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SEMICLASSICAL SPECTRUM
OF THE DIRICHLET-PAULI OPERATOR
ON AN ANNULUS

E. LAVIGNE BON

ABSTRACT. This paper is devoted to the semiclassical analysis of the spectrum of the
Dirichlet-Pauli operator on an annulus. We assume that the magnetic field is strictly
positive and radial. We give an explicit asymptotic expansion at the first order of the
lowest eigenvalues of this operator in the semiclassical limit. In particular, we exhibit
the Aharonov-Bohm effect that has been revealed, for constant magnetic field, in a
recent paper by Helffer and Sundqvist.
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1. INTRODUCTION

This paper deals with the low-lying spectrum of the Dirichlet-Pauli operator. This
operator is the Hamiltonian of the Pauli’s equation, which models non-relativistic spin-
1/2 particules interacting with a magnetic field. For a particle of mass and electric
charge equal to 1, in a pure magnetic field perpendicular to the domain, the Pauli’s
equation reads

1tho U = Py, U,

where ¥ : R x 0 — C? is the state of the system, € a smooth bounded domain of
R? and h > 0 the semiclassical parameter. We associate to the magnetic field (which
is assumed to be smooth), denoted by B, a magnetic vector potential A = (A;, Ay)
satisfying B = 0, Ay — 0, A;.

The Dirichlet-Pauli operator acts as

Py = [0 (—ihV — A)]> on H?(Q,C?) NH, (Q,C?),

with o = (01, 02), the Pauli matrices (Hermitian, unitary)

R N ) B R

and 0 - v = 01v| + g9vy for v = (vi,vs) € C%. Notice that to ensure its selfadjointness
we assume that boundary carries Dirichlet conditions. Let ()\k(h))keN* be the real
non-decreasing sequence of eigenvalues of P}, counting multiplicity.

The Dirichlet-Pauli operator has been the subject of many recent works. In particular,
the paper [4] presents a new approach, for simply connected domains, leading to very
accurate estimates of the low-lying spectrum. Helffer and Sundqvist [13] proved the
exponential decay rate of the ground state in the case of a connected domain. They
also given, in the same paper, numerical results describing the behavior of the first
eigenvalues on an annulus with a constant magnetic field.

Here, we consider an annulus §2 and we assume that the magnetic field is strictly
positive and radial. We give explicitly the first term of the asymptotic expansion for
the first eigenvalues. Let us informally describe our main result. We prove in this paper

that, for all k£ € N*,

= i s (= 1) VRS (),
#V =k

with ¢y € R, ¢nin a strictly negative constant and f : R — R a coercive function known
explicitly according to the magnetic field and (2.

The prefactor in \x(h) encodes two kinds of gauge invariance. Of course, the standard
magnetic gauge invariance (adding a gradient to the magnetic potential) leaves ¢uyin, f
and ¢y invariant. The presence of the hole introduces another degree of freedom given
by conjugating the operator by 8 (p € Z, arg being the argument). The invariance
by translation by an integer of the prefactor of A\i(h) is reminiscent of this invariance
(see Section 2.2).

Note that the constant ¢y depends mainly on the circulation of the magnetic potential
on the interior boundary. When it does not vanish, we observe an oscillation of the
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eigenvalues in the semiclassical limit through the 1-periodicity of

d— min max f(m—d).
vcz meV
#V =k

This influence of the circulation of the magnetic potential on the eigenvalues evokes the
Aharonov-Bohm effect. It has already been mentioned in [13], for more details on this
phenomenon see the original reference [1], for a new point of view see also [2].

This result highlights some phenomena that should also appear in doubly connected
case (without symetry) and in multiconnected domains.

1.1. Hypothesis and definition of the Dirichlet-Pauli operator.
Let Q C R? be an annulus centered at the origin with radius 0 < p; < po. We let

00 = 0t || 9exc (1.2)

with 0Q = C(0, p1) and 0Qex; = C(0, p2).
Consider a magnetic field B € C*> (ﬁ, R). Despite the presence of a hole, there exists
a regular vector potential denoted by A = (A;, Ay), which satisfies

B =rot (A) == 8xA2 - 8yA1. (13)

Note however that two Pauli operators with two vector potentials associated with B
are not necessarily unitarily equivalent (see Section 2).

Assumption 1.1. The magnetic field is radial and strictly positive.

1.1.1. The Dirichlet-Pauli operator. We are interested in the Dirichlet-Pauli operator
(Pn, Dom (P,)) defined for all h > 0 as

2 lp— A]> — hB 0 L, 0
Pr=lo- (-4 :( 0 !p—A\2+hB):(Oh L)

acting on the domain
Dom (P},) = H? (Q, C2) N Hy (Q, C2) .

Here p = —¢hV. This operator is non-negative, self-adjoint with compact resolvent.
By the spectral theorem, the spectrum of (Ph, Dom (Ph)) is real, discrete and can be
written as a sequence tending to 4oc0.

The purpose of this paper is to investigate the behavior of the lowest eigenvalues in the
semiclassical limit. Since B > 0 on (), it is enough to study the spectrum of L.

Notation 1. Let ()\k(h)) denote the non-decreasing sequence of eigenvalues of Pj,.

keN*

By the min-max theorem, we have the following characterization

(p— A,
() = inf o (p—A)ul, )

2
VEHI(2.C) uevi(o) [ullz2q)

(1.4)
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1.1.2. Scalar potential. The choice of A will play an important role. A particular choice
is associated with the scalar potential, ¢ being the unique solution in H] (€, R) (cf. [9,
Theorem 6, p.326]) of the Poisson equation

{Aqﬁ:B on {2

6=0  inof. (1.5)

Since B is positive, ¢ is subharmonic and satisfies

max ¢ =max ¢ =0

zeQ gb x€oN gb ’
by the maximum principle. In particular, the minimum of ¢ is negative and attained
in 2. We note that the exterior normal derivative of ¢, denoted 9,,¢, is strictly positive
on 09 from [9, Hopf’s Lemma, p.330].

Remark 1.2. Assumption 1.1 on the magnetic field and the uniqueness of ¢ ensures
that ¢ is radial and admits a unique circle of minimum centered at the origin and of
radius Iy, €|p1, p2[. We note ¢, the minimum of ¢. In polar coordinates, ¢ is the

solution of
{ ¢"(r) + ¢'(r) = B(r) on |pi, ps|
¢(p1) =¢(p2) =0.
so that ¢ (Tmin) = B(rmin) = Bo = inf{B(z) : © € Q}.

1.2. Results and discussions. Some recent works have investigated the semiclassical
limit of the bottom of the spectrum:

(1) In the non-simply connected case, Helffer and Sundqvist have proved, in [13],
that if the magnetic field is positive, then

Ai(h) = exp <2¢;:in + Oh—0 <%)>

The techniques employed for the lower bound are mainly based on those used
by Ekholm, Kovaiik and Portmann in [8]. The main novelty of their proof is
the combination of some gauge invariances and the Hodge-de Rham theory to
control the oscillations induced by the circulation of the magnetic potential.
In [13, Section 7], a numerical analysis of the smallest eigenvalues is realized
in the case of a constant magnetic field on the annulus, by means of a finite
difference method. It relies on a Fourier decomposition, parametrized by the
circulation of the magnetic potential.

(2) In the simply connected case, Barbaroux, Le Treust, Raymond and Stockmeyer
have proved, in [4], that for all £ € N*, there exist Cj,f(k), Csyp(k) > 0 such
that

Clng (k) Fe2omin/ (1 + 040(1)) < Ae(h) < Coup (k)R 2021+ 050(1))

under the assumption that B is positive and that ¢ has a unique minimum,
which is non-degenerate. The prefactors Cj, s (k) and Cy,y,(k), are given explicitly.
Their strategy is based on the Riemann mapping theorem and the connection
between the spectral analysis of Dirichlet-Pauli operator and Cauchy-Riemann
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operators. In particular, the lower bound, established by a holomorphic ap-
proximation result [4, Proposition 5.4], is a consequence of the ellipticity of
Cauchy-Riemann operators.

The main result of this article is the following.
Theorem 1.3. Let B € C*™ (ﬁ, ]R) be radial such that
By = inf{B(z), v € Q} > 0,

and A € C> (ﬁ, RQ) be an associated vector potential.

Then, for all fixed k € N*, we have
Ai(h) = ai(h) Vi emn/" (1 4 0y, (1)),

where
. Co 1
ar(h) = min max m— — | and ¢y = p10, - — A,
) = in o f (=52 ) and oo = po (o) =5 [
#V =k

with f : R — R given by
B in 2m+1 2m+1
fm) =2 ﬁ_)<m¢@n(pl) + 0,0 (00) (L) >.

min min

Remark 1.4. We note that, unlike [4, Theorem 1.3], the decreasing behavior in h is
the same for each of the eigenvalues. This comes from the fact that the scalar potential
does not admit a unique non-degenerate minimum.

We give here a brief outline of the ideas to establish the main theorem.

i. In Section 2, we follow [13] to select a useful gauge. The explicit description
of the Hodge-de Rham theory reveals the role of circulations when writing the
magnetic potential, see Proposition 2.3. In Section 3, we make a fibration of the
Dirichlet-Pauli operator by means of Fourier series:

L, =P ;..
mEZ
ii. Techniques used in [4] and in Sections 5 and 6 share common features. First, we
prove uniform ellipticity inequalities for the Dirac operator for fixed m. Then, we
deduce a lower bound for k > 2 of the k-th eigenvalue Ay, (h) of £ . Finally,
with the upper bound on A;,,(h), we deduce a localization and a monomial
approximation for the eigenfunctions associated to Ay, (h).
iii. The proof of Theorem 1.3 relies on Proposition 4.1:
(a) The lowest eigenvalues of £, are, in the semiclassical limit, ground states
of £ ., see Lemma 4.6.
(b) The sequence of renormalized eigenvalues,

_ Aum(h)
fl,h(m) = W’
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with @pnin defined in Remark 1.2, converges uniformly (in m) on any compact
of R, when h tends to 0. Moreover, it also verifies a property of weak
coercivity with respect to m.
Finally, if m(h) is such that Ay, (h) = Ax(h), the upper bound of Lemma
4.5 implies that m(h) is uniformly bounded with respect to h. The min-max
formula on integers with the uniform convergence on any compact ends the proof
of Theorem 1.3.

2. CHOICE OF GAUGES ON THE ANNULUS

When the domain is simply connected the vector potential A can be chosen, via gauge
invariance, equal to V¢, where ¢ is a solution of (1.5), modulo the gradient of a regular
function [4].

In this section we slightly revisit [13] by describing explicitly an equivalence class of
magnetic potentials defined in such a way that the set of associated Pauli operators are
unitarily equivalent.

2.1. Selection of vector potential. Recall that A is fixed and satisfies (1.3). By
gauge invariance, we can choose a new magnetic potential A such that

rot(A) = B and div(A) =0 on Q, (2.1)
A-n=0 in 0S2. '

In fact, consider f a solution of
—Af =div(A) on®Q
Vf-n=—A-n in 09,
Such a solution exists but is not unique, see [3, Theorem 5.2.18].
We can easily check that A = A + V f verify (2.1).

The unitary transformation to be carried out on the operator to make such a modifica-
tion is the following

o (p—A) — exp <i£1d) o (p—A) exp (—i%ld).

2.2. A class of admissible vectors potential. Let us describe a family of vector
potentials associated with B. To do so, we will need the following two lemmas, conse-
quences of the Hodge de-Rham theory, whose proofs are provided in Appendix A.

Lemma 2.1. Let F' € C* (Q,R?) a vector potential satisfying (2.1) with B =0 and

/ F=0,
8Qint

where OQn; is defined in (1.2).
Then, F = 0.

Lemma 2.2. Let 0 the unique solution of

AO=0 onQ
=1 MmO and 0 =0 in 0.
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Then, V10 verifies (2.1) with B = 0 and we have in polar coordinates, for all (r,s) €

[P1>P2] X [0727T[;
1 B 1 — sin(s)
V) = o) < cos(s) ) '

Moreover
27

V= —" |
/<99mt In (Pl/ P2)
with 0 defined in (1.2).

We have a family of vector potentials that give rise to unitarily equivalent operators.

Notation 2. We note arg(-) the principal value of the argument that lies within the
interval [0, 27].

Proposition 2.3. Recall that ¢ is defined in (1.5) and 6 in Lemma 2.2.
For allp € 7Z and h > 0, consider

Anp =V + hyn,n <%) V4o,
2

with vnp, = p+ co/h and co = p10,¢ (p1) — % fmim A.
Then, we have

[m (p — Ah,p)i|2 — '8 [0~ <p — A)r e Parg,

Proof.
(1) Let us show that there exists ¢ € R such that A = V¢ + V0.
Let a € R to be determined, consider
F=A-V'y—aV'.

The vector field F verifies (2.1). By linearity, we have rot (F) = div(F) =
0. Moreover, since ¢ and € are constant on each connected component of the
boundary we have

Vig-n= —%qﬁ(y(t)) =0 and similarly V+0-n =0,

with v a parametrization of a connected component of the boundary and n =

(_01 é) ~" the associated unit normal.

If we find « such that fm, =0, then by Lemma 2.1 we have F' = 0.
On the one hand we have for (r,s) € [p1, pa] X [0, 27|

VEe(r, s) = 0,9(r) (‘strgg)) ,
thus

Vi = 2mp10,6(p1).

8Qint
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On the other hand,

/ A= A+Vf= A.
BQint 697,77,1& agint

Finally, the choice

1
a=In <%) (plarcb(m) ~ 5 /mm A) :

gives the desired result.
(2) Let us now take p € Z and h > 0.
For (z,y) € Q, the function exp(iparg(x,y)) is smooth. We can change the
magnetic potential by conjugating with the unitary operator exp(ip arg).
Note that for all (r,s) € R% x [0,27]

—in = —in (€SN g, 4 L ()Y g ) ana eirmn) — gins
sin () r \ cos(s)

For (z,y) € €2, we have, in polar coordinates, for all (r,s) € [p1, p2] X [0, 27,

—hY eiparg(x,y) — @ —sin (S) eips — hp In & Vleeiparg(x,y)’
r cos () P

where we used Lemma 2.2.
Finally, we have

[0 : (P - Ah,p)]2 = ePare {0 . (p - A)} : eTiParg
with

App=A + ihe™EVe ™8 = A + hpIn (ﬂ> V.
P2

Remark 2.4. Taking p = 0, in Proposition 2.3, we see that A = Ano.
Thus, we have

A=V'6 + ¢oln <&) vie,

P2
with Co = p18r¢ (pl) - % fant A

Remark 2.5. The unit operator exp(iparg) of Proposition 2.3 is an explicit version
of the one given in [10, Proposition 2.1.3]. By Lemma 2.2, it is easy to see that the
composition by exp(ip arg) modifies the circulations of the magnetic potential, i.e.

Anp = A + 27hp.
8Qint aﬂint
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3. FIBRATION OF THE DIRICHLET-PAULI OPERATOR

In this section, we decompose the Dirichlet-Pauli operator, with potential Ay, ,, into
Fourier series.
Under the assumption that the magnetic field is radial, the Dirichlet-Pauli operator in

polar coordinates, denoted by ?;h, acting on L2 (]pl, p2[ %[0, 27 [, C?; r d?") as

. 2
B — |-n? (afr i %a) ; (hM—M(r)) I, — hB(ras,  (3.)

with 7, , defined in Proposition 2.3.
Details are given in Appendix B.

Thanks to the change of function u(r) = v/r v(r), we get a new operator acting now
on L? (]Pl,pz[x [0, 27[, C?; dr ds) as

2
_ 1 —id, —
Pp= | —h? (a,?r + @) + (h w —arqb(r)) L — hB(r)os.  (3.2)

Consider F, the Fourier isomorphism between L? (] p1, p2[ %[0, 27[, C?; dr ds) and
2 <L2 (o1, pa[, C%; d?")). Equation (3.2) ensures that P, and F commute. We have the

following diagram
H§ 0 H? (]p1, pa[x[0, 27, C*; dr ds) ANy <H& N H? (Jp1, pal, C%; dr)) . (3.3)
73;‘ l@mezlph,m

0? <L2 (Jo1, p2[, C%; dr))

L2 (Jp1, p2[x[0, 27[, C?; dr ds)
where the operator Py, ,, is defined as follows.

Definition 3.1. Let h €]0, 1] and m, p € Z. We define the operator (Ph,m, Dom (Ph,m)>
on L? ([p1, p2], C?) as the operator acting as

2
1 B D
’th = | —h? ((‘fr + 4_7"2> + <h (7n+h7) — ar¢(7’)) I, — hB(?“)Ug ) (3.4)

with 43, defined in Proposition 2.3.
Moreover, Dom (th) = Hj N H? ([pl,pg],(CQ). We also note £; and £ . the

h,m h,m>
operators giVGIl by
L, 0
;h,m—<}6’ E;)

We give in the next lemma the connection between the spectrum of P, and that of
Phm for m € Z. A proof of this result is given in Appendix B.
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Lemma 3.2. Under the assumptions made in Section 1, we have for all h €]0,1] :

Sp(Ph) = | Sp (Phim) (3.5)

meZ

with Phm given in Definition 3.1.

Moreover, if vy, is eigenfunction of P, then (r,s) — /r U (7)€

is an eigenfunction
of Py, associated with the same eigenvalue, with P given in (3.1).

Remark 3.3. In the same way as in Lemma 3.2, we have
USp< m) and Sp (£}) USp(ﬁ )
meZ

3.1. Extension of the definition of known operators. The definition of Py, ,,, see
Definition 3.1, naturally leads us to consider real moments (and not only integer mo-
ments). Indeed, in (3.4), the factor m — 7, is no more an integer.

Section 3.1.1 is devoted to the study of some remarkable operators with real angular
momentum.

3.1.1. Real angular momentum operators. All the results of this section will be demon-
strated in the case where the magnetic potential is equal to Ay = V+¢. We will see in
the next subsection that it is sufficient when considering real moments.

Let us define the magnetic gradient, magnetic Laplacian and magnetic Dirac operators
appearing during the manipulation of the Pauli operator. This definition allows us to
have a better overview of the operator Py, ,.

Remark 3.4. Let h €]0,1] and m € Z. We will show that by defining Py, ,,, with the
potential Ag, we have

‘Ci:,m = dh mdifm? ‘C;erl = d;,mdhym’
where d}, ,,, given in Definition 3.5.

Definition 3.5. Let m € R and A > 0.
We define (ph,m, Dom (phym)> , <dh,m, Dom (dh,m)> , (%hm, Dom (//lhm)) the op-

erators on L? ([pl, P2, C) acting as

1 hm
:_.hr r T A s| —— — 0Ur
Ph.m ithe (8 27‘) +e ( . qﬁ)

dhm=—¢h<ar+m+1/2—a’"¢) ,
’ r h

1 h ?
M =P Prom = 1 (03 + —) + (7m - rqﬁ) ,

42

where the family of vectors (e,,es) constitutes a direct orthonormal basis of R? and
P, is the formal adjoint of py, ,,.
Moreover,

Dom (dh,m) = Dom <ph7m> = H& ([pl,pg], (C) and Dom (///hm) = H§HH2 ([pl,pZ], (C) .
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The operators py, .., dhm, M, are actually related to each other as one can see in
the following.

Proposition 3.6. Let Ay = V¢ where ¢ is the unique solution of the Poisson’s equa-
tion (1.5).
Form € R and h > 0, we have

d;;mdh,m = %h,m+1 + hB >

3.6
dh,md});m = '%h,m — hB s ( )

where dy . is the formal adjoint of dypm (in the distribution meaning).
When m is an integer, the operators py,,, and dp ., acting on the radial functions

verify

Prm = e—imsrl/2 (p . AO) T—1/26ims 7

: , 3.7
f%h,m _ efzmsrl/Q ‘p . A0|2 7,71/2ezms : ( )
and
0 dh,m e—ims 0 a eims 0
(d;m 0 > = ( 0 6—i(m+1)s) r'/?g . (p - AO)T 12 < 0 ei(m+1)s> ) (38)
where p = —ihV = —ihe,.0, — z'hes% 15 the momentum operator in polar coordinates

(gr(s) = (cos(s),sin(s)), es(s) = (—sin(s),cos(s))), |p — Ao|* is the magnetic Lapla-

Proof. Let u € C° (R, C) and v = (v1,v2) € C° (R, C?).
(i) Let us start with (3.6). We have

5 = I (ar omtl2 argb) (ar+ m+1/2 @quﬁ) §

r h r h
+1/2 920 [(m—+1/2\° _m+1/20.¢6 [(0,0\°
—_p2ez ™ _ e oM™ /= _
(@ r? h r + r h h b
and then
y (m+1)—1/2 8¢ [((m+1)—1/2\>
dh,mdh:mu = —h? (83 - r2 N h N T

+2

(m+ 12 —1/2 8;;25 - (a;;b)Q) }

= My i1t + h (aqu + %&gb) u
== (%h7m+1 + hB) u.
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In the same way,

r ]. 2 r
dhmd;mu = —h? (ar + m_{—rl/z — o (b) (ar — M + %) U

h r h
2 1/2\? 1/20, 6\
Y aerm+1/2+8,,qb_ m+1/ +2M8¢_ [0 y
r? h r r h h
1
= Mpmu—h <(9fgz§ + ;&gzﬁ) U
= (//h,m — hB) u.
(ii) Let us then establish (3.7). On the one hand, we have
r1 20,2y = du — %u,
1 5 (3.9)
2922y = 9% — “du+ —u,
" " r 472
on the other hand, we deduce from the radialness of ¢ that
o\
Ay =Vip = (erﬁr + 67) ¢ = e0p. (3.10)

The magnetic gradient becomes
_ v . d. .
e—zmsrl/Q (p . AO) T—1/2€zmsv _ e—zmsrl/Q (-Zh (erar + es_) . es@«qﬁ) T—1/2€zmsv
r

h
= —ihe, 20,0712 + e, (—m — T¢> v
r

- ph,m/U .
Then, the magnetic Laplacian satisfies
Ip— Ao|>u = —h%A u+ 2ihAy -V u+ | Ay u.

In polar coordinates, we have

472

_ 1
r2Ay -V V2 = (80¢) . (& o, 2T> u= &gb%u,
r T

P/ \AO|2 P2y = (&nqﬁ)Q .

12 A ,.—1/2 2, 1 &
rArT =0+ — + 5 | u,
r

Thus,

. . h
e~ M2 |p — AP 2y = —h? (62 + = - —) u— QTmarqbu +(8,0)° u
r
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(iii) Let us finish with (3.8). Using (3.10) and the properties of Pauli matrices, we
have

o-(p—Ap)=o0- (—iheTaT + e, { —iho - T(b})
r
=0 e (-Zha,« Idg +i03 { _Zhas — 'r¢}>
r

0 oo\ [—ihd, +i {ﬂ - &Qb} 0
(6“ 0 ) 0 —ihd, —i {ﬁ - &«b}

r

0 —ihe (& 4+ =0 _ %)

T

—ihe (0, — = 4 22) 0
From Equation (3.9), we have
1o (€M 0 v
/% (p—Ao)r 1/2 ( 0 e’i(m+1)s) (v;)

0 —ihe_is (8,, -+ M — %) ( ,Uleims )

Vg ei(m+1)s
- eims 0 0  dim U1
- 0 ei(erl)s d;;m 0 vy )

The following lemma will be important when studing the adjoint of dj,,, and to
determine elliptic estimates.

Lemma 3.7. Let h €]0,1], m € R and u € Hy ([p1, p2), C). We have

U

2 2

il =17 (‘9’”‘217)“ i (w—w)u +hH¢§uH2
el =120 5o | (22 ) o ol

Proof. Let h €]0,1], m € R and v € H} ([pl,pg],(C). By using Proposition 3.6, one
easily checks that
2

(2 ).

2
—l—hH\/Eu

2
+ ‘

| = [ et

—ef(a- L) VB
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2
We proceed in the same way for Hd; (m+1)uH . O

Next proposition gives an explicit description of the kernel of the adjoint of dj,,, and
of its orthogonal.

Proposition 3.8.
(i) The operator (dhvm, Dom (dhm)) is closed with closed range.

(i1) The adjoint <dz7m, Dom <d2m)> acts as d;; ,, on Dom (d;‘lm> = H' ([p1,p2),C)
and

ker (d2m> = Vect (7’ — e_¢/hrm+1/2) :

(i1i) We have, ker (al",‘mb>l N Dom <d2m> = {dhﬁmw; w € Hi N H? ([p1, pal, (C)}

Proof.

(i) Lemma 3.7 ensures the equivalence between the norm Hg ([p1, p2],C) and the

graph norm of dj,,. Thus, the operator (dh,rru Dom (dh,m)> is closed. The

closed image property follows from the same lemma. Indeed, for any u €
H(} ([plapQ]a(C)

[ dnmu| = V2hBo |lull,

with By = inf,cq B(x) > 0 by assumption.
(ii) By definition,

Dom <d2m> C {u c L% dp ot € L2} = H' ([p1,p2],C).
On the other hand, if v € H' ([p1, p2], C) we have for all w € C° ([p1, p2], C)
<v,dh,mw> = <d,§mv,w> ,

and dj, v € L? ([p1,p2],C). Finally, we can extend by density this result to

Dom (dp,) to obtain v € Dom (d2m> and d;, ., = dj ..
Moreover,

ker (d;,,,) = {we 1% d,u=0}

1/2
r

= Vect <r — e_¢/hrm+1/2> .
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(iii) The following equalities are consequences of Proposition 3.6,

1
ker <d2m> N Dom <d};m> = Im (djm) N Dom ( Zm>
- {dh,mw; w e H and d, dymww = (Mymir + hB) w € L2}

— {dh,mw; w € Hy N H? ([pl,pg],C)} .

U

3.2. Back to the Pauli operator and symmetry of the Dirac operator. Fol-
lowing the same idea as in Remark 3.4, we can now extend the definition of the Pauli
operator for real moments with a magnetic potential equal to Ay, with p € Z and
h €]0, 1]. The main result of this part is Proposition 3.12 that give us an explicit formula
for the spectrum of £; .

Definition 3.9. Let h >0, m € R and p € Z.
Consider (ﬁi

hym?

Dom (Efm>) , the self-adjoint operators acting as

£+

hym+1

Ly = dydy

hyi 0

= dj 5dnm and Dom (Efm> = Hy N H* ([p1,p2], C)

where dj, 5 defined in Definition 3.5, with m = m — ~,, and 7, defined in Proposi-
tion 2.3. Moreover, we let ()\km(h)) be the non-decreasing sequence of eigenvalues
associated to L .

keN*

Remark 3.10. By using the min-max theorem, we have

2
|5
Mem(h) = inf sup =
veDom(ay,,) vev\fo}  [[vll
dimV =~k

with d;’m defined in Definition 3.5.

The next result (see [4, Lemma 3.11]) ensures that it is possible to modify the magnetic
field of the Dirac operator by composing with well chosen matrices. This explains the
choice, made in subsection 3.1.1, to define the Dirac operator for the magnetic potential
Ay = V1o, We invite the reader to consult the paper [4] for a proof of the next lemma.

Lemma 3.11. We have the following relation

75 h o-p O =g - (p—V\Ifl> , (3.11)
with ¥ € C! (ﬁ) and o3 defined in (1.1).

We use this lemma to make the change of function v = e~#/"u.
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Proposition 3.12. Let k € N*, m € R and h €]0,1]. We have

(ar _ Lm) v(r) 2

P2
hz/ e 20/h dr
P1 r
Mem(h) = inf sup 5 (3.12)
vcH}(lp1.p2),C) veV\{0} / e~ 20/h ‘U(T)}Z dr
dimV =k

p1
4. PROOF OF THEOREM 1.3
In this section we establish Theorem 1.3.

Notation 3. Let j € N*, h > 0 and m € R, we consider

)‘j,m(h) —2¢min/h
ip\Tn) = € s

The following proposition will be proved in Sections 6 and 7 (for the first two points)
and Section 5 (for the last point).

Proposition 4.1. We have

(1) (flvh)he]o 1 is uniformly convergent on any compact to f: R — R when h tends
to 0 where

" p 2m+1 P 2m-+1
f: mr—>2y/% <0n¢(p1) (rml) + 00 (p2) (T:) ) .4

(2) Let K > 0 and hg > 0. There exists g : R — R coercive such that for all
h €]0, ho], and m € R satisfying

fin(m) < K,

one has fin(m) = g(m).
(3) For all h >0, j > 2 and m € R, we have

fin(m) = 2By he20min/h.
Remark 4.2. For allm e R,
f(m)=e>0,
with ¢ = 2 % min (9,¢ (1), Ond (p2)).
Thus, let us temporarily admit that Proposition 4.1 holds.
Now we can use Proposition 2.3 and choose, for each h > 0, a good magnetic potential.

For all h > 0, we consider the Dirichlet-Pauli operator associated to the vector potential

A =V+¢+ hy(h)n (%) \Val'
2
with y(h) = % — [ 2] in such a way that y(h) € [0,1].
Definition 3.9 and Remark 3.3 ensure that
Sp (L) = { N mom(h) ,mEZ,j e N*}. (4.2)

The following lemma justifies the existence of the prefactor given in Theorem 1.3.
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Lemma 4.3. Let h > 0, k € N*, we consider the non-decreasing sequence

ax(h) = inf sup (m —~(h)). (4.3)
#V =k

Then, there exists a k-tuple

which realizes the infimum. Moreover, the functions h — ay(h) and h — p;(h) are
bounded for j € {1,...,k}.

Proof. Let k € N* and h > 0 fixed. Let (W;),>1 a minimizing sequence of (4.3), i.e. for
jeA{l,...,k} W;is a k-tuple in Z. Since the function m — f(m — y(h)) is coercive,
the sets W; are uniformly bounded with respect to j. There exists a subset of Z which
realizes the infimum. The continuity of f ensures that h +— «ay(h) is bounded.
The sequence (ay(h)) 4> is non-decreasing, in fact for all W' C Z*+t we have

(k) = sup f(m = (k) < sup f(m — (1),

meVy

By taking the infimum on the set of k-tuple, we have
Oék(h) < Ozk+1<h).

Proposition 4.4. Let k € N*, h > 0, we have
Ai(h) < ag(h)Vhe?mn/M(1 + 0, _,0(1)) .
Proof. Let k> 1 and h > 0. We have
Me(h) < max Ay, oy (h) = max f(u—y(h))Vhe2min/h,

weVi(h) peVi(h)

Proposition 4.1 (1) and the boundedness of i +— p(h) (Lemma 4.3) give the conclusion.

Il
Lemma 4.5. Let h > 0, k € N*, consider the non-decreasing sequence
Br(h) = inf sup fip(m —~(h)). (4.4)
VCZ meV

#V =k
Assume that there exists hg > 0 such that

sup Br(h) < +oo.
he€]0,ho]

Then, for all h €]0, ho|, there exists a k-tuple
Wi(h) = {mi(h),...,mp(h)} CZ
which realizes the infimum. Moreover, the functions h — m;(h) are bounded for j €
{1,... k}.
Proof. Let k € N* fixed. There exists hg > 0 such that

K = sup fBr(h) <400
h€]0,ho]
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i) For all e €]0, 1] and for all h €]0, hy], there exists X.(h) C Z such that X (h) = k
and

Be(h) < s fin(m —~(h)) < Br(h) +e < K +1.

Thus, for all i €]0, ko] and for all m € U, .yj0 nojxj01) X= (), we have
fin(m—~(h) < K+1.

Proposition 4.1 (2) ensures that there exists g : R — R™ coercive such that for

g(m —~(h)) < frn(m —~(h)) .
Thus there exist M), € N* independent of h and e such that for any ¢ €]0, 1] and
for any h €0, ho|, Xo(h) C [— My, My].
ii) Let us consider for all h €]0, hy, (Xl/"(h))neN* the minimizing sequence of (4.4).
From the point i), the k-tuple X;,,(h) are uniformly bounded with respect to
n and h. Consequently there exists a k-tuple, bounded in h, which realizes the

infimum.
In the same way as for (o (h)), ., the sequence (Bi(h)),., is non-decreasing, see the
proof of Lemma 4.3. O

Lemma 4.6. Let k € N* | there exists hg > 0, such that

sup Sr(h) < +o0,
he]0,ho]

and for all h €]0, ho| ,
A(h) = max Ay (h).

mGWk(h)
Proof. Let k € N*. According to (4.2), there exists ng(h) € Z, ji.(h) € N* such that
Ak(h) = Ajw)ni )=y (1) -
However, Proposition 4.1 (3) ensures that for all A > 0, j > 2 and m € R,
Ajm(h) = 2Boh.

By using Proposition 4.4 and the boundedness of h + ay(h) (Lemma 4.3), we have the
existence of hg > 0 such that for all h €]0, hgl, jr(h) = 1 then

Me(h) = inf  sup Ay (h) = Bi(h)Vh e2min/h,
VCZ meV
#Y =k

Finally, by using Proposition 4.4 and Lemma 4.5, we have

su h) < 400 and Ay(h) = max Aq,,— h).
he]o’}}am}ﬁk( ) p(h) = max Arm—u(h)

Proof of Theorem 1.3.
Let k € N*. From Lemma 4.6, we have for all h €]0, hg],

e f— — 2(ﬁmin/h
Ml = max Ao (B) = max fi(m = (VA et (45)
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Moreover, Lemma 4.5 states that for any j € [1,k], the functions b — m;(h) — y(h)
are uniformly bounded.
Proposition 4.1 (1) and Remark 4.2 ensures that

max m—y(h))=(1+o0 1 max f(m — h
i, falm =200) = (Ut o) g, fm=ai@)
> (1% on (D))
Using (4.5) and (4.6), we have the following lower bound
Ae(R) = ap(h)Vh /M (1 + 0, _0(1)) .

The upper bound of Proposition 4.4 completes the proof. U

5. ELLIPTIC ESTIMATES

In this section we give elliptic estimates related to the Dirac operator with real fixed
angular momentum, see Definition 3.5. These results complete the study realized in [4]
and make it possible to establish, for example, Proposition 4.1 (3) (cf. Corollary 5.6).

5.1. Ellipticity results on the Dirac operator. The main result of this section is
Proposition 5.1. It is one of the main ingredients to prove a monomial approximation
of the associated eigenfunctions (in a neighborhood of 2), see Proposition 6.8.

Notation 4. Let us denote for 6 € (0, dp)
Zs = [pr +9,p2 — 9],
with dyp = min ((rmin —p1)/2,(p2 — rmin)/2).
Proposition 5.1. There exist dg, hg > 0 and C' > 0 such that for all § €]0, o], for all
ho €]0, ho] and for all u € Dom (d ) N ker (dim)L
2
d;mu‘

’ L*(Zs)
I3l zyy = CHY2 (0u6(p1) 1 (o1 + 6)[* + Bu(p2) [ (p2 = D)[) .

with s defined in Notation 4.

2
= 2hBy ||U||L2(15)

For convenience, we will use, in this section, the following convention ||-|| = || || z2(z)-

We will need the next lemma later. Note that it implies that the spectrum of £;m is
a subset of [2h By, +o0.

Lemma 5.2. Let h €]0,1], m € R and v € H} N H* (Z5,C), we have

| ]| > /2By |[dnmu]|

Moreover, the spectrum of dj;  dym is a subset of [2hBy, +00l.

d;7mdh7muH>2hBo||u|| and ]
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Proof. Let h €]0,1], m € R and u € H} N H? (Zs,C). The second identity of Lemma
3.7 ensures that
2
1 h 1
(o~ 1) +H(M_@r¢)u
2r r

<u,d§7mdh,mu> > 20 By ||ull?

z |V

Hence

i.e. according to the min-max theorem, the spectrum of d}f,mdhm is a subset of [2h By, +00].
And therefore ‘

20 By |l d | < 20 By (1,05 dmte) < 20 By ]|

d,jmdh,muH > 2hB, |luf| .
Finally,

2
d,f’mdhmuH < Hd;’mdh,muH .

g

Proposition 5.1 is a consequence of the following two lemmas, see Proof 5.1.

Lemma 5.3. Let h €]0,1], m € R and u € H: N H? (Z;,C). We have

145 el = | M al® + B3| Bul|* + 21|V Bpy oy ul® + 1 /(—ATB)IUI2 dr,

VICRENH R VTR P

2 2
1 h(m +1) 1
(o )l s (25000 (- 1),
2
+h2/|u|2 (—A,) (M _ 8,4;5) dr

el
+ f—&«qb Uu

where A, = 0> +r710,. There exist also hg > 0 and a constant C > 0 (independent of
h and m) such that for all h € (0,hg) and m € R
1
2

(1 ).
(- 1)

() (-

Proof. Let h €]0,1], m € R and v € H} N H*(Zs,C). According to Proposition 3.6,
dp mhm = Mpms1 +hB, (5.2)
%h,m+1 = pim_H “Phma1 - (53)

2

Q}LH\/EPh,erUH2 = 2h° +2h

Y

s 1u]|* =

Y

Clldy dnmull = Vh | Jlull + ‘ + 1

+h + K32 (5.1)
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1) Equation (5.2) ensures that

|

However, according to (5.3),

d;}mdh,muuz = || M ms10]|” + 20 Re { My iy, Bu) + h? || Bul .

2

<,///h7m+1u, Bu> = H\/Ephmﬂu

+ <ph,m+1uv [ph,m-i-la Bi| U> ;

with [ph,m+l7 B] = ph,m—i—l B—-B ph,m-l—l'
Let us estimate the term involving the commutator. We have

Dot B| = e (~ihd,B).

Thus,

1
<ph,m+1u7 [ph,m+17 B] u> = _h2 <U, (8r + 2_7") (GTB u)>

= —h*(u,0,Bo,u) — h? <u, <0EB + a;—rB) u> :

By integration by parts,
2 Re (u, 9, B0,u) = — (u,0?Bu) .

Therefore

Oy
2Re <ph,m+1u7 [ph,m+17 B] u> = h2 /(_ATB>|U|2 dT, Ar = 87~ + 7 .

Let us now expand the terms ||\/§ph7m+1u]|2 and H=///h,m+1UH2-
By definition of p,,,,; (cf. Proposition 3.6),

VISR

2
—+

@(ar—i)u 2

2
H\/Eph,erluH = h? o0

Using the definition of .#}, ,,+1 we also have
1 ’ h(m + 1) 2
o2+ V| ] (R 0)
4r2 r

2
+ 2h* Re <— (33 + 4—7102) u, (w — argb) u> .

2
2 4
H,///h,mﬂu” =h
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Then, noticing — (af + L) = (—@ L ) (8T — %), we have

4r2 o 2

B b (GG OF|
(o) (o 1) (22 00) o).

Just as the beginning of Point 1), we estimate the commutator. We find

[(ar ¥ 2—1T> | <w - M)Q] —e, (ar (w - aras)?) .

Thus
(o= 5) (e ) (M2 00) ) -

o (MY o) (o (s ) (A ),

By integration by parts,

2 Re <u O, (M — ar¢)2 8Tu> = <u 02 (M — arqs)Z u> .

Therefore,

2Re<(8r + i) u,
2r

[ ) (M _ 8T¢5)2dr.

2) Let us prove the inequality (5.1).
(i) Let us start by offsetting the two negative terms identified in the previous
point.
From Lemma 5.2,

| @ it > 2085 Jul]
then for sufficiently small h,
||d;’mdhmu||2 + h? / lul> (=A,B)dr > h* (C* — hsup (A, B)) ||lul]* > 0. (5.4)

For the second term, note that

(Hme ) ).

Y

ldp . mul* > 2h°
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thus
nd;mdmmun;:chﬂﬁiﬁgillu (5.5)
Then
2 2 2
o (e nae) = HEE (143)
2
2
(h(m:l) PO a¢+83¢> _m,

with Ry <W’ %o 4 a§¢)2 +(920)° + 0,0 (920 + 9).

Therefore, there ex1sts a constant D > 0 independent of h and m such that

h2/|u| ( (mH)— rgb) dr > —Dh? (Hﬂu

Finally, using points (5.5), (5.6) and Lemma 5.2, we have the existence of
C > 0 independent of h and m such that for h sufficiently small

D h(m + 1 ?
<@ T 1> I il 41 [ il (-5, (@ - arqb) dr

> Vh (C* = Dh) [Jul* > 0

(ii) Point (i) ensures that, modulo the modification of the constant in front of
|}y yudn.mull, each of the terms computed in point 1) are positive. We can
easily conclude that there exist C' > 0 independent of A and m such that

for h sufficiently small
h(m + 1) , 1
(—7“ — &qzﬁ) u (8 + E)
1
(ar — g) u

(0 a) - 3).

Lemma 5.4. Let h > 0 and m € R. We have for allu € H} N H? (Z;,C),
Idh,mu|28n¢‘7n:p2 + |dh,mul28n¢|r:p1

— / |dh,mu|2 (87% — ’}"_187"¢) dr + /23‘% <dh,mu, IoN0) (& + %) dh7mu> dr,
| OV h(m + 1) 1
(3r+§) dpm = —ih (a’"+4r2> + < . —8@) (&— 2r> —B.

+ ||u||2> . (5.6)

Clld5 pmull = V|l + + 1

+h + 12
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Moverover, there ezist hg > 0 and a constant C' > 0 (independent of h and m) such
that for all h € (0,hg) and m € R

|dhmtu[* 00y, + |dnmul* ey, < Ch=32||dy¢ . dnmull®. (5.7)

Proof. Let h €]0,1], m € R and u € H} N H?(Z5,C).
(i) Concerning the first identity, it is enough to notice that

/ (&»+%) (0.0 dna) ar = [ (@%) 0,0

1
= / |dh7mu|203gb + 2Re <dh7mu, 8qu5 <8r + g) dh,mu> d?“,

1
+ 874) (87» + ;) |dh,mU|2 dr

and

1
/ <(9T + ;) (&Qﬁ }dh,mu|2> dr = |alh7mu|28ngb‘r:p2 + |dh,mu|28n<b|r:p1

+ / }dh,mu|2 8qu5 dr.

r

(ii) For the second equality, we can rewrite the definition of dj, ,, as follows

Ay = —ih (ar— i) —q (M —(?Tgb) .
' 2r r

By composing by (9, + 1/2r), we have

1 1 .
<(9r—|—§> dh’mU——Zh <8T+@>U—Z

(o). (0 -a)
(M) ) (o4 L)

The terms of the commutator reorganize in the following way

[(aﬁ%),(M—@@)]u:—(w—&@%—Bu,

which proves the result.
(iii) From Lemmas 3.7 and 5.3, we have

2
+ ‘

dn mul?

2
2
| VBu|| < Ch g di

(2 -a0)

r
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and

1
<8T+§>dh,mu
2, 1 him +1) _ 1
(8T+4r2)u +‘< - 0 ) (0r =5 | u

Thus, using the Cauchy-Schwarz inequality on point (i), there exists C' > 0
independent of h and m such that

/ |dh,mu\2 (83¢ = r*@(ﬁ) dr + /23‘% <dh,mu, O, ¢ (6# + %) dh,mu> dr

1
Or+— | dpm
‘( +2T> h,u
U

Proof of Proposition 5.1. Let h > 0 and m € R, recall that Proposition 3.8 gives us the
identity

<h + || Bul| < Ch_1||d,f7mdh7mu||.

< (sup (870 —170,0)) ldnmull” + 2l mull < Ch=*P||dy ]|

1

ker (dzm) N Dom <d};m) = {dhmu; ue HynH? ([p1, pal, C)} : (5.8)

(1) First inequality is a direct consequence of (5.8) and the second inequality of
Lemma 5.2.

(2) For the second one, it is enough to use (5.8) and (5.7).
U

5.2. Lower bound, for k > 2 of A\, (h). Let us fix p € Z. We will note in this
subpart m = m — 7y, with & > 0 and v, defined in Proposition 2.3.

The following proposition describes the energy levels of £, = dnmdy 5 different
from the ground state, in the semiclassical limit.

Proposition 5.5. Let h > 0, k > 2. For allm € R, we have
Aem(h) = 2hBy.

Proof. Let k> 2, h >0 and m € R.
The min-max theorem allows to order the eigenvalues of the Pauli operator with Dirich-
let and Neumann boundary conditions,

2 2
/\k,m(h) = inf sup 7—2 > inf sup ’—2 — Vk,m(h>,
Ve wevior |l Ve wenvioy |l

with vy, (h) the k-th eigenvalue of L}, , the operator £, with homogeneous Neumann
boundary conditions.

Observe that the first eigenvalue of the Pauli operator with Neumann conditions is zero,
indeed, the function r — 7+1/2 cancels the quadratic form. This implies that for k£ > 2,

ker (£3),, = Vem(h)) € ker (ggm>L — ker <d,f’m>¢
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i
However, according to Proposition 5.1, for all w € Dom (dhm) N ker (d,fm) ,

Thus, for k£ > 2 and u € ker <£f¥m — l/km(h))

2 2
d,j’muH > 2B, |[ul.

2

This completes the proof. O
We directly deduce from Proposition 5.5 and Proposition 4.1 (3).
Corollary 5.6. For allh >0, j > 2 and m € R, we have
fin(m) = 2ByVhe2omin/h.

6. UPPER BOUND AND CONSEQUENCES

In this section we establish an upper bound for the set of ground states of the operators
Ly .- This result is a consequence of Lemmas 6.3 and 6.4. We then show in Section
6.2.1 that, from the upper bound, the eigenfunctions are localized in the neighborhood
of ¢ minimum. Then, by combining the upper bound and the elliptic estimates of
Section 5 we get a monomial approximation of the eigenfunctions inside the domain,
see Proposition 6.8.

6.1. Upper bound. In this subsection, we seek to obtain for any m € R an upper
bound for Ay ,,(h). More precisely we will establish the following proposition.

Proposition 6.1. Let « €]1/2,1[ and 5 €]1/3,1/2[. There exists hg > 0 such that for
all h €]0, ho] and for all m € R, we have

M (h) < Co(h) Vi e

2émin
h

(1 4+ op_0(1)).
with

¢”' n T ha]lm>0 2m+1
— 2 min =
Cm(h) V 7 (8n¢ (p1) (rmin —sgn (2m + 1) h¥

+ 8 ¢( ) P2 — ha]lm<0 metl
n¢ P2 Trin — Sg0 (2m + 1) h#8 '

To do this, we look for a suitable test function to reinject into the Rayleigh quotient
given in Proposition 3.12. Heuristically, a minimizer of (3.12) wants to be in the kernel
of (9, — (m+ 1/2)/r) in the interior of Q.

Therefore, we choose to take test functions in {a 2 with a € (C} up to the mul-

tiplication by a sufficiently smooth cutoff function for Dirichlet boundary condition.

Consider the following cutoff function
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Definition 6.2. Let € > 0, define for all r € [py, po

(r) = P (r) if max(r — p1,p2 — 1) < ¢,
X\ =31 otherwise.
with P a sufficiently regular function such that r +— x(r)r™ /2 € H}.

Let us start by estimate the energy by putting in a test function like r — y(r) r™+1/2,

Lemma 6.3. Let o €]1/2,1], there exists hg > 0 such that for all h €]0, ho] and for all

m € R, we have
2
m+1/2 m+1/2
(3-"212) ()

p2
h2 / 6—2¢/h
P1

h <<9n¢ (p1) (p1 4 h*Tn=0)"""" + 0 (p2) (p2 — ha]lm<0)2m+1) (1+0(1))
with x defined in Definition 6.2.
Proof. Let m € R and h,e > 0, we have

P2
h2/ o—26/h (aT _m+ 1/2> (X(T) Tm+l/2>
p1 r

p1te P2
— h2 / +/ 72¢>/h 2m+1 |a P ‘ dr.

p1 p2—¢
a) (b)

Let’s start by estimate the integral (a); using the Taylor expansion of ¢ in a neighbor-
hood of the interior boundary,

¢(r) = = (r = p1) 9t (1) + O (%) with py <7 < p1+e,

dr

2
dr

thus

p1+e p1te 5 82
/ 2¢/h 2m+1 |a P | dr = / GE(T p) n¢(,01) 2m+1 ‘a P ‘ dr 1+0 E
pP1

P1

€
< (g + ho‘]lm>0)2m+1/ #TOn(o1)
0

2
0, P(r )‘ dr <

2 g2
8. P(r )( dr |1+0( =
We can now choose the optimal P using [4, Lemma A.1.] and obtain
1 —exp (=709 (p1))
_ 209 (p1) <1 ro (¥ m(m))) |
For the integral (b), the estimate follows the same pattern. In a neighborhood of the
exterior boundary, the Taylor expansion of ¢ write

/(E T8n¢ (p1) 28n¢ (pl) /h‘
0
h
O(1) =—(p2 — 7) Ond (p2) + O (°) with py —e < 7 < po,
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thus

P2 P2 9 82
/ e 20/hy2m+1 |a P(r ‘ dr _/ ei (P2=T)0nd(p2) L2m+1 ‘@ P(t ‘ drl1+0 | =
p2—¢ p2—¢ h

o, P(r )‘QdT 1+0 <€—h2>

In the same way as for the integral (a), we choose the optimal P, hence
3
/ 6%7'87L¢(92) 8Tﬁ<7—)‘2 dT < 28n¢ (p2) (1 _|_ O <€—2h88n¢(p2)>) .
0

h
To control the remainders, let us take ¢ = h® with o €]1/2,1[. Combining the upper
bounds of (a) and (b) we get the result. O

13
29m+1
< (p2 — W o)™ / 770n0(p2)
0

Now we give a lower bound for the L2-norm using the same test function.

Lemma 6.4. Let 8 €]1/3,1/2|, there exists hy > 0 such that for all h €]0, ho[ and for
all m € R we have

2 2m+1
e~ ¢y pmtl/2 ‘ > —,7,T (rmin —sgn (2m + 1) h6> Vh e 26min/M(1 4 0(1)) |
with ¢n.. defined in Remark 1.2.

Proof. Let m € R and h > 0. We choose the same test function in the previous proof.
There exists 1y > 0 such that for all  €]0, 7], the annulus of center (0,0) and of radius
Tmin — 7 and 7y, + 7 is included in €2 and ¢ admits the Taylor expansion,

(r Tmln)

QS(T) = ¢min + gbmln ( 3) Wlth T'min — n < r < T'min + n

Therefore, we have

2 Tmin+7
Heﬂﬁ/h m+1/2 2/ o—20/h,2mAT ).

Tmin =7

Xr

and

Tmin+7
/ e=20/hp2mAL g s

Tmin =7

rmin“l‘n

3
(Fanin — sgn (2m 4 1) )" g~ 20min/h / e r=rmnl*hn/hqr [ 14+ 0 (%)
rmln ”7
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It is now enough to consider the change of variable 7 = (r — rup,) /@, /h to get

Tmin+7 o . 2 L
/ exp <_%¢ﬁﬂn> dr = Vh /f exp (—(ﬁﬁlinTz) dr
~Vh

Tmin =7
Vi [ o (Colurie (1 0z en(0)

_ | (1 + oi%oo(l)) .

. Vh
min

Taking, n = h” with 8 €]1/3,1/2[, we have

2 T 2m+1 o
SN e <rmin —sgn (2m + 1) h'3> Vh e 2min/h(1 4 0(1)) .

min

Hew/h Fm+1/2

X
U

By combining the two lemmas we prove Proposition 6.1.

6.2. Approximation results. We focus in this section on the implications of the upper
bound of Proposition 6.1 and the elliptic estimates of Section 5. From these results we
deduce the localization in the neighborhood of the minimum of ¢ and the monomial
approximation of the eigenfunctions associated to Ay, (h).

6.2.1. Localization of the eigenfunctions. The upper bound implies that the eigenfunc-
tions are localized in the neighborhood of the minimum of ¢, i.e. in the neighborhood of
Tmin. Lt us start with a technical lemma which will be useful in the proof of Proposition
6.6.

Lemma 6.5. For all h > 0 and m € R, and for all v € H], we have

2
P2 1/2 P2
hZ/ e—2¢/h <8r _ M) U(T) > h2a0/ |v|27
p1 P1

’
where ay > 0 is the smallest eigenvalue of the Dirichlet Laplacian on €.

Proof. Let v € H}. Using the fact that ¢ < 0, it follows,

2
P2 1/2 P2

h2/ e~ 20/h <3r _ M) Uh,m(T) dr > h2/
p1 r P1

By integration by parts,
2
1
O — =

2
P2 1/2 P2
pP1 r P1
p2
> 4, / of?,
pP1

Finally we have the lower bound
ap > 0 being the smallest eigenvalue of the Dirichlet Laplacian on ). O

2

<ar - w> ()| dr.

P2 1 2
/ (& — —) v
P1 2
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We have the following localization property.

Proposition 6.6. Let a €]0,1/2[, h €]0, ho], m € R and vy, an eigenfunction associ-
ated to Ay m(h). We have
[ o

fpp12 =20/ upml?

and for & > 0 sufficiently small

2

=1+ fim(h)O(R),

-6 _
pp12+6 e 2¢/h|vh,m|2

2 20/ og 2

with hy and Cp,(h) defined in Proposition 6.1 and O (h™) independent of m.

=14 fum(R)O(hT),

Proof. Firstly, let us note that

Jrt ooy, 2 (L) € P

r

fppf 672¢>/h|vh,m’2 B fpf’f 672¢/h|vh7m’2

Furthermore, since ¢ is a solution of the Poisson’s equation (1.5) and B > 0, the
maximum principle ensures that

an ¢(T) = min{¢(rmin - ha)v ¢(Tmin + ha)}

re [pl 192]\[7‘min —he 77"min+ha]

1"

> g+ I (140 (1))

then

Tmin—h® P2 7 2a—1 a P2
/ +/ 6_2¢/h|vhm|2 < 6*2¢min/h72¢minh (1+O(h ))/ |Uhm|2'
r1 Tmin+h® &

Moreover, according to Proposition 6.1,
2
P2 P2 m_|_ 1 2
/ [Uhm|? < agl/ e~ 20/h (& - —/) v(r)|
pP1 P1 r
2¢min F2
= fun(m) b2 7 / e 2 o
P1

2
P2
hz/ e 20/h (& _mt /e 1/2> v(r)
P1

r
Thus

Tmin_ha P2
—2¢/h 2
/ + / e 2 M upml® <
pP1 Tmin+ha
11

P2
Fra(m) ag'h=*2e2 G/t / ™2 1y (1 + 04 0(1)),
P1

and

and the conclusion follows. O
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6.2.2. Monomial approximation. Following the results of Proposition 3.8, we define the
orthogonal projection on ker d;m>
Remember that

ker <d;m> = Vect <r — e_¢/hrm+1/2> .

Definition 6.7. Let §,h > 0 and m € R. We define 11, 5 the orthogonal projection on
the kernel of dy  defined on the domain Hg (Zs,C) with Zs :=]p) + 6, p2 — 4.
Moreover, if u = e~%/"v, we write IT}, su = €_¢/hﬁh751).

Notation 5. Recall that 0,¢(p1), 0n¢(p2) > 0, see Subsection 1.1.2. The following
norm will be used hereafter, for all X = (z;, ;) € C?

Nowo(X) = /0u6(p1) |21 + a6 () 2.

From Proposition 6.6 we deduce the following monomial approximation result.

Proposition 6.8. There exist C, hg, 5y > 0 such that for all § €]0,00] and h €]0, ho|,
we have for all eigenfunction vy, associated to A\, (h),

?

€7¢/h (Id —ﬁhﬁ) Uh,m

< Ch 20 (h) (14 fun(m)) He*¢/hvh,m(

L2(Zs) L2(Zs)

and

Y

Nowo (Unm) < CH3*\ A m(B) (1 + fin(m)) He*“’/ hvh,m] .
)

with Ny, 4(-) defined in Notation 5 and

Uh,m = <€2¢(p1+5)/h <Id _ﬁh,m) Vh,m (pl + 5) ,672¢(p276)/h <Id _ﬁh,m> Uh,m (pz — 5)) .

Proof. Let h > 0,0 < d < (p2 — p1)/2 and m € R. Let vy, an eigenfunction associated
to )\l,m(h)

Using Proposition 6.6, there exist hg, dg > 0 such that for all A €]0, ho] and § €]0, dg],
we have

2 2
1/2 1/2
—/hp (Mm> - < lle—ormn (Mu) o
T T
L2(Z5) L2(p1,p2)
2
= Aim(h) He_‘b/hvh,m
LQ(p17p2)
2
< M) (1 O (h*® H‘“’/h m‘
Lm(h) (14 fua(m)O (h%)) |le= "y, .

2
< Am(h) (1 + m He_‘z’/hv m’ ;
1m(h) (1+ fia(m)) m | oz
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with Zs = [p1 + 6, pa — 0].
Then, if up, , = €%y, ,,, we have

2
1/2
—o/hy, (ar N M) o

,
L%(Z5)

2

— ’ d (1d T )

We use Proposition 5.1 to complete the proof. U

1/2 -
e~/ <ar + M) (Id —Hh,m) Vm

r

L2(Zs)
2

L2(Zs)

7. PROOF OF PROPOSITION 4.1

In this last section we prove the first two points of Proposition 4.1. We begin with
simplify the Rayleigh quotient given in Proposition 3.12. Then, we prove in the next
two subsections coercivity and uniform convergence results for f ,(m).

7.1. Simplified Rayleigh quotient. Proposition 6.8 states that it is sufficient to know
the behavior of the energy near the boundary of [py, ps]. This leads us to minimize the
numerator of Rayleigh quotient as follows.

Lemma 7.1. There exist hy, 0o > 0 such that for all § €]0,dy] and h €]0, hy], we have
for all v € H,

2
1/2 |
e~9/hpy (ar + M) ol| =n (E;;;t(h, 5) ooy + 8)|

+E (,8) [o(p2 = 9)]°) (1+ (1))
when 6/h — +o00, 62/h — 0 with

5, 2009 (p1) + (2mh/p1) Lo 4ooi ()
€2m511]0’+00[(m) _ 6—251,018n¢(.01)/h ’

5, 2000 (p2) — (2mh/p2) 1) oo of(m)
672m521]_0070[(m) _ 6—252923n¢(92)/h ’

E™(h,6) =e

ES™(h,8) = e

where 9 = In (1 + p%) and 02 = —In (1 - p%). Moreover, o(1) is independent of m.

Proof. Let m € R and 0 < § < (p2 — p1)/2. Let’s start by minimizing the energy by its
contribution near the boundary

2
1
s (ar n w> U‘ >

p1+6 P2 m+1/2 2
(77 ) el (o Y,
p1 p2—6 r

We use the Taylor expansion of ¢ near the boundary

d(r) = — (r — p1) Bno (1) + O (62) with py <7 < p1 + 6,
O(r) = —(p2 — 1) Ond (p2) + O (6%) with py — 8§ <7 < po.

= Qi:fh,é (v) + Qif,th,s (v) .
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2
52
1 _
dr —i—O(h)

> and u(1) = v (pre”), we get
. % e B h 2etdr &
(o) = /0 (e =1)p19n6(p1)/ ‘(37 — (m+1/2)) u(r) il CA )

g1 —T 2
— h2/ @prlarm(pl) 2eTdr 1+0 (5_)
0 P1 h

5 2
_ h2/ e T P10nd(p1)—2m(81—T)—b1 ‘aTwl (1) ? d—T 1+0 6—
0 P1 h

The integral near the interior boundary becomes

(ar - Ll/?) o)

int 2 (770 s p)0né(or)/h
m v)=h e\ TP Ol
w0 =1 [ g

p1

By writing, 7 = In <L>, 0y =1In (1 +

g
p1 P1

(0r — (m+1/2)) u(7)

2
=: hA;ZLt(h, 5,11)1) 1+0 (%) ,

with w; (1) = e™H/2D0=7)y (7).
In the same way, we obtain for the exterior boundary,

d 2
crt (p) = h2/ © o2 p20n (1) H2m (52 —7) 62 |0,ws ()] 7,0 (5_)
e 0 P2 h

2
= WA (B, 8, ws) 1+o<%) ,

with o = —In (1 — p% and ws (1) = emHH02=7)y (pge*T).

Finally, we have the lower bound

2
o, (ar . Ll/?) ,U‘
r h

. 52
> h (A;:;t(h, 5,w1) + A< (h, 5, wz)) 10|

Moreover, for any sufficiently regular function w the maps

R — R7 q R — R%
m — AR, 5w) MY m e AR, w)

are increasing and decreasing respectively. Thus for all m € R,

At (h, 6, w) = AG (h, 0,w) and  A™ (h,6,w) = Ay (h, 6, w) .



34 E. LAVIGNE BON

By using [4, Lemma A.1.] to the integrals A" (h,d,wy), AZ*(h,d,wy), A (h,§,ws),
AE (h, 6, ws) we get for m < 0

h —61 51 T
601 / e T P10nd(p1) ‘87101 (7')|2 dr
0

_ 20,0 (p1)
) n
ze ™ 1 — e—201p10n¢(p1)/h ‘U (pl + 5)|

Aént (h, 5, wl) =

2
)

(2m+1)é 2 00
A (R, 6, wq) = —he i / e(%am(m)f?m)T ’(9711)2 (7’)}2 dr
P2 0

20,0 (p2) — 2mh/ps 2
5 n
€ 26—2m52 _ o—20220,9(p2)/h |U (p2 — 5)‘ )

and for m > 0

. he=@mFDon (o (25 m) T
A (6, wp) = 2 / LR 20)7 5 (1)
P1 0
—5 20, ¢ (/O1> + th/pl
€ e2mér _ o—261p10n¢(p1)/h

v (p +5)\2 :

h (52 62 T
;2 / o 7 P20nd(p2) }67102 (7)‘2 dr
0

20,9 (p2) 5
s n
> 1 — e—202p20n¢(p2)/h }U (p2 — 5){ .

NS (R, 0, wy) =

This leads us to the result. O

Using Propositions 6.6 and 6.8, we can replace vy, by ﬁh,mvh,m in the denominator
of the Rayleigh quotient (3.12).

Lemma 7.2. Let § €]0,1/2[, h > 0, m € R and vy, an eigenfunction associated to
Am(h).
=

Uh,m’ < Rm<h) H€7¢/hﬁh,mvh,mH

)

L2(p1,p2)

with z:min,h = [Tmin - hﬂ; T'min + h'g];

L? (Imin,h)

-1

R..(h) = <(1 + (fl,h(m) + (fl,h(m))2> @ (hoo)) \/1 + fLm(h)O (hoo)> ;

and ﬁhm defined in Definition 6.7. Moreover, O (h*) is independent of m.

Proof. Let h > 0 and m € R. Let vy, an eigenfunction associated to Ay, (h).
Proposition 6.6 ensures that for 8 €]0,1/2[, we have the existence of hy > 0 such that
for all h €]0, ho)

p2
(L4 fun(m)O () / ey 2 = / e My,

P1 Imin,h
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with Imin,h = [rmin - hﬁa Tmin + h'B]
Using Proposition 6.6, we have the following inequalities

He"ﬁ/hvh,mH < Hei(ﬁ/hﬁh,mvh,mH -+ €7¢/h <Zd — ﬁh,m) Vh,m
L2(Imin,h) L? (Zmin,h) L2(Imin,h)
g Hei(ﬁ/hﬁh,mvh,m‘ + eid)/h <2d - ﬁh,m) Uh,m
LQ(Zmin,h> L2(Z§)
with ¢ > 0 sufficiently small, C' > 0 and Zs; = [p; + 9, po — 9.
However, according to Propostion 6.8
_ : ~ 2 ooy || —
e " (zd—Hh,m) Uhm < (fl,h(m> + (fin(m)) )O(h )He ‘Whvh,mH ) :
L%(Z;) L?(Zunin,1.)

with O (h*°) independent of m.
Then

oo

< Rm(h) H eid)/hﬁh,mvh,m H

?

LQ(pl,pg) LQ(Imin,h)

-1

with R,,(h) = ((1 + (f1,h(m) + (th(m))Q) O (h‘x’)) V1+ fim(h)O (h°°)> . O

Proposition 3.8 ensures that ﬁh,mfuh,m = ,,7"™1/2 with «,, € C*. The denominator
can be again simplified as follows

Lemma 7.3. Let 8 €]1/3,1/2[, h > 0, m € R and vy, an eigenfunction associated to
A m(h).

~ 2
e“lﬁ/hﬂh’mvh,m‘ <
L2<Zmin,h)
9 T 3 2m+1 —2min/h
ol [ (e sm@m + 1DR?) " Vi e 2mnt (14 0(1))

with Imin,h = [Tmin - hﬁ’ Tmin + hﬂ] ; Oy € C* such that ﬁh,mvh,m = am,,ﬂm+1/2.
Moreover, o(1) is independent of m.

Proof. Let 5 €]1/3,1/2[, h > 0 and vy, ,,, an eigenfunction associated to Ay, (h).
According to Proposition 3.8, for all m € R there exists o, € C* such that I, ,,vp ., =
™ /2 Then, by Lemma 7.2, we have

2
_ ‘Ozm‘Q/ 672¢/hr2m+1 d?“,
LQ(Imin,h) T

min,h

‘ ’ €7¢/hHh,mvh,m ‘

with Imin,h = [Tmin - hﬁa Tmin + hﬁ} .
As in the proof of Lemma 6.4, we obtain

. (T - Tmin)z " Ié]
¢(T) - ¢min + T¢min + O (h3 > :
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Thus,

)2
/ e 20/hp2mAL 4y ew‘“in/h/ e’( pin) Druin 2+ (1 +0 <h351)>
Imin,h

Imin,h

h 2L bmin/h —72 35-1
<y = <7’min + sgn(2m + 1)h5> e~ 2%min/ / e T dr(1+0 <h s ) )
min R

We deduce that

/ =20/ hp2mAL g <
Imin,h

2m+1
g (i + sgu(zm o+ D) Vet (1 Lo (h?’ﬁl)) ,

and the conclusion follows. O

7.2. Uniform convergence on any compact. In this part we prove Proposition 4.1
(1).

Proposition 7.4. The sequence (th)
f: R — RT when h tends to 0 where

p om1 2m+1
f:mr—>2\/%<an¢(01)(pl‘) +a”¢(p2)<p2.> ) '
v Tmin T'min

When we take a compact, the upper bound of Proposition 6.1 ensures the validity of
the following lemma.

helo.1] 158 uniformly convergent on any compact to

Lemma 7.5. There exists hg > 0 such that for all h €]0, ho| and for all m € R, we
have

0 < fun(m) < f(m) (14 ono(1)),

with op—0(1) uniform in m on all compacts of R.
Let us start by noting the following result.

Lemma 7.6. For all m included in a compact of R, the projection ﬁhm, defined in
Definition 6.7, is injective when it acts on the eigenspace associated with Ay m(h).

Proof. Let M a compact of R. Let h > 0, m € M and vy, an eigenfunction associated
to A1 m(h) such that I, v, = 0.

According to Proposition 6.8, there exist C, hg,dy > 0 such that for all § €]0,dy] and
h €]0, ho], we have

<

H o—9/h
L2(Z5)

eiWh <Id _ﬁh,m> Vh,m

"— He"ﬁ/hﬂh,mvh,m‘

Vh,m ‘

L2( L2(Zs)

< Cefmin/h <fl,h( )+ f1h ) H ‘

L3( Zg)
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with ﬁh,m defined in Definition 6.7 and Zs = [p1 + 9§, p2 — ¢].
Using Lemma 7.5, there exists another constant C' (M) > 0 such that

Heid)/hvh’mH (1 _ C€¢>min/h> <0.
L%(Zs)

Thus vy, = 0 on Zs which ensures the injectivity of ﬁhm. O

The estimate of the L?*-norm follows directly from Lemmas 7.2 & 7.3 and from Lemma
7.5.

Lemma 7.7. Let h > 0, m € R and vy, an eigenfunction associated to Ay m(h).

2 T
Uh,mH < \Ocm]2 — 2R g~ 2bmin/h (1 + 0(1)) ,

min

—

with o, € C* such that ﬁh,mvh,m = q,rmt2,

Moreover, op_(1) is uniform in m on all compacts of R.

Proof. 1t is enough to apply Lemmas 7.2 and 7.3 by noticing that when we take a
compact we have

R (h) =1+ op0(1),
with op_,0(1) uniform in m on all compacts of R. O

Under the compactness assumptions, we can simplify the lower bound of Lemma 7.1.

Lemma 7.8. There ezist hg, 6y > 0 such that for all h €]0, ho], for all § €]0, ], for all
m € R and for all v € Hy we have

2
e~ ?/"h (& + %1/2) UH > 2h Ny,o(V)? (1+0(1)),

when 6/h — +oco and 62 /h — 0 with Ny, 4(+) defined in Notation 5 and
V = (up1 +6),v(p2 — 9)) .
Moreover, op_0(1) is uniform in m on all compacts of R.

We can then minimize the energy, uniformly in m, by the trace of the projection of
the eigenfunctions on the kernel of d;;m‘

Lemma 7.9. There exists hg > 0 such that for all h €]0, hyl|, for all m € R and for
Unm an eigenfunction associated to Ay, (h) we have

2
N () || vn || = 20 aunl® (906 (p1) 937 + 006 (p2) p27*) (1 + 0(1)),

with ap, € C* such that Tl pUpm = o™ 2,

Moreover, op_0(1) is uniform in m on all compacts of R.

Proof. Let M a compact of R. Let h,6 > 0, m € M and v, an eigenfunction
associated to A1, (h). Let us further assume that §/h — 400 6*/h — 0.



38 E. LAVIGNE BON
i) When we take vy, ,, as an eigenfunction, Lemma 7.8 becomes
M) [[e 0nm | = VRN, 6 (Vi) (14 0(1)),
with Ny, 4(-) the norm defined in Notation 5 and
Vim = (Uhm(pl +6), Vpm(p2 — 5)) )

ii) According to Proposition 6.8 and Lemma 7.5, we have

Nows (Unm) < Ch734 N1 n(h) [|e9"

(1+0(1)),

vh,m‘
L2(Zs)

with Zs = [p1 + 0§, p2 — 6], o(1) uniform in m on all compacts of R and

Uh,m = (€—2¢(p1+6)/h (Id —ﬁhﬁ) Vh,m (pl -+ (5) ,6_2¢(p2_6)/h <Id _ﬁh,é) Vh,m (p2 — (S)) .

Using the Taylor expansion of ¢ in the neighborhood of p; and ps and by writing
N = min (9,¢(p1), Ond(p2)) > 0, we get

Noo (Id —I1) Vi) < Ch™3 e N0 I ()

e*W%h,m‘

(1+0(1)),

L2(Zs)

with HVh,m = <ﬁh,mvh,m(p1 + 6)7 1,:Ih,mlvh,m(p2 - 6)) .
iii) Then the triangular inequality ensures that

N (10 =T0) Vi) > N6 (Vi) = N (TTVi) |
Thus, by ii)
Nows (Vi) = No,s (Vi) — O (h°) A/ Am(h) H€_¢/hvh,m’

Proposition 6.6 allows us to obtain for m bounded that

R P R [l

L2(Z5)

Uh,m ‘

with 05,_,0(1) uniform in m on all compacts of R.
Then,

2
M) € tnm | = 20 ] (06 (1) 9274+ 006 (2) p3™) (1 + 0(1)),

with «a,,, € C* such that ﬁh,mvh,m = a,,7"/? and 0j,_,0(1) uniform in m on all
compacts of R.

O
Proof of Proposition 7./. Recall that
A (h) = fiu(m)Vheémn/h,

By combining Lemmas 7.7 and 7.9, we have the existence of hy > 0 such that for all
h €10, h

frn(m) = f(m) (14 on0(1)),
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with 05,0(1) uniform in m on all compacts of R.
Lastly, Lemma 7.5 gives us

Jin(m) = f(m) (14 on-0(1)),
with always 05,_0(1) uniform in m on all compacts of R. The result follows. Ul
7.3. Weak coercivity. In this part we prove Proposition 4.1 (2).

Proposition 7.10. Let K > 0. There exist hg > 0 and g : R — R coercive such that
for all h €]0, ho] and m € R satisfying

fin(m) < K,
we have fi(m) = g(m).
Similarly to Lemma 7.6, we have
Lemma 7.11. Let K > 0 and ho > 0. For all h €]0, ho] and m € R satisfying
fin(m) < K,

the projection ﬁh,mz definied in Definition 6.7, is injective when it acts on the eigenspace
associated to Ay, (h).

Proof. Let K > 0 and hg > 0. For all h €]0, ho] and m € R satisfying
fl,h(m) < Ko

consider vy, an eigenfunction associated to Ay, (h) satisfying ﬁh,mvh,m =0.
According to Proposition 6.8, there exist C, hg,dy > 0 such that for all § €]0,dy] and
h €]0, ho|, we have

He""/ hvh,m’ < e " (Id _ﬁh,m> Uh,m + He"ﬁ/ hﬁh,mvh,m‘
LQ(I(;) LQ(I(;) LQ(I5)
. 2 _
L*(Zs)
with ﬁh,m given in Definition 6.7 and Zs = [p1 + J, p2 — ¢].
Then, there exists another constant C' (K) > 0 such that
“e‘¢/hvhm‘ (1 — Ce¢min/h> < 0.
TolL2(z5)
Then vy, ,, = 0 on Zs that is provides the injectivity of ﬁh,m. O

Remark 7.12. Taking § = 2/5 in Lemma 7.3.
After that, the L?-norm can be estimated as follows.

Lemma 7.13. Let K > 0. There exists hg > 0 such that for all h €]0, ho] and m € R
satisfying

fin(m) < K,
we have for all vy, eigenfunction associated to Ay ,,(h)

2 2m+1
e onm]| <l [ (i sgn@m + )R27) 7 Vi e 2l (14 0(1))

min
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with a,, € C* such that ﬁhmvhm = q,rmtY2,

Moreover, op_0(1) is uniform in m.

Proof. Tt is enough to apply Lemma 7.2 & 7.3 by noting that under these assumptions
Ry(h) =1+ op0(1),

with op_,0(1) uniform in m. O

Lemma 7.14. There exist ho,09 > 0 such that for all h €0, hy|, for all § €]0, ] and
for all v € H}

2
e /" <ar + %1/2) ol =h N (V) (1+0(1)) ,

when 6/h — +oco and §*/h — 0 with Ny, 4(-) defined in Notation 5 and
VO = (v(pr + 0) L)oo 0(m), v(p2 — 0)Ljo,1eof(m)) -
Moreover, op_o(1) is uniform in m.

Proof. Let h,0 > 0, m € R and v € H}. We can reduce the quantities £ (h,§) and
E&* (h,6) defined in Lemma 7.1 by using the mean value theorem. It is enough to note
that for m € R¥ there exists &iny € (—201010,0(p1)/h,0) such that

Emt(h 5) _ 6—61 Zangb (pl) + (th/pl)ﬂ]O,Jroo[(m) . he " efgim >0
m ’ n 62m51n]07+00[(m) — @—251018n¢(91)/h N p151 ’

and for m € R* there exists exi € (—202020,0(p2)/h,0) such that

5o 2000 (p2) — (th/pQ)]l]—O0,0[(m) o he®
e~ 282l oo 0((m) _ o=202p2000(p2)/h  pydy

with 6, = In <1+ /%), 0y = —In (1 — ,%)'

If we assume that §/h — 400,

ES™(h,8) =e e et >0,

1 — e—2010n0(p1)/h 1o 01(m)
2 0 (p1) Lj—oc0((m)(1 + 0(1)) ,

E(h,6) > e

and

20,9 (p2)
ext 2 n
Em (h7 5) 2 € 1 o 6—262an¢)(P2)/h ]1]0,+OO[(m)

> 0,9 (p2) 110,100 (m)(1 + 0(1)) .

Therefore, by assuming 62/h — 0, Lemma 7.1 ensures the existence of hg,d; > 0 such
that for all h €]0, h], for all 6 €]0, dy] and for all v € H;

2
e~ ®/hp <8T + w) v

> h Na,s (V°) (1+0(1)) ,

r

with Ny, 4(-) defined in Notation 5 and
VO = (v(pr + 0)Lj—oo0(m), v(p2 — 0)Ljo,1of(m)) -
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Lemma 7.15. Let K > 0. There exists hy > 0 such that for all h €]0, hy] and m € R
satisfying

fin(m) < K,
we have for all vy, eigenfunction associated to Ay, (h)

2

Al,m(h) Heid)/hvh,m 2

AN ol (o1 + 01 1y oo (m) + (p2 = 6™ g socg(m) ) (1 + 0(1)),
when 6*/h — 0 and 6/h — +oo with N = min (0,6 (p1), 0,9 (p2)) > 0 and a,, € C*

such that ﬁhmvhm = quy,r™mt/2,
Moreover, op_0(1) is uniform in m and depends on K.
Proof. Let K > 0 and hg > 0. Consider h €]0, ho] and m € R satisfying

th(m) < K

Let 6 > 0 and vy, an eigenfunction associated to A;,,(h). Let us also assume that
§/h — 400 and §2/h — 0.

i) When we take vy, ,, an eigenfunction, Lemma 7.14 becomes

A1) > VINy,s (Vi) (1 +0(1),
with Np, 4(-) the norm defined in Notation 5 and
V}gm = (Uh,m(,Ol + 5)1]700,0[(771), Vh,m(p2 — 5)]1]0,+oo[(m)) .

ii) Proposition 6.8 ensures the existence of a constant Cx > 0 such that

Nows (Unim) < Cich™ 3 X n(B) e 0| oy (LF0(1)
5
with Zs = [p1 + 6, p2 — 6], o(1) uniform in m and dependent on K and
Uh,m == (6_2¢(p1+6)/h <Id —ﬁhﬁ) Uh,m (pl + 5) 76—2¢(p2—6)/h <Id —ﬁhﬁ) Uh,m (pg — 5)) .

Using the Taylor expansion of ¢ in the neighborhood of p; and p, and by writing
N = min (9,0(p1), 0nd(p2)) > 0, we get

B ~3/4 _—N&/h —¢/h
N (14T Vi) < Ooch™ e g () e | - (14 0(1)

€—¢/hvh7m

with (Id —I1) Vi, = ((Id —ﬁm) Unm(pr + 6), (Id —ﬁhﬁ) Vnm(p2 — 5)).

iii) Then the triangular inequality gives

N (4 =T1) Vi) > N (14 =T V2, ) > ‘NM (Vo) = Nows (112,

Y

with V0 = (ﬁh,m,m(m + 0) o 0 (), Ty 50 (P2 — 5)11]0,+00[(m)).
Thus, by ii)

No.s (Vh“,m) > Nowo (Hv,ﬁm> — O (1) \/Arm(R) ||

Uh,m

L2(Zs)
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The uniform bound assumption on f; () and Proposition 6.6 also ensure the
localization of eigenfunction, in particular

e*W%h,mH (1+0(1)),

eﬂb/hvh,m
L2(Zs)

with o(1) uniform in m and dependent on K.
Then,

2

)\l,m(h) H€7¢/hvh,m 2

AN || ((pl + 82" o op(m) + (p2 — §)>m ]1}07+oo[(m)> (1+0(1)),

with «,, € C* such that ﬁhymvh,m = 7™ ? and op,_,0(1) uniform in m and
dependent on K.
O

Proof of Proposition 7.10.
Let K > 0 and hg > 0. Let us consider h €]0, ho] and m € R satisfying

fin(m) < K.

Let us take vy, an eigenfunction associated to Ay, (h).
By combining Lemmas 7.13 and 7.15 we have the existence of §y > 0 such that for all
§ €0, 6] satisfying 6/h — +o00, §2/h — 0,

2m+1
pL+0
> N 1.,
fl’h(m) ((rmin + 39”(27” + 1)h2/5) =

p2—0 2m+1
+ (rmin + sgn(2m + 1)h2/5> Tmso | (1+0(1)).

with 05,0(1) uniform in m and dependent on K.
But p; < rpin < po, then for h, ¢ sufficiently small we have

fin(m) = N 22m=1(1 1 o(1)).

The function g(m) = N 4/™=1 satisfies the statement conditions. U
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APPENDIX A.

We focus here on the proof of Lemmas 2.1 and 2.2 in Section 2.
The first one is a consequence of the Hodge de-Rham theory.

Lemma A.1. Let F € C* (Q,RQ) a vector potential satisfying (2.1) with B =0 and

/ F=0,
aﬂint

where O, is defined in (1.2).
Then, F = 0.
Proof.

(1) Let us show that there exists G € C* (§2,R) such that F' = (F}, F3) = VG.
Consider the differential form w = F} dz + F; dy.
It is closed and has zero integral on 0€2;,;. Indeed,

dw = rot(F') dz A dy = 0,

/BAW w = /027r F(y(t)-+'(t)dt = /89 Foo

with for all ¢ € [0, 27], v(t) = (p1 cos(t), p1 sin(t)).
Thus, according to [12, Corollaire 9.19 p.130], w is exact.
(2) Then, since div (A) =0 and A-n = 0, we have

and

HFH2:/F-VG: G(A-n)da—/div(A)G:()’
Q o0 9]
with n the unit normal to 0f) and do the surfacic measure associated to 0f).

g

Lemma A.2. Let 0 the unique solution of

A =0 on)
=1 m 0 and 0 =0 in O ey.

Then, V0 verifies (2.1) with B = 0 and we have in polar coordinates, for all (r,s) €

[Plal)2] X [07277-[)
1 — sin(s)
€L _
Viblns) = r In(p1/pa2) ( cos(s) ) .
Moreover )
vig— "
OVint In (Pl/ Pz)

with 0 defined in (1.2).

Proof. The existence and uniqueness of a such function follows from the theory of elliptic
partial differential equations.
In polar coordinates, we have for all r € [py, po],

~In (T/pQ)

o) = In (pl/Pz)'
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vi= () o () &

it is easy to check that for any (r,s) € [p1, p2] x [0, 27,

V(s = — - <_Sm<3)) .

Furthermore, by using

}7

rin(pi/p2) \ cos(s)
Then
i g / 2
Vo= [ V(1) () dt = ———,
OQint 0 In (pl/pQ)
with for all ¢ € [0, 27[, v(t) = (p1 cos(t), p1 sin(t)). O

APPENDIX B. POLAR COORDINATES OF THE PAULI OPERATOR AND FIBRATION

In this appendix, we justify the decomposition of the Pauli operator in polar coordi-
nates, given in Section 3. We prove then Lemma 3.2.

B.1. Decomposition in polar coordinates.

Pauli matrices
01 0 —1 1 0
=) () 0 h)
satisfy for all a,b € C3,
(0-a)(o-b)=<a,b>I+ioc-(aND), (B.1)
with o = (01, 09, 03).

Remark B.1. A consequence of identity (B.1) is if we consider
A cgs(s) and e, = sin(s) ’
o9 sin(s) cos(s)

(0-e,)=(0-¢) =1 and (0-¢)(0-e,) =iog=—(0-e;)(0-e,).

we have

Notation 6. We write for all h €]0, 1] and p € Z,

Y = ¢+ hy,n (%) 0,

2

with 7, , defined in Proposition 2.3.
Thus, we have Ay, = V*.

Lemma B.2. The Dirichlet-Pauli operator in polar coordinates, denoted by PNh, acts on
L2 (Jp1, p2[x[0, 27[, C?%; v drds) as

2
— —10s —
Py= |-h (63; + %a) + (h w —arcb(r)) I, — hB(r)os,

with v, defined in Proposition 2.3.



SEMICLASSICAL SPECTRUM OF THE DIRICHLET-PAULI OPERATOR ON AN ANNULUS 45

Proof.
Recall that for h > 0 and p € Z, we have

Py = |0+ (kv - Ah,p)}2 .

By writing the gradient in polar coordinates, we get
h
o- (—ihV — Ah,p) =(0-e.){—ih0,} + (0 - es) {—%85 — &zb}

with e, = (cos(s),sin(s)) and e; = (—sin(s), cos(s)).
We are reduced to compute the square of an operator of type (R + S + T') with

R=(o-e,){—iho.} , S=(0-¢e5) {—%85} and T = (0 -e5) {—0.1}.

Let u € C* (]pl, p2[%[0, 27|, Cz), by using Remarque B.1, we have

2

2
A(A+B+C)u =L {2 Y u+ios {%as - %aﬁr + ihdb0, + z’hafrgb} u

C(A+ B+ C)u = —io3 {ihd, Y0, } u+ I { 005 + ( rw)Q} u

(e [—h—a] u
{ 3,} U+ 103 { } u,

B2 ;
u+ (0 es) [——82 awas] u
R e
=103 Mﬂ as u+ I 5 Yss rwa

By combining the terms, we get

Pru = (m %+ 10 + @)+ 200 M - D

—h (aﬁrw + %arw) 3.

Then, we get

BAu = (0-¢5) 4 (0-¢e5) [—h—28

and

e
BB+ C)u=(0-¢€5)1 (0-€) 83— rw

By Lemma 2.2, we have

O,) = 0 (B.2)
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Finally, by factorizing and applying equation (B.2), we get

2
_ —id,
Pr= |-h? (afT + %&) + <h w —arcb(r)) I — hB(r)os.

B.2. Spectrum of fibered operator.
We prove here Lemma 3.2.

Proof. Recall that P, acts as P, in polar coordinates and P, = /2P~ 1/2. We thus
have the identity

Sp(Pr) = Sp (i’vh) =Sp (7/7;) :
Let us show the second equality.
o Let \ € U Sp (th), there exist m € Z and v,, € H} N H? ([pl,pg],CQ) such

meEZ
that PpmUm = Avp,.

We have
Nt (7)™ = P 1y (n (1)) €7 = P, (Um (T)eims> _

This shows tl/lg first inclusion.
e Let A € Sp (Ph>, i.e. there exists v € HyNH? ([p1, p2] x [0, 27[, C?; dr ds) \{0}

such that 7/3;1) = \v.
We can decompose the eigenfunction into Fourier series

v(r,s) = Z Uy (7)€,
meZ
Then, in the sense of tempered distributions, we have
0= (7/3\}1 — AId) v(r,s) = Z (Prm — M) vy (1)€™
meZ
But v # 0, so there is at least one m € Z such that u,, # 0, i.e.
PhomUm = Alp,.
O
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