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This paper deals with the convergence of the Doi-Navier-Stokes model of liquid crystals to the Ericksen-Leslie model in the limit of the Deborah number tending to zero. While the literature has investigated this problem by means of the Hilbert expansion method, we develop the moment method, i.e. a method that exploits conservation relations obeyed by the collision operator. These are non-classical conservation relations which are associated with a new concept, that of Generalized Collision Invariant (GCI). In this paper, we develop the GCI concept and relate it to geometrical and analytical structures of the collision operator. Then, the derivation of the limit model using the GCI is performed in an arbitrary number of spatial dimensions and with non-constant and non-uniform polymer density. This non-uniformity generates new terms in the Ericksen-Leslie model.

1. Introduction. We consider the Doi kinetic model of liquid crystals coupled with the Navier-Stokes equation for the fluid solvent. We investigate the limit of the Deborah number tending to zero by means of a moment method. The limit model is a system of fluid equations named the Ericksen-Leslie model [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]. In classical kinetic theory, there are two methods to derive fluid equations, the Hilbert expansion method [START_REF] Caflisch | The fluid dynamical limit of the nonlinear Boltzmann equation[END_REF][START_REF] Chapman | The kinetic theory of simple and composite gases: viscosity, thermal conduction and diffusion[END_REF][START_REF] Enskog | Kinetische Theorie der Vorgänge in mässig verdünntent Gasen[END_REF][START_REF] Hilbert | Begrundung der kinetischen Gastheorie[END_REF] and the moment method [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Mellet | Fractional diffusion limit for collisional kinetic equations: a moments method[END_REF]. However, for a number of kinetic models including the Doi model, only the Hilbert method can be used. Indeed, the moment method is subject to a condition on the number of conservation relations satisfied by the collision operator and this condition is not satisfied by the Doi model. This is why the Hilbert expansion method is the only method developed in the literature so far (see e.g. [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]). In the present work, we address the question whether the moment method can be used for the Doi kinetic model.

The moment method relies on the requirement that the space of collision invariants (the quantities conserved by the collisions operator) has the same dimensions as the number of free parameters in the local equilibrium distribution function. This requirement is not satisfied for the Doi model. The goal of this paper is to show that the moment method can still be used for this model but necessitates a weaker concept of collision invariant, that of "generalized collision invariant" or GCI. This concept has first been introduced in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] to derive the fluid dynamic limit of the Vicsek model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. Since then, the GCI concept has been applied to a variety of collective dynamics models [START_REF] Degond | Phase transitions and macroscopic limits in a BGK model of body-attitude coordination[END_REF][START_REF] Degond | Macroscopic models of collective motion with repulsion[END_REF][START_REF] Degond | Quaternions in collective dynamics[END_REF][START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF][START_REF] Degond | Coupled Self-Organized Hydrodynamics and Stokes models for suspensions of active particles[END_REF][START_REF] Frouvelle | A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF]. The present work is its first application to visco-elastic fluid models.

Visco-elastic fluids have been the subject of an abundant literature (see e.g. [START_REF] Ball | Mathematics and liquid crystals[END_REF][START_REF] Ball | Mathematical Thermodynamics of Complex Fluids[END_REF][START_REF] De Gennes | The Physics of Liquid Crystals[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF]Handbook of Mathematical Analysis in Mechanics of Viscous Fluids[END_REF][START_REF] Wang | Modeling and computation of liquid crystals[END_REF] for reviews). The Doi model is one of the most fundamental models of visco-elastic fluids [START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. It models an assembly of polymer molecules flowing in an incompressible fluid (the solvent). The polymer molecules are assumed to be rigid spheroids mutually interacting through alignment and subject to noise. They are represented by a distribution function of their position and orientation. After Onsager and Maier-Saupe [START_REF] Maier | A simple molecular statistical theory of the nematic crystalline-liquid phase[END_REF][START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF], alignment accounts for the volume exclusion interaction between the molecules. Alignment is of nematic type, i.e. invariant if the head and tail of the molecules are flipped. Following Landau and de Gennes [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF], the interaction depends on the Q-tensor, a quadratic quantity which respects this invariance. The fluid solvent is modelled by the incompressible Navier-Stokes equations. Polymer molecules are transported by the fluid and rotated by the fluid gradients. In turn, they influence the fluid through extra-stresses depending on their distribution function. The mathematical theory of this model has been investigated in [START_REF] Lin | On a micro-macro model for polymeric fluids near equilibrium[END_REF][START_REF] Otto | Continuity of velocity gradients in suspensions of rod-like molecules[END_REF][START_REF] Zhang | On the new multiscale rodlike model of polymeric fluids[END_REF] and for active particles, in [START_REF] Chen | Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions[END_REF].

The Doi model involves a dimensionless parameter, the Deborah number which describes the alignment rate of the polymer molecules. When this parameter goes to zero, the distribution of orientations tends to a profile which depends on two parameters, the polymer density ρ and the polymer molecules average orientation Ω which are functions of space and time. In the case of a constant density ρ, it is shown in [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]] that the mean orientation satisfies a transport-diffusion equation. Its coupling with the Navier-Stokes equations leads to the so-called Ericksen-Leslie system [START_REF] Ericksen | Liquid crystals with variable degree of orientation[END_REF][START_REF] Leslie | Some constitutive equations for anisotropic fluids[END_REF]. The convergence is formal in [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF] and rigorous in [START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]. In all cases, the method relies on the Hilbert expansion. There is an abundant mathematical literature on the Ericksen-Leslie system per se [START_REF] Huang | Regularity and existence of global solutions to the Ericksen-Leslie system in R 2[END_REF][START_REF] Lin | Liquid crystal flows in two dimensions[END_REF][START_REF] Lin | Nonparabolic dissipative systems modeling the flow of liquid crystals[END_REF][START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF][START_REF] Wang | Well-posedness of the Ericksen-Leslie system[END_REF].

Here, our goal is to provide a formal convergence proof of the Doi model to the Ericksen-Leslie model using the moment method. Specifically, we will derive the appropriate GCI concept, discuss its rationale and relation to the Hilbert expansion method. There are several motivations to develop a moment method even if a Hilbert expansion theory already exists. The first one is that the GCI concept has an underlying geometrical structure which is worth highlighting and may lead to new structural properties of the Doi model. The second reason is that a mathematical theory based on the moment method often requires less regularity than the Hilbert expansion method (compare e.g. [START_REF] Bardos | Fluid dynamic limits of kinetic equations II convergence proofs for the Boltzmann equation[END_REF] with [START_REF] Caflisch | The fluid dynamical limit of the nonlinear Boltzmann equation[END_REF]). This potentially opens the way to simpler convergence proofs from the Doi to the Ericksen-Leslie models. The third reason is that the moment method naturally leads to the development of efficient numerical methods [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF][START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] which might enable us to handle the complexity of the Doi kinetic model in a systematic way.

Aside to this main goal, we will pursue two secondary goals. The first one is to provide a treatment of the small Deborah number limit in arbitrary dimension. So far, this has only been done in dimension 3. This extension is made possible by Wang and Hoffman [START_REF] Wang | A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space[END_REF] who have determined the spatially uniform equilibria in any dimension. Although dimension three is the physically relevant case, there are several reasons for considering an arbitrary dimension. The first one is that the use of dimension 3 often conceals simple structures under dimension-specific concepts and notations. Then, as argued in [START_REF] Charbonneau | Dimensional dependence of the Stokes-Einstein relation and its violation[END_REF], the use of an arbitrary dimension often reveals hidden and interesting mathematical properties. Finally, fluid-dynamic equations are based on simple postulates that may be adapted to other objects such as information flow in abstract spaces of large dimensions.

The second side goal is to investigate the effect of a spatially non-uniform density of polymer molecules. To the best of our knowledge, earlier work on the small Deborah number limit [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]] have assumed the density of polymer molecules to be constant. Investigation of Ericksen-Leslie models with non-uniform order parameter has been made in the literature [START_REF] Calderer | Time evolution of nematic liquid crystals with variable degree of orientation[END_REF][START_REF] Calderer | Liquid crystal flow: dynamic and static configurations[END_REF][START_REF] Ericksen | Liquid crystals with variable degree of orientation[END_REF][START_REF] Lin | Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena[END_REF][START_REF] Lin | On nematic liquid crystals with variable degree of orientation[END_REF][START_REF] Lin | Global small solutions to a complex fluid model in three dimensional[END_REF], but none has explicitly linked this non-uniform order parameter to the non-uniform polymer density (as is should as we will see) and derived these models from kinetic theory. Non-uniform polymer density results in modifications of the equations for the mean director Ω and for the extra-stresses that will be highlighted in this work.

The organization of this paper is as follows: Section 2 gives an exposition of the Doi-Navier-Stokes model and the small Deborah number scaling. Section 3 is devoted to the statement of the main result, namely the formal convergence of the Doi-Navier-Stokes model to the Ericksen-Leslie model in the zero Deborah number limit. Section 4 describes the local equilibria. Section 5 develops the GCI concept for the Doi model and discusses it. In Section 6, the limiting equations of the Doi model when the Deborah number tends to zero are derived. Conclusions and perspectives are drawn in Section 7. Auxiliary results stated in Sections 2, 3, 5 and 6 are proved in appendices A, B, C and D respectively.

2. Kinetic model for rod-like polymer suspensions and scaling.

2.1. The Doi equation. In this paper, we consider the Doi model [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Otto | Continuity of velocity gradients in suspensions of rod-like molecules[END_REF][START_REF] Wang | Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF], where polymer molecules are identified as spheroids. We consider the semi-dilute regime [START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Wang | Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential[END_REF] where a volume-exclusion interaction potential needs to be incorporated. We neglect the inertia of the polymer molecules. Following [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential[END_REF], we describe the polymer molecules by a kinetic distribution function f (x, ω, t) where x ∈ R n is the position, ω ∈ S n-1 is the molecule orientation and t ≥ 0 is the time. We let S n-1 be the unit (n -1)-dimensional sphere and since ω and -ω refer to the same molecular orientation, we impose f (x, ω, t) = f (x, -ω, t).

(1)

Let u(x, t) ∈ R n be the fluid velocity. In general, the dimension n = 2 or 3 but the theory will be developed for any value of n. The equation for f (the so-called Doi equation) reads as follows:

∂ t f + ∇ x • (uf ) + ∇ ω • f (ΛP ω ⊥ E -W )ω = D ∇ ω • (∇ ω f + 1 k B T f ∇ ω U R f ). (2)
Here, D denotes the rotational diffusivity, T , the fluid temperature and k B , the Boltzmann constant. The tensors E and W are respectively the symmetric and anti-symmetric parts of the velocity gradient, given by

E = 1 2 (∇ x u + ∇ x u T ), W = 1 2 (∇ x u -∇ x u T ). (3) 
The symbols ∇ x and ∇ x • refer to the spatial gradient and divergence operators while ∇ ω , ∇ ω • to the gradient and divergence operators on the sphere S n-1 respectively. The notation ∇ x u refers to the gradient tensor of u defined by (∇ x u) ij = ∂ xi u j and the exponent 'T' indicates the transpose. The dimensionless quantity Λ is related to the aspect ratio (ratio between the semi-axes) of the spheroidal polymer molecules. Finally, P ω ⊥ = Idω ⊗ ω for ω ∈ S n-1 denotes the projection operator of vectors onto the normal hyperplane to ω. Throughout this paper, Id denotes the identity matrix and if u = (u i ) i=1,...,n and v = (v i ) i=1,...,n are two vectors, u ⊗ v denotes their tensor product, i.e. the n × n tensor (u ⊗ v) ij = u i v j . For two n × n tensors S and S , SS stands for the matrix product of S and S , hence the meaning of P ω ⊥ E.

The surface measure on the sphere will be normalized, meaning that S n-1 dω = 1. The quantity U R f is the interaction potential stemming from volume exclusion between the polymer molecules. In the Maier-Saupe theory [START_REF] Maier | A simple molecular statistical theory of the nematic crystalline-liquid phase[END_REF], this interaction potential reads

U R f (x, ω, t) = k B T ν R n ×S n-1 1 R n K |x -x | R 1-(ω•ω ) 2 f (x , ω , t) dω dx , ( 4 
)
where ν is the potential strength. Following the formalism proposed by [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Wang | Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential[END_REF], a spatial non-locality is introduced by means of the kernel

K: [0, ∞) → [0, ∞), ξ → K(ξ)
which describes the influence of two neighboring molecules. Specifically, two molecules separated by a distance ξ influence each other with strength 1

R n K( ξ R ), where R is the typical interaction range. The kernel K satisfies R n K(|x|) dx = 1. An equivalent expression of U R f is U R f (x, ω, t) = k B T νρ R f -(ω • Q R f ω) + n -1 n , (5) 
where ρ R f and Q R f are the locally averaged particle density and orientational de Gennes Q-tensor given by

ρ R f (x, t) = R n ×S n-1 1 R n K |x -x | R f (x , ω, t) dω dx , (6) 
(ρ R f Q R f )(x, t) = R n ×S n-1 1 R n K |x -x | R ω ⊗ ω - 1 n Id f (x , ω, t) dω dx . ( 7 
)
Note that Q R f is a trace-free symmetric matrix obtained by averaging ω⊗ω-

1 n Id over the probability distribution ρ R f (x, t) -1 R -n K(|x -x |/R) f (x , ω, t) dω dx .
Consequently, thanks to the min-max theorem, its eigenvalues λ satisfy the inequality

- 1 n ≤ λ ≤ 1 - 1 n . (8) 
The following fully local versions of the polymer density and orientational tensor:

ρ f = S n-1 f dω = lim R→0 ρ R f , (9) 
ρ f Q f = S n-1 ω ⊗ ω - 1 n Id f dω = lim R→0 ρ R f Q R f , (10) 
will also be useful. From [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF], it follows that

1 k B T ∇ ω U R f (x, ω, t) = -2νρ R f P ω ⊥ Q R f ω,
so that an alternate formulation of the Doi equation ( 2) is given by

∂ t f + ∇ x • (uf ) + ∇ ω • f (ΛP ω ⊥ E -W )ω = D ∆ ω f -2ν ρ R f ∇ ω • (f P ω ⊥ Q R f ω) . (11) 
We note that Eq. ( 11) preserves the symmetry constraint [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF]. The second and third term at the left-hand side of (11) model passive transport of the polymer molecules by the fluid: the second term corresponds to translation of the molecules by the fluid velocity and the third term to their rotation by the gradient of the fluid velocity. Here, we assume that the polymer molecules can be described by spheroids, i.e. ellipsoids, in which n -1 semi-axes b are equal. The aspect ratio p is the ratio a/b where a is the remaining semi-axis. The quantity Λ is related to p by Λ = p 2 -1 p 2 +1 . In particular, Λ ∈ [-1, 1] and Λ = 1 for infinitely thin rods, Λ = 0 for spheres, and Λ = -1 for infinitely flat disks. The rotation operator is derived from Jeffery's equation [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF]. The first term at the right-hand side of [START_REF] Chapman | The kinetic theory of simple and composite gases: viscosity, thermal conduction and diffusion[END_REF] describes Brownian effects due to rotational diffusion. We neglect translational diffusivity, as it is usually much smaller than rotational diffusivity [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF]. The second term at the right-hand side of [START_REF] Chapman | The kinetic theory of simple and composite gases: viscosity, thermal conduction and diffusion[END_REF] takes into account the volume exclusion interaction between the molecules and drives the distribution to that of a system of fully aligned polymer molecules. To measure the degree of alignment of the molecules, one introduces

χ f = n n -1 λ f with λ f = the largest eigenvalue of Q f , (12) 
where Q f is given by [START_REF] Cercinani | The Mathematical Theory of Dilute Gases[END_REF]. This quantity can be seen as the order parameter for the distribution f . We have χ f ∈ (0, 1). If f is close to the uniform distribution on the sphere, which corresponds to a fully disordered distribution of polymer orientations, then

χ f is close to 0. By contrast, if f is close to 1 2 (δ Ω + δ -Ω )
where Ω is any vector on S n-1 , which corresponds to a fully aligned distribution of polymer orientations in the direction ±Ω, then, χ f is close to 1.

To ensure thermodynamic consistency, one introduces the polymer free energy [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF]:

A R (t) = R n ×S n-1 k B T (f log f -f ) + 1 2 U R f f dx dω.
From (4), it is easy to check that the quantity R n ×S n-1 U R f g dx dω defined for two functions f and g of (x, ω) is a symmetric bilinear form. Then the functional derivative µ R f = δA R δf , also referred to as the chemical potential, is given by

µ R f = k B T log f + U R f = k B T log f -νρ R f (ω • Q R f ω) - n -1 n . (13) 
Thus,

∇ ω µ R f = k B T ∇ ω f f -2νρ R f P ω ⊥ Q R f ω , (14) 
so that (2) can also be written:

∂ t f + ∇ x • (u f ) + ∇ ω • f (ΛP ω ⊥ E -W )ω = D k B T ∇ ω • f ∇ ω µ R f . (15) 
The right-hand side of ( 15) can be viewed as describing the steepest descent in the direction of the minimum of the polymer free energy. This is also known as the maximal dissipation principle. Using Green's formula, we have the following identity (provided f vanishes fast enough at infinity), whose proof is sketched in Appendix A.1:

dA R dt = R n σ R f : ∇ x u dx - R n F R f • u dx - D k B T R n ×S n-1 f |∇ ω µ R f | 2 dx dω, (16) 
where σ R f is the extra-stress tensor and F R f is a body force, given by :

σ R f = S n-1 Λ ω ⊗ ∇ ω µ R f s + ω ⊗ ∇ ω µ R f a f dω, F R f = - S n-1 ∇ x µ R f f dω. (17) 
Here, for two n × n tensors S = (S ij ) ij=1,...,n and S = (S ij ) ij=1,...,n , we denote by S : S = S ij S ij their contraction (with the repeated index summation convention) while S s and S a are respectively the symmetric and antisymmetric parts of S namely S s = 1 2 (S + S T ), S a = 1 2 (S -S T ). Contractions and tensor products will be defined and noted similarly for tensors of higher order.

2.2.

The Navier-Stokes equations. The Doi equation (2) (or equivalently, [START_REF] Chapman | The kinetic theory of simple and composite gases: viscosity, thermal conduction and diffusion[END_REF] or [START_REF] Constantin | Note on the number of steady states for a two-dimensional Smoluchowski equation[END_REF]) is coupled to the Navier-Stokes equation for the fluid velocity, which is written [START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Wang | Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential[END_REF]:

ρ F ∂ t u + u • ∇ x u + ∇ x p = ∇ x • (σ R f + τ u + T f,u ) + F R f , (18) 
∇ x • u = 0. ( 19 
)
Here ρ F is the fluid mass density. The extra-stress tensor σ R f is given by ( 17) while τ u and T f,u are contributions of the fluid and polymer molecules to the viscous stresses respectively given by

τ u = 2η E, T f,u = ζ k B T D ρ f T f : E,
with the fourth order orientational tensor T f given by

ρ f T f = S n-1 ω ⊗4 f dω. ( 20 
)
For a n × n tensor S, its divergence ∇ x • S denotes the vector defined by (∇ x • S) j = ∂ xi S ij (using the repeated index summation convention). As above, T f : E denotes the contraction of T f and E with respect to two indices. Although T f is a fourth order tensor, it is symmetric, so which pair of its indices is concerned by the contraction is indifferent. The quantity η is the fluid viscosity. Using the divergence-free condition [START_REF] Degond | Quaternions in collective dynamics[END_REF], we remark that ∇ x • τ u = η ∆ x u. The quantity ζ is a dimensionless number. In [START_REF] Doi | The Theory of Polymer Dynamics[END_REF], for the dilute polymer regime in dimension 3, it is shown that ζ = 1 2 . But this derivation requires the use of the Oseen tensor which has dimensional dependence [START_REF] Charbonneau | Dimensional dependence of the Stokes-Einstein relation and its violation[END_REF] and thus, the value of ζ changes with the dimension. Moreover, even in dimension 3, in the semi-dilute regime considered here, the value of ζ may be different from 1 2 [24, Section 9.5.1]. So, we shall consider ζ as a free parameter of the model.

We have the following expression for the extra-stress:

σ R f = nk B T Λρ f Q f + S n-1 Λ + 1 2 ω ⊗ ∇ ω U R f + Λ -1 2 ∇ ω U R f ⊗ ω f dω. ( 21 
)
However, although more complicated, the following expression, which is valid if f is a solution of the Doi equation ( 2), will turn out to be more useful:

σ R f = k B T D Λ 2 ρ f Λ(EQ f + Q f E) + Q f W -W Q f + 2Λ n E -2ΛT f : E -D t Q f + 1 2 S n-1 (ω ⊗ ∇ ω U R f -∇ ω U R f ⊗ ω) f dω, (22) 
where

D t = ∂ t + u • ∇ x , (23) 
is the material derivative. Eq. ( 21) results from the first equation of ( 17) after insertion of [START_REF] Constantin | Asymptotic states of a Smoluchowski equation[END_REF]. Eq. ( 22) is obtained by multiplying Doi's equation [START_REF] Constantin | Note on the number of steady states for a two-dimensional Smoluchowski equation[END_REF] by ω ⊗ ω -1 n Id and integrating with respect to ω, followed by some algebra. These computations have been done in [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF] for n = 3 and are sketched in Appendix A.2 for any n.

The rationale for involving σ R f and F R f in the coupling between the Navier-Stokes equations [START_REF] Degond | Macroscopic models of collective motion with repulsion[END_REF] and the Doi equation ( 2) is thermodynamical consistency. Indeed, we have the following total free energy dissipation identity (provided spatial boundary terms vanish in the integrations by parts):

d dt E R + D R = 0, ( 24 
)
where E R is the total free energy (sum of the fluid and polymer free energies):

E R (t) = R n 1 2 ρ F |u| 2 dx + A R ,
and D R is the total free energy dissipation:

D R (t) = D k B T R n ×S n-1 f ∇ ω µ R f 2 dx dω+ R n 2η E : E+ k B T ζ D ρ f T f : (E⊗E) dx,
where now, T f : (E ⊗ E) indicates the contraction of the fourth order tensors T f and E ⊗ E with respect to all four indices. We have omitted the dependence of E on u for simplicity.

2.3. Scaling. We now introduce a suitable scaling of this model. Let x 0 , t 0 and ρ 0 be space, time and polymer density units and let u 0 = x 0 /t 0 , f 0 = ρ 0 , σ 0 = k B T ρ 0 , p 0 = ρ F u 2 0 , F 0 = σ 0 /x 0 , U 0 = k B T be units for velocity, distribution function, stress tensor, fluid pressure, elastic force and potential respectively. Then, we introduce the following dimensionless quantities:

De = 1 Dt 0 , Re = u 0 x 0 ρ F η , Er = ηD k B T ρ 0 , α = νρ 0 , R = R x 0 .
The dimensionless quantities De, Re and Er are the classical Deborah, Reynolds and Ericksen numbers, which respectively encode the relaxation time of the polymer molecular assembly to equilibrium, the ratio of inertial to viscous forces in the fluid and the ratio between the viscous and extra stresses. The parameters α and R are measures of the molecular interaction intensity and range respectively. The other dimensionless parameters of the model are ζ and Λ. Introducing scaled variables x = x/x 0 , t = t/t 0 and unknowns f (x, ω, t) dx dω = ρ 0 f (x , ω, t ) dx dω, u(x, t) = u 0 u (x , t ), . . . , we can deduce the following dimensionless form of the Doi model (dropping the primes for clarity):

∂ t f + ∇ x • (uf ) + ∇ ω • f (ΛP ω ⊥ E -W )ω = 1 De ∇ ω • ∇ ω f + f ∇ ω U R f , (25) with U R f = αρ R f -(ω • Q R f ω) + n -1 n ,
and ρ R f , Q R f given by ( 6), [START_REF] Caflisch | The fluid dynamical limit of the nonlinear Boltzmann equation[END_REF] with R replaced by R. The polymer free energy is now given by

A R(t) = R n ×S n-1 (f log f -f + 1 2 U R f f ) dx dω and the chemical potential µ R f = δA R δf by µ R f = log f + U R f = log f -α (ω • ρ R f Q R f ω) + α n -1 n ρ R f .
Thus, the expression at the right-hand side of ( 25) is equivalently written

∇ ω • ∇ ω f + f ∇ ω U R f = ∇ ω • f ∇ ω µ R f = ∆ ω f -2αρ R f ∇ ω (f P ω ⊥ Q R f ω
). The scaled Navier-Stokes equation reads as follows [START_REF] Degond | Phase transitions and macroscopic limits in a BGK model of body-attitude coordination[END_REF] with R replaced by R and ρ f , T f given by ( 9), [START_REF] Degond | Hydrodynamic models of self-organized dynamics: derivation and existence theory[END_REF]. Expressions [START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF], [START_REF] Degond | Coupled Self-Organized Hydrodynamics and Stokes models for suspensions of active particles[END_REF] for the stress tensor are scaled into

∂ t u + u • ∇ x u + ∇ x p = 1 Re ∇ x • τ u + 1 Er T f,u + 1 Re Er De ∇ x • σ R f + F R f , ∇ x • u = 0, τ u = 2 E, T f,u = ζ ρ f T f : E, with σ R f , F R f given by
σ R f = nΛρ f Q f + S n-1 Λ + 1 2 ω ⊗ ∇ ω U R f + Λ -1 2 ∇ ω U R f ⊗ ω f dω. = De Λ 2 ρ f Λ(EQ f + Q f E) + Q f W -W Q f + 2Λ n E -2ΛT f : E -D t Q f + 1 2 S n-1 (ω ⊗ ∇ ω U R f -∇ ω U R f ⊗ ω) f dω, (26) 
with Q f still given by [START_REF] Cercinani | The Mathematical Theory of Dilute Gases[END_REF]. The free-energy dissipation identity is still written as [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] with E R and D R now given by [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF] where, for a n × n tensor S, |S| denotes the Frobenius norm of S, i.e. |S| 2 = Tr{S T S}.

E R = 1 2 R n |u| 2 dx + 1 Re Er De A R, D R = 1 Re R n |∇ x u| 2 dx + 1 Re Er ζ R n ρ f T f : (E ⊗ E) dx + 1 Re Er De 2 R n ×S n-1 f ∇ ω µ R f 2 dx dω,
The goal of this article is to investigate the limit of the Deborah number De tending to zero through the use of the new "generalized collision invariant" concept. In doing so, we will keep the parameters Re, Er and α of order unity. As for R, following [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF], we make the scaling R = O( √ De). This scaling assumption is analogous to the weakly non-local interaction scaling of the Vicsek model [START_REF] Degond | Hydrodynamic models of self-organized dynamics: derivation and existence theory[END_REF]. As we may choose the time and space units independently, we assume:

De = ε, R = √ ε, ε → 0,
and assume Re, Er and α independent of ε. A straightforward Taylor expansion shows that

ρ √ ε f = ρ f + ε β ∆ x ρ f + O(ε 2 ), ρ √ ε f Q √ ε f = ρ f Q f + ε β ∆ x (ρ f Q f ) + O(ε 2 ),
where

β = 1 2n R n K(|x|) |x| 2 dx. (28) 
Then, we can expand

U √ ε f = U 0 f + εU 1 f + O(ε 2 ), µ √ ε f = µ 0 f + εµ 1 f + O(ε 2 ) with U 0 f = αρ f -(ω • Q f ω) + n -1 n , µ 0 f = log f + U 0 f (29) 
U 1 f = µ 1 f = β ∆ x U 0 f . (30) 
Straightforward computations show that

S n-1 ω ⊗ ∇ ω U 0 f f dω = -2αρ 2 f Q 2 f + 1 n Q f -T f : Q f , (31) 
so that the left-hand side of (31) is a symmetric tensor. We deduce that the integral term in [START_REF] Ericksen | Liquid crystals with variable degree of orientation[END_REF] is O(ε), so that σ √ ε f = O(ε). Additionally, similar computations as for (31) lead to

S n-1 (ω ⊗ ∇ ω U 1 f -∇ ω U 1 f ⊗ ω) f dω = 2αβ ρ f ∆ x (ρ f Q f )Q f -Q f ∆ x (ρ f Q f ) . So, we can write σ R f = εσ 1 f + O(ε 2 ) with σ 1 f = ρ f Λ 2 Λ(EQ f + Q f E) + Q f W -W Q f + 2Λ n E -2ΛT f : E -D t Q f + αβ ρ f ∆ x (ρ f Q f )Q f -Q f ∆ x (ρ f Q f ) . (32) 
We also note that

F √ ε f = -∇ x ϕ 0 f + εF 1 f + O(ε 2 ), with ϕ 0 f = ρ f - α 2 ρ 2 f Q f : Q f - n -1 n ], F 1 f = - S n-1 ∇ x µ 1 f f dω. (33) 
We let pε = p ε + 1 ε 1 ReEr ϕ 0 f . We will omit the tilde below for simplicity. Since the O(ε 2 ) terms in all these developments have no contribution to the limit model when ε → 0 (at the leading order), we will just ignore them.

We finally get the following perturbation problem:

∂ t f ε + ∇ x • (u ε f ε ) + ∇ ω • (f ε (ΛP ω ⊥ E ε -W ε )ω) +2α β ∇ ω • (f ε P ω ⊥ ∆ x (ρ f ε Q f ε ) ω) = 1 ε ∆ ω f ε -2αρ f ε ∇ ω • (f ε P ω ⊥ Q f ε ω) ,( 34 
)
∂ t u ε + u ε • ∇ x u ε + ∇p ε = 1 Re ∆ x u ε + 1 Er ζ ∇ x • ρ f ε T f ε : E ε + ∇ x • σ 1 f ε + F 1 f ε , (35) 
∇ x • u ε = 0, ( 36 
)
where σ 1 f ε is given by ( 32) and F 1 f ε by [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF]. We define the transport operator T u (f ) (for a given time-dependent vector field u: R n × [0, ∞) → R n ) and the collision operator C(f ) by

T u (f ) = ∂ t f + ∇ x • (u f ) + ∇ ω • (f (ΛP ω ⊥ E -W )ω) +2α β ∇ ω • (f P ω ⊥ ∆ x (ρ f Q f ) ω), (37) 
C(f ) = ∆ ω f -2αρ f ∇ ω • (f P ω ⊥ Q f ω) = ∇ ω • f ∇ ω µ 0 f (38) = ∇ ω • ∇ ω f + f ∇ ω U 0 f , (39) 
so that ( 34) is written

T u ε (f ε ) = 1 ε C(f ε ). (40) 
We note that µ 0 f = δA 0 δf is the functional derivative of the free energy A 0 = lim ε→0 A √ ε given by

A 0 (t) = R n ×S n-1 (f log f -f + 1 2 U 0 f f ) dx dω, (41) 
and recall that U 0 f and µ 0 f are given by [START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF]. We refer to [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF] for the formulation of the free energy dissipation identity for the whole model ( 34)- [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF].

3. Main result.

3.1.

Preliminaries. The purpose of this paper is to derive the limit of model ( 34)- [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] when ε → 0. Before stating the result, we need a few preliminaries. We note that C given by [START_REF] Leslie | Some constitutive equations for anisotropic fluids[END_REF] operates on the variable ω only and leaves (x, t) as parameters. This justifies the definition:

Definition 3.1. A function f : S n-1 → R, ω → f (ω) is called an equilibrium of C if and only if it satisfies C(f ) = 0. ( 42 
)
Remark 1. We note that f is an equilibrium if and only if f is a critical point of the free energy functional A 0 given by [START_REF] Lin | On nematic liquid crystals with variable degree of orientation[END_REF] in the spatially homogeneous case (i.e. when f is a function of ω only and integration with respect to x in the definition of A 0 is ignored) [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]. Moreover, such equilibria will be called "stable" if they correspond to local minimizers of this free energy (see [START_REF] Fatkullin | A note on the Onsager model of nematic phase transitions[END_REF] for n = 2, [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF] for n = 3 and [START_REF] Frouvelle | Body-attitude alignment: first order phase transition, link with rodlike polymers through quaternions, and stability[END_REF] for n = 4).

The equilibria will attract the dynamics as ε → 0 and their determination is of key importance. For this purpose, we introduce the Gibbs distributions: Definition 3.2 (Gibbs distribution). Let S be a trace-free symmetric matrix. Then, the Gibbs distribution G S associated with S is given by:

G S (ω) = 1 Z S e ω•Sω , Z S = S n-1 e ω•Sω dω. (43) 
Next, we introduce the Definition 3.3 (Normalized prolate uniaxial trace-free tensor). Let Ω ∈ P n-1 := S n-1 /{±1}. Then, the normalized prolate uniaxial trace-free tensor in the direction of Ω, A Ω , is defined by

A Ω = Ω ⊗ Ω - 1 n Id. ( 44 
)
A Ω is a traceless symmetric tensor with leading eigenvalue equal to n-1 n . A Ω is called a uniaxial tensor because it has only two eigenvalues with one being simple. The simple eigenvalue has associated normalized eigenvectors ±Ω. The line spanned by Ω is called the axis of the uniaxial tensor. It is trace-free and consequently, the two eigenvalues have opposite signs. It is called prolate because the simple eigenvalue is positive (it would be called oblate in the converse case). It is normalized meaning that its leading eigenvalue is exactly n-1 n . We note that A Ω is invariant by the change Ω → -Ω showing that it actually depends on Ω seen as an element of the projective space P n-1 = S n-1 /{±1}. Proposition 1 (Gibbs distributions of uniaxial tensors). The Gibbs distributions G η AΩ associated to tensors of the form η A Ω with η > 0 are given by

G η AΩ (ω) = 1 Z η e η (ω•Ω) 2 , Z η = S n-1 e η (ω•Ω) 2 dω, (45) 
where the normalization constant Z η does not depend on Ω but only on η.

Proof. Eq. ( 45) is obvious from [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF]. Defining θ ∈ (0, π) such that cos θ = (ω • Ω) and changing ω to (θ, z) where z ∈ S n-2 through ω = cos θ Ω + sin θ z, with dω = C n sin n-2 θ dθ dz (C n being such that C n π 0 sin n-2 θ dθ = 1 and S n-2 dz = 1), we get:

Z η = C n π 0 e η cos 2 θ sin n-2 θ dθ,
which does not depend on Ω.

For two functions g and ϕ: S n-1 → R, with ϕ > 0 a.e., we define:

g ϕ = S n-1 g(ω) ϕ(ω) dω S n-1 ϕ(ω) dω
We introduce the following Definition 3.4 (Definition of S 2 and S 4 ). The quantities S 2 (η) and S 4 (η) are defined by

S 2 (η) = P 2 (ω • Ω) G ηA Ω , S 4 (η) = P 4 (ω • Ω) G ηA Ω , (46) 
where P 2 (X) and P 2 (X) are the polynomials

P 2 (X) = 1 n -1 (nX 2 -1), (47) 
P 4 (X) = 1 (n -1)(n + 1) 3 -6(n + 2)X 2 + (n + 2)(n + 4)X 4 .
For the same reason as in Proposition 1, S 2 and S 4 do not depend on Ω. In dimension n = 3, the polynomials P 2 and P 4 are the Legendre polynomials of degree 2 and 4 respectively. About S 2 , we have the following proposition, which will be proved in Appendix B.1.

Proposition 2 (Properties of S 2 ). (i) We have Q G η A Ω = S 2 (η) A Ω . (48) 
(ii) The order parameter (12) of the distribution ρG ηAΩ is

χ ρG ηA Ω = S 2 (η). (iii) S 2 is a non-decreasing function from (0, ∞) onto (0, 1), i.e. S 2 (0) = 0 and S 2 → 1 as η → ∞.
We note that, when η → 0, G ηAΩ converges to the uniform probability distribution on S n-1 . Likewise, when η → ∞, G ηAΩ concentrates on two Dirac deltas 1 2 (δ Ω + δ -Ω ) which characterizes fully aligned distributions of molecules in the direction Ω. Therefore, S 2 takes the value 0 on fully disordered distributions and the value 1 on fully ordered ones. As η increases, G ηAΩ shows increasing order evidenced by the increase of the order parameter S 2 . Now, we have the following

Proposition 3 (Implicit definition of η(ρ)). The implicit equation η α ρ = S 2 (η), (49) 
has at least a root η if and only if ρ ∈ (ρ * , +∞) where ρ * > 0. It has at most two roots. By choosing the largest root (which is necessarily nonnegative), it defines a smooth non-decreasing function

(ρ * , +∞) → (η * , +∞), ρ → η(ρ), where η * = lim ρ→ρ * η(ρ) ≥ 0.
This proposition is a consequence of the result of Wang and Hoffman [START_REF] Wang | A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space[END_REF] which will be recalled in Section 4. With this, we formulate the following conjecture, which has been verified in dimension n = 2 [START_REF] Fatkullin | A note on the Onsager model of nematic phase transitions[END_REF], n = 3 [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF] and n = 4 [START_REF] Frouvelle | Body-attitude alignment: first order phase transition, link with rodlike polymers through quaternions, and stability[END_REF].

Conjecture 1 (Stable anisotropic equilibria).

The set E of stable anisotropic equilibria (in the sense of Remark 1) is given by

E = {ρ G η(ρ)AΩ | ρ ∈ (ρ * , +∞), Ω ∈ P n-1 }.
We will only consider anisotropic equilibria, i.e. belonging to the set E above. Stable isotropic equilibria (i.e. such that f = ρ is independent of ω) do exist but will not be used here.

Remark 2. In the case n = 3, using the change of variables z = cos θ and an integration by parts, Eq. ( 49) can be recast as

3e η 1 0 e η z 2 dz = 3 + 2η + 4η 2 α ρ .
Upon changing η into -η and making ρ = 1, we recover Eq. (1.9) of [START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF] and Eq. (3.2) of [START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF] (up to a typo in the latter: a factor 4 is missing in front of the η 2 term). Now, we introduce the molecular interaction potential at equilibrium U 0

ρ G ηA Ω
where U 0 f is given by [START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF]. Thanks to [START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF], [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF], we have

αρQ G ηA Ω = η(ρ)A Ω . (50) 
Thus, introducing θ ∈ [0, π] such that ω • Ω = cos θ, straightforward computations give

U 0 ρ G ηA Ω = -η(ω • A Ω ω) + n -1 n αρ = -η (ω • Ω) 2 - 1 n + n -1 n αρ (51) = -η cos 2 θ - 1 n + n -1 n αρ =: Ũ0 (θ),
so defining the function Ũ0 (θ). We note that

d Ũ0 dθ = 2η cos θ sin θ. (52) 
For two functions ϕ and ψ defined on [0, π] with ψ > 0, a.e., we define

ϕ ψ = π 0 ϕ(θ) ψ(θ) sin n-2 θ dθ π 0 ψ(θ) sin n-2 θ dθ .
Thanks to these notations, we can state the Definition 3.5 (Auxiliary function g). The function g:

[0, π] → R, θ → g(θ)
, is the unique solution (in a sense made precise in Section 5) of the elliptic equation

1 sin n-2 θ d dθ sin n-2 θ dg dθ - d Ũ0 dθ dg dθ -(n -2) g sin 2 θ = - d Ũ0 dθ . (53) 
Note that, in the special case n = 3, (53) coincides with Eq. (5.31) of [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF]. Thanks to g we have the following proposition, proved in Section 6.2: Proposition 4 (Constant c). Assume Λ = 0. Then, the constant c given by c = (n -1)ΛS 2 (η)

g d Ũ0 dθ exp(η cos 2 θ) , (54) 
is such that c/Λ > 0.

In dimension n = 3, this formula coincides with formula (5.33) of [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF]. We now introduce the following definitions Definition 3.6 (Definition of the Leslie constants α k , k = 1, . . . , 6). The Leslie constants α k , k = 1, . . . , 6 are defined by

α 1 = (ζ -Λ 2 )S 4 , α 2 = - ΛS 2 2 1 c + 1 , α 3 = ΛS 2 2 1 c -1 , (55) 
α 4 = 2(ζ -Λ 2 ) (n + 2)(n + 4) S 4 - 2 n Λ 2 2 + 2(ζ -Λ 2 ) n + 4 S 2 + 1 n Λ 2 + 2(ζ -Λ 2 ) n + 2 , (56) 
α 5 = - 2(ζ -Λ 2 ) n + 4 S 4 + Λ 2 + Λ 2 2 + 2(ζ -Λ 2 ) n + 4 S 2 , (57) 
α 6 = - 2(ζ -Λ 2 ) n + 4 S 4 + - Λ 2 + Λ 2 2 + 2(ζ -Λ 2 ) n + 4 S 2 , (58) 
where S 2 and S 4 are given by ( 46) and their dependence on η has been omitted for simplicity, and where c is given by [START_REF] Otto | Continuity of velocity gradients in suspensions of rod-like molecules[END_REF]. We note Parodi's relation: α 6 -α 5 = α 2 +α 3 .

3.2.

Main result: statement and comments. Now, our aim is to prove the following formal result:

Theorem 3.7 (Formal limit of model ( 34) -( 36)). We assume n ≥ 2, Λ = 0. For n ≥ 5, we assume that Conjecture 1 is true (for 2 ≤ n ≤ 4, this conjecture is a theorem [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Fatkullin | A note on the Onsager model of nematic phase transitions[END_REF][START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF][START_REF] Frouvelle | Body-attitude alignment: first order phase transition, link with rodlike polymers through quaternions, and stability[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF]). When ε → 0, we assume that (f ε , u ε ) → (f, u) as smoothly as needed, where f (x, •, t) is a stable anisotropic local equilibrium for all (x, t). Then, on the open set

B = {(x, t) ∈ R n × [0, ∞) | ρ f (x, t) > ρ * }, (59) 
(where ρ * is defined at Proposition 3), we have

f (x, ω, t) = ρ(x, t)G η(ρ(x,t))A Ω(x,t) (ω), ( 60 
)
where the function [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF]. The functions (x, t) → (ρ, Ω, u)(x, t) satisfy the following system of partial differential equations (called the Ericksen-Leslie system):

(ρ * , ∞) ρ → η(ρ) ∈ [0, ∞) is defined by
∂ t ρ + ∇ x • (ρu) = 0, (61) 
∂ t Ω + u • ∇ x Ω + W Ω -c P Ω ⊥ EΩ + 2β Λ ∆ x (ηΩ) = 0, (62) 
∂ t u + u • ∇ x u + ∇p = 1 Re (∆ x u + 1 Er ∇ x • σ), (63) 
∇ x • u = 0, (64) 
σ = σ L + σ E , (65) 
σ L = ρ α 1 E : (Ω ⊗ Ω) Ω ⊗ Ω + α 2 Ω ⊗ N + α 3 N ⊗ Ω +α 4 E + α 5 (Ω ⊗ Ω)E + α 6 E(Ω ⊗ Ω) , (66) 
σ E = - 2β α ∇ x (ηΩ)∇ x (ηΩ) T + (n + 1)β nα ∇ x η ⊗ ∇ x η + (n -1)αβ n ∇ x ρ ⊗ ∇ x ρ, (67) 
where W and E are given by (3), β by (28), c by (54), α k , k = 1, . . . , 6 by (55)-( 58), and N by

N = D t Ω + W Ω, (68) 
with D t given by [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF].

Remark 3. Using (49), we have the following equivalent expression of σ E :

σ E = - 2β α ∇ x Ω∇ x Ω T - (n -1)β nα 1 - 1 S 2 2 1 -η S 2 S 2 2 ∇ x η ⊗ ∇ x η,
where S 2 denotes the derivative of S 2 with respect to η. In particular, this formula shows that the contribution of the density gradient to σ E is a rank-1 tensor (which is not obvious from (67); on the other hand, (67) has more symmetry between ∇ x ρ and ∇ x η).

Remark 4. In the case Λ = 0, the result is still valid, except that (62) must be replaced by

∂ t Ω + u • ∇ x Ω + W Ω -2βc P Ω ⊥ ∆ x (ηΩ) = 0,
where c = (n -1)S 2 (η)/ g d Ũ0 dθ exp(η cos 2 θ) . In the literature [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF], Eq. ( 62) is written differently. For this we need the Definition 3.8 (Molecular field and γ-constants). We define

γ 1 = ΛS 2 c = α 3 -α 2 , γ 2 = -ΛS 2 = α 6 -α 5 = α 2 + α 3 , (69) 
H = 2βS 2 ∆ x (ηΩ).
The quantity H is called the molecular field.

Then, we have the following proposition, whose proof is immediate:

Proposition 5 (Equivalent form of Eq. ( 62)). Eq. ( 62) is equivalent to

P Ω ⊥ H -γ 1 N -γ 2 EΩ = 0. ( 70 
)
We compare System ( 61)-( 67) with the literature. Ref. [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF] considers a spatially homogeneous model in dimension n = 3 with ζ = 0. Spatial homogeneity means that ρ and Ω do not depend on x, and so H = 0, σ E = 0 and N = ∂ t Ω + W Ω while E and W are constant. In this case, our model reduces to (70) (with H = 0) and σ = σ L with σ L given by (66), which are the two equations obtained in [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF], provided the external magnetic field considered in [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF] is set to 0. Finally, formulas (55)-( 58) for n = 3 and ζ = 0 are identical with Formula (6.2) of [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF]. So, our model is consistent with [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF].

Then, Refs. [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF] consider a spatially non-homogeneous setting, but still with a constant and uniform ρ (we easily see that ρ = Constant is consistent with both the kinetic model ( 34) and the fluid one (61) due to the incompressibility conditions [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] and (64)). Their setting is n = 3, ζ = 1 2 and Λ = 1. In this case, we see that formulas (55)-( 58) are identical with Formulas (2.6), (2.7) of [START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]. If ρ = Constant, then, η = Constant as well. So, the Ericksen stresses and molecular field reduce to

σ E = -k∇ x Ω∇ x Ω T , ρH = k∆ x Ω, with k = 2β α η 2 , (71) 
which are the corresponding expressions (see top of p. 7) of [START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]. With these expressions, our model reduces to (5) coupled with ( 63)-( 66) and (71). It is identical with the model obtained in [START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]. So, our model is consistent with the literature but has two additional features: the consideration of an arbitrary dimension n ≥ 2 and the spatial non-homogeneity of ρ (and consequently, of η) which brings additional components to the elastic stresses and, as we will see below, to the elastic energy. Non-uniform η has been previously considered in [START_REF] Calderer | Liquid crystal flow: dynamic and static configurations[END_REF][START_REF] Calderer | Time evolution of nematic liquid crystals with variable degree of orientation[END_REF][START_REF] Ericksen | Liquid crystals with variable degree of orientation[END_REF][START_REF] Lin | Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena[END_REF][START_REF] Lin | On nematic liquid crystals with variable degree of orientation[END_REF][START_REF] Lin | Global small solutions to a complex fluid model in three dimensional[END_REF], but to the best of our knowledge, none has explicitly linked it to the polymer density and to kinetic theory.

A well-posedness theory of System ( 61)-( 67) is outside the scope of this paper (see e.g. [START_REF] Huang | Regularity and existence of global solutions to the Ericksen-Leslie system in R 2[END_REF][START_REF] Lin | Liquid crystal flows in two dimensions[END_REF][START_REF] Lin | Nonparabolic dissipative systems modeling the flow of liquid crystals[END_REF][START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF][START_REF] Wang | Well-posedness of the Ericksen-Leslie system[END_REF] for existence results of the Ericksen-Leslie system in a variety of forms). Note however that a condition for the well-posedness of the parabolic equation ( 62) is that βc Λ > 0. This is indeed ensured by Prop. 4. The main objective of this paper is to provide a (formal) derivation of Eqs. ( 61), (62) using the moment method and the generalized collision invariant (GCI) concept. Prior to this, in Section 4, we will return to the determination of the stable equilibria of the Doi model and provide support to Conjecture 1 and to Formula (49) linking ρ and η. Then, in Section 5, we develop the GCI concept and discuss its rationale and how it can be linked to the Hilbert expansion procedure. The derivation of (62) itself will be performed in Section 6. The second main objective of the paper is to provide expressions for the Leslie and Ericksen stresses in arbitrary dimension and for spatially inhomogeneous densities, which, to the best of our knowledge, has not been considered before. As these computations are lengthy, they are deferred to Appendix B. Other auxiliary results can be found in this appendix and in the subsequent ones, Appendices C and D.

3.3. Energetics of the Ericksen-Leslie system. Next, we define the following energies: Definition 3.9 (Oseen-Franck and Ericksen-Leslie energies). (i) The Oseen-Franck energy is defined by:

E F = 2β α R n |∇ x (ηΩ)| 2 2 dx -αβ n -1 n R n |∇ x ρ| 2 2 dx -β n + 1 nα R n |∇ x η| 2 2 dx =: E Ω F + E ρ F + E η F . (72) 
(ii) The Ericksen-Leslie energy is defined by

E EL = R n |u| 2 dt + 1 ReEr E F .
Remark 5. (i) If ρ is uniformly constant (and hence, η too), E F reduces to

E F = 2βη 2 α R n |∇ x Ω| 2 2 dx,
which is the classical Oseen-Franck elastic energy [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]. The additional terms E ρ F and E η F make up for the non-uniformity of ρ and η. (ii) Using [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF], we find an alternate expression of E F :

E F = 2β α R n η 2 |∇ x Ω| 2 2 dx + (n -1)β nα R n 1 - 1 S 2 2 1 -η S 2 S 2 2 |∇ x η| 2 2 .
In particular, we see that this energy is positive if the following relation holds

1 - 1 S 2 2 1 -η S 2 S 2 2 ≥ 0.
The investigation of this property is left to future work. Now, we have the following proposition, which relates the molecular field to the derivative of the Franck energy with respect to the orientation field Ω.

Proposition 6 (Relation between the Franck energy and the molecular field). We have the following relation:

ρH = - δE F δΩ (η, Ω) = 2β α η ∆ x (ηΩ), ( 73 
)
where δE F δΩ (η, Ω) is the functional derivative of E F with respect to the field Ω evaluated at the pair (η, Ω).

Proof. For a n × n tensor S, we introduce the following energy density

e Ω F (S) = 2β α |S| 2 2 ,
so that we can write

E Ω F = R n e Ω F ∇ x (ηΩ) dx.
Now, straightforward computations show that the functional derivative δE F δΩ is given by

δE F δΩ (η, Ω) = δE Ω F δΩ (η, Ω) = -η∇ x • ∂e Ω F ∂S ∇ x (ηΩ) = - 2β α η ∆ x (ηΩ) = -ρH,
where the first equality is due to the fact that the energies E ρ F and E η F do not depend on Ω, and the last one, to [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF]. Then, Eq. ( 73) follows.

The following proposition gives the energy identity for the Ericksen-Leslie system. Its proof is developed in Appendix B.4

Proposition 7 (Energy identity for the Ericksen-Leslie system). We have the following identity:

dE EL dt + D EL = 0, (74) 
D EL = 1 Re R n |∇ x u| 2 dx + 1 ReEr R n ρ α 1 + γ 2 2 γ 1 E : (Ω ⊗ Ω) 2 + α 4 |E| 2 + α 5 + α 6 - γ 2 2 γ 1 |EΩ| 2 + 1 γ 1 |P Ω ⊥ H| 2 dx.
Remark 6. (i) The use of this energy identity to derive a priori bounds for the solution of the Ericksen-Leslie equations is subject to two conditions: first, that the Oseen-Franck energy is positive as already mentioned in Remark 5; second, that the dissipation functional D EL is positive as well, which is not obvious given that the coefficients are not all positive. In [START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF], it is shown that, in the case n = 3, ζ = 1 2 and Λ = 1, D EL is positive. Besides, conditions for the positive-definiteness of D EL with coefficients which are not necessarily linked with a microscopic model can be found in [START_REF] Wang | Well-posedness of the Ericksen-Leslie system[END_REF]. The inspection of the positivity of E F and D EL for the present model is left to future work.

(ii) It is expected that this energy identity is the limit as ε → 0 of the free-energy dissipation identity [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] of the Doi-Navier-Stokes system. This is indeed formally shown in [START_REF] Zhang | A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit[END_REF]. However, due to the presence of the square of the Deborah number at the denominator of ( 27), we expect that the limiting free-energy dissipation identity will involve the first order correction

f 1 = lim ε→0 f ε -f 0 ε
. Showing that the terms involving f 1 eventually vanish is not obvious and left to future work. 4. Local equilibria. In this section, we develop the rationale for Conjecture 1. Since we aim at formal convergence results only, we suppose that the solution f ε to (40) satisfies f ε → f as ε → 0 as smoothly as needed.

Then, from [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena[END_REF], it follows that f should satisfy [START_REF] Lin | Liquid crystal flows in two dimensions[END_REF], i.e. should be an equilibrium for any (x, t). Eq. ( 42) leaves the dependence of f on (x, t) undetermined. Such an equilibrium is called 'local' (by contrast to a global equilibrium where f should not depend on (x, t)).

In this section, our goal is to determine the stable equilibria. Indeed, we anticipate that only stable equilibria can lead to a long time dynamics described by hydrodynamic equations. First, we should note that local equilibria are known in any dimension n [START_REF] Wang | A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space[END_REF] (see also [START_REF] Constantin | Note on the number of steady states for a two-dimensional Smoluchowski equation[END_REF][START_REF] Fatkullin | A note on the Onsager model of nematic phase transitions[END_REF][START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF] for the case n = 2 and [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Constantin | Asymptotic states of a Smoluchowski equation[END_REF][START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF][START_REF] Zhang | Stable dynamic states at the nematic liquid crystals in weak shear flow[END_REF][START_REF] Zhou | A new proof on axisymmetric equilibria of a three-dimensional Smoluchowski equation[END_REF] for the case n = 3). However, the stability of these equilibria is not known for general dimension n but only for n = 2 [START_REF] Fatkullin | A note on the Onsager model of nematic phase transitions[END_REF], n = 3 [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF] and n = 4 [START_REF] Frouvelle | Body-attitude alignment: first order phase transition, link with rodlike polymers through quaternions, and stability[END_REF].

These results strongly support a conjecture about the stable equilibria in general dimension n that we will make below and whose rigorous investigation is deferred to future work. We first need to introduce a set of notations and intermediate results.

Definition 4.1 (Auxiliary operator). Let S be a trace-free symmetric matrix. Then, the auxiliary operator L S is given by

L S f = ∇ ω • G S ∇ ω f G S . ( 75 
)
with G S given by [START_REF] Lin | Nonparabolic dissipative systems modeling the flow of liquid crystals[END_REF].

The relation between the collision operator C(f ) and the auxiliary operator L S is given by the following lemma. Note that L S is NOT the linearization of C about G S . Lemma 4.2 (Relation between C and L). We have

C(f ) = L α ρ f Q f f. ( 76 
)
Proof of Lemma 4.2. We can write [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF]. Now, we have a first result: Lemma 4.3 (First step towards a characterization of the equilibria). (i) Let f ≥ 0, f = 0 be an equilibrium. Then, there exists ρ > 0 and a trace-free symmetric matrix

L S f = ∇ ω • ∇ ω f -f ∇ ω log G S . But -log G S = -ω • Sω + log Z S . So, -log G αρ f Q f = U 0 f + Z(f ) where Z(f ) does not depend on ω. Thus, -∇ ω (log G αρ f Q f ) = ∇ ω U 0 f and so, L αρ f Q f = C(f ), thanks to
Q such that f = ρ G α ρ Q . ( 77 
)
(ii) Reciprocally, let f be given by (77). Then, f is an equilibrium if and only if Q satisfies the fixed-point equation also known as the compatibility equation:

Q = Q ρ G α ρ Q , (78) 
where we recall that for a distribution f , Q f is given by [START_REF] Cercinani | The Mathematical Theory of Dilute Gases[END_REF].

Proof. (i) Suppose C(f ) = 0. Letting S = α ρ f Q f , ( 76 
) implies L S f = 0. Multiplying (75) by f /G S , integrating over S n-1 and using Green's formula leads to

S n-1 G S ∇ ω f G S 2 dω = 0.
Since the quantity inside the integral is nonnegative, and G S > 0, this implies ∇ ω ( f G S ) = 0. So, there exists ρ > 0 such that f = ρ G S which leads to (77). (ii) Let f be given by (77). Then, since G α ρ Q is a probability density, we have

ρ f = ρ. Now, from the proof of Part (i), if f is an equilibrium, then f = ρ f G α ρ f Q f . We deduce that G α ρ Q f = G α ρ Q ,
and, by taking the logarithm, that

ω • (Q f -Q)ω = 1 α ρ log Z α ρ Q f -log Z α ρ Q =: µ,
where µ is a constant, independent of ω. So, Q f -Q-µ Id is the matrix of a quadratic form which is zero on S n-1 and so, by homogeneity, on R n . Thus, Q f -Qµ Id = 0 and, owing to the fact that Q f and Q are trace-free, we have µ = 0. It follows that Q f = Q. Replacing f by its expression (77), we get (78).

To complete the characterization of the equilibria, we need to solve the compatibility equation (78). As pointed out above, this has been done in any dimension n in [START_REF] Wang | A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space[END_REF] (see also [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF] for n = 2 and [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF][START_REF] Zhou | A new proof on axisymmetric equilibria of a three-dimensional Smoluchowski equation[END_REF] for n = 3). This result is summarized without proof in the following lemma Lemma 4.4 (Final characterization of the equilibria [START_REF] Wang | A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space[END_REF]). Let f be an an equilibrium. Then Q f has at most two distinct eigenvalues.

• If all eigenvalues of Q f are identical, then Q f = 0 and f = ρ is a uniform equilibrium. • If Q f has exactly two distinct eigenvalues, denote by λ f its largest eigenvalue and by Y f the associated eigenspace, supposed of dimension

d such that 1 ≤ d ≤ n -1. Then, 0 < λ f < 1 d -1 n and Q f is written Q f = B λ f ,Y f := λ f P Y f - d n -d P Y ⊥ f , (79) 
where

P Y f and P Y ⊥ f are the orthogonal projections of R n onto Y f and Y ⊥ f respectively. Then, f is of the form f = ρ n d (λ f ) G α ρ n d (λ f ) B λ f ,Y f , where ρ n d : [0, 1 d -1 n ) → [0, ∞), λ → ρ n d (λ
) is a specific function (not detailed here except for the case d = 1, see below). Furthermore, λ f is a root of the equation

ρ n d (λ) = ρ. ( 80 
)
The existence and number of classes of equilibria such that ρ f = ρ are determined by the existence and number of roots λ of Eq. (80). A given root λ gives rise to a family of equilibria parametrized by the Grassmann manifold Gr(k, n) of d-dimensional vector subspaces Y of R n .

Here, we are only interested in the case d = 1 as we will conjecture that this is the only case which includes stable equilibria (see conjecture 2 below). For simplicity, ρ n stands for the function ρ n 1 . In the case n = 2, ρ 2 is monotonously increasing and maps [0, 1 2 ) onto the interval [ρ * , +∞) with ρ * = ρ 2 (0) (see Fig. 1a). In the case n ≥ 3, ρ n is decreasing in the interval [0, λ * ] and increasing in [λ * , 1 -1 n ). Thus ρ * = ρ(λ * ) is a global minimum of ρ n (see Fig. 1b). In all cases, the equation ρ n (λ) = ρ has a solution if and only if ρ ≥ ρ * and this solution is unique in the case n = 2 while, in the case n ≥ 3, there are two solutions if ρ ∈ (ρ * , ρ n (0)], and one solution if ρ ∈ {ρ * } ∪ (ρ n (0), ∞) (see [START_REF] Wang | A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space[END_REF] for details).

As already stated, for general n, the stability of the equilibria described in Lemma 4.4 is not known yet. However, their stability is known for n = 2 [START_REF] Fatkullin | A note on the Onsager model of nematic phase transitions[END_REF], n = 3 [START_REF] Ball | Axisymmetry of critical points for the Onsager functional[END_REF][START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF][START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF][START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF] and n = 4 [START_REF] Frouvelle | Body-attitude alignment: first order phase transition, link with rodlike polymers through quaternions, and stability[END_REF]. Based on these results, we formulate the following conjecture for any dimension n ≥ 2 and refer to the above-mentioned references for details on the notion of stability involved.

Conjecture 2 (Stable anisotropic equilibria). For any dimension n ≥ 2, the branch of solutions to the equation ρ n (λ) = ρ (which corresponds to d = 1) with largest λ, which is defined for ρ ∈ (ρ * , ∞), corresponds to the unique class of stable anisotropic equilibria.

1 2 0 λ ρ * ρ 2 1 (a) n = 2 ρ n (0) λ * ρ * ρ n 1 -1 n λ 0 1 (b) n ≥ 3 Figure 1.
Graphical representation of the function λ → ρ n (λ) (after [START_REF] Wang | A unified view on the rotational symmetry of equilibiria of nematic polymers, dipolar nematic polymers, and polymers in higher dimensional space[END_REF]). (a) case n = 2. (b) case n ≥ 3. The portions of the curves that correspond to stable equilibria are in blue, the unstable ones, in green.

We denote by the function λ: (ρ * , +∞) → (λ * , 1 -1 n ), ρ → λ(ρ), the largest solution to ρ n (λ) = ρ. With Conjecture 2, the stable equilibria f correspond to the class of equilibria described in Lemma 4.4, Case 2, with d = 1 and λ f = λ(ρ). In this case, Y f is one-dimensional and thus, spanned by a unique normalized vector (up to a sign) Ω ∈ P n-1 . Hence, we have

P Y f = Ω ⊗ Ω and P Y ⊥ f = P Ω ⊥ . Then by (79), Q f = n n -1 λ(ρ) A Ω , (81) 
where A Ω is the normalized uniaxial tensor given by [START_REF] Lin | Existence of solutions for the Ericksen-Leslie system[END_REF]. Defining

η(ρ) = n n -1 α ρ λ(ρ), (82) 
from (78) we get that the equilibria are of the form f = ρ G η(ρ)AΩ where ρ is arbitrary as long as λ(ρ) is defined, i.e. ρ ∈ (ρ * , ∞), and where Ω is arbitrary in P n-1 . Hence, Conjecture 1 is a direct consequence of Conjecture 2, provided we show that the function ρ → η(ρ) is the one given by Proposition 3, which we do now:

Proof of Proposition 3. Equating (81) with (48) and using (82), we get [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF].

The root with the largest η must be chosen because this corresponds to the choice of largest λ in Conjecture 2 (as λ is proportional to η by (82)).

From [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena[END_REF] and Conjecture 2, we deduce the:

Corollary 1 (Local equilibria). Let f be the formal limit of f ε as ε → 0 and suppose that u ε → u smoothly. On the open set B defined by (59), f is given by [START_REF] Wang | Well-posedness of the Ericksen-Leslie system[END_REF] where

ρ = ρ f : (x, t) ∈ R n × [0, ∞) → [ρ * , ∞) and Ω: (x, t) ∈ R n × [0, ∞) → P n-1 are functions such that f satisfies T u (f ) = lim ε→0 C(f ε ) ε . ( 83 
)
Note that ρ = ρ f is the local density associated to f , while Ω(x, t) if the axis of the uniaxial Q-tensor Q f thanks to [START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF]. The restriction to the set B is needed to ensure that η(ρ(x, t)) is well-defined. The determination of the functions (ρ, Ω) such that (83) holds is quite challenging, due to the presence of ε in the denominator at the right-hand side. It will require the Generalized Collision Invariant concept as detailed below.

5. Generalized collision invariants.

Collision invariant. We first recall the notion of Collision Invariant (CI).

The goal is to eliminate the singular right hand side of (83) by using integration against appropriate test functions. More precisely we have:

Definition 5.1. A Collision Invariant (CI) ψ(ω) is a function such that S n-1 C(f ) ψ dω = 0, ∀f.
Here, we do not specify any regularity requirement on ψ since our goal is to develop a formal theory only. If ψ is a CI, using it as a test function for [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena[END_REF], we have, after integration with respect to ω and omitting ε as the identity is valid for any ε:

∂ t S n-1 f ψ dω + ∇ x • u S n-1 f ψ dω - S n-1 ∇ ω ψ • (ΛP ω ⊥ E -W )ω f dω -2α β S n-1 ∇ ω ψ • P ω ⊥ ∆ x (ρ f Q f ) ω f dω = 0, (84) 
which is an evolution equation for the moment S n-1 f ψ dω. Since this equation does not depend on ε, it is still verified by the solution of (83). We have an obvious CI, namely, ψ = 1, which leads to the mass conservation (or continuity) equation

∂ t ρ f + ∇ x • (ρ f u) = 0. ( 85 
)
In particular, taking the limit ε → 0, it shows [START_REF] Zhang | Stable dynamic states at the nematic liquid crystals in weak shear flow[END_REF]. As u is divergence free thanks to [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF], (85) can be equivalently written

D t ρ f = 0, ( 86 
)
with D t given by [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF].

Any odd function ψ of ω is also a CI. However, it is not invariant when ω is changed into -ω, a condition that has been enforced throughout this work (see e.g. ( 1)). Indeed, Eq. (84) with odd functions ψ have all their terms identically zero and do not provide any useful information. We do not have any other obvious CI. Therefore, we are lacking an equation for Ω. In order to overcome this problem, we use the concept of "Generalized Collision Invariant (GCI)" introduced in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] and adapted to the present context.

Generalized collision invariant: definition and characterization.

To introduce the GCI concept, we first need some additional notations and definitions. Definition 5.2 (and notations). (i) S 0 n is the vector space of symmetric trace free n × n matrices. (ii) U 0 n is the subset of S 0 n consisting of tensors whose leading eigenvalue is equal to n-1 n and is simple. (iii) We denote by λ f the leading eigenvalue of Q f and by η f the following quantity:

η f = α ρ f n n -1 λ f . (87) 
From ( 8), we have

0 ≤ n n -1 λ f ≤ 1.
Note that in general, λ f may not be simple.

(iv) If Q f = 0, then λ f = 0 and we define the "Normalized Q-Tensor (NQT) of f ", Σ f by

Σ f = n -1 n Q f λ f . (88) 
Σ f ∈ S 0 n . Its leading eigenvalue is n-1 n which, again, may not be simple. (vi) Let Σ ∈ U 0 n . We denote by Ω Σ ∈ P n-1 the normalized eigenvector (up to a sign) associated with the simple eigenvalue n-1 n of Σ. Note that the tensor A ΩΣ is uniquely defined, irrespective of the choice of the sign of Ω Σ . (v) Suppose Σ f ∈ U 0 n . Then, Ω Σ f is simply denoted by Ω f . Remark 7. From (48), we get that Σ ρ G ηA Ω = A Ω meaning that the NQT's of the stable anisotropic equilibria are all equal to A Ω .

We recall that the auxiliary operator L S for S ∈ S 0 n is defined by (75). The GCI are now defined in the following Definition 5.3. Let (η, Σ) ∈ (0, ∞) × U 0 n . A Generalized Collisional Invariant (GCI) associated to the pair (η, Σ) is a function ψ such that

S n-1 (L ηΣ f ) ψ dω = 0 for all f such that P Ω ⊥ Σ (Q f Ω Σ ) = 0. ( 89 
)
The set of GCI associated to a given pair (η, Σ) ∈ (0, ∞) × U 0 n is a linear vector space and is denoted by C ηΣ .

There is a rationale for this definition, which is developed in Section 5.3 below.

The following lemma gives the equation satisfied by the GCI:

Lemma 5.4. Let (η, Σ) ∈ (0, ∞) × U 0 n . Then ψ ∈ C ηΣ if and only if there exists V ∈ {Ω Σ } ⊥ such that ∇ ω • G ηΣ (ω)∇ ω ψ = (ω • Ω Σ ) (ω • V ) G ηΣ (ω), ∀ω ∈ S n-1 . ( 90 
)
Proof. For Ω ∈ S n-1 /{±1}, we define the following space of functions:

X Ω = {S n-1 ω → (Ω • ω) (V • ω) ∈ R | V ∈ {Ω} ⊥ }, (91) 
The space X Ω is a finite-dimensional subspace of L 2 (S n-1 ). We first note that for any f ∈ L 2 (S n-1 ), we have

P Ω ⊥ (Q f Ω) = 0 ⇐⇒ S n-1 f (ω) (ω • V ) (ω • Ω) dω = 0, ∀V ∈ {Ω} ⊥ ⇐⇒ f ∈ X ⊥ Ω , (92) 
where the orthogonality is meant with respect to the standard L 2 -product on L 2 (S n-1 ).

On the other hand, we note that S n-1 (L ηΣ f ) ψ dω = 0 is equivalent to saying that f ∈ {L * ηΣ ψ} ⊥ where again, the orthogonality is meant with respect to the standard L 2 -product on L 2 (S n-1 ) and where L * ηΣ is the formal L 2 -adjoint of L ηΣ , i.e.

L * ηΣ ψ = 1 G ηΣ ∇ ω • (G ηΣ ∇ ω ψ).
Therefore, thanks to (92), Condition (89) is equivalent to saying that

f ∈ X ⊥ ΩΣ =⇒ f ∈ {L * ηΣ ψ} ⊥ , or in other words, that X ⊥ ΩΣ ⊂ {L * ηΣ ψ} ⊥ .
Taking the orthogonal to this relation and noting that both X ΩΣ and Span{L * ηΣ ψ} (where for a subset B of a vector space, Span B denotes the subspace generated by B) are finite-dimensional, hence, closed subspaces of L 2 (S n-1 ), we get Span{L * ηΣ ψ} ⊂ X ΩΣ . In particular, this implies that there exists

V ∈ {Ω Σ } ⊥ such that L * ηΣ ψ(ω) = (ω • Ω Σ ) (ω • V )
, which, upon multiplying by G ηΣ , gives (90). The converse is straightforward. Now, we give an existence theory for the solutions of (90). We denote by H 1 (S n-1 ) the space of square integrable functions of S n-1 into R whose derivatives are square integrable and introduce Ḣ1 (S n-1 ) = u ∈ H 1 (S n-1 )

S n-1 u(ω) dω = 0 .
Then we have the Proposition 8. Let (η, Σ) ∈ (0, ∞) × U 0 n and V ∈ {Ω Σ } ⊥ . Then, there exists a unique solution of (90) in Ḣ1 (S n-1 ) denoted by ψ ηΣ,V . The linear vector space C ηΣ of GCI associated with (η, Σ) is given by

C ηΣ = C 0 + ψ ηΣ,V | C 0 ∈ R, V ∈ {Ω Σ } ⊥ . ( 93 
)
Proof. We look for solutions of (90) in variational form. The variational formulation reads as follows: find ψ ∈ H 1 (S n-1 ) such that

S n-1 G ηΣ ∇ ω ψ•∇ ω θ dω = - S n-1 G ηΣ (ω•Ω Σ ) (ω•V ) θ dω, ∀θ ∈ H 1 (S n-1 ). ( 94 
)
By Poincaré inequality and the fact that G ηΣ is smooth and bounded from above and below, the bilinear form G ηΣ ∇ ω ψ • ∇ ω θ dω is continuous and coercive on Ḣ1 (S n-1 ). Therefore, by Lax-Milgram theorem, the variational formulation (94) has a unique solution in Ḣ1 (S n-1 ) denoted by ψ ηΣ,V when θ is restricted to belong to Ḣ1 (S n-1 ). To show that this is a solution for all θ ∈ H 1 (S n-1 ), it is enough to show that it satisfies (94) for θ = 1, i.e. that the following holds:

S n-1 G ηΣ (ω • Ω Σ ) (ω • V ) dω = 0, ∀V ∈ {Ω Σ } ⊥ . (95) 
Let (e 1 , . . . , e n ) with e n = Ω Σ be an ortho-normal basis of R n consisting of eigenvectors of Σ. Let λ 1 , . . . , λ n be the associated eigenvalues. Let ω = n k=1 ω k e k be the decomposition of ω in this basis. It is enough to show (95) for V = e j with j ∈ {1, . . . , n -1}. Then, we have

S n-1 G ηΣ (ω • Ω Σ ) (ω • e j ) dω = 1 Z ηΣ S n-1 e η(λ1ω 2 1 +...λnω 2 n ) ω j ω n dω = 0,
thanks to the change of ω n into -ω n . This shows (95) and so, the existence and uniqueness of a solution of (90) in Ḣ1 (S n-1 ) is proved. Now, all solutions in H 1 (S n-1 ) of ( 94) are of the form ψ ηΣ,V + C 0 where C 0 is any constant. Collecting all the solutions for all the possible V ∈ {Ω Σ } ⊥ leads to (93) and ends the proof. Remark 8. We note that if Ω Σ is changed into -Ω Σ , ψ ηΣ,V must be changed into ψ ηΣ,-V . It follows that (93) remains unchanged.

We now define a vector-valued GCI ψ ηΣ in the following way Definition 5.5. Given (η, Σ) ∈ (0, ∞)×U 0 n , we introduce the function ψ ηΣ : S n-1 → R n , defined as the unique solution (in Ḣ1 (S n-1 )) of the following vector-valued equation:

∇ ω • G ηΣ (ω)∇ ω ψ ηΣ = (ω • Ω Σ ) P Ω ⊥ Σ ω G ηΣ (ω), ∀ω ∈ S n-1 . We note that ψ ηΣ,V = ψ ηΣ • V, ∀V ∈ {Ω Σ } ⊥ and ψ ηΣ • Ω Σ = 0, and that ψ ηΣ is changed into -ψ ηΣ if Ω Σ is changed into -Ω Σ .
We can provide an explicit expression of ψ ηAΩ , for all (η, Ω) ∈ (0, ∞) × S n-1 as the next proposition shows. Let us first define the following space:

H = h : (-1, 1) → R 1 -1 (1 -r 2 ) n-1 2 |h(r)| 2 dr < ∞, 1 -1 (1 -r 2 ) n+1 2 |h (r)| 2 dr < ∞ ,
where h denotes the derivative of h.

Proposition 9. Let (η, Ω) ∈ (0, ∞) × S n-1 be given. We have

ψ ηAΩ (ω) = h η (ω • Ω) ω ⊥ , (96) 
where ω ⊥ = P Ω ⊥ ω and h η is the unique solution in H of the following equation:

-(1 -r 2 ) n-1 2 e ηr 2 2η r 2 + n -1 h η + d dr (1 -r 2 ) n+1 2 e ηr 2 dh dr = r (1 -r 2 ) n-1 2 e ηr 2 . (97) 
Furthermore, h η is odd and h η (r) ≤ 0 for r ≥ 0.

Proof. We apply [START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF], Proposition 4.2 (ii) (with the following changes: u → Ω,

κ 2 → η, d → n, Γ * (ψ, u) → L * ηAΩ ψ).
Note that these techniques were first developed in [START_REF] Degond | Quaternions in collective dynamics[END_REF][START_REF] Frouvelle | A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF]. Remark 9. Formula (96) shows that the vector GCI ψ ηAΩ is invariant under rotations leaving Ω fixed. This is a consequence of the fact that A Ω is uniaxial with axis Ω. No simple formula like (96) is available for more general vector GCI ψ ηΣ , when Σ ∈ U 0 n is not uniaxial. However, while we will need vector GCI for general Σ ∈ U 0 n , we will only need an explicit expression of them in the case of a uniaxial tensor Σ = A Ω . So, Prop. 9 is enough for our purpose.

The following proposition provides an alternate equation satisfied by h η in terms of the function g defined in [START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF]. Its proof is easy and is sketched in Appendix C.1 for the reader's convenience.

Proposition 10 (Alternate equation for h η ). For θ ∈ [0, π], we define the function

g(θ) = -2η h η (cos θ) sin θ. ( 98 
)
Then g satisfies the equation [START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF].

Finally, the following proposition will have important consequences for the derivation of the macroscopic model:

Proposition 11. Let f : S n-1 → R be twice continuously differentiable such that Q f = 0 and Σ f ∈ U 0 n .
Then, the vector GCI ψ η f Σ f is well-defined and we have

S n-1 C(f ) ψ η f Σ f dω = 0. ( 99 
)
Remark 10. Proposition 11 expresses an important structural property of C. Let (η, Σ) ∈ (0, ∞) × U 0 n . The GCI ψ ηΣ cancels the collision operator acting on all functions f which satisfy (η f , Σ f ) = (η, Σ).

Proof. We show that P Ω ⊥ f (Q f Ω f ) = 0. Indeed, if this is the case, from (89), we get

S n-1 L η f Σ f f ψ η f Σ f dω = 0,
and using (76), (87) and (88), this shows (99). But, by definition, Ω f is the leading eigenvector of Q f with eigenvalue λ f . So,

Q f Ω f = λ f Ω f and thus P Ω ⊥ f (Q f Ω f ) = 0, which ends the proof.
Thanks to the GCI, we can now find how (83) translates into an equation for the Q-tensor principal direction Ω. This will be done below but first we provide some discussion of the GCI concept. 5.3. Discussion of the GCI concept.

5.3.1.

Rationale for Definition 89. First, let us note that the condition P Ω ⊥ Σ (Q f Ω Σ ) = 0 involved in Definition 5.3 simply means that Ω Σ is an eigenvector of Q f . We now try to provide a geometric interpretation of Condition (89). First let us introduce a few additional notations. We endow S 0 n with the inner-product S : P = Tr{SP } and for a subset B of S 0 n , its orthogonal with respect to this inner-product is denoted by B ⊥ . We recall that B ⊥ is a linear subspace of S 0 n and that (B ⊥ ) ⊥ = Span(B). We now define the submanifold N of U 0 n which consists of normalized prolate uniaxial Q-tensors i.e.

N = {A Ω | Ω ∈ P n-1 } = {Ω ⊗ Ω - 1 n Id | Ω ∈ P n-1 }.
Note that N is the manifold spanned by the NQT's of the equilibria (see Remark 7).

The mapping P n-1 Ω → A Ω ∈ N is a diffeomorphism. The tangent space of N at A Ω is given by:

T AΩ N = {Ω ⊗ V + V ⊗ Ω | V ∈ {Ω} ⊥ }. ( 100 
)
Indeed, for V ∈ T Ω P n-1 = {Ω} ⊥ , consider a curve I t → ξ(t) ∈ P n-1 where I is an open interval of R containing 0, such that ξ(0) = Ω and ξ (0) = V . Then,

d dt (A ξ(t) ) = Ω ⊗ V + V ⊗ Ω,
showing the claim. We denote by P T A Ω N the orthogonal projection of S 0 n on T AΩ N for the inner product defined just above. We have a mapping p: U 0 n → N , Σ → A ΩΣ . For any Ω ∈ P n-1 , the preimage p -1 ({A Ω }) is denoted by F Ω . All these pre-images are homeomorphic to one-another. Let us choose one of them and denote it by F. This endows U 0 n of a fiber bundle structure of base N and fiber F. Now, we have the following lemma:

Lemma 5.6. Let Ω ∈ P n-1 be given. (i) Let Q ∈ S n 0 . Then, P Ω ⊥ (QΩ) = 0 ⇐⇒ Q ∈ T AΩ N ⊥ . (ii) F Ω is a subset of T AΩ N ⊥ .
Proof. (i) Using the symmetry of Q and (100), we have:

P Ω ⊥ (QΩ) = 0 ⇐⇒ (QΩ) • V = 0, ∀V ∈ {Ω} ⊥ ⇐⇒ Q : (Ω ⊗ V ) = 0, ∀V ∈ {Ω} ⊥ ⇐⇒ Q : (Ω ⊗ V + V ⊗ Ω) = 0, ∀V ∈ {Ω} ⊥ ⇐⇒ Q : B = 0, ∀B ∈ T AΩ N ⇐⇒ Q ∈ T AΩ N ⊥ ,
which shows (i).

(ii) Suppose Σ ∈ F Ω . Then A ΩΣ = A Ω which implies Ω Σ = Ω (in P n-1 ). Thus, Ω is an eigenvector of Σ i.e. P Ω ⊥ (ΣΩ) = 0. Hence, by (i), Σ ∈ T AΩ N ⊥ .

So, Eq. ( 89) can be equivalently written:

S n-1 (L ηΣ f ) ψ dω = 0 for all f such that Q f ∈ T AΩ Σ N ⊥ . ( 101 
)
This can be geometrically interpreted as follows: to any Σ ∈ U 0 n we consider its projection (in the fiber bundle sense) p(Σ) = A ΩΣ onto N . Then, (101) means that the GCI associated to (η, Σ) are all the functions ψ whose integrals against L ηΣ f cancel when Q f belongs to the orthogonal of the tangent space to N at A Ω S . This is illustrated in Fig. 2. It is likely that this geometrical structure persists with other collision operators as it seems to express some intrinsic geometrical constraint. This point will be further developed in future work.

5.3.2.

Relation between the GCI and the linearized collision operator. Let D f C the linearization of the collision operator C about the distribution function f and let D f C * be its formal L 2 -adjoint. For a distribution function f , we call (η f , Σ f ) the 'moment' of f . In this section, we show the following: suppose (η, Σ) ∈ (0, ∞)×U n 0 is the moment of an equilibrium distribution function, i.e. (η, Σ) = (η(ρ), A Ω ) where (ρ, Ω) ∈ (ρ * , ∞) × S n-1 /{±1} and denote by f 0 = ρG η(ρ)AΩ the corresponding equilibrium. Then, we have On the other hand, if (η, Σ) is not the moment of an equilibrium, then, although there exist Gibbs distributions f = ρG ηΣ associated with (η, Σ), in general, we have

C η(ρ)AΩ = ker(D f 0 C * ). ( 102 
) Σ A Ω T A Ω N F Ω Q U n 0 N T A Ω N ⊥ 1
C ηΣ = ker(D f C * ). ( 103 
)
Thus, a GCI associated to an arbitrary moment (η, Σ) is in general not in the kernel of the adjoint linearized collision operator about the corresponding Gibbs distribution. It is only so if (η, Σ) is the moment of an equilibrium in the above sense. Consequently, GCI are different and truly more general concepts than elements of such kernels. Likewise, Eq. ( 98) linking the GCI to the auxiliary function g given by ( 53) is only valid for moments (η(ρ), A Ω ) related to equilibria. Observe however that we will not need to explicit the form of the GCI for general moments, but only for those corresponding to an equilibrium (see Section 6 below). Formula (102) is unsurprising. Indeed, Eq. ( 62) has been shown in [START_REF] Kuzuu | Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation[END_REF][START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF] using the Hilbert expansion method. This method corresponds to inserting the Hilbert expansion f ε = f 0 + εf 1 + O(ε 2 ) into the kinetic equation [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena[END_REF] and matching identical powers of ε. We get

C(f 0 ) = 0, DC f 0 f 1 = T u 0 f 0 ,
for the terms of order ε -1 and ε 0 respectively (note that we also need to Hilbertexpand the velocity u ε ). Now, the first equation implies that f 0 is an equilibrium f 0 = ρG η(ρ)AΩ . Then, one looks for a necessary and sufficient condition for the existence of a solution f 1 to the second equation. Assuming that Im DC f 0 = (ker DC * f 0 ) ⊥ (which can be proved via a careful study of the spectral properties of DC f 0 , see [START_REF] Wang | The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation[END_REF]), such a condition is

S n-1 T u 0 f 0 ψ dω = 0, ∀ψ ∈ kerDC * f 0 .
Since this is also what we get when ψ ranges in C η(ρ)AΩ (see Eq. ( 121) below), Eq. ( 102) must be true. However, it would be desirable to have a direct proof of (102). This is our goal here. As a by-product, we will also see why we have (103). We first compute the adjoint linearized collision operator.

Lemma 5.7 (Adjoint linearized collision operator). Let ρ ∈ (0, ∞), S ∈ S n 0 . We have

D ρG S C * g(ω) = L * αρQ ρG S g(ω) -αρ (ρQ) G S L * S g : ω ⊗ ω, ( 104 
)
where G S is defined by [START_REF] Lin | Nonparabolic dissipative systems modeling the flow of liquid crystals[END_REF], the auxiliary operator L by (75) and L * is its formal L 2 -adjoint. Here (ρQ) G S L * S g stands for the right-hand side of [START_REF] Cercinani | The Mathematical Theory of Dilute Gases[END_REF] 

with f replaced by G S L * S g (note that ρ G S L * S g = 0 so that Q G S L * S g is not defined but (ρQ) G S L * S g itself is well-defined).
Proof. From ( 39) and the fact that U 0 f depends linearly on f , we get

D ρG S Cf = ∇ ω • ∇ωf + f ∇ ω U 0 ρG S + ρG S ∇ ω U 0 f . (105) 
We note that ∇ ω U 0 ρG S = -∇ ω log G αρQ ρG S . Inserting this into (105), we get

D ρG S Cf = L αρQ ρG S f + ρ G S L * S U 0 f . ( 106 
)
Thanks to [START_REF] Fatkullin | Critical points of the Onsager functional on a sphere[END_REF], we also note that

L * S U 0 f = L * S Ȗ 0 f with Ȗ 0 f = -α(ω • ρ f Q f ω).
Thus, using (106), Stokes formula and that L S (G S g) = G S L * S g, we get

S n-1 D ρG S Cf g dω = S n-1 f L * αρQ ρG S g dω + ρ S n-1 Ȗ 0 f G S L * S g dω.
Inserting the expression of Ȗ 0 f into this formula, using the expression (10) of ρ f Q f and exchanging ω and ω in the resulting integral, we are led to (104). Now, in the case of an equilibrium, we compute the kernel of the adjoint linearized collision operator:

Lemma 5.8 (kernel of D f 0 C * when f 0 is an equilibrium). Let ρ ∈ (ρ * , ∞)
and Ω ∈ S n-1 /{±1}. Let f 0 = ρG η(ρ)AΩ be an equilibrium of C, where the function ρ → η(ρ) is defined in Prop. 3. Define Xρ,Ω to be the space of functions ϕ : ω → ϕ(ω) which satisfy

ϕ(ω) = αρ (ρQ) G η(ρ)A Ω ϕ : ω ⊗ ω, ∀ω ∈ S n-1 . ( 107 
)
Then we have

g ∈ ker D ρG η(ρ)A Ω C * ⇐⇒ S n-1 L η(ρ)AΩ f g dω = 0, ∀f ∈ X ⊥ ρ,Ω , (108) 
where the orthogonality is with respect to the standard L 2 (S n-1 )-inner product.

Proof. Defining S = η(ρ)A Ω , we have

αρQ ρG S = αρQ ρG ηA Ω = ηA Ω = S, (109) 
thanks to [START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF] and [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF]. Thus, thanks to (104), we are led to

D ρG C * g(ω) = L * g(ω) -αρ (ρQ) GL * g : ω ⊗ ω, (110) 
where here and in the remainder of the proof, we omit the dependence of η on ρ, as well as the index ηA Ω on L * and G and the indices ρ, Ω on X for clarity.

For any smooth enough function f , we have by the Stokes formula:

S n-1 Lf g dω = S n-1 f L * g dω = S n-1 f ϕ dω,
with ϕ = L * g. Thanks to (110) and the fact that g ∈ kerD ρG C * , ϕ satisfies (107), so ϕ ∈ X . If f ∈ X ⊥ , we deduce that Lf g dω = 0, which shows the left-to-right implication of (108).

Conversely suppose that g is such that Lf g dω = 0, ∀f ∈ X ⊥ , i.e.

f ∈ X ⊥ =⇒ f ∈ {L * g} ⊥ .
Taking the orthogonals, we get Span{L * g} ⊂ X .

Indeed, both Span {L * g} and X are finite-dimensional, hence closed. This is obvious for the former which is one-dimensional. For the latter, by (107), X is included in the space of quadratic polynomials in ω, which is a finite-dimensional space. So, defining ϕ = L * g, we have ϕ ∈ X . Replacing ϕ by its expression in terms of g in (107), we get D ρG C * (g) = 0, which shows the right-to-left implication of (108) and ends the proof.

Next, we prove an alternate characterization of the space Xρ,Ω .

Lemma 5.9. Let ρ, Ω, f 0 and η as in Lemma 5.8. Then,

Xρ,Ω = X Ω , (111) 
where X Ω is defined by (91).

Proof. Let ϕ ∈ X (using the simplified notations of the previous proof). From (107), we have ϕ(ω) = K : ω ⊗ ω where K = αρ (ρQ) Gϕ . Hence, K satisfies the fixed point equation

K = αρ ρQ G K:ω⊗ω , (112) 
which implies that TrK = 0. (113) Using [START_REF] Cercinani | The Mathematical Theory of Dilute Gases[END_REF], [START_REF] Degond | Hydrodynamic models of self-organized dynamics: derivation and existence theory[END_REF] and (113), we can develop (112) into:

K = αρ T G ηA Ω : K. ( 114 
)
According to (156), there are three real numbers a k , k = 1, . . . , 3, such that

T G ηA Ω = a 1 Ω ⊗4 + 6a 2 Ω ⊗ Ω ⊗ Id s + 3a 3 Id ⊗ Id s . (115) 
We uniquely define V ∈ {Ω} ⊥ and r ∈ R by KΩ = rΩ+V . inserting (115) into (114) and using (113), we get 1 2αρ

-

a 3 K = a 2 (Ω ⊗ V + V ⊗ Ω) + 1 2 (a 1 + 4a 2 )r Ω ⊗ Ω + a 2 r Id (116) 
We now state the following lemma, whose proof can be found in Appendix C.2

Lemma 5.10. We have 1 2αρ

-

a 3 = a 2 = 0, (117) 
a 1 + (n + 4)a 2 = S 2 (η). (118) 
Using (117), Eq. ( 116) leads to

K = Ω ⊗ V + V ⊗ Ω + 1 2a 2 (a 1 + 4a 2 )r Ω ⊗ Ω + a 2 r Id .
With (113), we get

0 = TrK = 1 2a 2 (a 1 + (n + 4)a 2 ) r,
which, with (118) and the fact that S 2 (η) = 0 (see Prop. 2 (iii)), leads to r = 0 and

K = Ω ⊗ V + V ⊗ Ω. Thus, ϕ = 2 (Ω • ω) (V • ω). (119) 
Reciprocally, by similar but simpler computations, we easily get that ϕ given by (119) with arbitrary V ∈ {Ω} ⊥ satisfies (112). In the end, we find

X = {(Ω • ω) (V • ω) V ∈ {Ω} ⊥ } = X Ω ,
which ends the proof.

We can now state the following Theorem 5.11. Let f 0 = ρG η(ρ)AΩ be an equilibrium of C. Then, we have

C η(ρ)AΩ = ker D ρG η(ρ)A Ω C * ,
where C η(ρ)AΩ is the space of GCI associated with the equilibrium moments (η(ρ), A Ω ) (see Definition 5.3).

Proof. Indeed, we have the sequence of equivalences:

ψ is a GCI associated with (η(ρ), A Ω ) ⇐⇒ ⇐⇒ f ∈ X ⊥ Ω =⇒ S n-1 L η(ρ)AΩ f ψ dω = 0 ⇐⇒ f ∈ X ⊥ ρ,Ω =⇒ S n-1 L η(ρ)AΩ f ψ dω = 0 ⇐⇒ ψ ∈ ker D ρG η(ρ)A Ω C * ,
where the first equivalence comes from (89) and ( 92), the second one from (111) and the third one, from (108). This ends the proof.

The key property which led to Theorem 5.11 in the case where f 0 is an equilibrium is (109). It gave rise to the structure

D ρG C * g = ϕ(ω) -αρ (ρQ) Gϕ : ω ⊗ ω, (120) 
with ϕ = L * g which led to the definition of the space Xρ,Ω . Now, if (η, Σ) is not a moment of an equilibrium, we have αρQ ρG S = S as the equality is a characterization of the moments of equilibria. Then, by inspection of (104), we see that the structure (120) is lost and the proof cannot be continued. These considerations strongly support (103). Indeed, we have the following counter-example in dimension n = 3 whose proof can be found in Appendix C.3.

Proposition 12. Let n = 3. Let f = ρG ηAΩ where η = η(ρ) (in other words, in spite of being a Gibbs distribution, f is not an equilibrium). Then we have (103)

(with Σ = A Ω ).
So, the space of GCI C ηΣ is related to important structural properties of C such as Prop. 99. By contrast, the space ker (D f C * ) does not play any particular role. The exception is when the Gibbs distribution ρG ηΣ is an equilibrium, in which case the two spaces are equal. This shows that GCI are a more relevant and general concept than the space ker (D f C * ) which appears in the Hilbert method.

6. Equation for the Q-tensor axis direction Ω.

6.1. Abstract derivation. In this section, we provide an abstract set of equations allowing us to determine the evolution equation for the Q-tensor axis direction Ω. We recall the expression (37) of T u (f ). We have the:

Proposition 13. Let f = lim ε→0 f ε with f (x, ω, t) = ρ(x, t) G η(ρ(x,t))A Ω(x,t) (ω) for all (x, t) ∈ B
where B is given by (59) and the function ρ → η(ρ) is defined in Prop. 3. Then, we have

S n-1 T u ρ(x, t) G η(ρ(x,t))A Ω(x,t) ψ η(ρ(x,t))A Ω(x,t) (ω) dω = 0, (121) 
where ψ η(ρ(x,t))A Ω(x,t) is the vector GCI associated with (η(ρ(x, t)), A Ω(x,t) ) (see Section 5.2).

Remark 11. We note that (121) is unchanged if Ω(x, t), and consequently ψ A Ω(x,t) , are changed in their opposites.

Proof. Let (x, t) ∈ B be given. For simplicity, in the proof, we omit the variables (x, t). We also denote

ρ ε := ρ f ε , Q ε := Q f ε , λ ε := λ f ε , etc. and ρ := ρ f , Q := Q f , λ := λ f , etc. By the fact that f ε → f , we get ρ ε Q ε → ρQ = ρ n n-1 λ A Ω , with n n-1 λ = η(ρ) αρ . Since ρ = 0 (because (x, t) ∈ B) and λ is a simple eigenvalue of Q, then, for ε small enough, ρ ε = 0, Q ε → Q and λ ε is a simple eigenvalue of Q ε such that λ ε → λ (because the subset of S 0 n of matrices which have simple leading eigenvalue is an open set). Thus, Σ ε = n-1 n λ ε Q ε is defined, belongs to U 0 n and is such that Σ ε → Σ = A Ω as ε → 0.
By the smoothness of Σ ε with respect to ε, we can find a smooth lifting of Ω Σ ε ∈ P n-1 into Ω ε ∈ S n-1 . Thus, we can form the GCI ψ η ε Σ ε using this smooth determination of Ω Σ ε (remember that we need to fix the sign of Ω Σ ε because the sign of ψ η ε Σ ε depends on it). This makes

ψ η ε Σ ε a smooth function of ε (because ψ ηS is a smooth function of (η, S) ∈ [0, ∞) × U n 0 ) such that ψ η ε Σ ε → ψ ηAΩ when ε → 0.
Thanks to (99), we have

S n-1 C(f ε ) ψ η ε Σ ε dω = 0.
So, multiplying (40) by ψ η ε Σ ε , integrating the resulting expression with respect to ω leads to

S n-1 T u ε (f ε ) ψ η ε Σ ε dω = 0. Now letting ε → 0, with u ε → u, f ε → ρ G η(ρ)AΩ , η ε → η(ρ), Σ ε → A Ω , ψ η ε Σ ε → ψ η(ρ)AΩ
, we get (121). This ends the proof.

6.2. Derivation of the equation for Ω. In this section, we derive the explicit equation for Ω by inserting expression (96) into the abstract formulation (121) and compute the integral explicitly. This is summarized in the following

Proposition 14. Let f = lim ε→0 f ε = ρ(x, t)G η(ρ(x,t))A Ω(x,t) as given in Corol- lary 1. Then, Ω satisfies (62) 
Proof of Proposition 14. For simplicity, we omit the dependencies of η and λ on ρ, of h η on (ω • Ω), of G ηAΩ on ω and of ρ and Ω on (x, t). Inserting (96) into (121), we get:

V Ω := S n-1 T u (ρ G ηAΩ ) h η ω ⊥ dω = 0. (122) 
We define

D t = ∂ t + u • ∇ x , Af = ∇ ω • f (ΛP ω ⊥ E -W )ω , Bf = 2α β ∇ ω • f P ω ⊥ ∆ x (ρ f Q f ) ω , so that T u (f ) = D t f + Af + Bf and V Ω = S n-1 (D t + A + B)(ρ G ηAΩ ) h η ω ⊥ dω = V (1) 
Ω + V

Ω + V

Ω .

Using (86) which gives D t ρ = 0 and D t η = η D t ρ = 0, where η is the derivative of η with respect to ρ, we get

D t (ρ G ηAΩ ) = ρ G ηAΩ 2η (ω • Ω) (P Ω ⊥ ω) • D t Ω,
where we have used that the denominator of (45) does not depend on Ω. Then, we apply (141) and the fact that D t Ω is orthogonal to Ω and get

V (1) Ω = γ1 D t Ω, (124) with γ1 
= 2 η ρ n -1 S n-1 G ηAΩ h η (ω • Ω) (1 -(ω • Ω) 2 ) dω. (125) 
Next, we have

A(ρ G ηAΩ ) = ∇ ω • ρ G ηAΩ (ΛP ω ⊥ E -W )ω = ρ G ηAΩ ∇ ω (log G ηAΩ ) • (ΛP ω ⊥ E -W )ω + ∇ ω • (ΛP ω ⊥ E -W )ω .
First, we compute ∇ ω • (ΛP ω ⊥ E -W )ω . Let X = ΛE -W for simplicity and let (e i ) i=1,...,n be the canonical basis of R n . Define X i = n j=1 X ij e j . Then, we can write

X = n i=1 e i ⊗ X i . Then, P ω ⊥ X ω = n i=1 (X i • ω) P ω ⊥ e i . We note that ∇ ω • P ω ⊥ e i = ∆ ω (ω • e i ) = -(n -1) (ω • e i ) because (ω • e i )
is a spherical harmonic of degree 1 hence an eigenfunction of the spherical laplacian associated to the eigenvalue -(n -1). Thus,

∇ ω • (P ω ⊥ X ω) = n i=1 P ω ⊥ X i • P ω ⊥ e i -(n -1) (X i • ω) (ω • e i ) = n i, j=1 X ij (P ω ⊥ e i • P ω ⊥ e j -(n -1) ω i ω j )) = n i, j=1 X ij (δ ij -n ω i ω j ) = TrX -nX : (ω ⊗ ω),
where δ ij is the Kronecker symbol and TrX is the trace of X. Now, with X = ΛE -W , owing to the facts that TrX = Λ∇ x • u = 0 and remembering that E is symmetric and W , antisymmetric, we get

A(ρ G ηAΩ ) = ρ G ηAΩ 2η (ω • Ω) P ω ⊥ Ω • (ΛP ω ⊥ E -W )ω -nΛ E : (ω ⊗ ω) = ρ G ηAΩ Λ 2 η (ω • Ω) P ω ⊥ Ω ⊗ ω -n ω ⊗ ω : E -2 η (ω • Ω) (P ω ⊥ Ω ⊗ ω) : W .
Using the decomposition (142), we get

P ω ⊥ Ω = (1 -(ω • Ω) 2 ) Ω -(ω • Ω) ω ⊥ , and so, A(ρ G ηAΩ ) = ρ G ηAΩ 2η(ω • Ω) Λ 1 - n η -2(ω • Ω) 2 (ω ⊥ ⊗ Ω) : E + (ω ⊥ ⊗ Ω) : W + even tensor powers of ω ⊥ .
Now, multiplying by h ω ⊥ and integrating over ω, the resulting odd tensor powers of ω ⊥ vanish in the integration thanks to (140). Thanks to (141), we find that

V (2) Ω = γ1 W Ω + γ3 Λ P Ω ⊥ EΩ, (126) 
with γ3 = 1 - n η γ1 -2 γ2 , (127) γ2 
= 2 η ρ n -1 S n-1 G ηAΩ h η (ω • Ω) 3 (1 -(ω • Ω) 2 ) dω. (128) 
The computation of V

(3) Ω

is the same as that of V

(2) Ω

with ΛE -W replaced by 2αβ ∆ x (ρQ G ηA Ω ). Since ∆ x (ρQ G ηA Ω ) is a symmetric trace-free tensor, we get from (126):

V (3) Ω = 2αβγ 3 P Ω ⊥ ∆ x (ρQ G ηA Ω )Ω . With (50), we get α∆ x (ρQ G ηA Ω ) = ∆ x (ηA Ω ) = ∆ x η A Ω + 4 ∇ x η • ∇ x Ω ⊗ Ω s +2η (∇ x Ω) T (∇ x Ω) + (∆ x Ω) ⊗ Ω s , (129) 
where the index s means the symmetric part of a tensor (i.e. S s = 1 2 (S + S T ) for an n × n matrix S). Then, owing to the fact that any derivative of Ω is orthogonal to Ω, we have

α∆ x (ρQ G ηA Ω )Ω = ∆ x η Ω + 2 ∇ x η • ∇ x Ω + η ∆ x Ω + (Ω • ∆ x Ω) Ω ,
and with (82),

αP Ω ⊥ ∆ x (ρQ G ηA Ω )Ω = 2 ∇ x η • ∇ x Ω + η P Ω ⊥ ∆ x Ω = P Ω ⊥ ∆ x (ηΩ).
It follows that V

Ω = 2βγ 3 P Ω ⊥ ∆ x (ηΩ). ( 130) Inserting ( 124), ( 126), (130), into (123), we get

V Ω = γ1 D t Ω + W Ω + γ3 P Ω ⊥ ΛEΩ + 2β ∆ x (ηΩ) .
So, with (122) and (127), we get [START_REF] Zhang | On the new multiscale rodlike model of polymeric fluids[END_REF] with

c = -Λ γ3 γ1 = Λ n η -1 + 2 γ2 γ1 . (131) 
Now, the following formulas are shown in the Appendix D.1:

γ3 = ρS 2 (η) 2η , γ1 = - ρ 2η(n -1) g d Ũ0 dθ e η cos 2 θ . (132) 
Thus, (131) leads to [START_REF] Otto | Continuity of velocity gradients in suspensions of rod-like molecules[END_REF] and ends the proof.

We now investigate under which conditions c Λ is non-negative: Proof of Proposition 4. From Prop. 2 (iii), we know that the (n -1)S 2 (η) > 0. Now, Prop. 9 and Eqs. ( 98) and [START_REF] Mellet | Fractional diffusion limit for collisional kinetic equations: a moments method[END_REF] show that both g(θ) and d Ũ0 dθ (θ) have the sign of cos θ. This implies that g(θ) d Ũ0 dθ (θ) is positive on [0, π] and consequently, that the denominator of ( 54) is positive. Altogether, this shows that c Λ > 0 and ends the proof.

Conclusion.

We have investigated the passage from the Doi-Navier-Stokes model of liquid crystals to the Ericksen-Leslie system when the Deborah number goes to zero. By contrast to previous literature, we have developed a moment method, exploiting the conservations satisfied by the collision operator. These conservations are of a non-classical type and have required the development of a new concept, the generalized collision invariants. Their link to geometrical and analytical structures of the collision operator has been discussed and their use for the derivation of the limit model has been detailed. This derivation has been achieved in arbitrary dimensions and assuming a full spatio-temporal dependence of the polymer molecule density. The latter generates additional terms in the Ericksen stresses that have not been previously described in the literature.

This works opens many research directions. The first one is the development of a rigorous convergence result using this moment method. This is a quite challenging task but one may hope that, if successful, it would lead to a result in a weaker setting than the currently available results. The energetic properties of the limit model must be investigated. A proof that the extra terms appearing in the Oseen-Franck energy due to the spatio-temporal dependence of the polymer molecule density lead to a positive energy is missing at the present time. This would be a necessary step for a well-posedness theory of the resulting Ericksen-Leslie system. In spite of using Q-tensors as auxiliary quantities, the Doi model and its limit, the Ericksen-Leslie system are, in essence, vector models, i.e. models for polymer orientations only. Currently, attempts are being made to build truly tensorial models in association with Landau-de Gennes energies i.e. energies depending on the local average Q-tensor and its gradients. This is clearly an interesting playground to test the applicability of the GCI concept to more general situations. [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF]. We have, with [START_REF] Constantin | Note on the number of steady states for a two-dimensional Smoluchowski equation[END_REF]:

dA R dt = δA R δf (f ), ∂f ∂t = R n ×S n-1 µ R f ∂f ∂t dx dω = R n ×S n-1 µ R f -∇ x • (u f ) -∇ ω • f (ΛP ω ⊥ E -W )ω + D k B T ∇ ω • f ∇ ω µ R f dx dω =: I + II + III
Using Stokes's formula, assuming that all terms vanish at infinity and with [START_REF] Degond | Phase transitions and macroscopic limits in a BGK model of body-attitude coordination[END_REF], we find I = -

R n F R f • u dx, III = - D k B T R n ×S n-1 f |∇ ω µ R f | 2 dx dω.
Then, using Stokes's formula, the fact that ∇ ω µ R f •ω = 0 and straightforward tensor algebra, we have

II = R n ×S n-1 f (ΛE -W )ω • ∇ ω µ R f dx dω = R n S f ω ⊗ ∇ ω µ R f dω : (ΛE + W ) dx = R n S n-1 f Λ + 1 2 ω ⊗ ∇ ω µ R f + Λ -1 2 ∇ ω µ R f ⊗ ω dω : ∇ x u dx = R n S n-1 f Λ ω ⊗ ∇ ω µ R f s -ω ⊗ ∇ ω µ R f a dω : ∇ x u dx = R n σ R f : ∇ x u dx.
This leads to [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF].

A.2. Proofs of Formulas [START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF] and [START_REF] Degond | Coupled Self-Organized Hydrodynamics and Stokes models for suspensions of active particles[END_REF] for the extra-stresses. We begin with a Lemma:

Lemma A.1. Let f and ϕ: S n-1 → R be two smooth functions. Then, we have

S n-1 ∇ ω f ϕ dω = - S n-1 f ∇ ω ϕ dω + (n -1) S n-1 f ϕ ω dω. (133) 
Proof: Let B ∈ R n be a fixed vector and denote by X the left-hand side of (133). Then, using Stokes formula, we have

X • B = S n-1 ∇ ω f • B ϕ dω = S n-1 ∇ ω f • P ω ⊥ B ϕ dω = - S n-1 f ∇ ω • (P ω ⊥ B ϕ) dω = - S n-1 f ∇ ω • (P ω ⊥ B) ϕ dω - S n-1 f P ω ⊥ B • ∇ ω ϕ dω.
We have

∇ ω • (P ω ⊥ B) = ∇ ω • ∇ ω (ω • B) = ∆ ω (ω • B) = -(n -1) ω • B,
where the last identity follows from the fact that the function ω → ω•B is a spherical harmonic of degree 1. Thus,

X • B = (n -1) S n-1 f ϕ ω • B dω - S n-1 f ∇ ω ϕ • B dω,
which leads to (133).

Proof of (21): Inserting (13) into the first equation of ( 17), we have σ R f = Λσ s + σa with σ =

S n-1 f (ω ⊗ ∇ ω µ R f ) dω = k B T S n-1 ω ⊗ ∇ ω f dω + S n-1 f (ω ⊗ ∇ ω U R f ) dω. (134) 
Using (133) with ϕ = ω i , we get

S n-1 ω i ∇ ω f dω = - S n-1 ∇ ω ω i f dω + (n -1) S n-1 f ω ω i dω = - S n-1 P ω ⊥ e i f dω + (n -1) S n-1 f ω (ω • e i ) dω = - S n-1 e i -(e i • ω)ω f dω + (n -1) S n-1 f (e i • ω)ω dω = n S n-1 f ω (ω • e i ) - 1 n e i dω,
where e i denotes the i-th vector of the canonical basis of R n . In view of [START_REF] Cercinani | The Mathematical Theory of Dilute Gases[END_REF], it follows that

S n-1 ω ⊗ ∇ ω f dω = nρ f Q f . Inserting this in (134) leads to σ = nk B T ρ f Q f + S n-1 f (ω ⊗ ∇ ω U R f ) dω,
which, in turn, leads to [START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF].

Proof of (22): We multiply Doi's equation ( 15) by ω ⊗ ω -1 n Id and integrate it with respect to ω. This leads to 0 = S n-1

(∂ t f + ∇ x • (uf )) ω ⊗ ω - 1 n Id dω + S n-1 ∇ ω • f (ΛP ω ⊥ E -W )ω ω ⊗ ω - 1 n Id dω - D k B T S n-1 ∇ ω • (f ∇ ω µ R f ) ω ⊗ ω - 1 n Id dω =: I + II - D k B T III. (135) 
Using [START_REF] Degond | Quaternions in collective dynamics[END_REF], for any smooth function g(x, t), we have ∂ t g + ∇ x • (ug) = D t g, where D t is given by [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. It follows that I = D t (ρ f Q f ) and, using (86), that

I = ρ f D t Q f . (136) 
Using Stokes theorem, we get:

III ij = S n-1 ∇ ω • (f ∇ ω µ R f ) ω i ω j dω = - S n-1 f ∇ ω µ R f • ∇ ω (ω i ω j ) dω = - S n-1 f ∇ ω µ R f • (ω j P ω ⊥ e i + ω i P ω ⊥ e j ) dω = - S n-1 f (ω j ∇ ω µ R f • e i + ω i ∇ ω µ R f • e j ) dω = - 2 Λ (σ R f ) s ij , (137) 
where again, e i denotes the i-th vector of the canonical basis of R n . Now, similarly to III, we have,

II ij = S n-1 ∇ ω • f (ΛP ω ⊥ E -W )ω ω i ω j dω = - S n-1 f (ΛP ω ⊥ E -W )ω • (ω i e j + ω j e i ) dω = - S n-1 f (ΛE -W )(ω ⊗ ω) + (ω ⊗ ω)(ΛE + W ) -2Λ ω ⊗4 : E ij dω, which leads to II = ρ f -Λ(EQ f + Q f E) + W Q f -Q f W - 2Λ n E + 2Λ T f : E . (138) 
Finally, using [START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF], the antisymmetric part of σ R f is given by:

(σ R f ) a = 1 2 S n-1 (ω ⊗ ∇ ω U R f -∇ ω U R f ⊗ ω) f dω. (139) 
Now, inserting (136), (137), ( 138) and ( 139) into (135) leads to [START_REF] Degond | Coupled Self-Organized Hydrodynamics and Stokes models for suspensions of active particles[END_REF].

Finally, when η → ∞, the measure G ηAΩ dω concentrates onto the sum of Dirac deltas 1 2 (δ Ω + δ -Ω ). Since P 2 (±1) = 1, it follows that S 2 → 1 when η → ∞. This ends the proof. B.2. Proof of Eq. (66) for the Leslie stresses. We have f ε → f as ε → 0 with f given by [START_REF] Wang | Well-posedness of the Ericksen-Leslie system[END_REF]. We will abbreviate G ηAΩ into G for simplicity. We define

σ = lim ε→0 ζ ρ f ε T f ε : E ε + σ 1 f ε = ζ ρ T G : E + σ 1 ρG .
From [START_REF]Handbook of Mathematical Analysis in Mechanics of Viscous Fluids[END_REF], we get

σ = ρ Λ 2 2 (EQ G + Q G E) + Λ 2 (Q G W -W Q G ) + Λ 2 n E +(ζ -Λ 2 )T G : E - Λ 2 D t Q G + αβ ∆ x (ρQ G )Q G -Q G ∆ x (ρQ G ) . (144)
Now, for a generic distribution function f , we introduce the fourth-order tensorial order parameter given by

Q f = T f - 6 n + 4 ( ω ⊗ ω f ⊗ Id) s + 3 (n + 2)(n + 4) (Id ⊗ Id) s . (145) 
Here, ( ω ⊗ ω f ⊗ Id) s and (Id ⊗ Id) s denote the symmetrizations of the fourth-order tensors ω ⊗ ω f ⊗ Id and Id ⊗ Id respectively. Specifically,

6 ( ω ⊗ ω f ⊗ Id ⊗ Id) s ijk = ω i ω j f δ k + ω i ω k f δ j + ω i ω f δ jk + ω j ω k f δ i + ω j ω f δ ik + ω k ω f δ ij , 3 (Id ⊗ Id) s ijk = δ ij δ k + δ ik δ j + δ i δ jk ,
where δ denotes the Kronecker symbol. Eq. (145) corresponds to the decomposition of T f into irreducible tensors, i.e. invariant tensors under the action of the orthogonal group. The coefficients of the decomposition can be obtained by the requirement that the contraction of Q f with respect to any two indices is zero. Owing to the fact that ω ⊗ ω

f = Q f + 1 n Id, we get Q f = T f - 6 n + 4 (Q f ⊗ Id) s - 3 n(n + 2) (Id ⊗ Id) s , (146) 
where the definition of (Q f ⊗ Id) s is similar to that of ( ω ⊗ ω f ⊗ Id ⊗ Id) s . Then, using (146), we have

T f : E = Q f : E + 2 n + 4 (EQ f + Q f E) + 2 n(n + 2) E + 1 n + 4 (Q f : E)Id.
Inserting this identity (with f = G) into (144), we get

σ = ρ Λ 2 2 + 2(ζ -Λ 2 ) n + 4 (EQ G + Q G E) + Λ 2 (Q G W -W Q G ) + 1 n Λ 2 + 2(ζ -Λ 2 ) n + 2 E + (ζ -Λ 2 ) Q G : E + ζ -Λ 2 n + 4 (Q G : E) Id - Λ 2 D t Q G + αβ ∆ x (ρQ G )Q G -Q G ∆ x (ρQ G ) . (147) 
Now, we state two lemmas whose proofs are deferred to the end of the present proof Lemma B.2. We have

Q G ηA Ω = S 4 (η) A Ω , (148) 
where S 4 (η) is given by (46) and where

A Ω = Ω ⊗4 - 6 n + 4 (Ω ⊗ Ω ⊗ Id) s + 3 (n + 2)(n + 4) (Id ⊗ Id) s . (149) 
Lemma B.3. We have

ραβ ∆ x (ρQ G )Q G -Q G ∆ x (ρQ G ) = ρ ΛS 2 (η) 2 1 c (N ⊗ Ω -Ω ⊗ N ) -E(Ω ⊗ Ω) -(Ω ⊗ Ω)E , (150) 
with N given by (68).

From ( 148) and ( 149), it follows that

Q G : E = S 4 E : (Ω ⊗ Ω) Ω ⊗ Ω - 2 n + 4 (Ω ⊗ Ω)E + E(Ω ⊗ Ω) - 1 n + 4 E : (Ω ⊗ Ω) Id + 2 (n + 2)(n + 4) E , (151) 
where the dependence of S 4 on η is omitted for simplicity. Likewise, with (48), we get

EQ G + Q G E = S 2 (Ω ⊗ Ω)E + E(Ω ⊗ Ω) - 2 n E , (152) 
Q G W -W Q G = S 2 (Ω ⊗ Ω)W -W (Ω ⊗ Ω) , (153) 
D t Q G = S 2 D t Ω ⊗ Ω + Ω ⊗ D t Ω) . (154) 
In (154), we have used that D t S 2 (η(ρ)) = dS2 dη (η(ρ)) dη dρ (ρ) D t ρ = 0 thanks to (86). Inserting Eqs. (150) to (154) into (147), we get σ = σ L + ∇ x ϕ where ϕ is a scalar function which can be absorbed in the pressure, and σ L is given by (66) with the constants, α k , k = 1, . . . , 6 given by ( 55)- [START_REF] Wang | Modeling and computation of liquid crystals[END_REF]. This ends the proof.

Proof of Lemma B.2. Using (146), ( 48), ( 46) and ( 47), we get that

Q G ηA Ω = T G ηA Ω - 6S 2 n + 4 (Ω ⊗ Ω ⊗ Id) s + 6S 2 n(n + 4) - 3 n(n + 2) (Id ⊗ Id) s = T G ηA Ω - 6 n X 2 -1 (n -1)(n + 4) (Ω ⊗ Ω ⊗ Id) s + 6 n X 2 -1 (n -1)n(n + 4) - 3 n(n + 2) (Id ⊗ Id) s , (155) 
where X = ω • Ω and where we drop the index G ηAΩ on the brackets • . Now, using the decomposition (142), we get

T G ηA Ω = X 4 Ω ⊗4 + X 2 ω ⊥ ⊗ ω ⊥ ⊗ (Ω ⊗ Ω) s + ω ⊗4 ⊥ .
We use (141) to compute X 2 ω ⊥ ⊗ ω ⊥ . To evaluate ω ⊗4 ⊥ we recall the last part of Lemma 4.1 of [START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF] without proof: with the notations of Lemma B.1, we have

S n-1 k(ω • Ω) ω ⊗4 ⊥ dω = S n-1 3 k(ω • Ω) (1 -(ω • Ω) 2 ) 2 (n -1)(n + 1) dω P Ω ⊥ ⊗ P Ω ⊥ s .
This leads to

T G ηA Ω = X 4 Ω ⊗4 + 6 X 2 (1 -X 2 ) n -1 Ω⊗Ω⊗P Ω ⊥ s + 3 (1 -X 2 ) 2 (n -1)(n + 1) P Ω ⊥ ⊗P Ω ⊥ s .
Using that P Ω ⊥ = Id -Ω ⊗ Ω, we obtain

T G ηA Ω = X 4 - 6 X 2 (1 -X 2 ) n -1 + 3 (1 -X 2 ) 2 (n -1)(n + 1) Ω ⊗4 + 6 X 2 (1 -X 2 ) n -1 - 6 (1 -X 2 ) 2 (n -1)(n + 1) Ω ⊗ Ω ⊗ Id s + 3 (1 -X 2 ) 2 (n -1)(n + 1) Id ⊗ Id s . (156) 
Now, inserting (156) into (155), we get (148).

Proof of Lemma B.3. Thanks to ( 50) and (129), we have

α 2 ρ∆ x (ρQ G )Q G = η ∆ x (ηA Ω )A Ω = η ∆ x η A 2 Ω + 2(n -1) n (∇ x η • ∇ x )Ω ⊗ Ω - 2 n Ω ⊗ (∇ x η • ∇ x )Ω - 2η n ∇ x Ω T ∇ x Ω + η(n -1) n ∆ x Ω ⊗ Ω - η n Ω ⊗ ∆ x Ω + η(Ω • ∆ x Ω) Ω ⊗ Ω . (157) 
Let M be the tensor given by the left-hand side of (150). Using ( 62) and ( 49), it follows from (157) that

M = βη α 2 (∇ x η • ∇ x )Ω ⊗ Ω -Ω ⊗ (∇ x η • ∇ x )Ω + η ∆ x Ω ⊗ Ω -Ω ⊗ ∆ x Ω = β α ∆ x (ηΩ) ⊗ (ηΩ) -(ηΩ) ⊗ ∆ x (ηΩ) = Λ 2α N c -P Ω ⊥ EΩ ⊗ (ηΩ) -(ηΩ) ⊗ N c -P Ω ⊥ EΩ = ρΛS 2 2 N c -P Ω ⊥ EΩ ⊗ Ω -Ω ⊗ N c -P Ω ⊥ EΩ . (158) 
Then, we note that there exists a real number z such that

(P Ω ⊥ EΩ) ⊗ Ω = (EΩ) ⊗ Ω + zΩ ⊗ Ω = E(Ω ⊗ Ω) + zΩ ⊗ Ω,
and that the same real number z is involved in the expression of Ω ⊗ (P Ω ⊥ EΩ), so that we get

(P Ω ⊥ EΩ) ⊗ Ω -Ω ⊗ (P Ω ⊥ EΩ) = E(Ω ⊗ Ω) -(Ω ⊗ Ω)E.
Inserting this expression into (158), we get (150) which ends the proof of the Lemma.

B.3. Proof of Eq. (67) for the Ericksen stresses. We now compute lim ε→0 F 1

f ε = F 1 ρG ηA Ω
. Thanks to (33), ( 30) and (51), we have

F 1 ρG ηA Ω = -ρ ∇ x µ 1 ρG ηA Ω G ηA Ω = βρ ∇ x ∆ x (η(ω • Ω) 2 G ηA Ω - 1 n ∇ x ∆ x η + (n -1)αρ . ( 159 
)
We compute, using the repeated index summation convention:

∂ xi ∆ x η(ω • Ω) 2 = 2(ω • Ω) ∂ xi Ω k ω ⊥k ∂ 2 xj xj η + (ω • Ω) 2 ∂ 3 xixj xj η + 4 ∂ xi Ω k ω ⊥k ∂ xj Ω ω ⊥ ∂ xj η + 4 (ω • Ω) ∂ 2 xixj Ω k ω k ∂ xj η + 4 (ω • Ω) ∂ xj Ω k ω ⊥k ∂ 2 xixj η + 2 ∂ xj Ω k ω ⊥k ∂ xj Ω ω ⊥ ∂ xi η + 4 ∂ 2 xixj Ω k ω k ∂ xj Ω ω ⊥ η + 2(ω • Ω) ∂ 2 xj xj Ω k ω k ∂ xi η + 2 ∂ 2 xj xj Ω k ω k ∂ xi Ω ω ⊥ η + 2(ω • Ω) ∂ 3 xixj xj Ω k ω k η. ( 160 
) Thanks to [START_REF] Lin | Global small solutions to a complex fluid model in three dimensional[END_REF] and ( 47), we have the following identities

(ω • Ω) 2 G ηA Ω = (n -1)S 2 + 1 n , 1 -(ω • Ω) 2 G ηA Ω = n -1 n (1 -S 2 ).
Furthermore, the decomposition (142) and the fact that |Ω| 2 = 1, lead to the following identities

∂ xi Ω k Ω k = 0, ∂ 2 xixj Ω k Ω k = -∂ xi Ω k ∂ xj Ω k , (P ω ⊥ ) k ∂ xj Ω = ∂ xj Ω k , ∂ 2 xixj Ω k ∂ xj Ω k = 1 2 ∂ xi (∂ xj Ω k ∂ xj Ω k ) ∂ 3 xixj xj Ω k Ω k = -∂ xj (∂ xi Ω k ∂ xj Ω k ) - 1 2 ∂ xi (∂ xj Ω k ∂ xj Ω k ), ∂ 2 xj xj Ω k ∂ xi Ω k = ∂ xj (∂ xi Ω k ∂ xj Ω k ) - 1 2 ∂ xi (∂ xj Ω k ∂ xj Ω k ).
Thus, taking the bracket • G ηA Ω of (160), noting that all odd powers of ω • Ω or of ω ⊥ vanish by antisymmetry and using (141) and the previous identities, we finally get

∇ x ∆ x η(ω • Ω) 2 G ηA Ω = (n -1)S 2 + 1 n ∇ x ∆ x η -2S 2 2∇ x Ω ∇ x Ω T + |∇ x Ω| 2 Id ∇ x η -S 2 ∇ x • 2∇ x Ω ∇ x Ω T + |∇ x Ω| 2 Id η.
Inserting this equation into (159), using [START_REF] Luo | The structure of equilibrium solutions of the one-dimensional Doi equation[END_REF] and noting that for a n × n tensor S and a scalar ϕ, we have

∇ x • (Sϕ) = (∇ x • S)ϕ + S T ∇ x ϕ, we get F 1 ρG ηA Ω = - β α ∇ x • η 2 2∇ x Ω ∇ x Ω T + |∇ x Ω| 2 Id +β n -1 nα η∇ x ∆ x η - (n -1)α n ρ∇ x ∆ x ρ . (161) 
The first of the following identities follows again from the fact that |Ω| 2 = 1 and the second one is just straightforward algebra (which will also be applied with ρ replacing η):

η 2 ∇ x Ω ∇ x Ω T = ∇ x (ηΩ) ∇ x (ηΩ) T -∇ x η ⊗ ∇ x η, η∇ x ∆ x η = -∇ x • (∇ x η ⊗ ∇ x η) + ∇ x η∆ x η + 1 2 |∇ x η| 2 .
Inserting these identities into (161), we get F 1

ρG ηA Ω = ∇ x • σ E + ∇ x ϕ,
where σ E is given by (67) and ϕ is a scalar function (different from the one appearing at the end of Section B.2) which can be absorbed in the pressure p. This ends the proof. B.4. Proof of the energy identity (74). Taking the dot product of (63) with u, integrating with respect to x on R n and using Stokes formula assuming that the spatial boundary terms vanish at infinity, we get

d dt R n |u| 2 2 dx + 1 Re R n |∇ x u| 2 dx + 1 ReEr R n (σ L + σ E ) : ∇ x u dx = 0. ( 162 
)
We first compute the contribution of the Leslie stresses. Using the symmetry of E and Ω ⊗ Ω, we first have

α 1 E : (Ω ⊗ Ω) Ω ⊗ Ω + α 4 E : ∇ x u = α 1 E : (Ω ⊗ Ω) 2 + α 4 |E| 2 . (163) 
Then, we remark that

(Ω ⊗ Ω)E : ∇ x u = |EΩ| 2 -(EΩ) • (W Ω), E(Ω ⊗ Ω) : ∇ x u = |EΩ| 2 + (EΩ) • (W Ω),
which, with the second equation (69), gives

α 5 (Ω ⊗ Ω)E + α 6 E(Ω ⊗ Ω) : ∇ x u = (α 5 + α 6 )|EΩ| 2 + γ 2 (EΩ) • (W Ω). ( 164 
)
Also, with (70), we have

N = - γ 2 γ 1 P Ω ⊥ EΩ + 1 γ 1 P Ω ⊥ H := N 1 + N 2 .
Remarking that (Ω ⊗ Ω) : W = 0 by the antisymmetry of W , we get

(Ω ⊗ N 1 ) : ∇ x u = - γ 2 γ 1 Ω ⊗ EΩ -(Ω • EΩ)Ω : (E + W ) = - γ 2 γ 1 |EΩ| 2 -E : (Ω ⊗ Ω) 2 -(EΩ) • (W Ω) ,
and similarly

(N 1 ⊗ Ω) : ∇ x u = - γ 2 γ 1 |EΩ| 2 -E : (Ω ⊗ Ω) 2 + (EΩ) • (W Ω) ,
which, using (69), gives

α 2 Ω⊗N 1 +α 3 N 1 ⊗Ω : ∇ x u = - γ 2 2 γ 1 |EΩ| 2 -E : (Ω⊗Ω) 2 -γ 2 (EΩ)•(W Ω). (165) 
Then, using (69), we compute

α 2 Ω ⊗ N 2 + α 3 N 2 ⊗ Ω : ∇ x u = 1 γ 1 α 2 Ω ⊗ P Ω ⊥ H + α 3 P Ω ⊥ H ⊗ Ω : (E + W ) = 1 γ 1 (α 2 + α 3 )(P Ω ⊥ H ⊗ Ω) : E + (α 3 -α 2 )(P Ω ⊥ H ⊗ Ω) : W = P Ω ⊥ H • γ 2 γ 1 EΩ + W Ω = P Ω ⊥ H • P Ω ⊥ γ 2 γ 1 EΩ + W Ω = 1 γ 1 |P Ω ⊥ H| 2 -H • ∂ t Ω + u • ∇ x Ω), (166) 
where, for the last equality, we have used (70) and (68) and the fact that ∂ t Ω+u•∇ x Ω is normal to Ω. Then, collecting (163) to (166) and using (66) leads to

R n σ L : ∇ x u dx = R n ρ α 1 + γ 2 2 γ 1 E : (Ω ⊗ Ω) 2 + α 4 |E| 2 + α 5 + α 6 - γ 2 2 γ 1 |EΩ| 2 + 1 γ 1 |P Ω ⊥ H| 2 -H • ∂ t Ω + u • ∇ x Ω) dx. ( 167 
)
Expression (67) for the Ericksen stresses involves three terms which we will denote by σ Ω E , σ η E , σ ρ E in the order in which they appear in this expression. We compute the contribution of each term successively. We have, using Stokes's formula, (73), (64) and assuming that the boundary terms vanish at infinity:

R n σ Ω E : ∇ x u dx = - 2β α R n ∇ x (ηΩ)∇ x (ηΩ) T : ∇ x u dx = 2β α R n ∆ x (ηΩ) • (u • ∇ x )(ηΩ) + ∇ x (ηΩ) (u • ∇ x )(∇ x (ηΩ)) T dx = 2β α R n η∆ x (ηΩ) • (u • ∇ x )Ω + ∆ x (ηΩ) • Ω (u • ∇ x )η + ∇ x • u |∇ x (ηΩ)| 2 2 dx = R n ρH • (u • ∇ x )Ω dx + 2β α R n ∆ x (ηΩ) • Ω (u • ∇ x )η dx. (168) 
A similar computation gives

R n σ η E : ∇ x u dx = - (n + 1)β nα R n ∆ x η (u • ∇ x )η dx, (169) 
R n σ ρ E : ∇ x u = - (n -1)αβ n R n ∆ x ρ (u • ∇ x )ρ dx. (170) 
Now, we consider the Oseen-Franck energy and successively compute the time derivative of each of the terms in (72). We first have, thanks to Stokes's formula:

dE Ω F dt = 2β α R n Tr ∇ x (ηΩ) ∂ t ∇ x (ηΩ) T dx = - 2β α R n ∆ x (ηΩ) • ∂ t (ηΩ) dx,
With (73), this leads to:

dE Ω F dt + R n ρH • ∂ t Ω dx + 2β α R n ∆ x (ηΩ) • Ω ∂ t η dx = 0. ( 171 
)
Straightforwardly, we get

dE η F dt - (n + 1)β nα R n ∆ x η • ∂ t η dx = 0, ( 172 
)
dE ρ F dt - (n -1)αβ n R n ∆ x ρ • ∂ t ρ dx = 0. (173) 
Now, adding (162), ( 171), ( 172), (173) together, using (167), ( 168), ( 169), (170) to eliminate σ L and σ E and finally using that D t ρ = 0 and D t η = dη dρ D t ρ = 0, we get Eq. (74).

Appendix C. Appendix to Section 5 on GCI.

C.1. Proof of Proposition 10. We first note that Eq. (97) which defines h η can be alternately written as (dropping the index η for simplicity):

(1r 2 ) h + 2η(1r 2 ) -(n + 1) rh -2ηr 2 + n -1 h = r.

(174)

With (98), we have

h(r) = - 1 2η 1 √ 1 -r 2 g(cos -1 r).
Then, 

h (r) = - 1 2η - g (cos -1 r) 1 -r 2 + r g(cos -1 r) (1 -r 2 ) 3/2 , h (r) = - 1 2η g (cos -1 r) (1 -r 2 )
                   a 1 = X 4 - 6 X 2 (1 -X 2 ) n -1 + 3 (1 -X 2 ) 2 (n -1)(n + 1) , a 2 = X 2 (1 -X 2 ) n -1 - (1 -X 2 ) 2 (n -1)(n + 1)
,

a 3 = (1 -X 2 ) 2 (n -1)(n + 1) , (176) (177) 
Thus, with the change to spherical coordinates used in the proof of Prop. 1, an integration by parts, and Eqs. ( 46), ( 47) and ( 49), we get

a 2 + a 3 = X 2 (1 -X 2 ) n -1 =
C n (n -1)Z η π 0 e η cos 2 θ cos 2 θ sin n θ dθ

=

C n 2(n -1)ηZ η π 0 e η cos 2 θ (n cos 2 θ -1) sin n-2 θ dθ

= 1 2η nX 2 -1 n -1 = S 2 (η) 2η = 1 2αρ , (178) 
which shows the equality in (117). Now, we have, thanks to (178)

(n -1)(n + 1)a 2 = (n + 2) X 2 (1 -X 2 ) -1 -X 2 = n + 2 2η nX 2 -1 -1 -X 2 .
Thanks to [START_REF] Lin | Global small solutions to a complex fluid model in three dimensional[END_REF], [START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF], we have X The passage between the third and fourth lines uses the same integration by parts as in (178). The other equalities are just simple algebraic rearrangements. Comparing with ( 46), ( 47), we notice that the integral of the last line is equal to the quantity S (n+2) 2

which is the quantity S 2 in dimension n + 2 up to a prefactor (n + 1)Z η C -1 n . Thus, we have a 2 = S (n+2) 2

/(n -1). Now, we can apply Prop. 2 (iii) and conclude that 0 < a 2 < 1 n-1 . In particular, a 2 = 0, which finishes to show (117). Finally, it is a simple algebra, using (176) and (177) to show that

a 1 + (n + 4)a 2 = nX 2 -1 n -1 = S 2 (η),
showing (118). This ends the proof.

C.3. Proof of Prop. 12. Let f = ρG ηAΩ with η = η(ρ). This means that (49) is not satisfied. In other words,

η = αρS 2 (η) = η. (179) 
From [START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF], it follows that αρQ ρG ηA Ω = η A Ω . So, with (104), we get

D ρG ηA Ω C * g(ω) = L * η AΩ g(ω) -αρ (ρQ) G ηA Ω L * ηA Ω g : ω ⊗ ω. (180) 
Suppose that g is a GCI associated with (η, A Ω ). Then, by (90), there exists V ∈ {Ω} ⊥ such that

G ηAΩ L * ηAΩ g = (ω • Ω) (ω • V ) G ηAΩ . (181) 
By a similar computation (using the same notations) to what was done in the proof of Lemma 5.9, we get

αρ (ρQ) G ηA Ω L * ηA Ω g : ω ⊗ ω = 2αρ(a 2 + a 3 )(ω • Ω) (ω • V ) = η η (ω • Ω) (ω • V ). ( 182 
)
For the second equality, we have used that a 2 + a 3 = S2(η) η (see the proof of Lemma 5.10 in Appendix C.2) and (179). On the other hand, simple algebraic manipulations and the use of (181) show that

L * η AΩ g(ω) = L * ηAΩ g(ω) + 2(η -η)(ω • Ω)P ω ⊥ Ω • ∇ ω g = (ω • Ω) (ω • V ) + 2(η -η)(ω • Ω)P ω ⊥ Ω • ∇ ω g. (183) 
Inserting ( 182) and ( 183) into (180) gives

D ρG ηA Ω C * g(ω) = (η -η)(ω • Ω) - 1 η (ω • V ) + 2P ω ⊥ Ω • ∇ ω g .
Suppose now that g is also an element of ker (D ρG ηA Ω C * ). This implies that

2P ω ⊥ Ω • ∇ ω g = 1 2η (ω • V ). ( 184 
)
From now on, we restrict to dimension n = 3 and use the spherical coordinates (θ, ϕ) associated to the cartesian basis (V, W, Ω) with pole at Ω (defining W = Ω × V , using the symbol × for the cross product). In these coordinates, (184) is written in terms of g(θ, ϕ) = g(ω) according to

∂ θ g = 1 2η cos ϕ.
Thus,

g(θ, ϕ) = 1 2η θ cos ϕ + h(ϕ),
where h is an arbitrary function. The smoothness of g at ω = Ω requires h = 0. However, we see that g cannot be smooth at ω = -Ω (i.e. for θ = π) because the function θ cos ϕ does not tend to a constant when θ → π. However, by the elliptic regularity theorem, g ∈ C ∞ (S n-1 ). This is a contradiction. This means that the only possible solution is when V = 0, i.e. 

γ3 = ρ n -1 S n-1 G h (ω • Ω) 1 -(ω • Ω) 2 2η 1 -2(ω • Ω) 2 -2n dω = ρ n -1 C n Z η 1 0 (1 -r 2 ) n-1 2 e ηr 2 r 2η(1 -2r 2 ) -2n h dr, (185) 
Besides, multiplying Eq. (97) by r, integrating with respect to r ∈ [0, 1], and noting that, thanks to two successive integration by parts we have e ηr 2 (nr 2 -1) dr

= ρ 2η S n-1 G n(ω • Ω) 2 -1 n -1 dω = ρ P 2 (ω • Ω) G 2η = ρ S 2 (η) 2η ,
where, in the last line, we have reverted back to the variable ω and used [START_REF] Lin | Global small solutions to a complex fluid model in three dimensional[END_REF] and [START_REF] Liu | Global orientation dynamics for liquid crystalline polymers[END_REF]. This shows the first equation in Formula (132). We now consider γ1 . Changing to spherical coordinates in (125), we get π 0 e η cos 2 θ sin n-2 θ dθ, which leads to the second equation in Formula (132).

Figure 2 .

 2 Figure 2. Graphical representation of Condition (101). The ambient three-dimensional space in the figure represents the flat space S n 0 in which U n 0 is an imbedded manifold represented by a surface. N is a submanifold of U n 0 depicted as the curvy blue line. It endows U n 0 of a fiber bundle structure of base N . Let Σ ∈ U n 0 . It projects (in the bundle sense) onto A Ω ∈ N and so, belongs to the fiber F Ω represented by the curvy red line. The tangent space to N at A Ω , T AΩ N is represented by the magenta straight line. Its orthogonal (T AΩ N ) ⊥ is the gray-shaded plane on the figure. It contains F Ω by virtue of Lemma 5.6 (ii). Then, condition (101) means that the GCI associated with (η, Σ) are the functions ψ that cancel L ηΣ f for all f whose Q-tensor Q f (represented by the point Q on the figure) belongs to (T AΩ N ) ⊥ .
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2 = 1 n 0 e η cos 2 θ 0 e 0 e η cos 2 θ2ηn π 0 e η cos 2 θ

 210200202 (1 + (n -1)S 2 (η)). So,2n(n + 1)ηa 2 = n n -1 n(n + 2) + 2η X 2 -(n + 2 + 2η) = (n(n + 2) + 2η)S 2 (η) -2η.Thus, with the change to spherical coordinates used in the proof of Prop. 1, we have2n(n -1)(n + 1)ηZ η C -1 n a 2 = = π (n(n + 2) + 2η) (n cos 2 θ -1) -2(n -1)η sin n-2 θ dθ = π η cos 2 θ n(n + 2)(n cos 2 θ -1) + 2nη(cos 2 θ -1) sin n-2 θ dθ = π 2n(n + 2)η cos 2 θ sin 2 θ -2nη sin 2 θ sin n-2 θ dθ = (n + 2) cos 2 θ -1 sin n θ dθ
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 1 ηAΩ ∩ ker (D ρG ηA Ω C * ) = {0}. Since C ηAΩ = {0}, this shows (103) (with Σ = A Ω ) and ends the proof.Appendix D. Appendix to Section 6 on the derivation of the equation for Ω. Proof of Eq. (132). We first consider γ3 . With (127), (128) and (125), and using the spherical coordinates and the notations C n and Z η described in the proof of Prop. 1 as well as the change r = cos θ, we have (dropping the indices ηA Ω to G and η to h for simplicity):

1 0r ( 1 -r 2 ) n+1 2 e ηr 2 h dr = 1 0( 1 -r 2 )ηr 2 r 2η( 1 -r 2 ) 1 0( 1 -r 2 ) n-1 2 e 1 0( 1 -r 2 ) n-1 2 e

 1121121211221122 -(n + 1) h dr, we get ηr 2 r 2η(1 -2r 2 ) -2n h dr = ηr 2 r 2 dr. (186) Inserting (186) into (185) and integrating by parts once more,

e

  η cos 2 θ h(cos θ) cos θ sin n θ dθ.Using (98) and (52), this can be changed intoγ1 = -ρ 2η(n -1) C n Z η π 0 e η cos 2 θ g(θ) d Ũ0 dθ sin n-2 θ dθBut from (45), we have Zη Cn =

  3/2 -3r g (cos -1 r) (1r 2 ) 2 + (1 + 2r 2 ) g(cos -1 r) (1r 2 ) 5/2 .Inserting these expressions in (174) and changing r into cos θ, we get With this and (52), we realize that (175) is nothing but[START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF].C.2. Proof of Lemma 5.10. We use the same notations as in the proof of Lemma B.2. From (156), we get

	g +	cos θ n -2 -2η sin 2 θ sin θ	g -	n -2 sin 2 θ	g = -2η cos θ sin θ,	(175)
	But, we					
		1 sin n-2 θ	sin n-2 θ g = g + (n -2)	cos θ sin θ	g .
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Appendix B. Appendix to Section 3 on main result. B.1. Proof of Prop. 2 on properties of S 2 . The proof uses Lemma 4.1 of [START_REF] Degond | Nematic alignment of self-propelled particles: from particle to macroscopic dynamics[END_REF] which we recall here without proof.

Lemma B.1. Let n ≥ 2. Define ω ⊥ = P Ω ⊥ ω. For any function k: [-1, 1] → R, r → k(r), we have:

leads to

We insert (143) into [START_REF] Cercinani | The Mathematical Theory of Dilute Gases[END_REF] with f = ρG ηAΩ . Thanks to [START_REF] Lin | On a micro-macro model for polymeric fluids near equilibrium[END_REF], ρG ηAΩ is a function of ω • Ω only. So, the contribution of the middle term of (143) vanishes thanks to (140) and the contribution of the last term can be computed using (141). Using that

Rearranging these terms, we find [START_REF] Liu | Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential[END_REF].

(ii) The leading eigenvalue of Q G ηA Ω is n-1 n S 2 (η) and is associated with the eigenvector Ω. Thus, by virtue of [START_REF] Charbonneau | Dimensional dependence of the Stokes-Einstein relation and its violation[END_REF], the order parameter χ ρG ηA Ω is equal to S 2 (η). (iii) We first compute S 2 (0). When η = 0, we have G ηAΩ = 1. Thus, S 2 (0) = (n(ω • Ω) 2 -1)/(n -1) 1 =: r/s, where, using the spherical coordinates as in the proof of Proposition 1, the numerator r is given by

Here, W n is twice the Wallis integral W n = π 0 sin n θ dθ. From the well-known recursion formula for the Wallis integral (which can be easily proved by integration by parts):

, we get that r = 0 and thus, that S 2 (0) = 0. We now show that S 2 (η) ≥ 0, for all η ≥ 0, where the prime denotes the derivative with respect to η. We have

. We show that F ≤ 0. Using again spherical coordinates, we have F = I n /I n-2 with I n (η) = π/2 0 exp(η cos 2 θ) sin n θ dθ (by symmetry, we can reduce the interval of integration to [0, π/2]). Thus, F = (

We check the sign of the numerator A. We have

e η(cos 2 θ+cos 2 θ ) sin n-2 θ sin n-2 θ (sin 2 θsin 2 θ ) (cos 2 θcos 2 θ ) dθ dθ ,

where we pass from the first to the second line by exchanging θ and θ . Since sin is increasing and cos is decreasing on [0, π 2 ], we have A ≤ 0.