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Abstract. Hydrodynamic dispersion is a crucial mechanism for modelling contaminant transport in subsurface
engineering and water resources management whose determination remains challenging. We use Digital Rock
Physics (DRP) to evaluate the longitudinal dispersion of a sandpack. From a three-dimensional image of a
porous sample obtained with X-ray microtomography, we use the method of volume averaging to assess the
longitudinal dispersion. Our numerical implementation is open-source and relies on a modern scientific platform
that allows for large computational domains and High-Performance Computing. We verify the robustness of
our model using cases for which reference solutions exist and we show that the longitudinal dispersion of a
sandpack scales as a power law of the Péclet number. The assessment methodology is generic and applies to
any kind of rock samples.

1 Introduction

The accurate description of hydrodynamic dispersion
according to the flow conditions is one of the long-standing
challenges in hydrogeology and subsurface engineering [1, 2].
Briefly, in porous formations, the transport of chemical
species is modelled using advection–dispersion equations
instead of advection–diffusion equations [3]. In its simplest
form, the equation governing the evolution of concentration,
CA, reads,

/
oCA

ot
þr � UCAð Þ ¼ r: /D� � rCAð Þ; ð1Þ

where / is the medium porosity (dimensionless), U is
Darcy’s velocity (in m/s) and D* is the so-called dispersion
tensor (in m2/s). Generally speaking, the spreading of a
solute is not governed only by the molecular diffusion
DA (in m2/s) but also by the microstructure and the local
velocity field. On the one hand, the tortuous feature of the
porous structure characterizes by the medium tortuosity
(dimensionless), s, tends to slow down the spreading.
On the other hand, hydrodynamic dispersion stretches a
solute band in the flow direction during its transport.
The dispersion tensor is a combination of these two effects
and writes,

D� ¼ DAs
�1 Iþ Dhydro

� �
: ð2Þ

Empirical laws including Archies’s equation attempt to
relate the tortuosity to the porosity using power-law.

The determination of hydrodynamic dispersion (dimension-
less), Dhydro, is not trivial because it depends on the hetero-
geneity of the local velocity profile and its magnitude with
respect to molecular diffusion. The competition between
transport by advection and transport by diffusion is com-
monly characterized using the Péclet number, Pe, defined
as the ratio between characteristic diffusion and advection
times. For low Péclet numbers (Pe � 1), the transport is
dominated by diffusion and hydrodynamic dispersion is
negligible, D* = DAs

�1. For high Péclet numbers
(Pe � 1), species are mainly transported by advection
and hydrodynamic dispersion is dominant,D* =DAs

�1Dhydro.
In the latter case, the dispersion tensor can be orders of
magnitude larger than the molecular diffusion. Although
linear dispersion models – i.e. the dispersion tensor varies
linearly with the Péclet number – are often used for describ-
ing contaminant transport [4], they do not rely on strong
theoretical background. Indeed, Taylor [5] and Aris [6] have
demonstrated that for straight tubes, D� ¼ DA 1þ Pe2

48

� �
.

Empirical measurements suggest that the dispersion can
be modelled using a power-law of the Péclet number with
an exponent ranging from 0.5 to 2 [7].

Digital Rock Physics (DRP) – one of themain technolog-
ical breakthroughs in geosciences that appears in the last
decades for characterizing rock properties [8–11] – can also
be used to determine the dispersion tensor [12–14]. This
emerging technology results from the combination of high-
resolution imaging and efficient algorithms for solving the
governing equations of physical processes at the pore-scale
[15]. DRP allows the assessment of effective properties
including porosity, geometric and reactive surface area
[16–18], absolute permeability [19], Forchheimer correction* Corresponding author: cyprien.soulaine@cnrs-orleans.fr
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[20], and relative permeabilities and capillary pressure curves
[21] in a non-destructivemanner. Current capabilities involv-
ing High-Performance Computing enable pore-scale simula-
tions on samples that reach the size of a Representative
Elementary Volume (REV) of the porous rock [19, 22–24].
The evaluation of the dispersion tensor is usually performed
in two steps. First, the local velocity field within the porosity
is obtained by solving Navier–Stokes equations. Then, the
transport is solved and upscaled to obtain the values of the
dispersion tensor.

Various approaches have been used to compute the
solute transport dispersion. Basically, they can be classified
in two categories: the Lagrangian and Eulerian approaches.
In the former, random walkers are used to simulate particle
transport along the streamlines of the velocity field [12, 14,
24, 25]. It includes the Continuous Time Random Walk
(CTRW) for which the asymptotic dispersion coefficient is
computed from the rate of change of the variance of the par-
ticle positions [1, 2, 26]. In Eulerian approaches, the solute
transport is described by an advection–diffusion equation
solved on an Eulerian grid and the resulting breakthrough
curve is fitted against the Ogata-Banks analytical solution
of a 1D advection–dispersion equation [27] to obtain the dis-
persion value [28, 29]. An alternative grid-based approach
relying on the volume averaging theory solves directly a set
of partial differential equations – the closure problem –whose
volume-averaged solution gives the value of the dispersion
tensor for a given flow condition [30, 31]. Unlike other
approaches, the latter solves a steady-state problem and
directly provides the asymptotic values of the dispersion
tensor. Comparison between the methods has highlighted
that the dispersion coefficients estimated using volume aver-
aging and particle tracking agree closely with each other [32].

In this paper, we propose a DRP technique for calculat-
ing the dispersion tensor using 3D images of the microstruc-
ture. The approach is based on the work of Carbonell and
Whitaker [30] who propose a general formulation for the
dispersion tensor using the method of volume averaging
and the concept of closure problems [33]. We implemented
the closure problem for computing the dispersion tensor
within the open-source platform OpenFOAM�. The result-
ing program called dispersionEvaluationFoam is
available online (https://github.com/csoulain/dispersion
EvaluationFoam) and benefits from all OpenFOAM fea-
tures including High-Performance Computing and unstruc-
tured grids to process 3D images of rock samples [19].

The paper is organized as follows. In Section 2, we
describe the acquisition of the 3D images of a sandpack,
the computation of the velocity profile, and the numerical
method to determine the dispersion tensor. In Section 3,
we first verify the accuracy of our numerical framework
by simulating cases for which analytical solution exists,
and we then compute the dispersion tensor of sandpack
imaged using X-ray microtomography. Finally, we close
with a summary and conclusions.

2 Material and methods

In this section, we present the methodology to compute the
dispersion tensor including the acquisition and gridding of

microtomography images, the computation of the velocity
profile, and the evaluation of the dispersion tensor. Our
approach relies heavily on open-source packages including
the Computational Fluid Dynamics platform OpenFOAM
(https://www.openfoam.org).

2.1 Sandpack sample

The sandpack sample is made of grains of different shape
and size (Fig. 1a). The grain-size distribution measured
with a laser microparticle size analyzer ranges from 0.1 to
0.8 mm with a mean diameter of d50 = 0.3 mm (Fig. 1b).
Then mean density of sandpack is qs = 2650 kg m�3.

2.2 Image acquisition, segmentation, and gridding

Three-dimensional images of the sandpack are obtained
using X-ray microtomography. It is a non-invasive imaging
technique that allows for constructing a 3D image of an
object using a set of two-dimensional radiographs of the
X-ray attenuation properties of the object materials. The
sandpack sample was imaged at the Earth Sciences Institute
of Orléans using a Nanotom microtomograph 180NF
Phoenix X-Ray. We used an accelerating voltage of
180 kV, a filament current of 170 nA, and an operating volt-
age of 120 V. The stack of 2D images is processed to con-
struct a volume with the VGStudio MAX 1.2 (Volume
Graphics). The 3D volume consists of 1000 � 1000 � 1800
voxels with a resolution of 1.2 lm/voxel. In the raw images,
each voxel value corresponds to a measure of linear-
absorption coefficients. A nonlinear digital filtering (median
filter 3 � 3 � 3) is applied to reduce the noise before a
segmentation algorithm is used to binarize the images into
a void and solid phases (see Fig. 1c).

In this paper, we solve flow and transport processes
within the pore-space using grid-based approaches. The
computational grid is obtained from the segmented images
in two consecutive steps. First, the surface of the solid
grains is extracted into a Stereolithography Interface
Format (STL) using ImageJ (https://www.imagej.net)
and the 3Dviewer plugin. Then, the mesh is generated
based on the STL using snappyHexMesh, the Open-
FOAM automatic gridder that maximizes the number of
hexahedral cells. For large grids, this procedure can be per-
formed in parallel using High-Performance Computing.

2.3 Computation of the velocity profile

The velocity profile within the pore-space is obtained by
solving Stokes equation for cyclic domains. The mass and
momentum equations read [34],

r � v ¼ 0; ð3Þ

0 ¼ �r~pþ lr2v þ�P
L

e0; ð4Þ

where v is the velocity field in the pore-space, ~p is the devi-
ation to the mean pressure field, l is the fluid viscosity,
and �P

L e0 is a body source term that describes the mean
pressure gradient within the computational domain.
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No-slip conditions,

v ¼ 0; ð5Þ
are used at the solid walls. Cyclic conditions applied at the
inlet and outlet edges of the computational domain. It
means that ~p and v are the same at the inlet and outlet
patches. The mean flow rate is adjusted by changing �P

L .
Themean flow orientation is governed by the unit vector e0.

We use OpenFOAM to solve equations (3)–(4). The
flow equations for cyclic domains are discretized using a
finite-volume method and solved using the SIMPLE
(Semi-Implicit Method for Pressure Linked Equations)
pressure–velocity coupling procedure developed by
Patankar [35]. We adapt the existing simpleFoam solver
to integrate the mean pressure drop in the momentum
equation. The under-relaxation factors are set to 0.2 for
pressure and 0.9 for velocity. The pressure equation –

obtained by combining the mass and momentum equations
(3)–(4) – is solved using a Geometric Algebraic Multi-Grid
(GAMG) linear solver. The simulations are considered fully
converged when the residuals are below 10�8.

2.4 Evaluation of the dispersion tensor

Using the method of volume averaging [33], Carbonell and
Whitaker [30] have demonstrated that the dispersion tensor
can be described by,

D� ¼ DA I þ hrBif
� �

� h~vBif ; ð6Þ

where the operator h�if is the volume average of a quantity
over the volume occupied by the fluid within the compu-
tational domain. The vectorB, also called closure variable
is solution of the boundary value problem,

~v þ v � rB ¼ r � DArBð Þ in the void space; ð7Þ

n � rB ¼ �n at the fluid=solid boundary; ð8Þ
where v is the velocity profile at the pore-scale computing
in Section 2.3, ~v = v � hvif is the deviation to the mean
velocity, and n is the normal vector at the fluid–solid
interface. Equations (7)–(8) are supplemented by cyclic
conditions at the edge of the computational domain and
by the additional constrain that the average of B is zero,

hBif ¼ 0: ð9Þ
Hence, once the velocity profile in a REV is known, B can
be computed numerically solving equations (7)–(9). The
dispersion tensor for a given flow condition is obtained
using equation (6). The variation of the dispersion tensor
along with the Péclet number is determined by solving iter-
atively the closure problem with different values of DA.

The B-field is solution of equations (7)–(8) up to a con-
stant that is determined by the zero average constrain,
equation (9). Although crucial, it is not straightforward
to solve the boundary value problem along with equation
(9). dispersionEvaluationFoam – our OpenFOAM�

implementation of Carbonell and Whitaker’s closure
problem – solves a slightly different set of equations to
satisfy the zero average constrain. Instead, a common prac-
tice consists in solving the partial differential equation along
with the associated boundary conditions for a variable B0
that has a fixed reference value on a reference cell (e.g.
B0 = 0 for the cell labelled 0). The closure variable is then
obtained using,

B ¼ B0 � hB0if : ð10Þ
In dispersionEvaluationFoam, the advection–
diffusion equation (7), solving for the closure variable is
discretized using the finite-volume method. The interfacial
condition, equation (8), is implemented in a dedicated
boundary condition. To facilitate the convergence of the

Fig. 1. (a) Scanning electron microscope image of the sandpack. (b) Grain size distribution measured with microparticle size
analyzer. (c) X-ray microtomography of the sandpack reconstructed with the software VG Studio.
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calculation, we use under-relaxation. dispersionEval-
uationFoam allows a fast and direct approach to compute
the dispersion tensor.

3 Results and discussion

In this section, we use dispersionEvaluationFoam to
compute the dispersion tensor of various pore geometries.
First, we verify that we recover Taylor–Aris law for the
hydrodynamic dispersion within a single straight cylinder.
Then, we compute the dispersion tensor of a sandpack using
3D images obtained by microtomography.

3.1 Verification: Taylor–Aris dispersion

The objective of this part is to verify the robustness of
dispersionEvaluationFoam on cases for which refer-
ence solutions exist. The investigation of flow and transport
in straight cylindrical channels is convenient not only
because analytical solutions for the momentum and mass
balance equations exist but also because they constitute
the base-element of pore-network models – i.e. a simplifica-
tion of the pore microstructure as a network of cylinders [36].
For an infinite cylinder of radius R in the x-axis, the velocity
profile is parabolic, v ¼ 2hvxif 1� r

R

� �2� �
ex , where hvxif is

the velocity averaged over a cross-section, and the longitu-
dinal dispersion is exactly D� ¼ DA 1þ Pe2

48

� �
known as the

Taylor–Aris dispersion where the Péclet number is
Pe ¼ hvx if R

DA
[5, 6]. We verify that our OpenFOAM code for

evaluating dispersion tensor predicts Taylor–Aris law.
Considering that a cross-section is a Representative

Elementary Volume of an infinite tube, the equations intro-
duced in Section 2.4 also lead to Taylor–Aris dispersion.
Indeed, in cylindrical coordinates (er, eh, ex), the closure
variable simplifies to B = Bx(r)ex (because of invariance
by rotation and translation along the tube axis) and
equations (7)–(9) write,

~vx ¼ DA
1
r

o
or

r
oBx

or

� �� �
; ð11Þ

oBx

or

����
r¼R

¼ 0; ð12Þ

Z R

0
rBx rð Þdr ¼ 0: ð13Þ

The integration of equations (11)–(13) gives,

Bx rð Þ ¼ hvxiR2

4DA

r
R

� �2
� 1
2

r
R

� �4
� 1
3

� �
: ð14Þ

Finally, using equations (6), the dispersion tensor is

D�
xx

DA
¼ 1� 2

R2DA

Z R

0
r~vxBx rð Þdr ¼ 1þ hvxi2R2

48D2
A

; ð15Þ

which corresponds to Taylor–Aris formula.

We verify that dispersionEvaluationFoam con-
verges to equation (14) and to Taylor–Aris dispersion,
equation (15). We consider a three-dimensional cylinder,
2 mm long and 260 lm. Cyclic boundary conditions are
applied on both ends of the cylinder so that the computa-
tional domain is a Representative Elementary Volume of
an infinite tube. The cylinder is gridded with 13 600 hexa-
hedral cells (see Fig. 2a). We use a full 3D mesh instead of
an axisymmetric grid to illustrate the capabilities of
dispersionEvaluationFoam to handle 3D unstruc-
tured grids.

First, we compute the velocity profile solving Stokes
equations according to the methodology described in
Section 2.3. Simulation parameters are l = 10�6 m2/s,
�P
L = 106 Pa/m and e0 = ex. As expected, we obtain a para-
bolic profile (see Fig. 2b).

Then, equations (7)–(9) are solved using disper-

sionEvaluationFoam along with the velocity profile
freshly computed. We performed multiple simulations using
diffusion coefficients, DA, ranging from 10�7 to 10�13 m2/s
which corresponds to Péclet numbers between 10�2 and
104. In Figure 3, we plot the profile of the closure variable
Bx along a channel radius. The numerical results are in very
good agreement with those obtained analytically with
equation (14). In Figure 4, we observe a very good match
between the values of the longitudinal dispersion obtained
numerically for different Péclet numbers and Taylor–Aris
formula.

Fig. 2. The longitudinal dispersion in a straight capillary tube
is obtained using dispersionEvaluationFoam: (a) the
cylinder is meshed with an unstructured grid and contains
cyclic boundaries, (b) the velocity profile is parabolic.
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This verification case highlights the capabilities of
dispersionEvaluationFoam to handle 3D unstruc-
tured grids. It gives full confidence to use dispersion

EvaluationFoam to compute dispersion tensor on more
complex pore geometries including microstructure provided
by 3D images.

3.2 Longitudinal dispersion of a sandpack

In this section, we assess the asymptotic longitudinal hydro-
dynamic dispersion of a sandpack using 3D images obtained
with microtomography imaging.

The initial set of images contain 1800 � 1000 �
1000 voxels, and the resolution is 1.2 lm3/voxel. The stack
of images is segmented into fluid and solid phases
(Fig. 1). The porosity of the sandpack sample, obtained
by counting the number of voxels containing fluid – or
void –, is / = 0.36. We verified that this value of the poros-
ity is stable when the averaging volume was smaller than
the sample size. Although this indicates that the 3D images
can be considered as a REV with respect to porosity, it does
not necessarily mean that sample volume is a REV of the
dispersion coefficient because the latter is usually much
larger than the REV of porosity. Therefore, the hereby
method assesses the dispersion coefficient of the given
sample.

The numerical assessment of the sample permeability
and hydrodynamic dispersion requires to grid the void
space. First, the fluid–mineral surface is extracted (in STL
format) from the segmented images using ImageJ
(https://www.imagej.net). Then, the surface mesh is used
with OpenFOAM automatic gridder, snappyHexMesh,
to generate the computational grid. To be able to apply cyc-
lic boundary conditions, we add two manifolds at the inlet
and outlet of the domain. The solid surface and the edges of
the domain are set as impermeable walls. The final mesh
contains 2.7 � 106 cells. The flow and dispersion calcula-
tions are conducted in parallel using 8 CPUs.

The velocity profile in the sandpack sample is obtained
by solving equations (3)–(4) using simpleFoam, an
OpenFOAM solver for steady-state Navier–Stokes equa-
tions. Simulation parameters are l = 1.5 � 10�5 m2/s,
�P
L = 103 Pa/m. The pressure field, velocity vectors and
magnitude plotted in Figure 5 illustrate the tortuous and
non-uniform distribution of the flow pathways in the sand-
pack porosity. The permeability is obtained by averaging
the velocity profile and using Darcy’s law:

K ¼ lhvi �P
L

� ��1

� e0; ð16Þ

where hvi is the volume averaged velocity profile. We
obtain K = 3.1 � 10�11 m2 which is typical for sands [3].

The longitudinal hydrodynamic dispersion is calculated
using dispersionEvaluationFoam for Péclet number
ranging from 10�4 to 104. This is achieved by solving the
mathematical problem introduced in Section 2.4 for differ-
ent values of the diffusivity DA. The resulting dispersion
values are plotted in Figure 6. The values obtained numer-
ically vary with the Péclet number as a power-law:

D�
xx

DA
¼ 0:52 1þ 35Pe1:25

� �
: ð17Þ

For Péclet number below 1, the diffusion is the dominant
transport mechanism and hydrodynamic dispersion is
negligible. Therefore, D* is independent of the Péclet
number for Pe < 1. The value of the plateau corresponds
to the sandpack tortuosity, s � 1/0.52 � 1.9. For
advection-dominated transport, Pe > 1, and the hydrody-
namic dispersion scales with Pe1.25. The exponent 1.25 is
in good agreement with the experimental and numerical
values obtained in the literature for sandpacks [7, 12, 37].
The exponent is lower than Taylor–Aris dispersion but
larger than a mere linear dispersion model that is often used
in transport simulators.

Fig. 3. Radial profile of the field B obtained using both
equation (14) and dispersionEvaluationFoam is the case
of an infinite cylinder.

Fig. 4. Longitudinal dispersion in a straight capillary tube
obtained analytically using Taylor–Aris dispersion model and
numerically using dispersionEvaluationFoam. There is a
perfect agreement between the theory and the simulations.
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4 Conclusion

We computed the longitudinal dispersion of a sandpack
using pore-scale simulations. Three-dimensional images of
rock samples were obtained using microtomography imag-
ing, segmented into fluid and solid phase, and gridded.
The determination of the hydrodynamic dispersion tensor
relies on the closure problem proposed by Carbonell and
Whitaker [30]. We implemented their approach into a mod-
ern and open-source platform. Our numerical development,
called dispersionEvaluationFoam, is based on the
scientific library OpenFOAM for solving partial differential
equations using the finite-volume method. dispersionE-
valuationFoam is available publicly on our GitHub

depository (https://github.com/csoulain/dispersionEvalu-
ationFoam). Due to the versatility of OpenFOAM, our
model handles 3D simulations, massively parallel calcula-
tions, and unstructured grids.

We verify the predictive aspect of dispersionEval-
uationFoam by assessing the hydrodynamic dispersion in
an infinite cylinder. The results are in very good agreement
with Taylor–Aris theory. Then, we evaluate the tortuosity
and the longitudinal dispersion of a sandpack. We found a
dependency in hydrodynamic conditions that scales Pe1.25

in agreement with data published in the literature.
The methodology proposed in this paper is generic and

can be applied to any kind of rock. Importantly, the tools
and the package we developed to perform our simulations
are open-source, and we expect that our developments will
be an important contribution to the flow and transport in
porous media community.
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