩽ 2hB0 ∥u∥

∥∥∥d×h,mdh,mu∥∥∥ ⩽
∥∥∥d×h,mdh,mu∥∥∥2 .

□

Proposition 5.1 is a consequence of the following two lemmas, see Proof 5.1.

Lemma 5.3. Let h ∈]0, 1], m ∈ R and u ∈ H1
0 ∩H2 (Iδ,C). We have

∥d×h,mdh,mu∥
2 = ∥Mh,m+1u∥2 + h2∥Bu∥2 + 2h∥

√
Bph,m+1u∥2 + h3

∫
(−∆rB)|u|2 dr ,

2h∥
√
Bph,m+1u∥2 = 2h3

∥∥∥∥∥√B
(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+ 2h

∥∥∥∥∥√B
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

,

∥Mh,m+1u∥2 = h4

∥∥∥∥∥
(
∂2r +

1

4r2

)
u

∥∥∥∥∥
2

+ 2h2

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+ h2
∫

|u|2 (−∆r)

(
h(m+ 1)

r
− ∂rϕ

)2

dr

+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)2

u

∥∥∥∥∥
2

,

where ∆r = ∂2r + r−1∂r. There exist also h0 > 0 and a constant C > 0 (independent of
h and m) such that for all h ∈ (0, h0) and m ∈ R

C∥d×h,mdh,mu∥ ⩾
√
h

∥u∥+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
+ h2

∥∥∥∥∥
(
∂2r +

1

4r2

)
u

∥∥∥∥∥
+ h

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)(
∂r −

1

2r

)
u

∥∥∥∥∥+ h3/2

∥∥∥∥∥
(
∂r −

1

2r

)
u

∥∥∥∥∥ . (5.1)

Proof. Let h ∈]0, 1], m ∈ R and u ∈ H1
0 ∩H2 (Iδ,C). According to Proposition 3.6,

d×h,mdh,m = Mh,m+1 + hB , (5.2)

Mh,m+1 = p×
h,m+1 · ph,m+1 . (5.3)
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1) Equation (5.2) ensures that∥∥∥d×h,mdh,mu∥∥∥2 = ∥∥Mh,m+1u
∥∥2 + 2hRe

〈
Mh,m+1u,Bu

〉
+ h2 ∥Bu∥2 .

However, according to (5.3),

〈
Mh,m+1u,Bu

〉
=
∥∥∥√Bph,m+1u

∥∥∥2 +〈ph,m+1u,
[
ph,m+1, B

]
u

〉
,

with
[
ph,m+1, B

]
= ph,m+1B −B ph,m+1.

Let us estimate the term involving the commutator. We have[
ph,m+1, B

]
= er (−ih∂rB) .

Thus,〈
ph,m+1u,

[
ph,m+1, B

]
u

〉
= −h2

〈
u,

(
∂r +

1

2r

)
(∂rB u)

〉

= −h2 ⟨u, ∂rB∂ru⟩ − h2

〈
u,

(
∂2rB +

∂rB

2r

)
u

〉
.

By integration by parts,

2Re ⟨u, ∂rB∂ru⟩ = −
〈
u, ∂2rBu

〉
.

Therefore

2Re

〈
ph,m+1u,

[
ph,m+1, B

]
u

〉
= h2

∫
(−∆rB)|u|2 dr , ∆r = ∂r +

∂r
r
.

Let us now expand the terms ∥
√
Bph,m+1u∥2 and

∥∥Mh,m+1u
∥∥2.

By definition of ph,m+1 (cf. Proposition 3.6),

∥
√
Bph,m+1u∥2 = h2

∥∥∥∥∥√B
(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+

∥∥∥∥∥√B
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

.

Using the definition of Mh,m+1 we also have

∥∥Mh,m+1u
∥∥2 = h4

∥∥∥∥∥
(
∂2r +

1

4r2

)
u

∥∥∥∥∥
2

+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)2

u

∥∥∥∥∥
2

+

+ 2h2Re

〈
−
(
∂2r +

1

4r2

)
u,

(
h(m+ 1)

r
− ∂rϕ

)2

u

〉
.



22 E. LAVIGNE BON

Then, noticing −
(
∂2r +

1
4r2

)
=
(
−∂r − 1

2r

) (
∂r − 1

2r

)
, we have〈

−
(
∂2r +

1

4r2

)
u,

(
h(m+ 1)

r
− ∂rϕ

)2

u

〉
=

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+

〈(
∂r +

1

2r

)
u,

[(
∂r +

1

2r

)
,

(
h(m+ 1)

r
− ∂rϕ

)2
]
u

〉
.

Just as the beginning of Point 1), we estimate the commutator. We find[(
∂r +

1

2r

)
,

(
h(m+ 1)

r
− ∂rϕ

)2
]
= er

(
∂r

(
h(m+ 1)

r
− ∂rϕ

)2
)
.

Thus〈(
∂r −

1

2r

)
u,

[(
∂r +

1

2r

)
,

(
h(m+ 1)

r
− ∂rϕ

)2
]
u

〉
=

−

〈
u, ∂r

(
h(m+ 1)

r
− ∂rϕ

)2

∂ru

〉
−

〈
u,

(
∂2r +

∂r
2r

)(
h(m+ 1)

r
− ∂rϕ

)2

u

〉
.

By integration by parts,

2Re

〈
u, ∂r

(
h(m+ 1)

r
− ∂rϕ

)2

∂ru

〉
= −

〈
u, ∂2r

(
h(m+ 1)

r
− ∂rϕ

)2

u

〉
.

Therefore,

2Re

〈(
∂r +

1

2r

)
u,

[(
∂r +

1

2r

)
,

(
h(m+ 1)

r
− ∂rϕ

)2
]
u

〉
=

∫
|u|2 (−∆r)

(
h(m+ 1)

r
− ∂rϕ

)2

dr .

2) Let us prove the inequality (5.1).
(i) Let us start by offsetting the two negative terms identified in the previous

point.
From Lemma 5.2, ∥∥∥d×h,mdh,mu∥∥∥ ⩾ 2hB0 ∥u∥ ,

then for sufficiently small h,

∥d×h,mdh,mu∥
2 + h3

∫
|u|2 (−∆rB) dr ⩾ h2

(
C2 − h sup (∆rB)

)
∥u∥2 ⩾ 0 . (5.4)

For the second term, note that

∥d×h,mdh,mu∥
2 ⩾ 2h2

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

,
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thus

∥d×h,mdh,mu∥ ⩾ Ch

∥∥∥∥h(m+ 1)

r
u

∥∥∥∥ . (5.5)

Then

(−∆r)

(
h(m+ 1)

r
− ∂rϕ

)2

= −h
2(m+ 1)2

r2

(
1 +

4

r2

)
+(

h(m+ 1)

r
+
∂rϕ

r2
− ∂2rϕ

r
+ ∂3rϕ

)2

−Rϕ ,

with Rϕ =
(

∂rϕ
r2

− ∂2
rϕ
r

+ ∂3rϕ
)2

+
(
∂2rϕ
)2

+ ∂rϕ
(
∂2rϕ+ ∂3rϕ

)
.

Therefore, there exists a constant D > 0 independent of h and m such that

h2
∫

|u|2 (−∆r)

(
h(m+ 1)

r
− ∂rϕ

)2

dr ⩾ −Dh2
(∥∥∥∥h(m+ 1)

r
u

∥∥∥∥2 + ∥u∥2
)
. (5.6)

Finally, using points (5.5), (5.6) and Lemma 5.2, we have the existence of
C > 0 independent of h and m such that for h sufficiently small(

D

C2
+ 1

)
∥d×h,mdh,mu∥

2 + h2
∫

|u|2 (−∆r)

(
h(m+ 1)

r
− ∂rϕ

)2

dr

⩾
√
h
(
C2 −Dh

)
∥u∥2 ⩾ 0 .

(ii) Point (i) ensures that, modulo the modification of the constant in front of
∥d×h,mdh,mu∥, each of the terms computed in point 1) are positive. We can
easily conclude that there exist C > 0 independent of h and m such that
for h sufficiently small

C∥d×h,mdh,mu∥ ⩾
√
h

∥u∥+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
+ h2

∥∥∥∥∥
(
∂2r +

1

4r2

)
u

∥∥∥∥∥
+ h

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)(
∂r −

1

2r

)
u

∥∥∥∥∥+ h3/2

∥∥∥∥∥
(
∂r −

1

2r

)
u

∥∥∥∥∥ .
□

Lemma 5.4. Let h > 0 and m ∈ R. We have for all u ∈ H1
0 ∩H2 (Iδ,C),

|dh,mu|2∂nϕ|r=ρ2
+ |dh,mu|2∂nϕ|r=ρ1

=

∫
|dh,mu|2

(
∂2rϕ− r−1∂rϕ

)
dr +

∫
2ℜ

〈
dh,mu, ∂rϕ

(
∂r +

1

2r

)
dh,mu

〉
dr ,

(
∂r +

1

2r

)
dh,m = −ih

(
∂2r +

1

4r2

)
+

(
h(m+ 1)

r
− ∂rϕ

)(
∂r −

1

2r

)
−B .
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Moverover, there exist h0 > 0 and a constant C > 0 (independent of h and m) such
that for all h ∈ (0, h0) and m ∈ R

|dh,mu|2∂nϕ|r=ρ2
+ |dh,mu|2∂nϕ|r=ρ1

⩽ Ch−3/2∥d×h,mdh,mu∥
2 . (5.7)

Proof. Let h ∈]0, 1], m ∈ R and u ∈ H1
0 ∩H2 (Iδ,C).

(i) Concerning the first identity, it is enough to notice that

∫ (
∂r +

1

r

)(
∂rϕ

∣∣dh,mu∣∣2) dr = ∫
[(∂r + 1

r

)
, ∂rϕ

]
+ ∂rϕ

(
∂r +

1

r

) |dh,mu|2 dr

=

∫
|dh,mu|2∂2rϕ+ 2Re

〈
dh,mu, ∂rϕ

(
∂r +

1

2r

)
dh,mu

〉
dr,

and∫ (
∂r +

1

r

)(
∂rϕ

∣∣dh,mu∣∣2) dr = |dh,mu|2∂nϕ|r=ρ2
+ |dh,mu|2∂nϕ|r=ρ1

+

∫ ∣∣dh,mu∣∣2 ∂rϕ
r

dr.

(ii) For the second equality, we can rewrite the definition of dh,m as follows

dh,m = −ih
(
∂r −

1

2r

)
− i

(
h(m+ 1)

r
− ∂rϕ

)
.

By composing by
(
∂r + 1/2r

)
, we have

(
∂r +

1

2r

)
dh,mu = −ih

(
∂2r +

1

4r2

)
u− i

[(
∂r +

1

2r

)
,

(
h(m+ 1)

r
− ∂rϕ

)]
u

− i

(
h(m+ 1)

r
− ∂rϕ

)(
∂r +

1

2r

)
u .

The terms of the commutator reorganize in the following way[(
∂r +

1

2r

)
,

(
h(m+ 1)

r
− ∂rϕ

)]
u = −

(
h(m+ 1)

r
− ∂rϕ

)
u

r
−Bu ,

which proves the result.
(iii) From Lemmas 3.7 and 5.3, we have

∥dh,mu∥2

= h2

∥∥∥∥∥
(
∂r −

1

2r

)
u

∥∥∥∥∥
2

+

∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)
u

∥∥∥∥∥
2

+ h
∥∥∥√Bu∥∥∥2 ⩽ Ch−1∥d×h,mdh,mu∥

2,
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and∥∥∥∥∥
(
∂r +

1

2r

)
dh,mu

∥∥∥∥∥
⩽ h

∥∥∥∥∥
(
∂2r +

1

4r2

)
u

∥∥∥∥∥+
∥∥∥∥∥
(
h(m+ 1)

r
− ∂rϕ

)(
∂r −

1

2r

)
u

∥∥∥∥∥+ ∥Bu∥ ⩽ Ch−1∥d×h,mdh,mu∥.

Thus, using the Cauchy-Schwarz inequality on point (i), there exists C > 0
independent of h and m such that∫

|dh,mu|2
(
∂2rϕ− r−1∂rϕ

)
dr +

∫
2ℜ

〈
dh,mu, ∂rϕ

(
∂r +

1

2r

)
dh,mu

〉
dr

⩽
(
sup (∂2rϕ− r−1∂rϕ)

)
∥dh,mu∥2 + 2∥dh,mu∥

∥∥∥∥∥
(
∂r +

1

2r

)
dh,mu

∥∥∥∥∥ ⩽ Ch−3/2∥d×h,mdh,mu∥
2 .

□

Proof of Proposition 5.1. Let h > 0 and m ∈ R, recall that Proposition 3.8 gives us the
identity

ker
(
d∗h,m

)⊥
∩Dom

(
d∗h,m

)
=
{
dh,mu; u ∈ H1

0 ∩H2
(
[ρ1, ρ2],C

)}
. (5.8)

(1) First inequality is a direct consequence of (5.8) and the second inequality of
Lemma 5.2.

(2) For the second one, it is enough to use (5.8) and (5.7).

□

5.2. Lower bound, for k ⩾ 2 of λk,m(h). Let us fix p ∈ Z. We will note in this
subpart m̃ = m− γh,p, with h > 0 and γh,p defined in Proposition 2.3.

The following proposition describes the energy levels of L−
h,m = dh,m̃d

×
h,m̃ different

from the ground state, in the semiclassical limit.

Proposition 5.5. Let h > 0, k ⩾ 2. For all m ∈ R, we have

λk,m(h) ⩾ 2hB0.

Proof. Let k ⩾ 2, h > 0 and m ∈ R.
The min-max theorem allows to order the eigenvalues of the Pauli operator with Dirich-
let and Neumann boundary conditions,

λk,m(h) = inf
V⊂H1

0
dimV =k

sup
u∈V \{0}

∥∥∥d×h,mu∥∥∥2
∥u∥2

⩾ inf
V⊂H1

dimV =k

sup
u∈V \{0}

∥∥∥d×h,mu∥∥∥2
∥u∥2

= νk,m(h),

with νk,m(h) the k-th eigenvalue of LN
h,m, the operator L−

h,m with homogeneous Neumann
boundary conditions.
Observe that the first eigenvalue of the Pauli operator with Neumann conditions is zero,
indeed, the function r 7→ rm+1/2 cancels the quadratic form. This implies that for k ⩾ 2,

ker
(
LN

h,m − νk,m(h)
)
⊂ ker

(
LN

h,m

)⊥
= ker

(
d×
h,m

)⊥
.
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However, according to Proposition 5.1, for all u ∈ Dom
(
dh,m

)
∩ ker

(
d×
h,m

)⊥
,∥∥∥d×

h,mu
∥∥∥2 ⩾ 2hB0 ∥u∥2 .

Thus, for k ⩾ 2 and u ∈ ker
(
LN

h,m − νk,m(h)
)

νk(h) =

∥∥∥d×h,mu∥∥∥2
∥u∥2

⩾ 2hB0.

This completes the proof. □

We directly deduce from Proposition 5.5 and Proposition 4.1 (3).

Corollary 5.6. For all h > 0, j ⩾ 2 and m ∈ R, we have

fj,h(m) ⩾ 2B0

√
he−2ϕmin/h .

6. Upper bound and consequences

In this section we establish an upper bound for the set of ground states of the operators
L−

h,m. This result is a consequence of Lemmas 6.3 and 6.4. We then show in Section
6.2.1 that, from the upper bound, the eigenfunctions are localized in the neighborhood
of ϕ minimum. Then, by combining the upper bound and the elliptic estimates of
Section 5 we get a monomial approximation of the eigenfunctions inside the domain,
see Proposition 6.8.

6.1. Upper bound. In this subsection, we seek to obtain for any m ∈ R an upper
bound for λ1,m(h). More precisely we will establish the following proposition.

Proposition 6.1. Let α ∈]1/2, 1[ and β ∈]1/3, 1/2[. There exists h0 > 0 such that for
all h ∈]0, h0] and for all m ∈ R, we have

λ1,m(h) ⩽ Cm(h)
√
h e

2ϕmin
h (1 + oh→0(1)).

with

Cm(h) = 2

√
ϕ′′
min

π

(
∂nϕ (ρ1)

(
ρ1 + hα1m⩾0

rmin − sgn (2m+ 1)hβ

)2m+1

+ ∂nϕ (ρ2)

(
ρ2 − hα1m<0

rmin − sgn (2m+ 1)hβ

)2m+1
)
.

To do this, we look for a suitable test function to reinject into the Rayleigh quotient
given in Proposition 3.12. Heuristically, a minimizer of (3.12) wants to be in the kernel
of
(
∂r − (m+ 1/2)/r

)
in the interior of Ω.

Therefore, we choose to take test functions in
{
a rm+1/2, with a ∈ C

}
up to the mul-

tiplication by a sufficiently smooth cutoff function for Dirichlet boundary condition.

Consider the following cutoff function
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Definition 6.2. Let ε > 0, define for all r ∈ [ρ1, ρ2]

χ(r) =

{
P (r) if max (r − ρ1, ρ2 − r) ⩽ ε,
1 otherwise.

with P a sufficiently regular function such that r 7→ χ(r) rm+1/2 ∈ H1
0 .

Let us start by estimate the energy by putting in a test function like r 7→ χ(r) rm+1/2.

Lemma 6.3. Let α ∈]1/2, 1[, there exists h0 > 0 such that for all h ∈]0, h0] and for all
m ∈ R, we have

h2
∫ ρ2

ρ1

e−2ϕ/h

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)(
χ(r) rm+1/2

)∣∣∣∣∣
2

dr

⩽ 2h
(
∂nϕ (ρ1) (ρ1 + hα1m⩾0)

2m+1 + ∂nϕ (ρ2) (ρ2 − hα1m<0)
2m+1

) (
1 + o(1)

)
with χ defined in Definition 6.2.

Proof. Let m ∈ R and h, ε > 0, we have

h2
∫ ρ2

ρ1

e−2ϕ/h

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)(
χ(r) rm+1/2

)∣∣∣∣∣
2

dr

= h2

∫ ρ1+ε

ρ1
(a)

+

∫ ρ2

ρ2−ε
(b)

 e−2ϕ/hr2m+1
∣∣∂rP (r)∣∣2 dr.

Let’s start by estimate the integral (a); using the Taylor expansion of ϕ in a neighbor-
hood of the interior boundary,

ϕ(r) = − (r − ρ1) ∂nϕ (ρ1) +O
(
ε2
)

with ρ1 ⩽ r ⩽ ρ1 + ε,

thus∫ ρ1+ε

ρ1

e−2ϕ/hr2m+1
∣∣∂rP (r)∣∣2 dr = ∫ ρ1+ε

ρ1

e
2
h
(r−ρ)∂nϕ(ρ1)r2m+1

∣∣∂rP (r)∣∣2 dr
1 +O

(
ε2

h

)
⩽ (ρ1 + hα1m⩾0)

2m+1

∫ ε

0

e
2
h
τ∂nϕ(ρ1)

∣∣∣∂τ P̃ (τ)∣∣∣2 dτ
1 +O

(
ε2

h

) .

We can now choose the optimal P using [4, Lemma A.1.] and obtain∫ ε

0

e
2
h
τ∂nϕ(ρ1)

∣∣∣∂τ P̃ (τ)∣∣∣2 dτ ⩽
2∂nϕ (ρ1) /h

1− exp
(
− 2

h
ε∂nϕ (ρ1)

)
=

2∂nϕ (ρ1)

h

(
1 +O

(
e−

2ε
h
∂nϕ(ρ1)

))
.

For the integral (b), the estimate follows the same pattern. In a neighborhood of the
exterior boundary, the Taylor expansion of ϕ write

ϕ(τ) = − (ρ2 − τ) ∂nϕ (ρ2) +O
(
ε2
)

with ρ2 − ε ⩽ τ ⩽ ρ2,
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thus

∫ ρ2

ρ2−ε

e−2ϕ/hr2m+1
∣∣∂rP (r)∣∣2 dr = ∫ ρ2

ρ2−ε

e
2
h
(ρ2−τ)∂nϕ(ρ2)τ 2m+1

∣∣∂τP (τ)∣∣2 dτ
1 +O

(
ε2

h

)
⩽ (ρ2 − hα1m<0)

2m+1

∫ ε

0

e
2
h
τ∂nϕ(ρ2)

∣∣∣∂τ P̃ (τ)∣∣∣2 dτ
1 +O

(
ε2

h

) .

In the same way as for the integral (a), we choose the optimal P , hence∫ ε

0

e
2
h
τ∂nϕ(ρ2)

∣∣∣∂τ P̃ (τ)∣∣∣2 dτ ⩽
2∂nϕ (ρ2)

h

(
1 +O

(
e−

2ε
h
∂nϕ(ρ2)

))
.

To control the remainders, let us take ε = hα with α ∈]1/2, 1[. Combining the upper
bounds of (a) and (b) we get the result. □

Now we give a lower bound for the L2-norm using the same test function.

Lemma 6.4. Let β ∈]1/3, 1/2[, there exists h0 > 0 such that for all h ∈]0, h0[ and for
all m ∈ R we have∥∥∥e−ϕ/hχ rm+1/2

∥∥∥2 ⩾√ π

ϕ′′
min

(
rmin − sgn (2m+ 1)hβ

)2m+1 √
h e−2ϕmin/h(1 + o(1)) ,

with ϕ′′
min defined in Remark 1.2.

Proof. Let m ∈ R and h > 0. We choose the same test function in the previous proof.
There exists η0 > 0 such that for all η ∈]0, η0], the annulus of center (0,0) and of radius
rmin − η and rmin + η is included in Ω and ϕ admits the Taylor expansion,

ϕ(r) = ϕmin +
(r − rmin)

2

2
ϕ′′
min +O

(
η3
)

with rmin − η ⩽ r ⩽ rmin + η.

Therefore, we have ∥∥∥e−ϕ/hχ rm+1/2
∥∥∥2 ⩾ ∫ rmin+η

rmin−η

e−2ϕ/hr2m+1 dr

and∫ rmin+η

rmin−η

e−2ϕ/hr2m+1 dr ⩾

(
rmin − sgn (2m+ 1) η

)2m+1
e−2ϕmin/h

∫ rmin+η

rmin−η

e−(r−rmin)
2ϕ′′

min/h dr

1 +O

(
η3

h

) .
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It is now enough to consider the change of variable τ = (r − rmin)
√
ϕ′′
min/h to get∫ rmin+η

rmin−η

exp

(
−(r − rmin)

2

h
ϕ′′
min

)
dr =

√
h

∫ η√
h

− η√
h

exp
(
−ϕ′′

minτ
2
)
dτ

=
√
h

∫
R
exp

(
−ϕ′′

minτ
2
)
dτ
(
1 + o η√

h
→+∞(1)

)
=

√
πh

ϕ′′
min

(
1 + o η√

h
→+∞(1)

)
.

Taking, η = hβ with β ∈]1/3, 1/2[, we have∥∥∥e−ϕ/hχ rm+1/2
∥∥∥2 ⩾√ π

ϕ′′
min

(
rmin − sgn (2m+ 1)hβ

)2m+1 √
h e−2ϕmin/h(1 + o(1)) .

□

By combining the two lemmas we prove Proposition 6.1.

6.2. Approximation results. We focus in this section on the implications of the upper
bound of Proposition 6.1 and the elliptic estimates of Section 5. From these results we
deduce the localization in the neighborhood of the minimum of ϕ and the monomial
approximation of the eigenfunctions associated to λ1,m(h).

6.2.1. Localization of the eigenfunctions. The upper bound implies that the eigenfunc-
tions are localized in the neighborhood of the minimum of ϕ, i.e. in the neighborhood of
rmin. Let us start with a technical lemma which will be useful in the proof of Proposition
6.6.

Lemma 6.5. For all h > 0 and m ∈ R, and for all v ∈ H1
0 , we have

h2
∫ ρ2

ρ1

e−2ϕ/h

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)
v(r)

∣∣∣∣∣
2

⩾ h2a0

∫ ρ2

ρ1

|v|2 ,

where a0 > 0 is the smallest eigenvalue of the Dirichlet Laplacian on Ω.

Proof. Let v ∈ H1
0 . Using the fact that ϕ ⩽ 0, it follows,

h2
∫ ρ2

ρ1

e−2ϕ/h

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)
vh,m(r)

∣∣∣∣∣
2

dr ⩾ h2
∫ ρ2

ρ1

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)
vh,m(r)

∣∣∣∣∣
2

dr.

By integration by parts,∫ ρ2

ρ1

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)
v

∣∣∣∣∣
2

=

∫ ρ2

ρ1

∣∣∣∣∣
(
∂r −

1

2

)
v

∣∣∣∣∣
2

+

∣∣∣∣mr v
∣∣∣∣2 .

Finally we have the lower bound∫ ρ2

ρ1

∣∣∣∣∣
(
∂r −

1

2

)
v

∣∣∣∣∣
2

⩾ a0

∫ ρ2

ρ1

|v|2 ,

a0 > 0 being the smallest eigenvalue of the Dirichlet Laplacian on Ω. □
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We have the following localization property.

Proposition 6.6. Let α ∈]0, 1/2[, h ∈]0, h0], m ∈ R and vh,m an eigenfunction associ-
ated to λ1,m(h). We have∫ rmin+hα

rmin−hα e
−2ϕ/h|vh,m|2∫ ρ2

ρ1
e−2ϕ/h|vh,m|2

= 1 + f1,m(h)O(h∞) ,

and for δ > 0 sufficiently small∫ ρ2−δ

ρ1+δ
e−2ϕ/h|vh,m|2∫ ρ2

ρ1
e−2ϕ/h|vh,m|2

= 1 + f1,m(h)O(h∞) ,

with h0 and Cm(h) defined in Proposition 6.1 and O (h∞) independent of m.

Proof. Firstly, let us note that∫ rmin+hα

rmin−hα e
−2ϕ/h|vh,m|2∫ ρ2

ρ1
e−2ϕ/h|vh,m|2

= 1−

(∫ rmin−hα

ρ1
+
∫ ρ2
rmin+hα

)
e−2ϕ/h|vh,m|2∫ ρ2

ρ1
e−2ϕ/h|vh,m|2

.

Furthermore, since ϕ is a solution of the Poisson’s equation (1.5) and B > 0, the
maximum principle ensures that

inf
r∈[ρ1,ρ2]\[rmin−hα,rmin+hα]

ϕ(r) = min{ϕ(rmin − hα), ϕ(rmin + hα)}

⩾ ϕmin +
ϕ

′′
min

2
h2α
(
1 +O (hα)

)
,

then(∫ rmin−hα

ρ1

+

∫ ρ2

rmin+hα

)
e−2ϕ/h|vh,m|2 ⩽ e−2ϕmin/h−2ϕ′′

minh
2α−1(1+O(hα))

∫ ρ2

ρ1

|vh,m|2.

Moreover, according to Proposition 6.1,∫ ρ2

ρ1

|vh,m|2 ⩽ a−1
0

∫ ρ2

ρ1

e−2ϕ/h

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)
v(r)

∣∣∣∣∣
2

,

and

h2
∫ ρ2

ρ1

e−2ϕ/h

∣∣∣∣∣
(
∂r −

m+ 1/2

r

)
v(r)

∣∣∣∣∣
2

= f1,h(m) h1/2 e
2ϕmin

h

∫ ρ2

ρ1

e−2ϕ/h|vh,m|2.

Thus(∫ rmin−hα

ρ1

+

∫ ρ2

rmin+hα

)
e−2ϕ/h|vh,m|2 ⩽

f1,h(m) a−1
0 h−3/2e−2ϕ′′

min/h

∫ ρ2

ρ1

e−2ϕ/h|vh,m|2(1 + oh→0(1)),

and the conclusion follows. □



SEMICLASSICAL SPECTRUM OF THE DIRICHLET-PAULI OPERATOR ON AN ANNULUS 31

6.2.2. Monomial approximation. Following the results of Proposition 3.8, we define the

orthogonal projection on ker
(
d×h,m

)
.

Remember that

ker
(
d×h,m

)
= Vect

(
r 7→ e−ϕ/hrm+1/2

)
.

Definition 6.7. Let δ, h > 0 and m ∈ R. We define Πh,δ the orthogonal projection on
the kernel of d×h,m defined on the domain H1

0 (Iδ,C) with Iδ :=]ρ1 + δ, ρ2 − δ[.

Moreover, if u = e−ϕ/hv, we write Πh,δu = e−ϕ/hΠ̃h,δv.

Notation 5. Recall that ∂nϕ(ρ1), ∂nϕ(ρ2) > 0, see Subsection 1.1.2. The following
norm will be used hereafter, for all X = (x1, x2) ∈ C2

N∂nϕ(X) =

√
∂nϕ(ρ1) |x1|2 + ∂nϕ(ρ2) |x2|2 .

From Proposition 6.6 we deduce the following monomial approximation result.

Proposition 6.8. There exist C, h0, δ0 > 0 such that for all δ ∈]0, δ0] and h ∈]0, h0[,
we have for all eigenfunction vh,m associated to λ1,m(h),∥∥∥∥e−ϕ/h

(
Id−Π̃h,δ

)
vh,m

∥∥∥∥
L2(Iδ)

⩽ Ch−1/2λ1,m(h)
(
1 + f1,h(m)

) ∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

,

and

N∂nϕ

(
Uh,m

)
⩽ Ch−3/4

√
λ1,m(h)

(
1 + f1,h(m)

) ∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

,

with N∂nϕ(·) defined in Notation 5 and

Uh,m =

(
e−2ϕ(ρ1+δ)/h

(
Id−Π̃h,m

)
vh,m (ρ1 + δ) , e−2ϕ(ρ2−δ)/h

(
Id−Π̃h,m

)
vh,m (ρ2 − δ)

)
.

Proof. Let h > 0, 0 < δ < (ρ2 − ρ1)/2 and m ∈ R. Let vh,m an eigenfunction associated
to λ1,m(h).
Using Proposition 6.6, there exist h0, δ0 > 0 such that for all h ∈]0, h0] and δ ∈]0, δ0],
we have∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
vh,m

∥∥∥∥∥
2

L2(Iδ)

⩽

∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
vh,m

∥∥∥∥∥
2

L2(ρ1,ρ2)

= λ1,m(h)
∥∥∥e−ϕ/hvh,m

∥∥∥2
L2(ρ1,ρ2)

⩽ λ1,m(h)
(
1 + f1,h(m)O (h∞)

) ∥∥∥e−ϕ/hvh,m

∥∥∥2
L2(Iδ)

⩽ λ1,m(h)
(
1 + f1,h(m)

) ∥∥∥e−ϕ/hvh,m

∥∥∥2
L2(Iδ)

,
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with Iδ = [ρ1 + δ, ρ2 − δ].
Then, if uh,m = e−ϕ/hvh,m, we have∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
vh,m

∥∥∥∥∥
2

L2(Iδ)

=

∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)(
Id−Π̃h,m

)
vh,m

∥∥∥∥∥
2

L2(Iδ)

=
∥∥∥d×h,m (Id−Πh,m

)
uh,m

∥∥∥2
L2(Iδ)

.

We use Proposition 5.1 to complete the proof. □

7. Proof of Proposition 4.1

In this last section we prove the first two points of Proposition 4.1. We begin with
simplify the Rayleigh quotient given in Proposition 3.12. Then, we prove in the next
two subsections coercivity and uniform convergence results for f1,h(m).

7.1. Simplified Rayleigh quotient. Proposition 6.8 states that it is sufficient to know
the behavior of the energy near the boundary of [ρ1, ρ2]. This leads us to minimize the
numerator of Rayleigh quotient as follows.

Lemma 7.1. There exist h0, δ0 > 0 such that for all δ ∈]0, δ0] and h ∈]0, h0], we have
for all v ∈ H1

0,∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
v

∥∥∥∥∥
2

⩾ h
(
Eint

m (h, δ)
∣∣v(ρ1 + δ)

∣∣2
+Eext

m (h, δ)
∣∣v(ρ2 − δ)

∣∣2) (1 + o(1)
)
,

when δ/h→ +∞, δ2/h→ 0 with

Eint
m (h, δ) = e−δ1

2∂nϕ (ρ1) + (2mh/ρ1)1]0,+∞[(m)

e2mδ11]0,+∞[(m) − e−2δ1ρ1∂nϕ(ρ1)/h
,

Eext
m (h, δ) = eδ2

2∂nϕ (ρ2)− (2mh/ρ2)1]−∞,0[(m)

e−2mδ21]−∞,0[(m) − e−2δ2ρ2∂nϕ(ρ2)/h
,

where δ1 = ln
(
1 + δ

ρ1

)
and δ2 = −ln

(
1− δ

ρ2

)
. Moreover, o(1) is independent of m.

Proof. Let m ∈ R and 0 < δ < (ρ2 − ρ1)/2. Let’s start by minimizing the energy by its
contribution near the boundary∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
v

∥∥∥∥∥
2

⩾

h2

(∫ ρ1+δ

ρ1

+

∫ ρ2

ρ2−δ

)
e−2ϕ/h

∣∣∣∣∣
(
∂r − m+ 1/2

r

)
v

∣∣∣∣∣
2

:= Qint
m,h,δ (v) +Qext

m,h,δ (v) .

We use the Taylor expansion of ϕ near the boundary{
ϕ(r) = − (r − ρ1) ∂nϕ (ρ1) +O

(
δ2
)

with ρ1 ⩽ r ⩽ ρ1 + δ,

ϕ(r) = − (ρ2 − r) ∂nϕ (ρ2) +O
(
δ2
)

with ρ2 − δ ⩽ r ⩽ ρ2.
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The integral near the interior boundary becomes

Qint
m,h,δ (v) = h2

∫ ρ1+δ

ρ1

e2(r−ρ1)∂nϕ(ρ1)/h

∣∣∣∣∣
(
∂r − m+ 1/2

r

)
v(r)

∣∣∣∣∣
2

dr

1 +O

(
δ2

h

) .

By writing, τ = ln
(

r
ρ1

)
, δ1 = ln

(
1 + δ

ρ1

)
and u(τ) = v (ρ1e

τ ), we get

Qint
m,h,δ (v) = h2

∫ δ1

0

e2(e
τ−1)ρ1∂nϕ(ρ1)/h

∣∣∣(∂τ − (m+ 1/2)
)
u(τ)

∣∣∣2 e−τ dτ

ρ1

1 +O

(
δ2

h

)
= h2

∫ δ1

0

e
2τ
h
ρ1∂nϕ(ρ1)

∣∣∣(∂τ − (m+ 1/2)
)
u(τ)

∣∣∣2 e−τ dτ

ρ1

1 +O

(
δ2

h

)
= h2

∫ δ1

0

e
2τ
h
ρ1∂nϕ(ρ1)−2m(δ1−τ)−δ1

∣∣∂τw1 (τ)
∣∣2 dτ
ρ1

1 +O

(
δ2

h

)
=: hΛint

m (h, δ, w1)

1 +O

(
δ2

h

) ,

with w1 (τ) = e(m+1/2)(δ1−τ)u(τ).
In the same way, we obtain for the exterior boundary,

Qext
m,h,δ (v) = h2

∫ δ2

0

e
2τ
h
ρ2∂nϕ(ρ1)+2m(δ2−τ)+δ2

∣∣∂τw2 (τ)
∣∣2 dτ
ρ2

1 +O

(
δ2

h

)
=: hΛext

m (h, δ, w2)

1 +O

(
δ2

h

) ,

with δ2 = −ln
(
1− δ

ρ2

)
and w2 (τ) = e(2m+1)(δ2−τ)v

(
ρ2e

−τ
)
.

Finally, we have the lower bound∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
v

∥∥∥∥∥
2

⩾ h
(
Λint

m (h, δ, w1) + Λext
m (h, δ, w2)

)1 +O

(
δ2

h

) .

Moreover, for any sufficiently regular function w the maps

R → R∗
+

m 7→ Λext
m (h, δ, w)

and
R → R∗

+

m 7→ Λint
m (h, δ, w)

are increasing and decreasing respectively. Thus for all m ∈ R+

Λext
m (h, δ, w) ⩾ Λext

0 (h, δ, w) and Λint
−m(h, δ, w) ⩾ Λint

0 (h, δ, w) .
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By using [4, Lemma A.1.] to the integrals Λint
m (h, δ, w1), Λ

int
0 (h, δ, w1), Λ

ext
m (h, δ, w2),

Λext
0 (h, δ, w2) we get for m ⩽ 0

Λint
0 (h, δ, w1) =

he−δ1

ρ1

∫ δ1

0

e
2τ
h
ρ1∂nϕ(ρ1)

∣∣∂τw1 (τ)
∣∣2 dτ

⩾ e−δ1
2∂nϕ (ρ1)

1− e−2δ1ρ1∂nϕ(ρ1)/h

∣∣v (ρ1 + δ)
∣∣2 ,

Λext
m (h, δ, w2) =

he(2m+1)δ2

ρ2

∫ δ2

0

e

(
2ρ2
h

∂nϕ(ρ2)−2m
)
τ ∣∣∂τw2 (τ)

∣∣2 dτ
⩾ eδ2

2∂nϕ (ρ2)− 2mh/ρ2
e−2mδ2 − e−2δ2ρ2∂nϕ(ρ2)/h

∣∣v (ρ2 − δ)
∣∣2 ,

and for m ⩾ 0

Λint
m (h, δ, w1) =

he−(2m+1)δ1

ρ1

∫ δ1

0

e

(
2ρ1
h

∂nϕ(ρ1)+2m
)
τ ∣∣∂τw1 (τ)

∣∣2 dτ
⩾ e−δ1

2∂nϕ (ρ1) + 2mh/ρ1
e2mδ1 − e−2δ1ρ1∂nϕ(ρ1)/h

∣∣v (ρ1 + δ)
∣∣2 ,

Λext
0 (h, δ, w2) =

heδ2

ρ2

∫ δ2

0

e
2τ
h
ρ2∂nϕ(ρ2)

∣∣∂τw2 (τ)
∣∣2 dτ

⩾ eδ2
2∂nϕ (ρ2)

1− e−2δ2ρ2∂nϕ(ρ2)/h

∣∣v (ρ2 − δ)
∣∣2 .

This leads us to the result. □

Using Propositions 6.6 and 6.8, we can replace vh,m by Π̃h,mvh,m in the denominator
of the Rayleigh quotient (3.12).

Lemma 7.2. Let β ∈]0, 1/2[, h > 0, m ∈ R and vh,m an eigenfunction associated to
λ1,m(h). ∥∥∥e−ϕ/hvh,m

∥∥∥
L2(ρ1,ρ2)

⩽ Rm(h)
∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥
L2(Imin,h)

,

with Imin,h =
[
rmin − hβ, rmin + hβ

]
,

Rm(h) =

((
1 +

(
f1,h(m) +

(
f1,h(m)

)2)O (h∞)

) √
1 + f1,m(h)O (h∞)

)−1

,

and Π̃h,m defined in Definition 6.7. Moreover, O (h∞) is independent of m.

Proof. Let h > 0 and m ∈ R. Let vh,m an eigenfunction associated to λ1,m(h).
Proposition 6.6 ensures that for β ∈]0, 1/2[, we have the existence of h0 > 0 such that
for all h ∈]0, h0](

1 + f1,h(m)O (h∞)
) ∫ ρ2

ρ1

e−2ϕ/h|vh,m|2 =
∫
Imin,h

e−2ϕ/h|vh,m|2,
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with Imin,h = [rmin − hβ, rmin + hβ].
Using Proposition 6.6, we have the following inequalities∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Imin,h)

⩽
∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥
L2(Imin,h)

+

∥∥∥∥e−ϕ/h
(
id− Π̃h,m

)
vh,m

∥∥∥∥
L2(Imin,h)

⩽
∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥
L2(Imin,h)

+

∥∥∥∥e−ϕ/h
(
id− Π̃h,m

)
vh,m

∥∥∥∥
L2(Iδ)

with δ > 0 sufficiently small, C > 0 and Iδ = [ρ1 + δ, ρ2 − δ].
However, according to Propostion 6.8∥∥∥∥e−ϕ/h

(
id− Π̃h,m

)
vh,m

∥∥∥∥
L2(Iδ)

⩽
(
f1,h(m) +

(
f1,h(m)

)2)O (h∞)
∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Imin,h)

,

with O (h∞) independent of m.
Then ∥∥∥e−ϕ/hvh,m

∥∥∥
L2(ρ1,ρ2)

⩽ Rm(h)
∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥
L2(Imin,h)

,

with Rm(h) =

((
1 +

(
f1,h(m) +

(
f1,h(m)

)2)O (h∞)

) √
1 + f1,m(h)O (h∞)

)−1

. □

Proposition 3.8 ensures that Π̃h,mvh,m = αmr
m+1/2 with αm ∈ C∗. The denominator

can be again simplified as follows

Lemma 7.3. Let β ∈]1/3, 1/2[, h > 0, m ∈ R and vh,m an eigenfunction associated to
λ1,m(h).∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥2
L2(Imin,h)

⩽

|αm|2
√

π

ϕ′′
min

(
rmin + sgn(2m+ 1)hβ

)2m+1√
h e−2ϕmin/h

(
1 + o(1)

)
,

with Imin,h =
[
rmin − hβ, rmin + hβ

]
, αm ∈ C∗ such that Π̃h,mvh,m = αmr

m+1/2.
Moreover, o(1) is independent of m.

Proof. Let β ∈]1/3, 1/2[, h > 0 and vh,m an eigenfunction associated to λ1,m(h).

According to Proposition 3.8, for all m ∈ R there exists αm ∈ C∗ such that Π̃h,mvh,m =
αmr

m+1/2. Then, by Lemma 7.2, we have∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥2
L2(Imin,h)

= |αm|2
∫
Imin,h

e−2ϕ/hr2m+1 dr,

with Imin,h =
[
rmin − hβ, rmin + hβ

]
.

As in the proof of Lemma 6.4, we obtain

ϕ(r) = ϕmin +
(r − rmin)

2

2
ϕ′′
min +O

(
h3β
)
.
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Thus,∫
Imin,h

e−2ϕ/hr2m+1 dr ⩽ e−2ϕmin/h

∫
Imin,h

e−
(r−rmin)

2

h
ϕ
′′
minr2m+1 dr

(
1 +O

(
h3β−1

))

⩽

√
h

ϕ′′
min

(
rmin + sgn(2m+ 1)hβ

)2m+1

e−2ϕmin/h

∫
R
e−τ2 dr

(
1 +O

(
h3β−1

))
.

We deduce that∫
Imin,h

e−2ϕ/hr2m+1 dr ⩽√
π

ϕ′′
min

(
rmin + sgn(2m+ 1)hβ

)2m+1 √
h e−2ϕmin/h

(
1 +O

(
h3β−1

))
,

and the conclusion follows. □

7.2. Uniform convergence on any compact. In this part we prove Proposition 4.1
(1).

Proposition 7.4. The sequence
(
f1,h
)
h∈]0,1] is uniformly convergent on any compact to

f : R → R+ when h tends to 0 where

f : m 7−→ 2

√
ϕ′′
min

π

(
∂nϕ (ρ1)

(
ρ1
rmin

)2m+1

+ ∂nϕ (ρ2)

(
ρ2
rmin

)2m+1
)
.

When we take a compact, the upper bound of Proposition 6.1 ensures the validity of
the following lemma.

Lemma 7.5. There exists h0 > 0 such that for all h ∈]0, h0] and for all m ∈ R, we
have

0 < f1,h(m) ⩽ f(m) (1 + oh→0(1)),

with oh→0(1) uniform in m on all compacts of R.

Let us start by noting the following result.

Lemma 7.6. For all m included in a compact of R, the projection Π̃h,m, defined in
Definition 6.7, is injective when it acts on the eigenspace associated with λ1,m(h).

Proof. Let M a compact of R. Let h > 0, m ∈ M and vh,m an eigenfunction associated

to λ1,m(h) such that Π̃h,mvh,m = 0.
According to Proposition 6.8, there exist C, h0, δ0 > 0 such that for all δ ∈]0, δ0] and
h ∈]0, h0], we have∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

⩽

∥∥∥∥e−ϕ/h
(
Id−Π̃h,m

)
vh,m

∥∥∥∥
L2(Iδ)

+
∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥
L2(Iδ)

⩽ Ceϕmin/h
(
f1,h(m) +

(
f1,h(m)

)2)∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

,
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with Π̃h,m defined in Definition 6.7 and Iδ = [ρ1 + δ, ρ2 − δ].
Using Lemma 7.5, there exists another constant C (M) > 0 such that∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

(
1− Ceϕmin/h

)
⩽ 0.

Thus vh,m = 0 on Iδ which ensures the injectivity of Π̃h,m. □

The estimate of the L2-norm follows directly from Lemmas 7.2 & 7.3 and from Lemma
7.5.

Lemma 7.7. Let h > 0, m ∈ R and vh,m an eigenfunction associated to λ1,m(h).∥∥∥e−ϕ/hvh,m

∥∥∥2 ⩽ |αm|2
√

π

ϕ′′
min

r2m+1
min

√
h e−2ϕmin/h

(
1 + o (1)

)
,

with αm ∈ C∗ such that Π̃h,mvh,m = αmr
m+1/2.

Moreover, oh→0(1) is uniform in m on all compacts of R.

Proof. It is enough to apply Lemmas 7.2 and 7.3 by noticing that when we take a
compact we have

Rm(h) = 1 + oh→0(1),

with oh→0(1) uniform in m on all compacts of R. □

Under the compactness assumptions, we can simplify the lower bound of Lemma 7.1.

Lemma 7.8. There exist h0, δ0 > 0 such that for all h ∈]0, h0], for all δ ∈]0, δ0], for all
m ∈ R and for all v ∈ H1

0 we have∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
v

∥∥∥∥∥
2

⩾ 2h N∂nϕ(V )2
(
1 + o (1)

)
,

when δ/h→ +∞ and δ2/h→ 0 with N∂nϕ(·) defined in Notation 5 and

V =
(
v(ρ1 + δ), v(ρ2 − δ)

)
.

Moreover, oh→0(1) is uniform in m on all compacts of R.

We can then minimize the energy, uniformly in m, by the trace of the projection of
the eigenfunctions on the kernel of d×h,m.

Lemma 7.9. There exists h0 > 0 such that for all h ∈]0, h0], for all m ∈ R and for
vh,m an eigenfunction associated to λ1,m(h) we have

λ1,m(h)
∥∥∥e−ϕ/hvh,m

∥∥∥2 ⩾ 2h |αm|2
(
∂nϕ (ρ1) ρ

2m+1
1 + ∂nϕ (ρ2) ρ

2m+1
2

)
(1 + o(1)),

with αm ∈ C∗ such that Π̃h,mvh,m = αmr
m+1/2.

Moreover, oh→0(1) is uniform in m on all compacts of R.

Proof. Let M a compact of R. Let h, δ > 0, m ∈ M and vh,m an eigenfunction
associated to λ1,m(h). Let us further assume that δ/h→ +∞ δ2/h→ 0.
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i) When we take vh,m as an eigenfunction, Lemma 7.8 becomes√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥ ⩾
√
2hN∂nϕ

(
Vh,m

)
(1 + o(1)),

with N∂nϕ(·) the norm defined in Notation 5 and

Vh,m =
(
vh,m(ρ1 + δ), vh,m(ρ2 − δ)

)
.

ii) According to Proposition 6.8 and Lemma 7.5, we have

N∂nϕ

(
Uh,m

)
⩽ Ch−3/4

√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

(1 + o(1)) ,

with Iδ = [ρ1 + δ, ρ2 − δ], o(1) uniform in m on all compacts of R and

Uh,m =

(
e−2ϕ(ρ1+δ)/h

(
Id−Π̃h,δ

)
vh,m (ρ1 + δ) , e−2ϕ(ρ2−δ)/h

(
Id−Π̃h,δ

)
vh,m (ρ2 − δ)

)
.

Using the Taylor expansion of ϕ in the neighborhood of ρ1 and ρ2 and by writing
N = min

(
∂nϕ(ρ1), ∂nϕ(ρ2)

)
> 0, we get

N∂nϕ

(
(Id−Π)Vh,m

)
⩽ Ch−3/4e−Nδ/h

√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

(1 + o(1)) ,

with ΠVh,m =
(
Π̃h,mvh,m(ρ1 + δ), Π̃h,mvh,m(ρ2 − δ)

)
.

iii) Then the triangular inequality ensures that

N∂nϕ

(
(Id−Π)Vh,m

)
⩾
∣∣∣N∂nϕ

(
Vh,m

)
−N∂nϕ

(
ΠVh,m

)∣∣∣ .
Thus, by ii)

N∂nϕ

(
Vh,m

)
⩾ N∂nϕ

(
ΠVh,m

)
−O (h∞)

√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

.

Proposition 6.6 allows us to obtain for m bounded that∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

=
∥∥∥e−ϕ/hvh,m

∥∥∥ (1 + o(1)) ,

with oh→0(1) uniform in m on all compacts of R.
Then,

λ1,m(h)
∥∥∥e−ϕ/hvh,m

∥∥∥2 ⩾ 2h |αm|2
(
∂nϕ (ρ1) ρ

2m+1
1 + ∂nϕ (ρ2) ρ

2m+1
2

)
(1 + o(1)),

with αm ∈ C∗ such that Π̃h,mvh,m = αmr
m+1/2 and oh→0(1) uniform in m on all

compacts of R.
□

Proof of Proposition 7.4. Recall that

λ1,m(h) = f1,h(m)
√
h e2ϕmin/h.

By combining Lemmas 7.7 and 7.9, we have the existence of h0 > 0 such that for all
h ∈]0, h0]

f1,h(m) ⩾ f(m) (1 + oh→0(1)),
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with oh→0(1) uniform in m on all compacts of R.
Lastly, Lemma 7.5 gives us

f1,h(m) = f(m) (1 + oh→0(1)),

with always oh→0(1) uniform in m on all compacts of R. The result follows. □

7.3. Weak coercivity. In this part we prove Proposition 4.1 (2).

Proposition 7.10. Let K > 0. There exist h0 > 0 and g : R → R+ coercive such that
for all h ∈]0, h0] and m ∈ R satisfying

f1,h(m) ⩽ K ,

we have f1,h(m) ⩾ g(m).

Similarly to Lemma 7.6, we have

Lemma 7.11. Let K > 0 and h0 > 0. For all h ∈]0, h0] and m ∈ R satisfying

f1,h(m) ⩽ K ,

the projection Π̃h,m, definied in Definition 6.7, is injective when it acts on the eigenspace
associated to λ1,m(h).

Proof. Let K > 0 and h0 > 0. For all h ∈]0, h0] and m ∈ R satisfying

f1,h(m) ⩽ K ,

consider vh,m an eigenfunction associated to λ1,m(h) satisfying Π̃h,mvh,m = 0.
According to Proposition 6.8, there exist C, h0, δ0 > 0 such that for all δ ∈]0, δ0] and
h ∈]0, h0], we have∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

⩽

∥∥∥∥e−ϕ/h
(
Id−Π̃h,m

)
vh,m

∥∥∥∥
L2(Iδ)

+
∥∥∥e−ϕ/hΠ̃h,mvh,m

∥∥∥
L2(Iδ)

⩽ Ceϕmin/h
(
f1,h(m) +

(
f1,h(m)

)2)∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

,

with Π̃h,m given in Definition 6.7 and Iδ = [ρ1 + δ, ρ2 − δ].
Then, there exists another constant C (K) > 0 such that∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

(
1− Ceϕmin/h

)
⩽ 0.

Then vh,m = 0 on Iδ that is provides the injectivity of Π̃h,m. □

Remark 7.12. Taking β = 2/5 in Lemma 7.3.

After that, the L2-norm can be estimated as follows.

Lemma 7.13. Let K > 0. There exists h0 > 0 such that for all h ∈]0, h0] and m ∈ R
satisfying

f1,h(m) ⩽ K ,

we have for all vh,m eigenfunction associated to λ1,m(h)∥∥∥e−ϕ/hvh,m

∥∥∥2 ⩽ |αm|2
√

π

ϕ′′
min

(
rmin + sgn(2m+ 1)h2/5

)2m+1√
h e−2ϕmin/h

(
1 + o (1)

)
,
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with αm ∈ C∗ such that Π̃h,mvh,m = αmr
m+1/2.

Moreover, oh→0(1) is uniform in m.

Proof. It is enough to apply Lemma 7.2 & 7.3 by noting that under these assumptions

Rm(h) = 1 + oh→0(1),

with oh→0(1) uniform in m. □

Lemma 7.14. There exist h0, δ0 > 0 such that for all h ∈]0, h0], for all δ ∈]0, δ0] and
for all v ∈ H1

0 ∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
v

∥∥∥∥∥
2

⩾ h N∂nϕ

(
V 0
) (

1 + o(1)
)
,

when δ/h→ +∞ and δ2/h→ 0 with N∂nϕ(·) defined in Notation 5 and

V 0 =
(
v(ρ1 + δ)1]−∞,0[(m), v(ρ2 − δ)1]0,+∞[(m)

)
.

Moreover, oh→0(1) is uniform in m.

Proof. Let h, δ > 0, m ∈ R and v ∈ H1
0 . We can reduce the quantities Eint

m (h, δ) and
Eext

m (h, δ) defined in Lemma 7.1 by using the mean value theorem. It is enough to note
that for m ∈ R∗

+ there exists ξint ∈ (−2δ1ρ1∂nϕ(ρ1)/h, 0) such that

Eint
m (h, δ) = e−δ1

2∂nϕ (ρ1) + (2mh/ρ1)1]0,+∞[(m)

e2mδ11]0,+∞[(m) − e−2δ1ρ1∂nϕ(ρ1)/h
=
he−δ1

ρ1δ1
e−ξint > 0 ,

and for m ∈ R∗
− there exists ξext ∈ (−2δ2ρ2∂nϕ(ρ2)/h, 0) such that

Eext
m (h, δ) = eδ2

2∂nϕ (ρ2)− (2mh/ρ2)1]−∞,0[(m)

e−2mδ21]−∞,0[(m) − e−2δ2ρ2∂nϕ(ρ2)/h
=
heδ2

ρ2δ2
e−ξext > 0 ,

with δ1 = ln
(
1 + δ

ρ1

)
, δ2 = −ln

(
1− δ

ρ2

)
.

If we assume that δ/h→ +∞,

Eint
m (h, δ) ⩾ e−δ1

2∂nϕ (ρ1)

1− e−2δ1∂nϕ(ρ1)/h
1]−∞,0[(m)

⩾ ∂nϕ (ρ1)1]−∞,0[(m)(1 + o(1)) ,

and

Eext
m (h, δ) ⩾ eδ2

2∂nϕ (ρ2)

1− e−2δ2∂nϕ(ρ2)/h
1]0,+∞[(m)

⩾ ∂nϕ (ρ2)1]0,+∞[(m)(1 + o(1)) .

Therefore, by assuming δ2/h → 0, Lemma 7.1 ensures the existence of h0, δ0 > 0 such
that for all h ∈]0, h0], for all δ ∈]0, δ0] and for all v ∈ H1

0∥∥∥∥∥e−ϕ/hh

(
∂r +

m+ 1/2

r

)
v

∥∥∥∥∥
2

⩾ h N∂nϕ

(
V 0
) (

1 + o(1)
)
,

with N∂nϕ(·) defined in Notation 5 and

V 0 =
(
v(ρ1 + δ)1]−∞,0[(m), v(ρ2 − δ)1]0,+∞[(m)

)
.

□
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Lemma 7.15. Let K > 0. There exists h0 > 0 such that for all h ∈]0, h0] and m ∈ R
satisfying

f1,h(m) ⩽ K ,

we have for all vh,m eigenfunction associated to λ1,m(h)

λ1,m(h)
∥∥∥e−ϕ/hvh,m

∥∥∥2 ⩾
hN |αm|2

(
(ρ1 + δ)2m+1

1]−∞,0[(m) + (ρ2 − δ)2m+1
1]0,+∞[(m)

)
(1 + o(1)),

when δ2/h → 0 and δ/h → +∞ with N = min
(
∂nϕ (ρ1) , ∂nϕ (ρ2)

)
> 0 and αm ∈ C∗

such that Π̃h,mvh,m = αmr
m+1/2.

Moreover, oh→0(1) is uniform in m and depends on K.

Proof. Let K > 0 and h0 > 0. Consider h ∈]0, h0] and m ∈ R satisfying

f1,h(m) ⩽ K .

Let δ > 0 and vh,m an eigenfunction associated to λ1,m(h). Let us also assume that
δ/h→ +∞ and δ2/h→ 0.

i) When we take vh,m an eigenfunction, Lemma 7.14 becomes√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥ ⩾
√
hN∂nϕ

(
V 0
h,m

)
(1 + o(1)),

with N∂nϕ(·) the norm defined in Notation 5 and

V 0
h,m =

(
vh,m(ρ1 + δ)1]−∞,0[(m), vh,m(ρ2 − δ)1]0,+∞[(m)

)
.

ii) Proposition 6.8 ensures the existence of a constant CK > 0 such that

N∂nϕ

(
Uh,m

)
⩽ CKh

−3/4
√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

(1 + o(1)) ,

with Iδ = [ρ1 + δ, ρ2 − δ], o(1) uniform in m and dependent on K and

Uh,m =

(
e−2ϕ(ρ1+δ)/h

(
Id−Π̃h,δ

)
vh,m (ρ1 + δ) , e−2ϕ(ρ2−δ)/h

(
Id−Π̃h,δ

)
vh,m (ρ2 − δ)

)
.

Using the Taylor expansion of ϕ in the neighborhood of ρ1 and ρ2 and by writing
N = min

(
∂nϕ(ρ1), ∂nϕ(ρ2)

)
> 0, we get

N∂nϕ

(
(Id−Π)Vh,m

)
⩽ CKh

−3/4e−Nδ/h
√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

(1 + o(1)) ,

with (Id−Π)Vh,m =

((
Id−Π̃h,δ

)
vh,m(ρ1 + δ),

(
Id−Π̃h,δ

)
vh,m(ρ2 − δ)

)
.

iii) Then the triangular inequality gives

N∂nϕ

(
(Id−Π)Vh,m

)
⩾ N∂nϕ

(
(Id−Π)V 0

h,m

)
⩾

∣∣∣∣N∂nϕ

(
V 0
h,m

)
−N∂nϕ

(
ΠV 0

h,m

)∣∣∣∣ ,
with V 0

h,m =
(
Π̃h,δvh,m(ρ1 + δ)1]−∞,0[(m), Π̃h,δvh,m(ρ2 − δ)1]0,+∞[(m)

)
.

Thus, by ii)

N∂nϕ

(
V 0
h,m

)
⩾ N∂nϕ

(
ΠV 0

h,m

)
−O (h∞)

√
λ1,m(h)

∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

.
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The uniform bound assumption on f1,h(·) and Proposition 6.6 also ensure the
localization of eigenfunction, in particular∥∥∥e−ϕ/hvh,m

∥∥∥
L2(Iδ)

=
∥∥∥e−ϕ/hvh,m

∥∥∥ (1 + o(1)) ,

with o(1) uniform in m and dependent on K.
Then,

λ1,m(h)
∥∥∥e−ϕ/hvh,m

∥∥∥2 ⩾
hN |αm|2

(
(ρ1 + δ)2m+1

1]−∞,0[(m) + (ρ2 − δ)2m+1
1]0,+∞[(m)

)
(1 + o(1)),

with αm ∈ C∗ such that Π̃h,mvh,m = αmr
m+1/2 and oh→0(1) uniform in m and

dependent on K.

□

Proof of Proposition 7.10.
Let K > 0 and h0 > 0. Let us consider h ∈]0, h0] and m ∈ R satisfying

f1,h(m) ⩽ K .

Let us take vh,m an eigenfunction associated to λ1,m(h).
By combining Lemmas 7.13 and 7.15 we have the existence of δ0 > 0 such that for all
δ ∈]0, δ0] satisfying δ/h→ +∞, δ2/h→ 0,

f1,h(m) ⩾ N

((
ρ1 + δ

rmin + sgn(2m+ 1)h2/5

)2m+1

1m⩽0

+

(
ρ2 − δ

rmin + sgn(2m+ 1)h2/5

)2m+1

1m⩾0

)
(1 + o(1)).

with oh→0(1) uniform in m and dependent on K.
But ρ1 ⩽ rmin ⩽ ρ2, then for h, δ sufficiently small we have

f1,h(m) ⩾ N 22|m|−1(1 + o(1)).

The function g(m) = N 4|m|−1 satisfies the statement conditions. □
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Appendix A.

We focus here on the proof of Lemmas 2.1 and 2.2 in Section 2.
The first one is a consequence of the Hodge de-Rham theory.

Lemma A.1. Let F ∈ C∞ (Ω,R2
)
a vector potential satisfying (2.1) with B = 0 and∫

∂Ωint

F = 0,

where ∂Ωint is defined in (1.2).
Then, F = 0.

Proof.

(1) Let us show that there exists G ∈ C∞ (Ω,R) such that F = (F1, F2) = ∇G.
Consider the differential form ω = F1 dx+ F2 dy.
It is closed and has zero integral on ∂Ωint. Indeed,

dω = rot(F ) dx ∧ dy = 0,

and ∫
∂Aint

ω =

∫ 2π

0

F (γ(t)) · γ′(t) dt =
∫
∂Ωint

F = 0,

with for all t ∈ [0, 2π[, γ(t) = (ρ1 cos(t), ρ1 sin(t)).
Thus, according to [12, Corollaire 9.19 p.130], ω is exact.

(2) Then, since div (A) = 0 and A · n = 0, we have

∥F∥2 =
∫
Ω

F · ∇G =

∫
∂Ω

G (A · n) dσ −
∫
Ω

div (A)G = 0,

with n the unit normal to ∂Ω and dσ the surfacic measure associated to ∂Ω.

□

Lemma A.2. Let θ the unique solution of{
∆θ = 0 on Ω
θ = 1 in ∂Ωint and θ = 0 in ∂Ωext.

Then, ∇⊥θ verifies (2.1) with B = 0 and we have in polar coordinates, for all (r, s) ∈
[ρ1, ρ2]× [0, 2π[,

∇⊥θ(r, s) =
1

r ln(ρ1/ρ2)

(
− sin(s)
cos(s)

)
.

Moreover ∫
∂Ωint

∇⊥θ =
2π

ln
(
ρ1/ρ2

) ,
with ∂Ωint defined in (1.2).

Proof. The existence and uniqueness of a such function follows from the theory of elliptic
partial differential equations.
In polar coordinates, we have for all r ∈ [ρ1, ρ2],

θ(r) =
ln
(
r/ρ2

)
ln
(
ρ1/ρ2

) .



44 E. LAVIGNE BON

Furthermore, by using

∇⊥ =

(
− sin(s)
cos(s)

)
∂r −

(
cos(s)
sin(s)

)
∂s
r
,

it is easy to check that for any (r, s) ∈ [ρ1, ρ2]× [0, 2π[,

∇⊥θ(r, s) =
1

r ln(ρ1/ρ2)

(
− sin(s)
cos(s)

)
.

Then ∫
∂Ωint

∇⊥θ =

∫ 2π

0

∇⊥θ(γ(t)) · γ′(t) dt = 2π

ln
(
ρ1/ρ2

) ,
with for all t ∈ [0, 2π[, γ(t) = (ρ1 cos(t), ρ1 sin(t)). □

Appendix B. Polar coordinates of the Pauli operator and fibration

In this appendix, we justify the decomposition of the Pauli operator in polar coordi-
nates, given in Section 3. We prove then Lemma 3.2.

B.1. Decomposition in polar coordinates.
Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

satisfy for all a, b ∈ C3,

(σ · a) (σ · b) =< a, b > I2 + iσ · (a ∧ b) , (B.1)

with σ = (σ1, σ2, σ3).

Remark B.1. A consequence of identity (B.1) is if we consider

σ =

(
σ1
σ2

)
, er =

(
cos(s)
sin(s)

)
and es =

(
− sin(s)
cos(s)

)
,

we have

(σ · er)2 = (σ · er)2 = I2 and (σ · er) (σ · es) = iσ3 = − (σ · es) (σ · er) .

Notation 6. We write for all h ∈]0, 1] and p ∈ Z,

ψ = ϕ+ hγh,p ln

(
ρ1
ρ2

)
θ,

with γh,p defined in Proposition 2.3.
Thus, we have Ah,p = ∇⊥ψ.

Lemma B.2. The Dirichlet-Pauli operator in polar coordinates, denoted by P̃h, acts on
L2
(
]ρ1, ρ2[×[0, 2π[,C2; r dr ds

)
as

P̃h =

−h2(∂2rr +
1

r
∂r

)
+

(
h

(
−i∂s − γh,p

)
r

− ∂rϕ(r)

)2
 I2 − hB(r)σ3,

with γh,p defined in Proposition 2.3.
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Proof.
Recall that for h > 0 and p ∈ Z, we have

Ph =
[
σ ·
(
−ih∇−Ah,p

)]2
.

By writing the gradient in polar coordinates, we get

σ ·
(
−ih∇−Ah,p

)
= (σ · er) {−ih∂r}+ (σ · es)

{
−ih
r
∂s − ∂rψ

}
with er = (cos(s), sin(s)) and es = (− sin(s), cos(s)).
We are reduced to compute the square of an operator of type (R + S + T ) with

R = (σ · er) {−ih∂r} , S = (σ · es)
{
−ih
r
∂s

}
and T = (σ · es) {−∂rψ} .

Let u ∈ C∞ (]ρ1, ρ2[×[0, 2π[,C2
)
, by using Remarque B.1, we have

A(A+B + C)u = I2
{
−h2∂2rr

}
u+ iσ3

{
h2

r2
∂s −

h2

r
∂2sr + ih∂rψ∂r + ih∂2rrψ

}
u

C(A+B + C)u = −iσ3 {ih∂rψ∂r}u+ I2

{
ih

r
∂rψ∂s + (∂rψ)

2

}
u.

Then, we get

BAu = (σ · es)

(σ · es)

[
−h

2

r
∂r

]
u+ (σ · er)

[
−h

2

r
∂2sr

]u

= I2

{
−h

2

r
∂r

}
u+ iσ3

{
h2

r
∂2sr

}
u,

and

B(B + C)u = (σ · es)

(σ · er)

[
h2

r2
∂s −

ih

r
∂rψ

]
u+ (σ · es)

[
−h

2

r2
∂2ss +

ih

r
∂rψ∂s

]
u


= iσ3

{
ih

r
∂rψ − h2

r2
∂s

}
u+ I2

{
−h

2

r2
∂2ss +

ih

r
∂rψ∂s

}
u.

By combining the terms, we get

P̃hu =

−h2
[
∂2rr +

1

r
∂r

]
+

[
(∂rψ)

2 + 2 (∂rψ)
ih∂s
r

− h2

r2
∂2ss

] I2u

− h

(
∂2rrψ +

1

r
∂rψ

)
σ3u.

By Lemma 2.2, we have

∂rψ = ∂rϕ+
hγh,p
r

. (B.2)
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Finally, by factorizing and applying equation (B.2), we get

P̃h =

−h2(∂2rr +
1

r
∂r

)
+

(
h

(
−i∂s − γh,p

)
r

− ∂rϕ(r)

)2
 I2 − hB(r)σ3.

□

B.2. Spectrum of fibered operator.
We prove here Lemma 3.2.

Proof. Recall that Ph acts as P̃h in polar coordinates and P̂h = r1/2P̃hr
−1/2. We thus

have the identity

Sp (Ph) = Sp
(
P̃h

)
= Sp

(
P̂h

)
.

Let us show the second equality.

• Let λ ∈
⋃
m∈Z

Sp
(
Ph,m

)
, there exist m ∈ Z and vm ∈ H1

0 ∩H2
(
[ρ1, ρ2],C2

)
such

that Ph,mvm = λvm.
We have

λum(r)e
ims = Ph,m

(
um(r)

)
eims = P̂h

(
vm(r)e

ims
)
.

This shows the first inclusion.
• Let λ ∈ Sp

(
P̂h

)
, i.e. there exists v ∈ H1

0∩H2
(
[ρ1, ρ2]× [0, 2π[,C2; dr ds

)
\{0}

such that P̂hv = λv.
We can decompose the eigenfunction into Fourier series

v(r, s) =
∑
m∈Z

vm(r)e
ims.

Then, in the sense of tempered distributions, we have

0 =
(
P̂h − λ Id

)
v(r, s) =

∑
m∈Z

(
Ph,m − λ Id

)
vm(r)e

ims

But v ̸= 0, so there is at least one m ∈ Z such that um ̸= 0, i.e.

Ph,mum = λum.

□
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