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Abstract

This paper deals with the convergence of the Doi-Navier-Stokes model of liquid
crystals to the Ericksen-Leslie model in the limit of the Deborah number tending
to zero. While the literature has investigated this problem by means of the Hilbert
expansion method, we develop the moment method, i.e. a method that exploits
conservation relations obeyed by the collision operator. These are non-classical
conservation relations which are associated with a new concept, that of Generalized
Collision Invariant (GCI). In this paper, we develop the GCI concept and relate
it to geometrical and analytical structures of the collision operator. Then, the
derivation of the limit model using the GCI is performed in an arbitrary number of
spatial dimensions and with non-constant and non-uniform polymer density. This
non-uniformity generates new terms in the Ericksen-Leslie model.
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1 Introduction

We consider the Doi kinetic model of liquid crystals coupled with the Navier-Stokes equa-
tion for the fluid solvent. We investigate the limit of the Deborah number tending to zero
by means of a moment method. The limit model is a system of fluid equations named the
Ericksen-Leslie model [26, 36, 57]. In classical kinetic theory, there are two methods to de-
rive fluid equations, the Hilbert expansion method [6, 10, 24, 33] and the moment method
[4, 50]. However, for a number of kinetic models including the Doi kinetic model, only
the Hilbert method can be used. Indeed, the moment method is subject to a condition on
the number of conservation relations satisfied by the collision operator and this condition
is not satisfied by the Doi model. This is why the Hilbert expansion method is the only
method developed in the literature so far (see e.g. [26, 36, 57]). In the present work, we
address the question whether the moment method can be used for the Doi kinetic model.

To make this question clearer, let us temporarily consider the Boltzmann equation of
rarefied gases for which both methods work. The Boltzmann equation is historically the
first kinetic model ever written and the most emblematic one [5, 9, 49]. It is schematically
written

Tf ε := (∂t + v · ∇x)f
ε =

1

ε
C(f ε), (1.1)

where f ε = f ε(x, v, t) is the distribution function of particles at position x, velocity v and
time t, ε � 1 is the dimensionless Knudsen number and C is the collision operator. In
the fluid limit ε→ 0, we have (at least formally) f ε → f 0 with C(f 0) = 0. Such equilibria
f 0 are given by

f 0 = ρMu,T , (1.2)

where (ρ, u, T ) ∈ (0,∞)×Rn×(0,∞) (n being the dimension) depend on (x, t) and Mu,T :
v 7→ Mu,T (v) ∈ (0,∞) is a specific function of v called a Maxwellian. The fluid limit
requires finding equations that specify the dependence of (ρ, u, T ) with respect to (x, t).

Finding these equations requires dealing with the singular factor 1
ε

in (1.1). The most
straightforward approach is to expand f ε in powers of ε: f ε = f 0 + εf 1 + O(ε2), insert
this expansion in (1.1) and cancel each power of ε separately. This is the so-called Hilbert
expansion method. The leading order term is C(f 0) = 0 which recovers that f 0 is of the
form (1.2). The next order gives Df0C(f 1) = Tf 0, where Df0C(f 1) is the derivative of C
(which is nonlinear) with respect to f at f 0 applied to f 1. The existence of f 1 requires
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that Tf 0 be in Im(Df0C), the image of the operator Df0C. Under spectral properties
of Df0C which are satisfied in a large number of situations and which we will not detail
here, we have Im(Df0C) = ker(Df0C∗)⊥ where ’ker’ denotes the kernel and the exponent
’∗’, the adjoint. Thus, the requirement on Tf 0 can be written

∫
Tf 0ψdv = 0, ∀ψ ∈ ker(Df0C∗). (1.3)

One can show that ker(Df0C∗) = Span{1, v, |v|2}, so that (1.3) written for ψ successively
equal to 1, v, |v|2 gives rise to the system of compressible Euler equations, which thus
constitutes the fluid limit of the Boltzmann equation. We note that this system is closed,
because there are n+ 2 unknowns (ρ, u, T ) and n+ 2 equations (indeed, the dimension of
ker(Df0C∗) is n+ 2).

However, there is a more direct route, which is to notice that the collision operator
satisfies ∫

C(f)ψ dv = 0, ∀f ⇐⇒ ψ ∈ Span{1, v, |v|2}. (1.4)

A function ψ that satisfies the left-hand side of (1.4) is called a collision invariant. Prop-
erty (1.4) states that the only collision invariants are linear combinations of 1, v and |v|2.
Physically, this means that collisions conserve mass, momentum and energy and that these
are the only conserved quantities. Thus, multiplying the Boltzmann equation (1.1) by ψ ∈
Span{1, v, |v|2} we get

∫
Tf ε ψ dv = 0. This removes the 1

ε
singularity and allows us to

pass to the limit ε→ 0. This leads to
∫
Tf 0 ψ dv = 0 which, again, gives rise the system

of compressible Euler equations. Integrals of the type
∫
f 0 ψ dv are called “moments”,

hence the name “moment method” for this method. This should not be confused with
the numerical moment method which consists of approximating the distribution function
by a finite number of moments. However, the two are obviously linked.

We note that the Hilbert expansion method works provided Im(Df0C) = ker(Df0C∗)⊥,
which is satisfied in a large number of cases. On the other hand, the success of the
moment method relies on the requirement that the space of collision invariants has the
same dimensions as the number of free parameters in the equilibrium distribution function
(here (ρ, u, T )). This requirement is not satisfied in general and specifically for the Doi
model. So, should we abandon the moment method for such instances? The goal of this
paper is to show that the moment method can still be used for the Doi model. However,
this necessitates to revisit the concept of collision invariant and to design a weaker concept:
the “generalized collision invariant” or GCI.

The GCI concept has first been introduced in [22] for the Vicsek model [53], a model
of self-propelled particles moving at constant speed and tending to align their direction
of motion with their neighbors. Here, the absence of conservation relations beyond the
conservation of mass is a consequence of the active character of the particles, i.e. the
fact that they sustain a constant speed motion in all circumstances. In [22], thanks to
the GCI concept, the fluid limit of the Vicsek model is derived and gives rise to a new
kind of fluid dynamics model, now referred to as the Self-Organized Hydrodynamic model
[19]. Since then, the GCI concept has been applied to a variety of collective dynamics
models [16, 17, 18, 20, 21, 29]. The present work is its first application to visco-elastic
fluid models.
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Visco-elastic fluids have been the subject of an abundant literature (see e.g. [1, 2,
15, 23, 31, 56] for reviews). The Doi model is one of the most fundamental models of
visco-elastic fluids [23]. It models the dynamics of an assembly of polymer molecules
flowing in an incompressible fluid (the solvent). The polymer molecules are assumed to
be rigid spheroids mutually interacting through alignment and subject to noise. They are
represented by a distribution function of their position and orientation. After Onsager and
Maier-Saupe [48, 51], alignment accounts for the volume exclusion interaction between the
molecules. Alignment is supposed to be of nematic type, i.e. invariant if the head and tail
of the molecules are flipped. To account for this, following Landau and de Gennes [15],
the interaction is written in terms of the so-called Q-tensor which is a quadratic quantity
of the orientation and thus, respects this invariance. The fluid solvent is modelled by the
incompressible Navier-Stokes equations. Polymer molecules are transported by the fluid
and rotated by the fluid gradients. In turn, the polymer molecules influence the fluid
through extra-stresses whose expressions involve the polymer distribution function. The
mathematical theory of the Doi-Navier-Stokes system has been investigated in [44, 52, 60]
and for active particles, in [12].

In the Doi model, alignment occurs at a rate characterized by a dimensionless param-
eter, the Deborah number. When this parameter goes to zero, the distribution of polymer
molecule orientations gets a definite profile which has analogies with the Maxwellian veloc-
ity distribution of gas dynamics (1.2). It depends on two parameters, the polymer density
ρ and the polymer molecules average orientation Ω which are functions of space and time.
In the case of a constant density ρ, it is shown in [26, 36, 57] that the mean orientation sat-
isfies a transport-diffusion equation. Its coupling with the Navier-Stokes equations leads
to the so-called Ericksen-Leslie system [25, 37]. The convergence is formal in [26, 36] and
rigorous in [57]. In all cases, the method relies on the Hilbert expansion. There is an
abundant mathematical literature on the Ericksen-Leslie system per se [34, 41, 42, 43, 58].

Here, our goal is to provide a formal convergence proof of the Doi model to the
Ericksen-Leslie model using the moment method and the new generalized collision invari-
ant concept. Specifically, we will derive the appropriate GCI concept, discuss its rationale
and its relation to ker(Df0C∗) which is the central object in the Hilbert expansion method.
There are several motivations to develop a moment method even if a Hilbert expansion
theory already exists. The first one is that the GCI concept has an underlying geometrical
structure which we will highlight. In view of Noether’s theorem relating conservations to
invariance under transformation groups, this may lead to new useful structural invariance
properties of the Doi collision model. The second reason is that a mathematical theory
based on the moment method often requires less regularity than the Hilbert expansion
method (compare e.g. [3] with [6]). This potentially opens the ways to simpler conver-
gence proofs from the Doi to the Ericksen-Leslie models. The third reason is that the
moment method naturally leads to the development of efficient numerical methods [32, 38]
which might enable us to handle the complexity of the Doi kinetic model in a systematic
way.

Aside to this main goal, we will also pursue two secondary goals. The first one is
to provide a treatment of the small Deborah number limit in arbitrary dimension. So
far, this has only been done in dimension 3. This extension is made possible by Wang
and Hoffman [55] who have determined the spatially uniform equilibria in any dimension.
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Although dimension three is the physically relevant case, there are several reasons for
considering an arbitrary dimension. The first one is that the use of dimension 3 often
conceals simple structures under dimension-specific concepts and notations. For instance,
in many references, the use of the rotation operator traditionally denoted by R whose
construction depends on the cross-product and is dimension 3-specific is unnecessary and
cumbersome. As argued in [11], the use of an arbitrary dimension often reveals hidden
and interesting mathematical properties. Finally, fluid-dynamic equations are based on
simple postulates that may be relevant for other objects. For instance, the Doi-Navier-
Stokes model could describe flows of different types of information in an abstract space of
large dimension. Of course, an information flow model cannot simply be a copy-paste of
the Doi-Navier-Stokes model. However, the latter could constitute a good starting point
on which further elaboration could be made.

The second side goal is to investigate the effect of a spatially non-uniform density of
polymer molecules. To the best of our knowledge, earlier work on the small Deborah
number limit [26, 36, 57] have assumed the density of polymer molecules to be constant.
Investigation of Ericksen-Leslie models with non-uniform order parameter has been made
in the literature [7, 8, 25, 39, 40, 45], but none has explicitly linked this non-uniform order
parameter to the non-uniform polymer density (as is should as we will see) and derived
these models from kinetic theory. Non-uniform polymer density results in modifications
of the equations for the mean director Ω and for the extra-stresses that will be highlighted
in this work.

The organization of this paper is as follows: Section 2 gives an exposition of the
Doi-Navier-Stokes model and the small Deborah number scaling. Section 3 is devoted
to the statement of the main result, namely the formal convergence of the Doi-Navier-
Stokes model to the Ericksen-Leslie model in the zero Deborah number limit. Section
4 describes the local equilibria (i.e. the analogs of the Maxwellians (1.2) for the Doi
model). Section 5 develops the GCI concept for the Doi model and discusses it. In
Section 6, the limiting equations of the Doi model when the Deborah number tends to
zero are derived. Conclusions and perspectives are drawn in Section 7. Auxiliary results
stated in Sections 2, 3, 5 and 6 are proved in appendices A, B, C and D respectively.

2 Kinetic model for rod-like polymer suspensions and

scaling

2.1 The Doi equation

In this paper, we consider the Doi model [15, 23, 26, 36, 52, 54, 57], where polymer
molecules are identified as spheroids. We consider the semi-dilute regime [23, 26, 54]
where a volume-exclusion interaction potential needs to be incorporated. We neglect the
inertia of the polymer molecules. Following [26, 36, 54], we describe the polymer molecules
by a kinetic distribution function f(x, ω, t) where x ∈ Rn is the position, ω ∈ Sn−1 is the
molecule orientation and t ≥ 0 is the time. We let Sn−1 be the unit (n − 1)-dimensional
sphere and since ω and −ω refer to the same molecular orientation, we impose

f(x, ω, t) = f(x,−ω, t). (2.1)
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Let u(x, t) ∈ Rn be the fluid velocity. In general, the dimension n = 2 or 3 but the theory
will be developed for any value of n. The equation for f (the so-called Doi equation)
reads as follows:

∂tf +∇x · (uf) +∇ω ·
(
f (ΛPω⊥E −W )ω

)
= D∇ω · (∇ωf +

1

kBT
f ∇ωU

R
f ). (2.2)

Here, D denotes the rotational diffusivity, T , the fluid temperature and kB, the Boltzmann
constant. The tensors E and W are respectively the symmetric and anti-symmetric parts
of the velocity gradient, given by

E =
1

2
(∇xu+∇xu

T ), W =
1

2
(∇xu−∇xu

T ). (2.3)

The symbols ∇x and ∇x· refer to the spatial gradient and divergence operators while ∇ω,
∇ω· to the gradient and divergence operators on the sphere Sn−1 respectively. The notation
∇xu refers to the gradient tensor of u defined by (∇xu)ij = ∂xiuj and the exponent ’T’
indicates the transpose. The dimensionless quantity Λ is related to the aspect ratio (ratio
between the semi-axes) of the spheroidal polymer molecules. Finally, Pω⊥ = Id − ω ⊗ ω
for ω ∈ Sn−1 denotes the projection operator of vectors onto the normal hyperplane to
ω. Throughout this paper, Id denotes the identity matrix and if u = (ui)i=1,...,n and
v = (vi)i=1,...,n are two vectors, u ⊗ v denotes their tensor product, i.e. the n × n tensor
(u ⊗ v)ij = ui vj. For two n × n tensors S and S ′, SS ′ stands for the matrix product
of S and S ′, hence the meaning of Pω⊥E. The surface measure on the sphere will be
normalized, meaning that

∫
Sn−1 dω = 1.

The quantity UR
f is the interaction potential stemming from volume exclusion between

the polymer molecules. In the Maier-Saupe theory [48], this interaction potential reads

UR
f (x, ω, t) = kBTν

∫

Rn×Sn−1

1

Rn
K
( |x− x′|

R

) (
1− (ω · ω′)2

)
f(x′, ω′, t) dω′ dx′, (2.4)

where ν is the potential strength. Following the formalism proposed by [26, 54], a spatial
non-locality is introduced by means of the kernel K: [0,∞) → [0,∞), ξ 7→ K(ξ) which
describes the influence of two neighboring molecules. Specifically, two molecules sepa-
rated by a distance ξ influence each other with strength 1

Rn
K( ξ

R
), where R is the typical

interaction range. The kernel K satisfies
∫
Rn K(|x|) dx = 1. An equivalent expression of

UR
f is

UR
f (x, ω, t) = kBTνρ

R
f

[
− (ω ·QR

f ω) +
n− 1

n

]
, (2.5)

where ρRf and QR
f are the locally averaged particle density and orientational de Gennes

Q-tensor given by

ρRf (x, t) =

∫

Rn×Sn−1

1

Rn
K
( |x− x′|

R

)
f(x′, ω, t) dω dx′, (2.6)

(ρRf Q
R
f )(x, t) =

∫

Rn×Sn−1

1

Rn
K
( |x− x′|

R

)(
ω ⊗ ω − 1

n
Id
)
f(x′, ω, t) dω dx′. (2.7)
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Note that QR
f is a trace-free symmetric matrix obtained by averaging ω ⊗ ω − 1

n
Id over

the probability distribution ρRf (x, t)−1R−nK(|x − x′|/R) f(x′, ω, t) dω dx′. Consequently,
thanks to the min-max theorem, its eigenvalues λ satisfy the inequality

− 1

n
≤ λ ≤ 1− 1

n
. (2.8)

The following fully local versions of the polymer density and orientational tensor:

ρf =

∫

Sn−1

f dω = lim
R→0

ρRf , (2.9)

ρfQf =

∫

Sn−1

(
ω ⊗ ω − 1

n
Id
)
f dω = lim

R→0
ρRf Q

R
f , (2.10)

will also be useful. From (2.5), it follows that

1

kBT
∇ωU

R
f (x, ω, t) = −2νρRf Pω⊥Q

R
f ω,

so that an alternate formulation of the Doi equation (2.2) is given by

∂tf +∇x · (uf) +∇ω ·
(
f (ΛPω⊥E −W )ω

)
= D

(
∆ωf − 2ν ρRf ∇ω · (f Pω⊥QR

f ω)
)
.(2.11)

We note that Eq. (2.11) preserves the symmetry constraint (2.1). The second and third
term at the left-hand side of (2.11) model passive transport of the polymer molecules by
the fluid: the second term corresponds to translation of the molecules by the fluid velocity
and the third term to their rotation by the gradient of the fluid velocity. Here, we assume
that the polymer molecules can be described by spheroids, i.e. ellipsoids, in which n− 1
semi-axes b are equal. The aspect ratio p is the ratio a/b where a is the remaining semi-

axis. The quantity Λ is related to p by Λ = p2−1
p2+1

. In particular, Λ ∈ [−1, 1] and Λ = 1 for
infinitely thin rods, Λ = 0 for spheres, and Λ = −1 for infinitely flat disks. The rotation
operator is derived from Jeffery’s equation [35]. The first term at the right-hand side
of (2.11) describes Brownian effects due to rotational diffusion. We neglect translational
diffusivity, as it is usually much smaller than rotational diffusivity [15]. The second term at
the right-hand side of (2.11) takes into account the volume exclusion interaction between
the molecules and drives the distribution to that of a system of fully aligned polymer
molecules. To measure the degree of alignment of the molecules, one introduces

χf =
n

n− 1
λf with λf = the largest eigenvalue of Qf , (2.12)

where Qf is given by (2.10). This quantity can be seen as the order parameter for the
distribution f . We have χf ∈ (0, 1). If f is close to the uniform distribution on the sphere,
which corresponds to a fully disordered distribution of polymer orientations, then χf is
close to 0. By contrast, if f is close to 1

2
(δΩ + δ−Ω) where Ω is any vector on Sn−1, which

corresponds to a fully aligned distribution of polymer orientations in the direction ±Ω,
then, χf is close to 1.

To ensure thermodynamic consistency, one introduces the polymer free energy [26]:

AR(t) =

∫

Rn×Sn−1

[
kBT (f log f − f) +

1

2
UR
f f
]
dx dω.
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From (2.4), it is easy to check that the quantity
∫
Rn×Sn−1 U

R
f g dx dω defined for two

functions f and g of (x, ω) is a symmetric bilinear form. Then the functional derivative

µRf = δAR
δf

, also referred to as the chemical potential, is given by

µRf = kBT log f + UR
f = kBT

(
log f − νρRf

[
(ω ·QR

f ω)− n− 1

n

])
. (2.13)

Thus,

∇ωµ
R
f = kBT

(∇ωf

f
− 2νρRf Pω⊥Q

R
f ω
)
, (2.14)

so that (2.2) can also be written:

∂tf +∇x · (u f) +∇ω ·
(
f (ΛPω⊥E −W )ω

)
=

D

kBT
∇ω ·

(
f ∇ωµ

R
f

)
. (2.15)

The right-hand side of (2.15) can be viewed as describing the steepest descent in the
direction of the minimum of the polymer free energy. This is also known as the maximal
dissipation principle. Using Green’s formula, we have the following identity (provided f
vanishes fast enough at infinity), whose proof is sketched in Appendix A.1:

dAR
dt

=

∫

Rn
σRf : ∇xu dx−

∫

Rn
FR
f · u dx−

D

kBT

∫

Rn×Sn−1

f |∇ωµ
R
f |2 dx dω, (2.16)

where σRf is the extra-stress tensor and FR
f is a body force, given by :

σRf =

∫

Sn−1

(
Λ
(
ω ⊗∇ωµ

R
f

)
s

+
(
ω ⊗∇ωµ

R
f

)
a

)
f dω, FR

f = −
∫

Sn−1

∇xµ
R
f f dω. (2.17)

Here, for two n× n tensors S = (Sij)ij=1,...,n and S ′ = (S ′ij)ij=1,...,n, we denote by S : S ′ =
Sij S

′
ij their contraction (with the repeated index summation convention) while Ss and

Sa are respectively the symmetric and antisymmetric parts of S namely Ss = 1
2
(S + ST ),

Sa = 1
2
(S − ST ). Contractions and tensor products will be defined and noted similarly

for tensors of higher order.

2.2 The Navier-Stokes equations

The Doi equation (2.2) (or equivalently, (2.11) or (2.15)) is coupled to the Navier-Stokes
equation for the fluid velocity, which is written [23, 26, 54]:

ρF
(
∂tu+ u · ∇xu

)
+∇xp = ∇x · (σRf + τu + Tf,u) + FR

f , (2.18)

∇x · u = 0. (2.19)

Here ρF is the fluid mass density. The extra-stress tensor σRf is given by (2.17) while
τu and Tf,u are contributions of the fluid and polymer molecules to the viscous stresses
respectively given by

τu = 2η E, Tf,u = ζ
kBT

D
ρf Tf : E,
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with the fourth order orientational tensor Tf given by

ρfTf =

∫

Sn−1

ω⊗4 f dω. (2.20)

For a n × n tensor S, its divergence ∇x · S denotes the vector defined by (∇x · S)j =
∂xiSij (using the repeated index summation convention). As above, Tf : E denotes the
contraction of Tf and E with respect to two indices. Although Tf is a fourth order tensor,
it is symmetric, so which pair of its indices is concerned by the contraction is indifferent.
The quantity η is the fluid viscosity. Using the divergence-free condition (2.19), we remark
that ∇x · τu = η∆xu. The quantity ζ is a dimensionless number. In [23], for the dilute
polymer regime in dimension 3, it is shown that ζ = 1

2
. But this derivation requires the

use of the Oseen tensor which has dimensional dependence [11] and thus, the value of ζ
changes with the dimension. Moreover, even in dimension 3, in the semi-dilute regime
considered here, the value of ζ may be different from 1

2
[23, Section 9.5.1]. So, we shall

consider ζ as a free parameter of the model.
We have the following expression for the extra-stress:

σRf = nkBTΛρfQf +

∫

Sn−1

[Λ + 1

2
ω ⊗∇ωU

R
f +

Λ− 1

2
∇ωU

R
f ⊗ ω

]
f dω. (2.21)

However, although more complicated, the following expression, which is valid if f is a
solution of the Doi equation (2.2), will turn out to be more useful:

σRf =
kBT

D

Λ

2
ρf
[
Λ(EQf +QfE) +QfW −WQf +

2Λ

n
E − 2ΛTf : E −DtQf

]

+
1

2

∫

Sn−1

(ω ⊗∇ωU
R
f −∇ωU

R
f ⊗ ω) f dω, (2.22)

where
Dt = ∂t + u · ∇x, (2.23)

is the material derivative. Eq. (2.21) results from the first equation of (2.17) after insertion
of (2.14). Eq. (2.22) is obtained by multiplying Doi’s equation (2.15) by ω⊗ω− 1

n
Id and

integrating with respect to ω, followed by some algebra. These computations have been
done in [26, 36, 57] for n = 3 and are sketched in Appendix A.2 for any n.

The rationale for involving σRf and FR
f in the coupling between the Navier-Stokes

equations (2.18) and the Doi equation (2.2) is thermodynamical consistency. Indeed, we
have the following total free energy dissipation identity (provided spatial boundary terms
vanish in the integrations by parts):

d

dt
ER +DR = 0, (2.24)

where ER is the total free energy (sum of the fluid and polymer free energies):

ER(t) =

∫

Rn

1

2
ρF |u|2 dx+AR,
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and DR is the total free energy dissipation:

DR(t) =
D

kBT

∫

Rn×Sn−1

f
∣∣∇ωµ

R
f

∣∣2 dx dω +

∫

Rn

(
2η E : E +

kBTζ

D
ρfTf : (E ⊗ E)

)
dx,

where now, Tf : (E ⊗ E) indicates the contraction of the fourth order tensors Tf and
E ⊗ E with respect to all four indices. We have omitted the dependence of E on u for
simplicity.

2.3 Scaling

We now introduce a suitable scaling of this model. Let x0, t0 and ρ0 be space, time
and polymer density units and let u0 = x0/t0, f0 = ρ0, σ0 = kBTρ0, p0 = ρF u

2
0, F0 =

σ0/x0, U0 = kBT be units for velocity, distribution function, stress tensor, fluid pressure,
elastic force and potential respectively. Then, we introduce the following dimensionless
quantities:

De =
1

Dt0
, Re =

u0x0ρF
η

, Er =
ηD

kBTρ0

, α = νρ0, R̄ =
R

x0

.

The dimensionless quantities De, Re and Er are the classical Deborah, Reynolds and Er-
icksen numbers, which respectively encode the relaxation time of the polymer molecular
assembly to equilibrium, the ratio of inertial to viscous forces in the fluid and the ratio
between the viscous and extra stresses. The parameters α and R̄ are measures of the
molecular interaction intensity and range respectively. The other dimensionless param-
eters of the model are ζ and Λ. Introducing scaled variables x′ = x/x0, t′ = t/t0 and
unknowns f(x, ω, t) dx dω = ρ0 f

′(x′, ω, t′) dx′ dω, u(x, t) = u0 u
′(x′, t′), . . . , we can deduce

the following dimensionless form of the Doi model (dropping the primes for clarity):

∂tf +∇x · (uf) +∇ω ·
(
f (ΛPω⊥E −W )ω

)
=

1

De
∇ω ·

(
∇ωf + f ∇ωU

R̄
f

)
, (2.25)

with

U R̄
f = αρR̄f

[
− (ω ·QR̄

f ω) +
n− 1

n

]
,

and ρR̄f , QR̄
f given by (2.6), (2.7) with R replaced by R̄. The polymer free energy is now

given by

AR̄(t) =

∫

Rn×Sn−1

(f log f − f +
1

2
U R̄
f f) dx dω

and the chemical potential µR̄f = δAR̄
δf

by

µR̄f = log f + U R̄
f = log f − α (ω · ρR̄f QR̄

f ω) + α
n− 1

n
ρR̄f .

Thus, the expression at the right-hand side of (2.25) is equivalently written

∇ω ·
(
∇ωf + f ∇ωU

R̄
f

)
= ∇ω ·

(
f ∇ωµ

R̄
f

)
= ∆ωf − 2αρR̄f∇ω(f Pω⊥Q

R̄
f ω).
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The scaled Navier-Stokes equation reads as follows

∂tu+ u · ∇xu+∇xp =
1

Re
∇x ·

(
τu +

1

Er
Tf,u
)

+
1

Re Er De

(
∇x · σR̄f + F R̄

f

)
,

∇x · u = 0,

τu = 2E, Tf,u = ζ ρf Tf : E,

with σR̄f , F R̄
f given by (2.17) with R replaced by R̄ and ρf , Tf given by (2.9), (2.20).

Expressions (2.21), (2.22) for the stress tensor are scaled into

σR̄f = nΛρfQf +

∫

Sn−1

[Λ + 1

2
ω ⊗∇ωU

R̄
f +

Λ− 1

2
∇ωU

R̄
f ⊗ ω

]
f dω.

= De
Λ

2
ρf
[
Λ(EQf +QfE) +QfW −WQf +

2Λ

n
E − 2ΛTf : E −DtQf

]

+
1

2

∫

Sn−1

(ω ⊗∇ωU
R̄
f −∇ωU

R̄
f ⊗ ω) f dω, (2.26)

with Qf still given by (2.10). The free-energy dissipation identity is still written as (2.24)
with E R̄ and DR̄ now given by

E R̄ =
1

2

∫

Rn
|u|2 dx+

1

Re Er De
AR̄,

DR̄ =
1

Re

∫

Rn
|∇xu|2 dx+

1

Re Er
ζ

∫

Rn
ρfTf : (E ⊗ E) dx

+
1

Re Er De2

∫

Rn×Sn−1

f
∣∣∇ωµ

R̄
f

∣∣2 dx dω, (2.27)

where, for a n×n tensor S, |S| denotes the Frobenius norm of the S, i.e. |S|2 = Tr{STS}.
The goal of this article is to investigate the limit of the Deborah number De tending

to zero through the use of the new “generalized collision invariant” concept. In doing so,
we will keep the parameters Re, Er and α of order unity. As for R̄, following [26, 57],
we make the scaling R̄ = O(

√
De). This scaling assumption is analogous to the weakly

non-local interaction scaling of the Vicsek model [19]. As we may choose the time and
space units independently, we assume:

De = ε, R̄ =
√
ε, ε→ 0,

and assume Re, Er and α independent of ε. A straightforward Taylor expansion shows
that

ρ
√
ε

f = ρf + ε β∆xρf +O(ε2), ρ
√
ε

f Q
√
ε

f = ρf Qf + ε β∆x(ρf Qf ) +O(ε2),

where

β =
1

2n

∫

Rn
K(|x|) |x|2 dx. (2.28)

Then, we can expand U
√
ε

f = U0
f + εU1

f +O(ε2), µ
√
ε

f = µ0
f + εµ1

f +O(ε2) with

U0
f = αρf

[
− (ω ·Qfω) +

n− 1

n

]
, µ0

f = log f + U0
f (2.29)

U1
f = µ1

f = β∆xU
0
f . (2.30)
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Straightforward computations show that
∫

Sn−1

ω ⊗∇ωU
0
f f dω = −2αρ2

f

[
Q2
f +

1

n
Qf − Tf : Qf

]
, (2.31)

so that the left-hand side of (2.31) is a symmetric tensor. We deduce that the integral

term in (2.26) is O(ε), so that σ
√
ε

f = O(ε). Additionally, similar computations as for
(2.31) lead to

∫

Sn−1

(ω ⊗∇ωU
1
f −∇ωU

1
f ⊗ ω) f dω = 2αβ ρf

[
∆x(ρfQf )Qf −Qf∆x(ρfQf )

]
.

So, we can write σR̄f = εσ1
f +O(ε2) with

σ1
f = ρf

Λ

2

[
Λ(EQf +QfE) +QfW −WQf +

2Λ

n
E − 2ΛTf : E −DtQf

]

+αβ ρf
[
∆x(ρfQf )Qf −Qf∆x(ρfQf )

]
. (2.32)

We also note that F
√
ε

f = −∇xϕ
0
f + εF 1

f +O(ε2), with

ϕ0
f = ρf −

α

2
ρ2
f

[
Qf : Qf −

n− 1

n
], F 1

f = −
∫

Sn−1

∇xµ
1
f f dω. (2.33)

We let p̃ε = pε + 1
ε

1
ReEr

ϕ0
f . We will omit the tilde below for simplicity. Since the O(ε2)

terms in all these developments have no contribution to the limit model when ε→ 0 (at
the leading order), we will just ignore them.

We finally get the following perturbation problem:

∂tf
ε +∇x · (uεf ε) +∇ω · (f ε (ΛPω⊥E

ε −W ε)ω) + 2αβ∇ω · (f ε Pω⊥∆x(ρfε Qfε)ω)

=
1

ε

(
∆ωf

ε − 2αρfε∇ω · (f ε Pω⊥Qfε ω)
)
, (2.34)

∂tu
ε + uε · ∇xu

ε +∇pε =
1

Re

{
∆xu

ε +
1

Er

[
ζ∇x ·

(
ρfεTfε : Eε

)

+∇x · σ1
fε + F 1

fε

]}
, (2.35)

∇x · uε = 0, (2.36)

where σ1
fε is given by (2.32) and F 1

fε by (2.33).
We define the transport operator Tu(f) (for a given time-dependent vector field u:

Rn × [0,∞)→ Rn) and the collision operator C(f) by

Tu(f) = ∂tf +∇x · (u f) +∇ω · (f (ΛPω⊥E −W )ω)

+2αβ∇ω · (f Pω⊥∆x(ρf Qf )ω), (2.37)

C(f) = ∆ωf − 2αρf∇ω · (f Pω⊥Qf ω) = ∇ω ·
(
f ∇ωµ

0
f

)
(2.38)

= ∇ω ·
(
∇ωf + f∇ωU

0
f

)
, (2.39)

so that (2.34) is written

Tuε(f
ε) =

1

ε
C(f ε). (2.40)

12



We note that µ0
f = δA0

δf
is the functional derivative of the free energy A0 = limε→0A

√
ε

given by

A0(t) =

∫

Rn×Sn−1

(f log f − f +
1

2
U0
f f) dx dω, (2.41)

and recall that U0
f and µ0

f are given by (2.29). We refer to [26] for the formulation of the
free energy dissipation identity for the whole model (2.34) - (2.36).

3 Main result

3.1 Preliminaries

The purpose of this paper is to derive the limit of model (2.34) - (2.36) when ε→ 0. Before
stating the result, we need a few preliminaries. We note that C given by (2.38) operates
on the variable ω only and leaves (x, t) as parameters. This justifies the definition:

Definition 3.1 A function f : Sn−1 → R, ω 7→ f(ω) is called an equilibrium of C if and
only if it satisfies

C(f) = 0. (3.1)

Remark 3.1 We note that f is an equilibrium if and only if f is a critical point of the
free energy functional A0 given by (2.41) in the spatially homogeneous case (i.e. when
f is a function of ω only and integration with respect to x in the definition of A0 is
ignored) [46, 57]. Moreover, such equilibria will be called “stable” if they correspond to
local minimizers of this free energy (see [27] for n = 2, [28, 46] for n = 3 and [30] for
n = 4).

The equilibria will attract the dynamics as ε → 0 and their determination is of key
importance. For this purpose, we introduce the Gibbs distributions:

Definition 3.2 (Gibbs distribution) Let S be a trace-free symmetric matrix. Then,
the Gibbs distribution GS associated with S is given by:

GS(ω) =
1

ZS
eω·Sω, ZS =

∫

Sn−1

eω·Sω dω. (3.2)

Next, we introduce the

Definition 3.3 (Normalized prolate uniaxial trace-free tensor) Let Ω ∈ Pn−1 :=
Sn−1/{±1}. Then, the normalized prolate uniaxial trace-free tensor in the direction of Ω,
AΩ, is defined by

AΩ = Ω⊗ Ω− 1

n
Id. (3.3)

AΩ is a traceless symmetric tensor with leading eigenvalue equal to n−1
n

.
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AΩ is called a uniaxial tensor because it has only two eigenvalues with one being
simple. The simple eigenvalue has associated normalized eigenvectors ±Ω. The line
spanned by Ω is called the axis of the uniaxial tensor. It is trace-free and consequently,
the two eigenvalues have opposite signs. It is called prolate because the simple eigenvalue
is positive (it would be called oblate in the converse case). It is normalized meaning
that its leading eigenvalue is exactly n−1

n
. We note that AΩ is invariant by the change

Ω→ −Ω showing that it actually depends on Ω seen as an element of the projective space
Pn−1 = Sn−1/{±1}.

Proposition 3.4 (Gibbs distributions of uniaxial tensors) The Gibbs distributions
Gη AΩ

associated to tensors of the form η AΩ with η > 0 are given by

Gη AΩ
(ω) =

1

Zη
eη (ω·Ω)2

, Zη =

∫

Sn−1

e η (ω·Ω)2

dω, (3.4)

where the normalization constant Zη does not depend on Ω but only on η.

Proof. Eq. (3.4) is obvious from (3.3). Defining θ ∈ (0, π) such that cos θ = (ω · Ω)
and changing ω to (θ, z) where z ∈ Sn−2 through ω = cos θΩ + sin θ z, with dω =
Cn sinn−2 θ dθ dz (Cn being such that Cn

∫ π
0

sinn−2 θ dθ = 1 and
∫
Sn−2 dz = 1), we get:

Zη = Cn

∫ π

0

eη cos2 θ sinn−2 θ dθ,

which does not depend on Ω.

For two functions g and ϕ: Sn−1 → R, with ϕ > 0 a.e., we define:

〈g〉ϕ =

∫
Sn−1 g(ω)ϕ(ω) dω∫

Sn−1 ϕ(ω) dω

We introduce the following

Definition 3.5 (Definition of S2 and S4) The quantities S2(η) and S4(η) are defined
by

S2(η) = 〈P2(ω · Ω)〉GηAΩ
, S4(η) = 〈P4(ω · Ω)〉GηAΩ

, (3.5)

where P2(X) and P2(X) are the polynomials

P2(X) =
1

n− 1
(nX2 − 1), (3.6)

P4(X) =
1

(n− 1)(n+ 1)

[
3− 6(n+ 2)X2 + (n+ 2)(n+ 4)X4

]
.

For the same reason as in Proposition 3.4, S2 and S4 do not depend on Ω. In di-
mension n = 3, the polynomials P2 and P4 are the Legendre polynomials of degree 2
and 4 respectively. About S2, we have the following proposition, which will be proved in
Appendix B.1.
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Proposition 3.6 (Properties of S2) (i) We have

QGη AΩ
= S2(η)AΩ. (3.7)

(ii) The order parameter (2.12) of the distribution ρGηAΩ
is χρGηAΩ

= S2(η).
(iii) S2 is a non-decreasing function from (0,∞) onto (0, 1), i.e. S2(0) = 0 and S2 → 1
as η →∞.

We note that, when η → 0, GηAΩ
converges to the uniform probability distribution on

Sn−1. Likewise, when η →∞, GηAΩ
concentrates on two Dirac deltas 1

2
(δΩ + δ−Ω) which

characterizes fully aligned distributions of molecules in the direction Ω. Therefore, S2

takes the value 0 on fully disordered distributions and the value 1 on fully ordered ones. As
η increases, GηAΩ

shows increasing order evidenced by the increase of the order parameter
S2. Now, we have the following

Proposition 3.7 (Implicit definition of η(ρ)) The implicit equation

η

α ρ
= S2(η), (3.8)

has at least a root η if and only if ρ ∈ (ρ∗,+∞) where ρ∗ > 0. It has at most two
roots. By choosing the largest root (which is necessarily nonnegative), it defines a smooth
non-decreasing function (ρ∗,+∞)→ (η∗,+∞), ρ 7→ η(ρ), where η∗ = limρ→ρ∗ η(ρ) ≥ 0.

This proposition is a consequence of the result of Wang and Hoffman [55] which will
be recalled in Section 4. With this, we formulate the following conjecture, which has been
verified in dimension n = 2 [27], n = 3 [28, 46] and n = 4 [30].

Conjecture 3.1 (Stable anisotropic equilibria) The set E of stable anisotropic equi-
libria (in the sense of Remark 3.1) is given by

E = {ρGη(ρ)AΩ
| ρ ∈ (ρ∗,+∞), Ω ∈ Pn−1}.

We will only consider anisotropic equilibria, i.e. belonging to the set E above. Stable
isotropic equilibria (i.e. such that f = ρ is independent of ω) do exist but will not be
used here.

Remark 3.2 In the case n = 3, using the change of variables z = cos θ and an integration
by parts, Eq. (3.8) can be recast as

3eη∫ 1

0
eη z2 dz

= 3 + 2η +
4η2

α ρ
.

Upon changing η into −η and making ρ = 1, we recover Eq. (1.9) of [46] and Eq. (3.2)
of [57] (up to a typo in the latter: a factor 4 is missing in front of the η2 term).
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Now, we introduce the molecular interaction potential at equilibrium U0
ρGηAΩ

where

U0
f is given by (2.29). Thanks to (3.7), (3.8), we have

αρQGηAΩ
= η(ρ)AΩ. (3.9)

Thus, introducing θ ∈ [0, π] such that ω · Ω = cos θ, straightforward computations give

U0
ρGηAΩ

= −η(ω · AΩω) +
n− 1

n
αρ = −η

(
(ω · Ω)2 − 1

n

)
+
n− 1

n
αρ (3.10)

= −η
(

cos2 θ − 1

n

)
+
n− 1

n
αρ =: Ũ0(θ),

so defining the function Ũ0(θ). We note that

dŨ0

dθ
= 2η cos θ sin θ. (3.11)

For two functions ϕ and ψ defined on [0, π] with ψ > 0, a.e., we define

〈〈ϕ〉〉ψ =

∫ π
0
ϕ(θ)ψ(θ) sinn−2 θ dθ∫ π
0
ψ(θ) sinn−2 θ dθ

.

Thanks to these notations, we can state the

Definition 3.8 (Auxiliary function g) The function g: [0, π] → R, θ 7→ g(θ), is the
unique solution (in a sense made precise in Section 5) of the elliptic equation

1

sinn−2 θ

d

dθ

(
sinn−2 θ

dg

dθ

)
− dŨ0

dθ

dg

dθ
− (n− 2)

g

sin2 θ
= −dŨ0

dθ
. (3.12)

Note that, in the special case n = 3, (3.12) coincides with Eq. (5.31) of [36]. Thanks
to g we have the following proposition, proved in Section 6.2:

Proposition 3.9 (Constant c) Assume Λ 6= 0. Then, the constant c given by

c =
(n− 1)ΛS2(η)

〈〈
g
dŨ0

dθ

〉〉
exp(η cos2 θ)

, (3.13)

is such that c/Λ > 0.

In dimension n = 3, this formula coincides with formula (5.33) of [36]. We now
introduce the following definitions

Definition 3.10 (Definition of the Leslie constants αk, k = 1, . . . , 6) The Leslie con-
stants αk, k = 1, . . . , 6 are defined by

α1 = (ζ − Λ2)S4, α2 = −ΛS2

2

(1

c
+ 1
)
, α3 =

ΛS2

2

(1

c
− 1
)
, (3.14)

α4 =
2(ζ − Λ2)

(n+ 2)(n+ 4)
S4 −

2

n

(Λ2

2
+

2(ζ − Λ2)

n+ 4

)
S2 +

1

n

(
Λ2 +

2(ζ − Λ2)

n+ 2

)
, (3.15)

α5 = −2(ζ − Λ2)

n+ 4
S4 +

(Λ

2
+

Λ2

2
+

2(ζ − Λ2)

n+ 4

)
S2, (3.16)

α6 = −2(ζ − Λ2)

n+ 4
S4 +

(
− Λ

2
+

Λ2

2
+

2(ζ − Λ2)

n+ 4

)
S2, (3.17)
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where S2 and S4 are given by (3.5) and their dependence on η has been omitted for sim-
plicity, and where c is given by (3.13). We note Parodi’s relation: α6 − α5 = α2 + α3.

3.2 Main result: statement and comments

Now, our aim is to prove the following formal result:

Theorem 3.11 (Formal limit of model (2.34) - (2.36)) We assume n ≥ 2, Λ 6= 0.
For n ≥ 5, we assume that Conjecture 3.1 is true (for 2 ≤ n ≤ 4, this conjecture is a
theorem [27, 28, 30, 46]). When ε→ 0, we assume that (f ε, uε)→ (f, u) as smoothly as
needed, where f(x, ·, t) is a stable anisotropic local equilibrium for all (x, t). Then, on the
open set

B = {(x, t) ∈ Rn × [0,∞) | ρf (x, t) > ρ∗}, (3.18)

(where ρ∗ is defined at Proposition 3.7), we have

f(x, ω, t) = ρ(x, t)Gη(ρ(x,t))AΩ(x,t)
(ω), (3.19)

where the function (ρ∗,∞) 3 ρ 7→ η(ρ) ∈ [0,∞) is defined by (3.8). The functions
(x, t) 7→ (ρ,Ω, u)(x, t) satisfy the following system of partial differential equations (called
the Ericksen-Leslie system):

∂tρ+∇x · (ρu) = 0, (3.20)

∂tΩ + u · ∇xΩ +WΩ− c PΩ⊥
(
EΩ +

2β

Λ
∆x(ηΩ)

)
= 0, (3.21)

∂tu+ u · ∇xu+∇p =
1

Re
(∆xu+

1

Er
∇x · σ), (3.22)

∇x · u = 0, (3.23)

σ = σL + σE, (3.24)

σL = ρ
{
α1

(
E : (Ω⊗ Ω)

)
Ω⊗ Ω + α2Ω⊗N + α3N ⊗ Ω

+α4E + α5(Ω⊗ Ω)E + α6E(Ω⊗ Ω)
}
, (3.25)

σE = −2β

α
∇x(ηΩ)∇x(ηΩ)T

+
(n+ 1)β

nα
∇xη ⊗∇xη +

(n− 1)αβ

n
∇xρ⊗∇xρ, (3.26)

where W and E are given by (2.3), β by (2.28), c by (3.13), αk, k = 1, . . . , 6 by (3.14)-
(3.17), and N by

N = DtΩ +WΩ, (3.27)

with Dt given by (2.23).

Remark 3.3 Using (3.8), we have the following equivalent expression of σE:

σE = −2β

α
∇xΩ∇xΩ

T − (n− 1)β

nα

[
1− 1

S2
2

(
1− ηS

′
2

S2

)2]∇xη ⊗∇xη,

where S ′2 denotes the derivative of S2 with respect to η. In particular, this formula shows
that the contribution of the density gradient to σE is a rank-1 tensor (which is not obvious
from (3.26); on the other hand, (3.26) has more symmetry between ∇xρ and ∇xη).
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Remark 3.4 In the case Λ = 0, the result is still valid, except that (3.21) must be replaced
by

∂tΩ + u · ∇xΩ +WΩ− 2βc̃ PΩ⊥∆x(ηΩ) = 0,

where c̃ = (n− 1)S2(η)/〈〈g dŨ0

dθ
〉〉exp(η cos2 θ).

In the literature [36, 57], Eq. (3.21) is written differently. For this we need the

Definition 3.12 (Molecular field and γ-constants) We define

γ1 =
ΛS2

c
= α3 − α2, γ2 = −ΛS2 = α6 − α5 = α2 + α3, (3.28)

H = 2βS2∆x(ηΩ).

The quantity H is called the molecular field.

Then, we have the following proposition, whose proof is immediate:

Proposition 3.13 (Equivalent form of Eq. (3.21)) Eq. (3.21) is equivalent to

PΩ⊥
(
H − γ1N − γ2EΩ

)
= 0. (3.29)

We compare System (3.20)-(3.26) with the literature. Ref. [36] considers a spatially
homogeneous model in dimension n = 3 with ζ = 0. Spatial homogeneity means that ρ
and Ω do not depend on x, and so H = 0, σE = 0 and N = ∂tΩ + WΩ while E and W
are constant. In this case, our model reduces to (3.29) (with H = 0) and σ = σL with
σL given by (3.25), which are the two equations obtained in [36], provided the external
magnetic field considered in [36] is set to 0. Finally, formulas (3.14)-(3.17) for n = 3 and
ζ = 0 are identical with Formula (6.2) of [36]. So, our model is consistent with [36].

Then, Refs. [26, 57] consider a spatially non-homogeneous setting, but still with
a constant and uniform ρ (we easily see that ρ = Constant is consistent with both the
kinetic model (2.34) and the fluid one (3.20) due to the incompressibility conditions (2.36)
and (3.23)). Their setting is n = 3, ζ = 1

2
and Λ = 1. In this case, we see that formulas

(3.14)-(3.17) are identical with Formulas (2.6), (2.7) of [57]. If ρ = Constant, then, η =
Constant as well. So, the Ericksen stresses and molecular field reduce to

σE = −k∇xΩ∇xΩ
T , ρH = k∆xΩ, with k =

2β

α
η2, (3.30)

which are the corresponding expressions (see top of p. 7) of [57]. With these expressions,
our model reduces to (3.13) coupled with (3.22)-(3.25) and (3.30). It is identical with the
model obtained in [57].

So, our model is consistent with the literature but has two additional features: the
consideration of an arbitrary dimension n ≥ 2 and the spatial non-homogeneity of ρ (and
consequently, of η) which brings additional components to the elastic stresses and, as we
will see below, to the elastic energy. Non-uniform η has been previously considered in
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[8, 7, 25, 39, 40, 45], but to the best of our knowledge, none has explicitly linked it to the
polymer density and to kinetic theory.

A well-posedness theory of System (3.20)-(3.26) is outside the scope of this paper (see
e.g. [34, 41, 42, 43, 58] for existence results of the Ericksen-Leslie system in a variety of
forms). Note however that a condition for the well-posedness of the parabolic equation
(3.21) is that βc

Λ
> 0. This is indeed ensured by Prop. 3.9.

The main objective of this paper is to provide a (formal) derivation of Eqs. (3.20),
(3.21) using the moment method and the generalized collision invariant (GCI) concept.
Prior to this, in Section 4, we will return to the determination of the stable equilibria of
the Doi model and provide support to Conjecture 3.1 and to Formula 3.8 linking ρ and
η. Then, in Section 5, we develop the GCI concept and discuss its rationale and how it
can be linked to the Hilbert expansion procedure. The derivation of (3.21) itself will be
performed in Section 6. The second main objective of the paper is to provide expressions
for the Leslie and Ericksen stresses in arbitrary dimension and for spatially inhomogeneous
densities, which, to the best of our knowledge, has not been considered before. As these
computations are lengthy, they are deferred to Appendix B. Other auxiliary results can
be found in this appendix and in the subsequent ones, Appendices C and D.

3.3 Energetics of the Ericksen-Leslie system

Next, we define the following energies:

Definition 3.14 (Oseen-Franck and Ericksen-Leslie energies) (i) The Oseen-Franck
energy is defined by:

EF =
2β

α

∫

Rn

|∇x(ηΩ)|2
2

dx− αβn− 1

n

∫

Rn

|∇xρ|2
2

dx− βn+ 1

nα

∫

Rn

|∇xη|2
2

dx

=: EΩ
F + EρF + EηF . (3.31)

(ii) The Ericksen-Leslie energy is defined by

EEL =

∫

Rn
|u|2 dt+

1

ReEr
EF .

Remark 3.5 (i) If ρ is uniformly constant (and hence, η too), EF reduces to

EF =
2βη2

α

∫

Rn

|∇xΩ|2
2

dx,

which is the classical Oseen-Franck elastic energy [26, 57]. The additional terms EρF and
EηF make up for the non-uniformity of ρ and η.
(ii) Using (3.8), we find an alternate expression of EF :

EF =
2β

α

∫

Rn
η2 |∇xΩ|2

2
dx+

(n− 1)β

nα

∫

Rn

(
1− 1

S2
2

(
1− ηS

′
2

S2

)2
) |∇xη|2

2
.

In particular, we see that this energy is positive if the following relation holds

1− 1

S2
2

(
1− ηS

′
2

S2

)2 ≥ 0.

The investigation of this property is left to future work.
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Now, we have the following proposition, which relates the molecular field to the deriva-
tive of the Franck energy with respect to the orientation field Ω.

Proposition 3.15 (Relation between the Franck energy and the molecular field)
We have the following relation:

ρH = −δEF
δΩ

(η,Ω) =
2β

α
η∆x(ηΩ), (3.32)

where δEF
δΩ

(η,Ω) is the functional derivative of EF with respect to the field Ω evaluated at
the pair (η,Ω).

Proof. For a n× n tensor S, we introduce the following energy density

eΩ
F (S) =

2β

α

|S|2
2
,

so that we can write

EΩ
F =

∫

Rn
eΩ
F

(
∇x(ηΩ)

)
dx.

Now, straightforward computations show that the functional derivative δEF
δΩ

is given by

δEF
δΩ

(η,Ω) =
δEΩ

F

δΩ
(η,Ω) = −η∇x ·

(∂eΩ
F

∂S

(
∇x(ηΩ)

))
= −2β

α
η∆x(ηΩ) = −ρH,

where the first equality is due to the fact that the energies EρF and EηF do not depend on
Ω, and the last one, to (3.8). Then, Eq. (3.32) follows.

The following proposition gives the energy identity for the Ericksen-Leslie system. Its
proof is developed in Appendix B.4

Proposition 3.16 (Energy identity for the Ericksen-Leslie system) We have the
following identity:

dEEL
dt

+DEL = 0, (3.33)

DEL =
1

Re

∫

Rn
|∇xu|2 dx+

1

ReEr

∫

Rn
ρ
{(
α1 +

γ2
2

γ1

)(
E : (Ω⊗ Ω)

)2
+ α4|E|2

+
(
α5 + α6 −

γ2
2

γ1

)
|EΩ|2 +

1

γ1

|PΩ⊥H|2
}
dx.

Remark 3.6 (i) The use of this energy identity to derive a priori bounds for the solution
of the Ericksen-Leslie equations is subject to two conditions: first, that the Oseen-Franck
energy is positive as already mentioned in Remark 3.5; second, that the dissipation func-
tional DEL is positive as well, which is not obvious given that the coefficients are not all
positive. In [57], it is shown that, in the case n = 3, ζ = 1

2
and Λ = 1, DEL is positive.

Besides, conditions for the positive-definiteness of DEL with coefficients which are not
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necessarily linked with a microscopic model can be found in [58]. The inspection of the
positivity of EF and DEL for the present model is left to future work.

(ii) It is expected that this energy identity is the limit as ε→ 0 of the free-energy dissi-
pation identity (2.24) of the Doi-Navier-Stokes system. This is indeed formally shown in
[26]. However, due to the presence of the square of the Deborah number at the denomina-
tor of (2.27), we expect that the limiting free-energy dissipation identity will involve the

first order correction f 1 = limε→0
fε−f0

ε
. Showing that the terms involving f 1 eventually

vanish is not obvious and left to future work.

4 Local equilibria

In this section, we develop the rationale for Conjecture 3.1. Since we aim at formal
convergence results only, we suppose that the solution f ε to (2.40) satisfies

f ε → f as ε→ 0 as smoothly as needed.

Then, from (2.40), it follows that f should satisfy (3.1), i.e. should be an equilibrium
for any (x, t). Eq. (3.1) leaves the dependence of f on (x, t) undetermined. Such an
equilibrium is called ’local’ (by contrast to a global equilibrium where f should not depend
on (x, t)).

In this section, our goal is to determine the stable equilibria. Indeed, we anticipate
that only stable equilibria can lead to a long time dynamics described by hydrodynamic
equations. First, we should note that local equilibria are known in any dimension n [55]
(see also [14, 27, 47] for the case n = 2 and [13, 28, 46, 59, 61] for the case n = 3). However,
the stability of these equilibria is not known for general dimension n but only for n = 2
[27], n = 3 [28, 46] and n = 4 [30]. These results strongly support a conjecture about
the stable equilibria in general dimension n that we will make below and whose rigorous
investigation is deferred to future work. We first need to introduce a set of notations and
intermediate results.

Definition 4.1 (Auxiliary operator) Let S be a trace-free symmetric matrix. Then,
the auxiliary operator LS is given by

LSf = ∇ω ·
[
GS∇ω

( f
GS

)]
. (4.1)

with GS given by (3.2).

The relation between the collision operator C(f) and the auxiliary operator LS is
given by the following lemma. Note that LS is NOT the linearization of C about GS.

Lemma 4.2 (Relation between C and L) We have

C(f) = Lαρf Qff. (4.2)
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Proof of Lemma 4.2. We can write

LSf = ∇ω ·
[
∇ωf − f∇ω

(
logGS

)]
.

But − logGS = −ω · Sω + logZS. So, − logGαρfQf = U0
f + Z̃(f) where Z̃(f) does not

depend on ω. Thus, −∇ω(logGαρfQf ) = ∇ωU
0
f and so, LαρfQf = C(f), thanks to (2.39).

Now, we have a first result:

Lemma 4.3 (First step towards a characterization of the equilibria) (i) Let f ≥
0, f 6= 0 be an equilibrium. Then, there exists ρ > 0 and a trace-free symmetric matrix Q
such that

f = ρGαρQ. (4.3)

(ii) Reciprocally, let f be given by (4.3). Then, f is an equilibrium if and only if Q
satisfies the fixed-point equation also known as the compatibility equation:

Q = QρGαρQ , (4.4)

where we recall that for a distribution f , Qf is given by (2.10).

Proof. (i) Suppose C(f) = 0. Letting S = α ρf Qf , (4.2) implies LSf = 0. Multiplying
(4.1) by f/GS, integrating over Sn−1 and using Green’s formula leads to

∫

Sn−1

GS

∣∣∣∇ω

( f

GS

)∣∣∣
2

dω = 0.

Since the quantity inside the integral is nonnegative, andGS > 0, this implies∇ω( f
GS

) = 0.
So, there exists ρ > 0 such that f = ρGS which leads to (4.3).

(ii) Let f be given by (4.3). Then, since GαρQ is a probability density, we have ρf = ρ.
Now, from the proof of Part (i), if f is an equilibrium, then f = ρfGαρf Qf . We deduce
that GαρQf = GαρQ, and, by taking the logarithm, that

ω · (Qf −Q)ω =
1

α ρ

(
logZαρQf − logZαρQ

)
=: µ,

where µ is a constant, independent of ω. So, Qf −Q− µ Id is the matrix of a quadratic
form which is zero on Sn−1 and so, by homogeneity, on Rn. Thus, Qf −Q−µ Id = 0 and,
owing to the fact that Qf and Q are trace-free, we have µ = 0. It follows that Qf = Q.
Replacing f by its expression (4.3), we get (4.4).

To complete the characterization of the equilibria, we need to solve the compatibility
equation (4.4). As pointed out above, this has been done in any dimension n in [55] (see
also [47] for n = 2 and [28, 46, 61] for n = 3). This result is summarized without proof in
the following lemma

Lemma 4.4 (Final characterization of the equilibria [55]) Let f be an an equilib-
rium. Then Qf has at most two distinct eigenvalues.
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• If all eigenvalues of Qf are identical, then Qf = 0 and f = ρ is a uniform equilib-
rium.

• If Qf has exactly two distinct eigenvalues, denote by λf its largest eigenvalue and
by Yf the associated eigenspace, supposed of dimension d such that 1 ≤ d ≤ n− 1.
Then, 0 < λf <

1
d
− 1

n
and Qf is written

Qf = Bλf ,Yf := λf
(
PYf −

d

n− dPY⊥f
)
, (4.5)

where PYf and PY⊥f are the orthogonal projections of Rn onto Yf and Y⊥f respectively.

Then, f is of the form
f = ρnd(λf )Gαρnd (λf )Bλf ,Yf

,

where ρnd : [0, 1
d
− 1

n
) → [0,∞), λ 7→ ρnd(λ) is a specific function (not detailed here

except for the case d = 1, see below). Furthermore, λf is a root of the equation

ρnd(λ) = ρ. (4.6)

The existence and number of classes of equilibria such that ρf = ρ are determined
by the existence and number of roots λ of Eq. (4.6). A given root λ gives rise
to a family of equilibria parametrized by the Grassmann manifold Gr(k, n) of d-
dimensional vector subspaces Y of Rn.

Here, we are only interested in the case d = 1 as we will conjecture that this is the
only case which includes stable equilibria (see conjecture 4.1 below). For simplicity, ρn

stands for the function ρn1 . In the case n = 2, ρ2 is monotonously increasing and maps
[0, 1

2
) onto the interval [ρ∗,+∞) with ρ∗ = ρ2(0) (see Fig. 1a). In the case n ≥ 3, ρn is

decreasing in the interval [0, λ∗] and increasing in [λ∗, 1− 1
n
). Thus ρ∗ = ρ(λ∗) is a global

minimum of ρn (see Fig. 1b). In all cases, the equation ρn(λ) = ρ has a solution if and
only if ρ ≥ ρ∗ and this solution is unique in the case n = 2 while, in the case n ≥ 3, there
are two solutions if ρ ∈ (ρ∗, ρn(0)], and one solution if ρ ∈ {ρ∗} ∪ (ρn(0),∞) (see [55] for
details).

As already stated, for general n, the stability of the equilibria described in Lemma
4.4 is not known yet. However, their stability is known for n = 2 [27], n = 3 [28, 46]
and n = 4 [30]. Based on these results, we formulate the following conjecture for any
dimension n ≥ 2 and refer to the above-mentioned references for details on the notion of
stability involved.

Conjecture 4.1 (Stable anisotropic equilibria) For any dimension n ≥ 2, the branch
of solutions to the equation ρn(λ) = ρ (which corresponds to d = 1) with largest λ, which
is defined for ρ ∈ (ρ∗,∞), corresponds to the unique class of stable anisotropic equilibria.

We denote by the function λ: (ρ∗,+∞)→ (λ∗, 1− 1
n
), ρ 7→ λ(ρ), the largest solution

to ρn(λ) = ρ. With Conjecture 4.1, the stable equilibria f correspond to the class of
equilibria described in Lemma 4.4, Case 2, with d = 1 and λf = λ(ρ). In this case,
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1
2

0

λ

ρ∗

ρ2

1

(a) n = 2

ρn(0)

λ∗

ρ∗

ρn

1− 1
n

λ

0

1

(b) n ≥ 3

Figure 1: Graphical representation of the function λ 7→ ρn(λ) (after [55]). (a) case n = 2.
(b) case n ≥ 3. The portions of the curves that correspond to stable equilibria are in
blue, the unstable ones, in green.

Yf is one-dimensional and thus, spanned by a unique normalized vector (up to a sign)
Ω ∈ Pn−1. Hence, we have PYf = Ω⊗ Ω and PY⊥f = PΩ⊥ . Then by (4.5),

Qf =
n

n− 1
λ(ρ)AΩ, (4.7)

where AΩ is the normalized uniaxial tensor given by (3.3). Defining

η(ρ) =
n

n− 1
α ρλ(ρ), (4.8)

from (4.4) we get that the equilibria are of the form f = ρGη(ρ)AΩ
where ρ is arbitrary

as long as λ(ρ) is defined, i.e. ρ ∈ (ρ∗,∞), and where Ω is arbitrary in Pn−1. Hence,
Conjecture 3.1 is a direct consequence of Conjecture 4.1, provided we show that the
function ρ 7→ η(ρ) is the one given by Proposition 3.7, which we do now:

Proof of Proposition 3.7. Equating (4.7) with (3.7) and using (4.8), we get (3.8). The
root with the largest η must be chosen because this corresponds to the choice of largest
λ in Conjecture 4.1 (as λ is proportional to η by (4.8)).

From (2.40) and Conjecture 4.1, we deduce the:

Corollary 4.5 (Local equilibria) Let f be the formal limit of f ε as ε→ 0 and suppose
that uε → u smoothly. On the open set B defined by (3.18), f is given by (3.19) where
ρ = ρf : (x, t) ∈ Rn × [0,∞) 7→ [ρ∗,∞) and Ω: (x, t) ∈ Rn × [0,∞) 7→ Pn−1 are functions
such that f satisfies

Tu(f) = lim
ε→0

C(f ε)

ε
. (4.9)
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Note that ρ = ρf is the local density associated to f , while Ω(x, t) if the axis of the
uniaxial Q-tensor Qf thanks to (3.7). The restriction to the set B is needed to ensure
that η(ρ(x, t)) is well-defined. The determination of the functions (ρ,Ω) such that (4.9)
holds is quite challenging, due to the presence of ε in the denominator at the right-hand
side. It will require the Generalized Collision Invariant concept as detailed below.

5 Generalized collision invariants

5.1 Collision invariant

We first recall the notion of Collision Invariant (CI). The goal is to eliminate the singular
right hand side of (4.9) by using integration against appropriate test functions. More
precisely we have:

Definition 5.1 A Collision Invariant (CI) ψ(ω) is a function such that

∫

Sn−1

C(f)ψ dω = 0, ∀f.

Here, we do not specify any regularity requirement on ψ since our goal is to develop
a formal theory only. If ψ is a CI, using it as a test function for (2.40), we have, after
integration with respect to ω and omitting ε as the identity is valid for any ε:

∂t

(∫

Sn−1

fψ dω
)

+∇x ·
(
u

∫

Sn−1

fψ dω
)
−
∫

Sn−1

∇ωψ · (ΛPω⊥E −W )ω f dω

−2αβ

∫

Sn−1

∇ωψ · Pω⊥∆x(ρf Qf )ω f dω = 0, (5.1)

which is an evolution equation for the moment
∫
Sn−1 fψ dω. Since this equation does not

depend on ε, it is still verified by the solution of (4.9). We have an obvious CI, namely,
ψ = 1, which leads to the mass conservation (or continuity) equation

∂tρf +∇x · (ρfu) = 0. (5.2)

In particular, taking the limit ε → 0, it shows (3.20). As u is divergence free thanks to
(2.36), (5.2) can be equivalently written

Dtρf = 0, (5.3)

with Dt given by (2.23).
Any odd function ψ of ω is also a CI. However, it is not invariant when ω is changed

into −ω, a condition that has been enforced throughout this work (see e.g. (2.1)). Indeed,
Eq. (5.1) with odd functions ψ have all their terms identically zero and do not provide
any useful information. We do not have any other obvious CI. Therefore, we are lacking
an equation for Ω. In order to overcome this problem, we use the concept of “Generalized
Collision Invariant (GCI)” introduced in [22] and adapted to the present context.
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5.2 Generalized collision invariant: definition and characteriza-
tion

To introduce the GCI concept, we first need some additional notations and definitions.

Definition 5.2 (and notations) (i) S0
n is the vector space of symmetric trace free n×n

matrices.
(ii) U0

n is the subset of S0
n consisting of tensors whose leading eigenvalue is equal to n−1

n

and is simple.
(iii) We denote by λf the leading eigenvalue of Qf and by ηf the following quantity:

ηf = α ρf
n

n− 1
λf . (5.4)

From (2.8), we have

0 ≤ n

n− 1
λf ≤ 1.

Note that in general, λf may not be simple.
(iv) If Qf 6= 0, then λf 6= 0 and we define the “Normalized Q-Tensor (NQT) of f”, Σf

by

Σf =
n− 1

n

Qf

λf
. (5.5)

Σf ∈ S0
n. Its leading eigenvalue is n−1

n
which, again, may not be simple.

(vi) Let Σ ∈ U0
n. We denote by ΩΣ ∈ Pn−1 the normalized eigenvector (up to a sign)

associated with the simple eigenvalue n−1
n

of Σ. Note that the tensor AΩΣ
is uniquely

defined, irrespective of the choice of the sign of ΩΣ.
(v) Suppose Σf ∈ U0

n. Then, ΩΣf is simply denoted by Ωf .

Remark 5.1 From (3.7), we get that ΣρGηAΩ
= AΩ meaning that the NQT’s of the stable

anisotropic equilibria are all equal to AΩ.

We recall that the auxiliary operator LS for S ∈ S0
n is defined by (4.1). The GCI are

now defined in the following

Definition 5.3 Let (η,Σ) ∈ (0,∞) × U0
n. A Generalized Collisional Invariant (GCI)

associated to the pair (η,Σ) is a function ψ such that

∫

Sn−1

(LηΣf)ψ dω = 0 for all f such that PΩ⊥Σ
(QfΩΣ) = 0. (5.6)

The set of GCI associated to a given pair (η,Σ) ∈ (0,∞)×U0
n is a linear vector space and

is denoted by CηΣ.

There is a rationale for this definition, which is developed in Section 5.3 below.

The following lemma gives the equation satisfied by the GCI:
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Lemma 5.4 Let (η,Σ) ∈ (0,∞)×U0
n. Then ψ ∈ CηΣ if and only if there exists V ∈ {ΩΣ}⊥

such that
∇ω ·

(
GηΣ(ω)∇ωψ

)
= (ω · ΩΣ) (ω · V )GηΣ(ω), ∀ω ∈ Sn−1. (5.7)

Proof. For Ω ∈ Sn−1/{±1}, we define the following space of functions:

XΩ = {Sn−1 3 ω 7→ (Ω · ω) (V · ω) ∈ R | V ∈ {Ω}⊥}, (5.8)

The space XΩ is a finite-dimensional subspace of L2(Sn−1). We first note that for any
f ∈ L2(Sn−1), we have

PΩ⊥(QfΩ) = 0 ⇐⇒
∫

Sn−1

f(ω) (ω · V ) (ω · Ω) dω = 0, ∀V ∈ {Ω}⊥

⇐⇒ f ∈ X⊥Ω , (5.9)

where the orthogonality is meant with respect to the standard L2-product on L2(Sn−1).
On the other hand, we note that

∫
Sn−1(LηΣf)ψ dω = 0 is equivalent to saying that

f ∈ {L∗ηΣψ}⊥ where again, the orthogonality is meant with respect to the standard L2-
product on L2(Sn−1) and where L∗ηΣ is the formal L2-adjoint of LηΣ, i.e.

L∗ηΣψ =
1

GηΣ

∇ω · (GηΣ∇ωψ).

Therefore, thanks to (5.9), Condition (5.6) is equivalent to saying that

f ∈ X⊥ΩΣ
=⇒ f ∈ {L∗ηΣψ}⊥,

or in other words, that X⊥ΩΣ
⊂ {L∗ηΣψ}⊥. Taking the orthogonal to this relation and

noting that both XΩΣ
and Span{L∗ηΣψ} (where for a subset B of a vector space, Span

B denotes the subspace generated by B) are finite-dimensional, hence, closed subspaces
of L2(Sn−1), we get Span{L∗ηΣψ} ⊂ XΩΣ

. In particular, this implies that there exists
V ∈ {ΩΣ}⊥ such that L∗ηΣψ(ω) = (ω ·ΩΣ) (ω · V ), which, upon multiplying by GηΣ, gives
(5.7). The converse is straightforward.

Now, we give an existence theory for the solutions of (5.7). We denote by H1(Sn−1) the
space of square integrable functions of Sn−1 into R whose derivatives are square integrable
and introduce

Ḣ1(Sn−1) =
{
u ∈ H1(Sn−1)

∣∣∣
∫

Sn−1

u(ω) dω = 0
}
.

Then we have the

Proposition 5.5 Let (η,Σ) ∈ (0,∞)× U0
n and V ∈ {ΩΣ}⊥. Then, there exists a unique

solution of (5.7) in Ḣ1(Sn−1) denoted by ψηΣ,V . The linear vector space CηΣ of GCI
associated with (η,Σ) is given by

CηΣ =
{
C0 + ψηΣ,V | C0 ∈ R, V ∈ {ΩΣ}⊥

}
. (5.10)
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Proof. We look for solutions of (5.7) in variational form. Those solutions read as follows:
find ψ ∈ H1(Sn−1) such that

∫

Sn−1

GηΣ∇ωψ · ∇ωθ dω = −
∫

Sn−1

GηΣ (ω · ΩΣ) (ω · V ) θ dω, ∀θ ∈ H1(Sn−1). (5.11)

By Poincaré inequality and the fact that GηΣ is smooth and bounded from above and
below, the bilinear form

∫
GηΣ∇ωψ · ∇ωθ dω is continuous and coercive on Ḣ1(Sn−1).

Therefore, by Lax-Milgram theorem, the variational formulation (5.11) has a unique so-
lution in Ḣ1(Sn−1) denoted by ψηΣ,V when θ is restricted to belong to Ḣ1(Sn−1). To show
that this is a solution for all θ ∈ H1(Sn−1), it is enough to show that it satisfies (5.11) for
θ = 1, i.e. that the following holds:

∫

Sn−1

GηΣ (ω · ΩΣ) (ω · V ) dω = 0, ∀V ∈ {ΩΣ}⊥. (5.12)

Let (e1, . . . , en) with en = ΩΣ be an ortho-normal basis of Rn consisting of eigenvectors
of Σ. Let λ1, . . . , λn be the associated eigenvalues. Let ω =

∑n
k=1 ωk ek be the decompo-

sition of ω in this basis. It is enough to show (5.12) for V = ej with j ∈ {1, . . . , n − 1}.
Then, we have

∫

Sn−1

GηΣ (ω · ΩΣ) (ω · ej) dω =
1

ZηΣ

∫

Sn−1

eη(λ1ω2
1+...λnω2

n) ωj ωn dω = 0,

thanks to the change of ωn into −ωn. This shows (5.12) and so, the existence and unique-
ness of a solution of (5.7) in Ḣ1(Sn−1) is proved.

Now, all solutions in H1(Sn−1) of (5.11) are of the form ψηΣ,V + C0 where C0 is any
constant. Collecting all the solutions for all the possible V ∈ {ΩΣ}⊥ leads to (5.10) and
ends the proof.

Remark 5.2 We note that if ΩΣ is changed into −ΩΣ, ψηΣ,V must be changed into
ψηΣ,−V . It follows that (5.10) remains unchanged.

We now define a vector-valued GCI ~ψηΣ in the following way

Definition 5.6 Given (η,Σ) ∈ (0,∞)× U0
n, we introduce the function ~ψηΣ: Sn−1 → Rn,

defined as the unique solution (in Ḣ1(Sn−1)) of the following vector-valued equation:

∇ω ·
(
GηΣ(ω)∇ω

~ψηΣ

)
= (ω · ΩΣ)PΩ⊥Σ

ω GηΣ(ω), ∀ω ∈ Sn−1.

We note that

ψηΣ,V = ~ψηΣ · V, ∀V ∈ {ΩΣ}⊥ and ~ψηΣ · ΩΣ = 0,

and that ~ψηΣ is changed into −~ψηΣ if ΩΣ is changed into −ΩΣ.
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We can provide an explicit expression of ~ψηAΩ
, for all (η,Ω) ∈ (0,∞) × Sn−1 as the

next proposition shows. Let us first define the following space:

H =
{
h : (−1, 1)→ R

∣∣∣
∫ 1

−1

(1− r2)
n−1

2 |h(r)|2 dr <∞,
∫ 1

−1

(1− r2)
n+1

2 |h′(r)|2 dr <∞
}
,

where h′ denotes the derivative of h.

Proposition 5.7 Let (η,Ω) ∈ (0,∞)× Sn−1 be given. We have

~ψηAΩ
(ω) = hη(ω · Ω)ω⊥, (5.13)

where ω⊥ = PΩ⊥ω and hη is the unique solution in H of the following equation:

−(1− r2)
n−1

2 eηr
2 (

2η r2 + n− 1
)
hη

+
d

dr

[
(1− r2)

n+1
2 eηr

2 dh

dr

]
= r (1− r2)

n−1
2 eηr

2

. (5.14)

Furthermore, hη is odd and hη(r) ≤ 0 for r ≥ 0.

Proof. We apply [20], Proposition 4.2 (ii) (with the following changes: u → Ω, κ
2
→ η,

d→ n, Γ̄∗(ψ, u)→ L∗ηAΩ
ψ). Note that these techniques were first developed in [18, 29].

Remark 5.3 Formula (5.13) shows that the vector GCI ~ψηAΩ
is invariant under rotations

leaving Ω fixed. This is a consequence of the fact that AΩ is uniaxial with axis Ω. No
simple formula like (5.13) is available for more general vector GCI ~ψηΣ, when Σ ∈ U0

n is
not uniaxial. However, while we will need vector GCI for general Σ ∈ U0

n, we will only
need an explicit expression of them in the case of a uniaxial tensor Σ = AΩ. So, Prop.
5.7 is enough for our purpose.

The following proposition provides an alternate equation satisfied by hη in terms of
the function g defined in (3.12). Its proof is easy and is sketched in Appendix C.1 for the
reader’s convenience.

Proposition 5.8 (Alternate equation for hη) For θ ∈ [0, π], we define the function

g(θ) = −2η hη(cos θ) sin θ. (5.15)

Then g satisfies the equation (3.12).

Finally, the following proposition will have important consequences for the derivation
of the macroscopic model:
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Proposition 5.9 Let f : Sn−1 → R be twice continuously differentiable such that Qf 6= 0

and Σf ∈ U0
n. Then, the vector GCI ~ψηfΣf is well-defined and we have

∫

Sn−1

C(f) ~ψηfΣf dω = 0. (5.16)

Remark 5.4 Proposition 5.9 expresses an important structural property of C. Let (η,Σ) ∈
(0,∞)× U0

n. The GCI ~ψηΣ cancels the collision operator acting on all functions f which
satisfy (ηf ,Σf ) = (η,Σ).

Proof. We show that PΩ⊥f
(QfΩf ) = 0. Indeed, if this is the case, from (5.6), we get

∫

Sn−1

LηfΣff
~ψηfΣf dω = 0,

and using (4.2), (5.4) and (5.5), this shows (5.16). But, by definition, Ωf is the leading
eigenvector of Qf with eigenvalue λf . So, QfΩf = λf Ωf and thus PΩ⊥f

(QfΩf ) = 0, which

ends the proof.

Thanks to the GCI, we can now find how (4.9) translates into an equation for the Q-
tensor principal direction Ω. This will be done below but first we provide some discussion
of the GCI concept.

5.3 Discussion of the GCI concept

5.3.1 Rationale for Definition 5.6

First, let us note that the condition PΩ⊥Σ
(QfΩΣ) = 0 involved in Definition 5.3 simply

means that ΩΣ is an eigenvector of Qf . We now try to provide a geometric interpretation
of Condition (5.6). First let us introduce a few additional notations. We endow S0

n with
the inner-product S : P = Tr{SP} and for a subset B of S0

n, its orthogonal with respect
to this inner-product is denoted by B⊥. We recall that B⊥ is a linear subspace of S0

n and
that (B⊥)⊥ = Span(B).

We now define the submanifold N of U0
n which consists of normalized prolate uniaxial

Q-tensors i.e.

N = {AΩ | Ω ∈ Pn−1} = {Ω⊗ Ω− 1

n
Id | Ω ∈ Pn−1}.

Note that N is the manifold spanned by the NQT’s of the equilibria (see Remark 5.1).
The mapping Pn−1 3 Ω 7→ AΩ ∈ N is a diffeomorphism. The tangent space of N at AΩ

is given by:
TAΩ
N = {Ω⊗ V + V ⊗ Ω | V ∈ {Ω}⊥}. (5.17)

Indeed, for V ∈ TΩPn−1 = {Ω}⊥, consider a curve I 3 t 7→ ξ(t) ∈ Pn−1 where I is an
open interval of R containing 0, such that ξ(0) = Ω and ξ′(0) = V . Then, d

dt
(Aξ(t)) =

Ω⊗ V + V ⊗Ω, showing the claim. We denote by PTAΩ
N the orthogonal projection of S0

n

on TAΩ
N for the inner product defined just above.
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We have a mapping p: U0
n → N , Σ 7→ AΩΣ

. For any Ω ∈ Pn−1, the pre-image
p−1({AΩ}) is denoted by FΩ. All these pre-images are homeomorphic to one-another. Let
us choose one of them and denote it by F . This endows U0

n of a fiber bundle structure of
base N and fiber F . Now, we have the following lemma:

Lemma 5.10 Let Ω ∈ Pn−1 be given.

(i) Let Q ∈ Sn0 . Then, PΩ⊥(QΩ) = 0 ⇐⇒ Q ∈
(
TAΩ
N
)⊥

.

(ii) FΩ is a subset of
(
TAΩ
N
)⊥

.

Proof. (i) Using the symmetry of Q and (5.17), we have:

PΩ⊥(QΩ) = 0 ⇐⇒ (QΩ) · V = 0, ∀V ∈ {Ω}⊥
⇐⇒ Q : (Ω⊗ V ) = 0, ∀V ∈ {Ω}⊥
⇐⇒ Q : (Ω⊗ V + V ⊗ Ω) = 0, ∀V ∈ {Ω}⊥

⇐⇒ Q : B = 0, ∀B ∈ TAΩ
N ⇐⇒ Q ∈

(
TAΩ
N
)⊥
,

which shows (i).
(ii) Suppose Σ ∈ FΩ. Then AΩΣ

= AΩ which implies ΩΣ = Ω (in Pn−1). Thus, Ω is an

eigenvector of Σ i.e. PΩ⊥(ΣΩ) = 0. Hence, by (i), Σ ∈
(
TAΩ
N
)⊥

.

So, Eq. (5.6) can be equivalently written:
∫

Sn−1

(LηΣf)ψ dω = 0 for all f such that Qf ∈
(
TAΩΣ

N
)⊥
. (5.18)

This can be geometrically interpreted as follows: to any Σ ∈ U0
n we consider its projection

(in the fiber bundle sense) p(Σ) = AΩΣ
onto N . Then, (5.18) means that the GCI

associated to (η,Σ) are all the functions ψ whose integrals against LηΣf cancel when
Qf belongs to the orthogonal of the tangent space to N at AΩS . This is illustrated in
Fig. 2. It is likely that this geometrical structure persists with other collision operators
as it seems to express some intrinsic geometrical constraint. This point will be further
developed in future work.

5.3.2 Relation between the GCI and the linearized collision operator

Let DfC the linearization of the collision operator C about the distribution function f
and let DfC

∗ be its formal L2-adjoint. For a distribution function f , we call (ηf ,Σf ) the
’moments’ of f . In this section, we show the following: suppose (η,Σ) ∈ (0,∞) × Un0
is the moment of an equilibrium distribution function, i.e. (η,Σ) = (η(ρ), AΩ) where
(ρ,Ω) ∈ (ρ∗,∞)×Sn−1/{±1} and denote by f 0 = ρGη(ρ)AΩ

the corresponding equilibrium.
Then, we have

Cη(ρ)AΩ
= ker(Df0C∗). (5.19)

On the other hand, if (η,Σ) is not the moment of an equilibrium, then, although there
exist Gibbs distributions f = ρGηΣ associated with (η,Σ), in general, we have

CηΣ 6= ker(DfC
∗). (5.20)
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Σ

AΩ

TAΩ
N

FΩ

Q

Un
0

N

(
TAΩ

N
)⊥

1

Figure 2: Graphical representation of Condition (5.18). The ambient three-dimensional
space in the figure represents the flat space Sn0 in which Un0 is an imbedded manifold
represented by a surface. N is a submanifold of Un0 depicted as the curvy blue line. It
endows Un0 of a fiber bundle structure of base N . Let Σ ∈ Un0 . It projects (in the bundle
sense) onto AΩ ∈ N and so, belongs to the fiber FΩ represented by the curvy red line.
The tangent space to N at AΩ, TAΩ

N is represented by the magenta straight line. Its
orthogonal (TAΩ

N )⊥ is the gray-shaded plane on the figure. It contains FΩ by virtue of
Lemma 5.10 (ii). Then, condition (5.18) means that the GCI associated with (η,Σ) are
the functions ψ that cancel LηΣf for all f whose Q-tensor Qf (represented by the point Q
on the figure) belongs to (TAΩ

N )⊥.

Thus, a GCI associated to an arbitrary moment (η,Σ) is in general not in the kernel of
the adjoint linearized collision operator about the corresponding Gibbs distribution. It is
only so if (η,Σ) is the moment of an equilibrium in the above sense. Consequently, GCI
are different and truly more general concepts than elements of such kernels. Likewise,
Eq. (5.15) linking the GCI to the auxiliary function g given by (3.12) is only valid for
moments (η(ρ), AΩ) related to equilibria. Observe however that we will not need to
explicit the form of the GCI for general moments, but only for those corresponding to an
equilibrium (see Section 6 below).

Formula (5.19) is unsurprising. Indeed, Eq. (3.21) has been shown in [36, 57] using the
Hilbert expansion method. This method corresponds to inserting the Hilbert expansion
f ε = f 0 +εf 1 +O(ε2) into the kinetic equation (2.40) and matching identical powers of ε.
We get

C(f 0) = 0, DCf0f 1 = Tu0f 0,

for the terms of order ε−1 and ε0 respectively (note that we also need to Hilbert-expand
the velocity uε). Now, the first equation implies that f 0 is an equilibrium f 0 = ρGη(ρ)AΩ

.
Then, one looks for a necessary and sufficient condition for the existence of a solution f 1

to the second equation. Assuming that Im DCf0 = (ker DC∗f0)⊥ (which can be proved
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via a careful study of the spectral properties of DCf0 , see [57]), such a condition is
∫

Sn−1

Tu0f 0 ψ dω = 0, ∀ψ ∈ kerDC∗f0 .

Since this is also what we get when ψ ranges in Cη(ρ)AΩ
(see Eq. (6.1) below), Eq. (5.19)

must be true. However, it would be desirable to have a direct proof of (5.19). This is our
goal here. As a by-product, we will also see why we have (5.20). We first compute the
adjoint linearized collision operator.

Lemma 5.11 (Adjoint linearized collision operator) Let ρ ∈ (0,∞), S ∈ Sn0 . We
have

DρGSC
∗g(ω) = L∗αρQρGS

g(ω)− αρ (ρQ)GSL∗Sg : ω ⊗ ω, (5.21)

where GS is defined by (3.2), the auxiliary operator L by (4.1) and L∗ is its formal L2-
adjoint. Here (ρQ)GSL∗Sg stands for the right-hand side of (2.10) with f replaced by GSL

∗
Sg

(note that ρGSL∗Sg = 0 so that QGSL
∗
Sg

is not defined but (ρQ)GSL∗Sg itself is well-defined).

Proof. From (2.39) and the fact that U0
f depends linearly on f , we get

DρGSCf = ∇ω ·
(
∇ωf + f∇ωU

0
ρGS

+ ρGS∇ωU
0
f

)
. (5.22)

We note that ∇ωU
0
ρGS

= −∇ω

(
logGαρQρGS

)
. Inserting this into (5.22), we get

DρGSCf = LαρQρGS f + ρGS L
∗
SU

0
f . (5.23)

Thanks to (2.29), we also note that L∗SU
0
f = L∗SŬ

0
f with Ŭ0

f = −α(ω ·ρfQfω). Thus, using
(5.23), Stokes formula and that LS(GSg) = GSL

∗
Sg, we get

∫

Sn−1

DρGSCf g dω =

∫

Sn−1

f L∗αρQρGS
g dω + ρ

∫

Sn−1

Ŭ0
f GS L

∗
Sg dω.

Inserting the expression of Ŭ0
f into this formula, using the expression (2.10) of ρfQf and

exchanging ω and ω′ in the resulting integral, we are led to (5.21).

Now, in the case of an equilibrium, we compute the kernel of the adjoint linearized
collision operator:

Lemma 5.12 (kernel of Df0C∗ when f 0 is an equilibrium) Let ρ ∈ (ρ∗,∞) and Ω ∈
Sn−1/{±1}. Let f 0 = ρGη(ρ)AΩ

be an equilibrium of C, where the function ρ 7→ η(ρ) is

defined in Prop. 3.7. Define X̃ρ,Ω to be the space of functions ϕ : ω 7→ ϕ(ω) which satisfy

ϕ(ω) = αρ (ρQ)Gη(ρ)AΩ
ϕ : ω ⊗ ω, ∀ω ∈ Sn−1. (5.24)

Then we have

g ∈ ker
(
DρGη(ρ)AΩ

C∗
)
⇐⇒

∫

Sn−1

Lη(ρ)AΩ
f g dω = 0, ∀f ∈ X̃⊥ρ,Ω, (5.25)

where the orthogonality is with respect to the standard L2(Sn−1)-inner product.

33



Proof. Defining S = η(ρ)AΩ, we have

αρQρGS = αρQρGηAΩ
= ηAΩ = S, (5.26)

thanks to (3.7) and (3.8). Thus, thanks to (5.21), we are led to

DρGC
∗g(ω) = L∗g(ω)− αρ (ρQ)GL∗g : ω ⊗ ω, (5.27)

where here and in the remainder of the proof, we omit the dependence of η on ρ, as well
as the index ηAΩ on L∗ and G and the indices ρ, Ω on X̃ for clarity.

For any smooth enough function f , we have by the Stokes formula:
∫

Sn−1

Lf g dω =

∫

Sn−1

f L∗g dω =

∫

Sn−1

f ϕ dω,

with ϕ = L∗g. Thanks to (5.27) and the fact that g ∈ kerDρGC
∗, ϕ satisfies (5.24),

so ϕ ∈ X̃ . If f ∈ X̃⊥, we deduce that
∫
Lf g dω = 0, which shows the left-to-right

implication of (5.25).
Conversely suppose that g is such that

∫
Lf g dω = 0, ∀f ∈ X̃⊥, i.e.

f ∈ X̃⊥ =⇒ f ∈ {L∗g}⊥.

Taking the orthogonals, we get
Span{L∗g} ⊂ X̃ .

Indeed, both Span {L∗g} and X̃ are finite-dimensional, hence closed. This is obvious
for the former which is one-dimensional. For the latter, by (5.24), X̃ is included in the
space of quadratic polynomials in ω, which is a finite-dimensional space. So, defining
ϕ = L∗g, we have ϕ ∈ X̃ . Replacing ϕ by its expression in terms of g in (5.24), we get
DρGC

∗(g) = 0, which shows the right-to-left implication of (5.25) and ends the proof.

Next, we prove an alternate characterization of the space Xρ,Ω.

Lemma 5.13 Let ρ, Ω, f 0 and η as in Lemma 5.12. Then,

X̃ρ,Ω = XΩ, (5.28)

where XΩ is defined by (5.8).

Proof. Let ϕ ∈ X̃ (using the simplified notations of the previous proof). From (5.24),
we have ϕ(ω) = K : ω ⊗ ω where K = αρ (ρQ)Gϕ. Hence, K satisfies the fixed point
equation

K = αρ
(
ρQ
)
GK:ω⊗ω, (5.29)

which implies that
TrK = 0. (5.30)

Using (2.10), (2.20) and (5.30), we can develop (5.29) into:

K = αρTGηAΩ
: K. (5.31)
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According to (B.17), there are three real numbers ak, k = 1, . . . , 3, such that

TGηAΩ
= a1 Ω⊗4 + 6a2

(
Ω⊗ Ω⊗ Id

)
s

+ 3a3

(
Id⊗ Id

)
s
. (5.32)

We uniquely define V ∈ {Ω}⊥ and r ∈ R by KΩ = rΩ + V . inserting (5.32) into (5.31)
and using (5.30), we get

( 1

2αρ
− a3

)
K = a2 (Ω⊗ V + V ⊗ Ω) +

1

2

(
(a1 + 4a2)rΩ⊗ Ω + a2r Id

)
(5.33)

We now state the following lemma, whose proof can be found in Appendix C.2

Lemma 5.14 We have

1

2αρ
− a3 = a2 6= 0, (5.34)

a1 + (n+ 4)a2 = S2(η). (5.35)

Using (5.34), Eq. (5.33) leads to

K = Ω⊗ V + V ⊗ Ω +
1

2a2

[
(a1 + 4a2)rΩ⊗ Ω + a2r Id

]
.

With (5.30), we get

0 = TrK =
1

2a2

[
(a1 + (n+ 4)a2)

]
r,

which, with (5.35) and the fact that S2(η) 6= 0 (see Prop. 3.6 (iii)), leads to r = 0 and

K = Ω⊗ V + V ⊗ Ω.

Thus,
ϕ = 2 (Ω · ω) (V · ω). (5.36)

Reciprocally, by similar but simpler computations, we easily get that ϕ given by (5.36)
with arbitrary V ∈ {Ω}⊥ satisfies (5.29). In the end, we find

X̃ = {(Ω · ω) (V · ω)
∣∣ V ∈ {Ω}⊥} = XΩ,

which ends the proof.

We can now state the following

Theorem 5.15 Let f 0 = ρGη(ρ)AΩ
be an equilibrium of C. Then, we have

Cη(ρ)AΩ
= ker

(
DρGη(ρ)AΩ

C∗
)
,

where Cη(ρ)AΩ
is the space of GCI associated with the equilibrium moments (η(ρ), AΩ) (see

Definition 5.3).
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Proof. Indeed, we have the sequence of equivalences:

ψ is a GCI associated with (η(ρ), AΩ) ⇐⇒

⇐⇒
(
f ∈ X⊥Ω =⇒

∫

Sn−1

Lη(ρ)AΩ
f ψ dω = 0

)

⇐⇒
(
f ∈ X̃⊥ρ,Ω =⇒

∫

Sn−1

Lη(ρ)AΩ
f ψ dω = 0

)

⇐⇒ ψ ∈ ker
(
DρGη(ρ)AΩ

C∗
)
,

where the first equivalence comes from (5.6) and (5.9), the second one from (5.28) and
the third one, from (5.25). This ends the proof.

The key property which led to Theorem 5.15 in the case where f 0 is an equilibrium is
(5.26). It gave rise to the structure

DρGC
∗g = ϕ(ω)− αρ (ρQ)Gϕ : ω ⊗ ω, (5.37)

with ϕ = L∗g which led to the definition of the space X̃ρ,Ω. Now, if (η,Σ) is not a
moment of an equilibrium, we have αρQρGS 6= S as the equality is a characterization of
the moments of equilibria. Then, by inspection of (5.21), we see that the structure (5.37)
is lost and the proof cannot be continued. These considerations strongly support (5.20).
Indeed, we have the following counter-example in dimension n = 3 whose proof can be
found in Appendix C.3.

Proposition 5.16 Let n = 3. Let f = ρGηAΩ
where η 6= η(ρ) (in other words, in spite of

being a Gibbs distribution, f is not an equilibrium). Then we have (5.20) (with Σ = AΩ).

So, the space of GCI CηΣ is related to important structural properties of C such as
Prop. 5.16. By contrast, the space ker (DfC

∗) does not play any particular role. The
exception is when the Gibbs distribution ρGηΣ is an equilibrium, in which case the two
spaces are equal. This shows that GCI are a more relevant and general concept than the
space ker (DfC

∗) which appears in the Hilbert method.

6 Equation for the Q-tensor axis direction Ω

6.1 Abstract derivation

In this section, we provide an abstract set of equations allowing us to determine the
evolution equation for the Q-tensor axis direction Ω. We recall the expression (2.37) of
Tu(f). We have the:

Proposition 6.1 Let f = limε→0 f
ε with f(x, ω, t) = ρ(x, t) Gη(ρ(x,t))AΩ(x,t)

(ω) for all
(x, t) ∈ B where B is given by (3.18) and the function ρ 7→ η(ρ) is defined in Prop. 3.7.
Then, we have

∫

Sn−1

Tu
(
ρ(x, t)Gη(ρ(x,t))AΩ(x,t)

)
~ψη(ρ(x,t))AΩ(x,t)

(ω) dω = 0, (6.1)

where ~ψη(ρ(x,t))AΩ(x,t)
is the vector GCI associated with (η(ρ(x, t)), AΩ(x,t)) (see Section 5.2).
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Remark 6.1 We note that (6.1) is unchanged if Ω(x, t), and consequently ~ψAΩ(x,t)
, are

changed in their opposites.

Proof. Let (x, t) ∈ B be given. For simplicity, in the proof, we omit the variables (x, t).
We also denote ρε := ρfε , Q

ε := Qfε , λ
ε := λfε , etc. and ρ := ρf , Q := Qf , λ := λf , etc.

By the fact that f ε → f , we get ρεQε → ρQ = ρ n
n−1

λAΩ, with n
n−1

λ = η(ρ)
αρ

. Since ρ 6= 0

(because (x, t) ∈ B) and λ is a simple eigenvalue of Q, then, for ε small enough, ρε 6= 0,
Qε → Q and λε is a simple eigenvalue of Qε such that λε → λ (because the subset of S0

n

of matrices which have simple leading eigenvalue is an open set). Thus, Σε = n−1
nλε

Qε is
defined, belongs to U0

n and is such that Σε → Σ = AΩ as ε→ 0.
By the smoothness of Σε with respect to ε, we can find a smooth lifting of ΩΣε ∈ Pn−1

into Ωε ∈ Sn−1. Thus, we can form the GCI ~ψηεΣε using this smooth determination of

ΩΣε (remember that we need to fix the sign of ΩΣε because the sign of ~ψηεΣε depends

on it). This makes ~ψηεΣε a smooth function of ε (because ~ψηS is a smooth function of

(η, S) ∈ [0,∞)× Un0 ) such that ~ψηεΣε → ~ψηAΩ
when ε→ 0.

Thanks to (5.16), we have
∫

Sn−1

C(f ε) ~ψηεΣε dω = 0.

So, multiplying (2.40) by ~ψηεΣε , integrating the resulting expression with respect to ω
leads to ∫

Sn−1

Tuε(f
ε) ~ψηεΣε dω = 0.

Now letting ε→ 0, with uε → u, f ε → ρGη(ρ)AΩ
, ηε → η(ρ), Σε → AΩ, ~ψηεΣε → ~ψη(ρ)AΩ

,
we get (6.1). This ends the proof.

6.2 Derivation of the equation for Ω

In this section, we derive the explicit equation for Ω by inserting expression (5.13) into
the abstract formulation (6.1) and compute the integral explicitly. This is summarized in
the following

Proposition 6.2 Let f = limε→0 f
ε = ρ(x, t)Gη(ρ(x,t))AΩ(x,t)

as given in Corollary 4.5.
Then, Ω satisfies (3.21)

Proof of Proposition 6.2. For simplicity, we omit the dependencies of η and λ on ρ, of
hη on (ω · Ω), of GηAΩ

on ω and of ρ and Ω on (x, t). Inserting (5.13) into (6.1), we get:

VΩ :=

∫

Sn−1

Tu(ρGηAΩ
)hη ω⊥ dω = 0. (6.2)

We define

Dt = ∂t + u · ∇x,

Af = ∇ω ·
(
f (ΛPω⊥E −W )ω

)
,

Bf = 2αβ∇ω ·
(
f Pω⊥∆x(ρf Qf )ω

)
,
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so that Tu(f) = Dtf + Af +Bf and

VΩ =

∫

Sn−1

(Dt + A+B)(ρGηAΩ
)hη ω⊥ dω = V

(1)
Ω + V

(2)
Ω + V

(3)
Ω . (6.3)

Using (5.3) which gives Dtρ = 0 and Dtη = η′Dtρ = 0, where η′ is the derivative of η
with respect to ρ, we get

Dt(ρGηAΩ
) = ρGηAΩ

2η (ω · Ω) (PΩ⊥ω) ·DtΩ,

where we have used that the denominator of (3.4) does not depend on Ω. Then, we apply
(B.2) and the fact that DtΩ is orthogonal to Ω and get

V
(1)

Ω = γ̃1DtΩ, (6.4)

with

γ̃1 =
2 η ρ

n− 1

∫

Sn−1

GηAΩ
hη (ω · Ω) (1− (ω · Ω)2) dω. (6.5)

Next, we have

A(ρGηAΩ
) = ∇ω ·

(
ρGηAΩ

(ΛPω⊥E −W )ω
)

= ρGηAΩ

[
∇ω(logGηAΩ

) · (ΛPω⊥E −W )ω +∇ω ·
(
(ΛPω⊥E −W )ω

)]
.

First, we compute ∇ω ·
(
(ΛPω⊥E − W )ω

)
. Let X = ΛE − W for simplicity and let

(ei)i=1,...,n be the canonical basis of Rn. Define Xi =
∑n

j=1Xij ej. Then, we can write
X =

∑n
i=1 ei ⊗ Xi. Then, Pω⊥X ω =

∑n
i=1(Xi · ω)Pω⊥ei. We note that ∇ω · Pω⊥ei =

∆ω(ω · ei) = −(n− 1) (ω · ei) because (ω · ei) is a spherical harmonic of degree 1 hence an
eigenfunction of the spherical laplacian associated to the eigenvalue −(n− 1). Thus,

∇ω · (Pω⊥X ω) =
n∑

i=1

[
Pω⊥Xi · Pω⊥ei − (n− 1) (Xi · ω) (ω · ei)

]

=
n∑

i, j=1

Xij (Pω⊥ei · Pω⊥ej − (n− 1)ωi ωj)) =
n∑

i, j=1

Xij(δij − nωi ωj)

= TrX − nX : (ω ⊗ ω),

where δij is the Kronecker symbol and TrX is the trace of X. Now, with X = ΛE −W ,
owing to the facts that TrX = Λ∇x · u = 0 and remembering that E is symmetric and
W , antisymmetric, we get

A(ρGηAΩ
) = ρGηAΩ

[
2η (ω · Ω)Pω⊥Ω · (ΛPω⊥E −W )ω − nΛE : (ω ⊗ ω)

]

= ρGηAΩ

{
Λ
[
2 η (ω · Ω)Pω⊥Ω⊗ ω − nω ⊗ ω

]
: E − 2 η (ω · Ω) (Pω⊥Ω⊗ ω) : W

}
.

Using the decomposition (B.3), we get Pω⊥Ω = (1− (ω · Ω)2) Ω− (ω · Ω)ω⊥, and so,

A(ρGηAΩ
) = ρGηAΩ

2η(ω · Ω)
[
Λ
(

1− n

η
− 2(ω · Ω)2

)
(ω⊥ ⊗ Ω) : E + (ω⊥ ⊗ Ω) : W

]

+ even tensor powers of ω⊥.
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Now, multiplying by hω⊥ and integrating over ω, the resulting odd tensor powers of ω⊥
vanish in the integration thanks to (B.1). Thanks to (B.2), we find that

V
(2)

Ω = γ̃1WΩ + γ̃3ΛPΩ⊥EΩ, (6.6)

with

γ̃3 =
(
1− n

η

)
γ̃1 − 2 γ̃2, (6.7)

γ̃2 =
2 η ρ

n− 1

∫

Sn−1

GηAΩ
hη (ω · Ω)3 (1− (ω · Ω)2) dω. (6.8)

The computation of V
(3)

Ω is the same as that of V
(2)

Ω with ΛE − W replaced by
2αβ∆x(ρQGηAΩ

). Since ∆x(ρQGηAΩ
) is a symmetric trace-free tensor, we get from (6.6):

V
(3)

Ω = 2αβγ̃3 PΩ⊥
(
∆x(ρQGηAΩ

)Ω
)
.

With (3.9), we get

α∆x(ρQGηAΩ
) = ∆x(ηAΩ) = ∆xη AΩ + 4

[((
∇xη · ∇x

)
Ω
)
⊗ Ω

]
s

+2η
(
(∇xΩ)T (∇xΩ) +

[
(∆xΩ)⊗ Ω

]
s

)
, . (6.9)

where the index s means the symmetric part of a tensor (i.e. Ss = 1
2
(S+ST ) for an n×n

matrix S). Then, owing to the fact that any derivative of Ω is orthogonal to Ω, we have

α∆x(ρQGηAΩ
)Ω = ∆xηΩ + 2

(
∇xη · ∇x

)
Ω + η

(
∆xΩ + (Ω ·∆xΩ) Ω

)
,

and with (4.8),

αPΩ⊥
(
∆x(ρQGηAΩ

)Ω
)

= 2
(
∇xη · ∇x

)
Ω + η PΩ⊥∆xΩ = PΩ⊥∆x(ηΩ).

It follows that
V

(3)
Ω = 2βγ̃3 PΩ⊥∆x(ηΩ). (6.10)

Inserting (6.4), (6.6), (6.10), into (6.3), we get

VΩ = γ̃1

(
DtΩ +WΩ

)
+ γ̃3 PΩ⊥

(
ΛEΩ + 2β∆x(ηΩ)

)
.

So, with (6.2) and (6.7), we get (3.21) with

c = −Λ
γ̃3

γ̃1

= Λ
(n
η
− 1 + 2

γ̃2

γ̃1

)
. (6.11)

Now, the following formulas are shown in the Appendix D.1:

γ̃3 =
ρS2(η)

2η
, γ̃1 = − ρ

2η(n− 1)
〈〈g dŨ0

dθ
〉〉eη cos2 θ . (6.12)

Thus, (6.11) leads to (3.13) and ends the proof.

We now investigate under which conditions c is non-negative:

Proof of Proposition 3.9. From Prop. 3.6 (iii), we know that the (n − 1)S2(η) > 0.

Now, Prop. 5.7 and Eqs. (5.15) and (3.11) show that both g(θ) and dŨ0

dθ
(θ) have the

sign of cos θ. This implies that g(θ)dŨ0

dθ
(θ) is positive on [0, π] and consequently, that the

denominator of (3.13) is positive. Altogether, this shows that c
Λ
> 0 and ends the proof.
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7 Conclusion

We have investigated the passage from the Doi-Navier-Stokes model of liquid crystals
to the Ericksen-Leslie system when the Deborah number goes to zero. By contrast to
previous literature, we have developed a moment method, exploiting the conservations
satisfied by the collision operator. These conservations are of a non-classical type and have
required the development of a new concept, the generalized collision invariants. Their link
to geometrical and analytical structures of the collision operator has been discussed and
their use for the derivation of the limit model has been detailed. This derivation has been
achieved in arbitrary dimensions and assuming a full spatio-temporal dependence of the
polymer molecule density. The latter generates additional terms in the Ericksen stresses
that have not been previously described in the literature.

This works open many research directions. The first one is the development of a rig-
orous convergence result using this moment method. This is a quite challenging task but
one may hope that, if successful, it would lead to a result in a weaker setting than the
currently available results. The energetic properties of the limit model must be investi-
gated. A proof that the extra terms appearing in the Oseen-Franck energy due to the
spatio-temporal dependence of the polymer molecule density lead to a positive energy is
missing at the present time. This would be a necessary step for a well-posedness theory for
the resulting Ericksen-Leslie system. In spite of using Q-tensors as auxiliary quantities,
the Doi model and its limit, the Ericksen-Leslie system are, in essence, vector models, i.e.
models for polymer orientations only. Currently, attempts are being made to build truly
tensorial models in association with Landau-de Gennes energies i.e. energies depending
on the local average Q-tensor and its gradients. This is clearly an interesting playground
to test the applicability of the GCI concept to more general situations.
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Appendices

A Appendix to Section 2 on Doi’s model

A.1 Proof of the virtual work principle (2.16)

We have, with (2.15):

dAR
dt

=
〈δAR
δf

(f),
∂f

∂t

〉
=

∫

Rn×Sn−1

µRf
∂f

∂t
dx dω

=

∫

Rn×Sn−1

µRf

{
−∇x · (u f)−∇ω ·

(
f (ΛPω⊥E −W )ω

)
+

D

kBT
∇ω ·

(
f ∇ωµ

R
f

)}
dx dω

=: I + II + III

Using Stokes’s formula, assuming that all terms vanish at infinity and with (2.17), we find

I = −
∫

Rn
FR
f · u dx, III = − D

kBT

∫

Rn×Sn−1

f |∇ωµ
R
f |2 dx dω.

Then, using Stokes’s formula, the fact that ∇ωµ
R
f · ω = 0 and straightforward tensor

algebra, we have

II =

∫

Rn×Sn−1

f (ΛE −W )ω · ∇ωµ
R
f dx dω

=

∫

Rn

(∫

Sn−1

f
(
ω ⊗∇ωµ

R
f

)
dω
)

: (ΛE +W ) dx

=

∫

Rn

(∫

Sn−1

f
[Λ + 1

2

(
ω ⊗∇ωµ

R
f

)
+

Λ− 1

2

(
∇ωµ

R
f ⊗ ω

)]
dω
)

: ∇xu dx

=

∫

Rn

(∫

Sn−1

f
[
Λ
(
ω ⊗∇ωµ

R
f

)
s
−
(
ω ⊗∇ωµ

R
f

)
a

]
dω
)

: ∇xu dx

=

∫

Rn
σRf : ∇xu dx.

This leads to (2.16).

A.2 Proofs of Formulas (2.21) and (2.22) for the extra-stresses

We begin with a Lemma:

Lemma A.1 Let f and ϕ: Sn−1 → R be two smooth functions. Then, we have

∫

Sn−1

∇ωf ϕ dω = −
∫

Sn−1

f ∇ωϕdω + (n− 1)

∫

Sn−1

f ϕω dω. (A.1)
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Proof: Let B ∈ Rn be a fixed vector and denote by X the left-hand side of (A.1). Then,
using Stokes formula, we have

X ·B =

∫

Sn−1

∇ωf ·B ϕdω =

∫

Sn−1

∇ωf · Pω⊥B ϕdω = −
∫

Sn−1

f ∇ω · (Pω⊥B ϕ) dω

= −
∫

Sn−1

f ∇ω · (Pω⊥B)ϕdω −
∫

Sn−1

f Pω⊥B · ∇ωϕdω.

We have
∇ω · (Pω⊥B) = ∇ω · ∇ω (ω ·B) = ∆ω (ω ·B) = −(n− 1)ω ·B,

where the last identity follows from the fact that the function ω 7→ ω · B is a spherical
harmonic of degree 1. Thus,

X ·B = (n− 1)

∫

Sn−1

f ϕω ·B dω −
∫

Sn−1

f ∇ωϕ ·B dω,

which leads to (A.1).

Proof of (2.21): Inserting (2.13) into the first equation of (2.17), we have σRf = Λσ̄s+ σ̄a
with

σ̄ =

∫

Sn−1

f(ω ⊗∇ωµ
R
f ) dω

= kBT

∫

Sn−1

ω ⊗∇ωf dω +

∫

Sn−1

f (ω ⊗∇ωU
R
f ) dω. (A.2)

Using (A.1) with ϕ = ωi, we get

∫

Sn−1

ωi∇ωf dω = −
∫

Sn−1

∇ωωi f dω + (n− 1)

∫

Sn−1

f ω ωi dω

= −
∫

Sn−1

Pω⊥ei f dω + (n− 1)

∫

Sn−1

f ω (ω · ei) dω

= −
∫

Sn−1

(
ei − (ei · ω)ω

)
f dω + (n− 1)

∫

Sn−1

f (ei · ω)ω dω

= n

∫

Sn−1

f
(
ω (ω · ei)−

1

n
ei
)
dω,

where ei denotes the i-th vector of the canonical basis of Rn. In view of (2.10), it follows
that

∫
Sn−1 ω ⊗∇ωf dω = nρfQf . Inserting this in (A.2) leads to

σ̄ = nkBTρfQf +

∫

Sn−1

f (ω ⊗∇ωU
R
f ) dω,

which, in turn, leads to (2.21).

46



Proof of (2.22): We multiply Doi’s equation (2.15) by ω⊗ω− 1
n
Id and integrate it with

respect to ω. This leads to

0 =

∫

Sn−1

(∂tf +∇x · (uf))
(
ω ⊗ ω − 1

n
Id
)
dω

+

∫

Sn−1

∇ω ·
(
f(ΛPω⊥E −W )ω

) (
ω ⊗ ω − 1

n
Id
)
dω

− D

kBT

∫

Sn−1

∇ω · (f ∇ωµ
R
f )
(
ω ⊗ ω − 1

n
Id
)
dω

=: I + II− D

kBT
III. (A.3)

Using (2.19), for any smooth function g(x, t), we have ∂tg +∇x · (ug) = Dtg, where Dt is
given by (2.23). It follows that I = Dt(ρfQf ) and, using (5.3), that

I = ρf DtQf . (A.4)

Using Stokes theorem, we get:

IIIij =

∫

Sn−1

∇ω · (f ∇ωµ
R
f )ωi ωj dω = −

∫

Sn−1

f ∇ωµ
R
f · ∇ω(ωi ωj) dω

= −
∫

Sn−1

f ∇ωµ
R
f · (ωjPω⊥ei + ωiPω⊥ej) dω

= −
∫

Sn−1

f (ωj∇ωµ
R
f · ei + ωi∇ωµ

R
f · ej) dω = − 2

Λ

(
(σRf )s

)
ij
, (A.5)

where again, ei denotes the i-th vector of the canonical basis of Rn. Now, similarly to III,
we have,

IIij =

∫

Sn−1

∇ω ·
(
f(ΛPω⊥E −W )ω

)
ωi ωj dω

= −
∫

Sn−1

f
(
(ΛPω⊥E −W )ω

)
· (ωiej + ωjei) dω

= −
∫

Sn−1

f
(
(ΛE −W )(ω ⊗ ω) + (ω ⊗ ω)(ΛE +W )− 2Λω⊗4 : E

)
ij
dω,

which leads to

II = ρf
(
− Λ(EQf +QfE) +WQf −QfW −

2Λ

n
E + 2ΛTf : E

)
. (A.6)

Finally, using (2.21), the antisymmetric part of σRf is given by:

(σRf )a =
1

2

∫

Sn−1

(ω ⊗∇ωU
R
f −∇ωU

R
f ⊗ ω) f dω. (A.7)

Now, inserting (A.4), (A.5), (A.6) and (A.7) into (A.3) leads to (2.22).
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B Appendix to Section 3 on main result

B.1 Proof of Prop. 3.6 on properties of S2

The proof uses Lemma 4.1 of [20] which we recall here without proof.

Lemma B.1 Let n ≥ 2. Define ω⊥ = PΩ⊥ω. For any function k: [−1, 1]→ R, r 7→ k(r),
we have:

∫

Sn−1

k(ω · Ω)ω
⊗(2k+1)
⊥ dω = 0, ∀k ∈ N, (B.1)

∫

Sn−1

k(ω · Ω)ω⊥ ⊗ ω⊥ dω =
1

n− 1

∫

Sn−1

k(ω · Ω) (1− (ω · Ω)2) dω PΩ⊥ . (B.2)

Proof of Proposition 3.6 (i) The decomposition

ω = (ω · Ω) Ω + ω⊥, (B.3)

leads to

ω ⊗ ω = (ω · Ω)2 Ω⊗ Ω + (ω · Ω) (ω⊥ ⊗ Ω + Ω⊗ ω⊥) + ω⊥ ⊗ ω⊥. (B.4)

We insert (B.4) into (2.10) with f = ρGηAΩ
. Thanks to (3.4), ρGηAΩ

is a function of ω ·Ω
only. So, the contribution of the middle term of (B.4) vanishes thanks to (B.1) and the
contribution of the last term can be computed using (B.2). Using that PΩ⊥ = Id−Ω⊗Ω,
we get

QGηAΩ
=
〈
(ω · Ω)2

〉
GηAΩ

Ω⊗ Ω +
1

n− 1

〈
1− (ω · Ω)2

〉
GηAΩ

(
Id− Ω⊗ Ω

)
− 1

n
Id.

Rearranging these terms, we find (3.7).

(ii) The leading eigenvalue of QGηAΩ
is n−1

n
S2(η) and is associated with the eigenvector Ω.

Thus, by virtue of (2.12), the order parameter χρGηAΩ
is equal to S2(η).

(iii) We first compute S2(0). When η = 0, we have GηAΩ
= 1. Thus, S2(0) = 〈(n(ω ·Ω)2−

1)/(n− 1)〉1 =: r/s, where, using the spherical coordinates as in the proof of Proposition
3.4, the numerator r is given by

r =

∫ π

0

(n cos2 θ − 1) sinn−2 θ dθ = (n− 1)Wn−2 − nWn.

Here, Wn is twice the Wallis integral Wn =
∫ π

0
sinn θ dθ. From the well-known recursion

formula for the Wallis integral (which can be easily proved by integration by parts):
Wn = n−1

n
Wn−2, we get that r = 0 and thus, that S2(0) = 0.

We now show that S ′2(η) ≥ 0, for all η ≥ 0, where the prime denotes the derivative
with respect to η. We have S2(η) = 1 − n

n−1
〈1 − (ω · Ω)2〉GηAΩ

=: 1 − n
n−1

F (η). We
show that F ′ ≤ 0. Using again the spherical coordinates, we have F = In/In−2 with

In(η) =
∫ π/2

0
exp(η cos2 θ) sinn θ dθ (by symmetry, we can reduce the interval of integration
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to [0, π/2]). Thus, F ′ = (I ′nIn−2 − I ′n−2In)/I2
n−2 =: A/I2

n−2. We check the sign of the
numerator A. We have

A(η) =

∫

[0,π
2

]2
eη(cos2 θ+cos2 θ′) sinn−2 θ sinn−2 θ′ sin2 θ (cos2 θ − cos2 θ′) dθ dθ′

=
1

2

∫

[0,π
2

]2
eη(cos2 θ+cos2 θ′) sinn−2 θ sinn−2 θ′ (sin2 θ − sin2 θ′) (cos2 θ − cos2 θ′) dθ dθ′,

where we pass from the first to the second line by exchanging θ and θ′. Since sin is
increasing and cos is decreasing on [0, π

2
], we have A ≤ 0.

Finally, when η →∞, the measure GηAΩ
dω concentrates onto the sum of Dirac deltas

1
2
(δΩ + δ−Ω). Since P2(±1) = 1, it follows that S2 → 1 when η →∞. This ends the proof.

B.2 Proof of Eq. (3.25) for the Leslie stresses

We have f ε → f as ε → 0 with f given by (3.19). We will abbreviate GηAΩ
into G for

simplicity. We define

σ = lim
ε→0

(
ζ ρfεTfε : Eε + σ1

fε

)
= ζ ρTG : E + σ1

ρG.

From (2.32), we get

σ = ρ
{Λ2

2
(EQG +QGE) +

Λ

2
(QGW −WQG) +

Λ2

n
E

+(ζ − Λ2)TG : E − Λ

2
DtQG + αβ

[
∆x(ρQG)QG −QG∆x(ρQG)

]}
. (B.5)

Now, for a generic distribution function f , we introduce the fourth-order tensorial order
parameter given by

Qf = Tf −
6

n+ 4
(〈ω ⊗ ω〉f ⊗ Id)s +

3

(n+ 2)(n+ 4)
(Id⊗ Id)s. (B.6)

Here, (〈ω ⊗ ω〉f ⊗ Id)s and (Id ⊗ Id)s denote the symmetrizations of the fourth-order
tensors 〈ω ⊗ ω〉f ⊗ Id and Id⊗ Id respectively. Specifically,

6
(
(〈ω ⊗ ω〉f ⊗ Id⊗ Id)s

)
ijk`

= 〈ωiωj〉f δk` + 〈ωiωk〉f δj` + 〈ωiω`〉f δjk
+〈ωjωk〉f δi` + 〈ωjω`〉f δik + 〈ωkω`〉f δij,

3
(
(Id⊗ Id)s

)
ijk`

= δijδk` + δikδj` + δi`δjk,

where δ denotes the Kronecker symbol. Eq. (B.6) corresponds to the decomposition
of Tf into irreducible tensors, i.e. invariant tensors under the action of the orthogonal
group. The coefficients of the decomposition can be obtained by the requirement that
the contraction of Qf with respect to any two indices is zero. Owing to the fact that
〈ω ⊗ ω〉f = Qf + 1

n
Id, we get

Qf = Tf −
6

n+ 4
(Qf ⊗ Id)s −

3

n(n+ 2)
(Id⊗ Id)s, (B.7)
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where the definition of (Qf ⊗ Id)s is similar to that of (〈ω⊗ ω〉f ⊗ Id⊗ Id)s. Then, using
(B.7), we have

Tf : E = Qf : E +
2

n+ 4
(EQf +QfE) +

2

n(n+ 2)
E +

1

n+ 4
(Qf : E)Id.

Inserting this identity (with f = G) into (B.5), we get

σ = ρ
{(Λ2

2
+

2(ζ − Λ2)

n+ 4

)
(EQG +QGE) +

Λ

2
(QGW −WQG) +

1

n

(
Λ2 +

2(ζ − Λ2)

n+ 2

)
E

+(ζ − Λ2)QG : E +
ζ − Λ2

n+ 4
(QG : E) Id− Λ

2
DtQG

+αβ
[
∆x(ρQG)QG −QG∆x(ρQG)

]}
. (B.8)

Now, we state two lemmas whose proofs are deferred to the end of the present proof

Lemma B.2 We have
QGηAΩ

= S4(η)AΩ, (B.9)

where S4(η) is given by (3.5) and where

AΩ = Ω⊗4 − 6

n+ 4
(Ω⊗ Ω⊗ Id)s +

3

(n+ 2)(n+ 4)
(Id⊗ Id)s. (B.10)

Lemma B.3 We have

ραβ
[
∆x(ρQG)QG −QG∆x(ρQG)

]
= ρ

ΛS2(η)

2

[1

c
(N ⊗ Ω− Ω⊗N)

−
(
E(Ω⊗ Ω)− (Ω⊗ Ω)E

)]
, (B.11)

with N given by (3.27).

From (B.9) and (B.10), it follows that

QG : E = S4

{(
E : (Ω⊗ Ω)

)
Ω⊗ Ω− 2

n+ 4

[
(Ω⊗ Ω)E + E(Ω⊗ Ω)

]

− 1

n+ 4

(
E : (Ω⊗ Ω)

)
Id +

2

(n+ 2)(n+ 4)
E
}
, (B.12)

where the dependence of S4 on η is omitted for simplicity. Likewise, with (3.7), we get

EQG +QGE = S2

[
(Ω⊗ Ω)E + E(Ω⊗ Ω)− 2

n
E
]
, (B.13)

QGW −WQG = S2

[
(Ω⊗ Ω)W −W (Ω⊗ Ω)

]
, (B.14)

DtQG = S2

[
DtΩ⊗ Ω + Ω⊗DtΩ)

]
. (B.15)
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In (B.15), we have used that DtS2(η(ρ)) = dS2

dη
(η(ρ)) dη

dρ
(ρ)Dtρ = 0 thanks to (5.3).

Inserting Eqs. (B.11) to (B.15) into (B.8), we get σ = σL + ∇xϕ where ϕ is a scalar
function which can be absorbed in the pressure, and σL is given by (3.25) with the
constants, αk, k = 1, . . . , 6 given by (3.14)-(3.17). This ends the proof.

Proof of Lemma B.2. Using (B.7), (3.7), (3.5) and (3.6), we get that

QGηAΩ
= TGηAΩ

− 6S2

n+ 4
(Ω⊗ Ω⊗ Id)s +

( 6S2

n(n+ 4)
− 3

n(n+ 2)

)
(Id⊗ Id)s

= TGηAΩ
− 6

(
n〈X2〉 − 1

)

(n− 1)(n+ 4)
(Ω⊗ Ω⊗ Id)s

+
( 6

(
n〈X2〉 − 1

)

(n− 1)n(n+ 4)
− 3

n(n+ 2)

)
(Id⊗ Id)s, (B.16)

where X = ω · Ω and where we drop the index GηAΩ
on the brackets 〈·〉. Now, using the

decomposition (B.3), we get

TGηAΩ
= 〈X4〉Ω⊗4 +

(
〈X2ω⊥ ⊗ ω⊥〉 ⊗ (Ω⊗ Ω)

)
s

+
〈
ω⊗4
⊥
〉
.

We use (B.2) to compute 〈X2ω⊥ ⊗ ω⊥〉. To evaluate
〈
ω⊗4
⊥
〉

we recall the last part of
Lemma 4.1 of [20] without proof: with the notations of Lemma B.1, we have

∫

Sn−1

k(ω · Ω)ω⊗4
⊥ dω =

∫

Sn−1

3 k(ω · Ω) (1− (ω · Ω)2)2

(n− 1)(n+ 1)
dω
(
PΩ⊥ ⊗ PΩ⊥

)
s
.

This leads to

TGηAΩ
= 〈X4〉Ω⊗4 +

6 〈X2(1−X2)〉
n− 1

(
Ω⊗ Ω⊗ PΩ⊥

)
s

+
3 〈(1−X2)2〉
(n− 1)(n+ 1)

(
PΩ⊥ ⊗ PΩ⊥

)
s
.

Using that PΩ⊥ = Id− Ω⊗ Ω, we obtain

TGηAΩ
=
(
〈X4〉 − 6 〈X2(1−X2)〉

n− 1
+

3 〈(1−X2)2〉
(n− 1)(n+ 1)

)
Ω⊗4

+
(6 〈X2(1−X2)〉

n− 1
− 6 〈(1−X2)2〉

(n− 1)(n+ 1)

) (
Ω⊗ Ω⊗ Id

)
s

+
3 〈(1−X2)2〉
(n− 1)(n+ 1)

(
Id⊗ Id

)
s
. (B.17)

Now, inserting (B.17) into (B.16), we get (B.9).

Proof of Lemma B.3. Thanks to (3.9) and (6.9), we have

α2ρ∆x(ρQG)QG = η∆x(ηAΩ)AΩ

= η
[
∆xη A

2
Ω +

2(n− 1)

n
(∇xη · ∇x)Ω⊗ Ω− 2

n
Ω⊗ (∇xη · ∇x)Ω

−2η

n
∇xΩ

T∇xΩ +
η(n− 1)

n
∆xΩ⊗ Ω− η

n
Ω⊗∆xΩ + η(Ω ·∆xΩ) Ω⊗ Ω

]
.(B.18)
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Let M be the tensor given by the left-hand side of (B.11). Using (3.21) and (3.8), it
follows from (B.18) that

M =
βη

α

[
2
(
(∇xη · ∇x)Ω⊗ Ω− Ω⊗ (∇xη · ∇x)Ω

)
+ η

(
∆xΩ⊗ Ω− Ω⊗∆xΩ

)]

=
β

α

[
∆x(ηΩ)⊗ (ηΩ)− (ηΩ)⊗∆x(ηΩ)

]

=
Λ

2α

[(N
c
− PΩ⊥EΩ

)
⊗ (ηΩ)− (ηΩ)⊗

(N
c
− PΩ⊥EΩ

)]

=
ρΛS2

2

[(N
c
− PΩ⊥EΩ

)
⊗ Ω− Ω⊗

(N
c
− PΩ⊥EΩ

)]
. (B.19)

Then, we note that there exists a real number z such that

(PΩ⊥EΩ)⊗ Ω = (EΩ)⊗ Ω + zΩ⊗ Ω = E(Ω⊗ Ω) + zΩ⊗ Ω,

and that the same real number z is involved in the expression of Ω ⊗ (PΩ⊥EΩ), so that
we get

(PΩ⊥EΩ)⊗ Ω− Ω⊗ (PΩ⊥EΩ) = E(Ω⊗ Ω)− (Ω⊗ Ω)E.

Inserting this expression into (B.19), we get (B.11) which ends the proof of the Lemma.

B.3 Proof of Eq. (3.26) for the Ericksen stresses

We now compute limε→0 F
1
fε = F 1

ρGηAΩ
. Thanks to (2.33), (2.30) and (3.10), we have

F 1
ρGηAΩ

= −ρ
〈
∇xµ

1
ρGηAΩ

〉
GηAΩ

= βρ
{〈
∇x∆x(η(ω · Ω)2

〉
GηAΩ

− 1

n
∇x∆x

[
η + (n− 1)αρ

]}
. (B.20)

We compute, using the repeated index summation convention:

∂xi
[
∆x

(
η(ω · Ω)2

)]
= 2(ω · Ω) ∂xiΩk ω⊥k ∂

2
xjxj

η + (ω · Ω)2 ∂3
xixjxj

η

+ 4 ∂xiΩk ω⊥k ∂xjΩ` ω⊥` ∂xjη + 4 (ω · Ω) ∂2
xixj

Ωk ωk ∂xjη

+ 4 (ω · Ω) ∂xjΩk ω⊥k ∂
2
xixj

η + 2 ∂xjΩk ω⊥k ∂xjΩ` ω⊥` ∂xiη

+ 4 ∂2
xixj

Ωk ωk ∂xjΩ` ω⊥` η + 2(ω · Ω) ∂2
xjxj

Ωk ωk ∂xiη

+ 2 ∂2
xjxj

Ωk ωk ∂xiΩ` ω⊥` η + 2(ω · Ω) ∂3
xixjxj

Ωk ωk η. (B.21)

Thanks to (3.5) and (3.6), we have the following identities

〈(ω · Ω)2〉GηAΩ
=

(n− 1)S2 + 1

n
, 〈1− (ω · Ω)2〉GηAΩ

=
n− 1

n
(1− S2).
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Furthermore, the decomposition (B.3) and the fact that |Ω|2 = 1, lead to the following
identities

∂xiΩk Ωk = 0, ∂2
xixj

Ωk Ωk = −∂xiΩk ∂xjΩk,

(Pω⊥)k`∂xjΩ` = ∂xjΩk, ∂2
xixj

Ωk ∂xjΩk =
1

2
∂xi(∂xjΩk ∂xjΩk)

∂3
xixjxj

Ωk Ωk = −∂xj(∂xiΩk ∂xjΩk)−
1

2
∂xi(∂xjΩk ∂xjΩk),

∂2
xjxj

Ωk ∂xiΩk = ∂xj(∂xiΩk ∂xjΩk)−
1

2
∂xi(∂xjΩk ∂xjΩk).

Thus, taking the bracket 〈·〉GηAΩ
of (B.21), noting that all odd powers of ω · Ω or of ω⊥

vanish by antisymmetry and using (B.2) and the previous identities, we finally get

〈
∇x∆x

(
η(ω · Ω)2

)〉
GηAΩ

=
(n− 1)S2 + 1

n
∇x∆xη

− 2S2

(
2∇xΩ∇xΩ

T + |∇xΩ|2Id
)
∇xη

− S2∇x ·
(
2∇xΩ∇xΩ

T + |∇xΩ|2Id
)
η.

Inserting this equation into (B.20), using (3.8) and noting that for a n× n tensor S and
a scalar ϕ, we have ∇x · (Sϕ) = (∇x · S)ϕ+ ST∇xϕ, we get

F 1
ρGηAΩ

= −β
α
∇x ·

[
η2
(
2∇xΩ∇xΩ

T + |∇xΩ|2Id
)]

+ β
{n− 1

nα
η∇x∆xη −

(n− 1)α

n
ρ∇x∆xρ

}
. (B.22)

The first of the following identities follows again from the fact that |Ω|2 = 1 and the
second one is just straightforward algebra (which will also be applied with ρ replacing η):

η2∇xΩ∇xΩ
T = ∇x(ηΩ)∇x(ηΩ)T −∇xη ⊗∇xη,

η∇x∆xη = −∇x · (∇xη ⊗∇xη) +∇x

(
η∆xη +

1

2
|∇xη|2

)
.

Inserting these identities into (B.22), we get F 1
ρGηAΩ

= ∇x ·σE+∇xϕ, where σE is given by

(3.26) and ϕ is a scalar function (different from the one appearing at the end of Section
B.2) which can be absorbed in the pressure p. This ends the proof.

B.4 Proof of the energy identity (3.33)

Taking the dot product of (3.22) with u, integrating with respect to x on Rn and using
Stokes formula assuming that the spatial boundary terms vanish at infinity, we get

d

dt

∫

Rn

|u|2
2
dx+

1

Re

∫

Rn
|∇xu|2 dx+

1

ReEr

∫

Rn
(σL + σE) : ∇xu dx = 0. (B.23)
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We first compute the contribution of the Leslie stresses. Using the symmetry of E
and Ω⊗ Ω, we first have

[
α1

(
E : (Ω⊗ Ω)

)
Ω⊗ Ω + α4E

]
: ∇xu = α1

(
E : (Ω⊗ Ω)

)2
+ α4|E|2. (B.24)

Then, we remark that
(
(Ω⊗ Ω)E

)
: ∇xu = |EΩ|2 − (EΩ) · (WΩ),(

E(Ω⊗ Ω)
)

: ∇xu = |EΩ|2 + (EΩ) · (WΩ),

which, with the second equation (3.28), gives
[
α5(Ω⊗ Ω)E + α6E(Ω⊗ Ω)

]
: ∇xu = (α5 + α6)|EΩ|2 + γ2(EΩ) · (WΩ). (B.25)

Also, with (3.29), we have

N = −γ2

γ1

PΩ⊥EΩ +
1

γ1

PΩ⊥H := N1 +N2.

Remarking that (Ω⊗ Ω) : W = 0 by the antisymmetry of W , we get

(Ω⊗N1) : ∇xu = −γ2

γ1

[
Ω⊗

(
EΩ− (Ω · EΩ)Ω

)]
: (E +W )

= −γ2

γ1

[
|EΩ|2 −

(
E : (Ω⊗ Ω)

)2 − (EΩ) · (WΩ)
]
,

and similarly

(N1 ⊗ Ω) : ∇xu = −γ2

γ1

[
|EΩ|2 −

(
E : (Ω⊗ Ω)

)2
+ (EΩ) · (WΩ)

]
,

which, using (3.28) gives

[
α2Ω⊗N1 +α3N1⊗Ω

]
: ∇xu = −γ

2
2

γ1

[
|EΩ|2−

(
E : (Ω⊗Ω)

)2]− γ2(EΩ) · (WΩ). (B.26)

Then, using (3.28), we compute

[
α2Ω⊗N2 + α3N2 ⊗ Ω

]
: ∇xu =

1

γ1

[
α2Ω⊗ PΩ⊥H + α3PΩ⊥H ⊗ Ω

]
: (E +W )

=
1

γ1

[
(α2 + α3)(PΩ⊥H ⊗ Ω) : E + (α3 − α2)(PΩ⊥H ⊗ Ω) : W

]

= PΩ⊥H ·
[γ2

γ1

EΩ +WΩ
]

= PΩ⊥H · PΩ⊥
[γ2

γ1

EΩ +WΩ
]

=
1

γ1

|PΩ⊥H|2 −H ·
(
∂tΩ + u · ∇xΩ), (B.27)

where, for the last equality, we have used (3.29) and (3.27) and the fact that ∂tΩ+u ·∇xΩ
is normal to Ω. Then, collecting (B.24) to (B.27) and using (3.25) leads to

∫

Rn
σL : ∇xu dx =

∫

Rn
ρ
{(
α1 +

γ2
2

γ1

)(
E : (Ω⊗ Ω)

)2
+ α4|E|2

+
(
α5 + α6 −

γ2
2

γ1

)
|EΩ|2 +

1

γ1

|PΩ⊥H|2 −H ·
(
∂tΩ + u · ∇xΩ)

}
dx. (B.28)
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Expression (3.26) for the Ericksen stresses involves three terms which we will denote
by σΩ

E, σηE, σρE in the order in which they appear in this expression. We compute the
contribution of each term successively. We have, using Stokes’s formula, (3.32), (3.23)
and assuming that the boundary terms vanish at infinity:

∫

Rn
σΩ
E : ∇xu dx = −2β

α

∫

Rn

(
∇x(ηΩ)∇x(ηΩ)T

)
: ∇xu dx

=
2β

α

∫

Rn

{
∆x(ηΩ) ·

(
(u · ∇x)(ηΩ)

)
+∇x(ηΩ)

(
(u · ∇x)(∇x(ηΩ))T

)}
dx

=
2β

α

∫

Rn

{
η∆x(ηΩ) ·

(
(u · ∇x)Ω

)
+ ∆x(ηΩ) · Ω (u · ∇x)η +∇x ·

(
u
|∇x(ηΩ)|2

2

)}
dx

=

∫

Rn
ρH ·

(
(u · ∇x)Ω

)
dx+

2β

α

∫

Rn
∆x(ηΩ) · Ω (u · ∇x)η dx. (B.29)

A similar computation gives

∫

Rn
σηE : ∇xu dx = −(n+ 1)β

nα

∫

Rn
∆xη (u · ∇x)η dx, (B.30)

∫

Rn
σρE : ∇xu dx = −(n− 1)αβ

n

∫

Rn
∆xρ (u · ∇x)ρ dx. (B.31)

Now, we consider the Oseen-Franck energy and successively compute the time deriva-
tive of each of the terms in (3.31). We first have, thanks to Stokes’s formula:

dEΩ
F

dt
=

2β

α

∫

Rn
Tr
{
∇x(ηΩ)

(
∂t∇x(ηΩ)

)T}
dx = −2β

α

∫

Rn
∆x(ηΩ) · ∂t(ηΩ) dx,

With(3.32), this leads to:

dEΩ
F

dt
+

∫

Rn
ρH · ∂tΩ dx+

2β

α

∫

Rn
∆x(ηΩ) · Ω ∂tη dx = 0. (B.32)

Straightforwardly, we get

dEηF
dt
− (n+ 1)β

nα

∫

Rn
∆xη · ∂tη dx = 0, (B.33)

dEρF
dt
− (n− 1)αβ

n

∫

Rn
∆xρ · ∂tρ dx = 0. (B.34)

Now, adding (B.23), (B.32), (B.33), (B.34) together, using (B.28), (B.29), (B.30),
(B.31) to eliminate σL and σE and finally using that Dtρ = 0 and Dtη = dη

dρ
Dtρ = 0, we

get Eq. (3.33).
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C Appendix to Section 5 on GCI

C.1 Proof of Proposition 5.8

We first note that Eq. (5.14) which defines hη can be alternately written as (dropping
the index η for simplicity):

(1− r2)h′′ +
(
2η(1− r2)− (n+ 1)

)
rh′ −

(
2ηr2 + n− 1

)
h = r. (C.1)

With (5.15), we have

h(r) = − 1

2η

1√
1− r2

g(cos−1 r).

Then,

h′(r) = − 1

2η

[
− g′(cos−1 r)

1− r2
+
r g(cos−1 r)

(1− r2)3/2

]
,

h′′(r) = − 1

2η

[g′′(cos−1 r)

(1− r2)3/2
− 3r g′(cos−1 r)

(1− r2)2
+

(1 + 2r2) g(cos−1 r)

(1− r2)5/2

]
.

Inserting these expressions in (C.1) and changing r into cos θ, we get

g′′ +
cos θ

(
n− 2− 2η sin2 θ

)

sin θ
g′ − n− 2

sin2 θ
g = −2η cos θ sin θ, (C.2)

But, we have
1

sinn−2 θ

(
sinn−2 θ g′

)′
= g′′ + (n− 2)

cos θ

sin θ
g′.

With this and (3.11), we realize that (C.2) is nothing but (3.12).

C.2 Proof of Lemma 5.14

We use the same notations as in the proof of Lemma B.2. From (B.17), we get




a1 = 〈X4〉 − 6 〈X2(1−X2)〉
n− 1

+
3 〈(1−X2)2〉
(n− 1)(n+ 1)

,

a2 =
〈X2(1−X2)〉

n− 1
− 〈(1−X2)2〉

(n− 1)(n+ 1)
,

a3 =
〈(1−X2)2〉

(n− 1)(n+ 1)
,

(C.3)

(C.4)

Thus, with the change to spherical coordinates used in the proof of Prop. 3.4, an integra-
tion by parts, and Eqs. (3.5), (3.6) and (3.8), we get

a2 + a3 =
〈X2(1−X2)〉

n− 1
=

Cn
(n− 1)Zη

∫ π

0

eη cos2 θ cos2 θ sinn θ dθ

=
Cn

2(n− 1)ηZη

∫ π

0

eη cos2 θ(n cos2 θ − 1) sinn−2 θ dθ

=
1

2η

〈nX2 − 1〉
n− 1

=
S2(η)

2η
=

1

2αρ
, (C.5)
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which shows the equality in (5.34).
Now, we have, thanks to (C.5)

(n− 1)(n+ 1)a2 = (n+ 2)〈X2(1−X2)〉 − 〈1−X2〉 =
n+ 2

2η
〈nX2 − 1〉 − 〈1−X2〉.

Thanks to (3.5), (3.6), we have 〈X2〉 = 1
n
(1 + (n− 1)S2(η)). So,

2n(n+ 1)ηa2 =
n

n− 1

[(
n(n+ 2) + 2η

)
〈X2〉 − (n+ 2 + 2η)

]

= (n(n+ 2) + 2η)S2(η)− 2η.

Thus, with the change to spherical coordinates used in the proof of Prop. 3.4, we have

2n(n− 1)(n+ 1)ηZηC
−1
n a2 =

=

∫ π

0

eη cos2 θ
[
(n(n+ 2) + 2η) (n cos2 θ − 1)− 2(n− 1)η

]
sinn−2 θ dθ

=

∫ π

0

eη cos2 θ
[
n(n+ 2)(n cos2 θ − 1) + 2nη(cos2 θ − 1)

]
sinn−2 θ dθ

=

∫ π

0

eη cos2 θ
[
2n(n+ 2)η cos2 θ sin2 θ − 2nη sin2 θ

]
sinn−2 θ dθ

= 2ηn

∫ π

0

eη cos2 θ
(
(n+ 2) cos2 θ − 1

)
sinn θ dθ

The passage between the third and fourth lines uses the same integration by parts as in
(C.5). The other equalities are just simple algebraic rearrangements. Comparing with

(3.5), (3.6), we notice that the integral of the last line is equal to the quantity S
(n+2)
2 which

is the quantity S2 in dimension n + 2 up to a prefactor (n + 1)ZηC
−1
n . Thus, we have

a2 = S
(n+2)
2 /(n− 1). Now, we can apply Prop. 3.6 (iii) and conclude that 0 < a2 <

1
n−1

.
In particular, a2 6= 0, which finishes to show (5.34).

Finally, it is a simple algebra, using (C.3) and (C.4) to show that

a1 + (n+ 4)a2 =
〈nX2 − 1〉
n− 1

= S2(η),

showing (5.35). This ends the proof.

C.3 Proof of Prop. 5.16.

Let f = ρGηAΩ
with η 6= η(ρ). This means that (3.8) is not satisfied. In other words,

η′ = αρS2(η) 6= η. (C.6)

From (3.7), it follows that αρQρGηAΩ
= η′AΩ. So, with (5.21), we get

DρGηAΩ
C∗g(ω) = L∗η′AΩ

g(ω)− αρ (ρQ)GηAΩ
L∗ηAΩ

g : ω ⊗ ω. (C.7)
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Suppose that g is a GCI associated with (η, AΩ). Then, by (5.7), there exists V ∈ {Ω}⊥
such that

GηAΩ
L∗ηAΩ

g = (ω · Ω) (ω · V )GηAΩ
. (C.8)

By a similar computation (using the same notations) to what was done in the proof of
Lemma 5.13, we get

αρ (ρQ)GηAΩ
L∗ηAΩ

g : ω ⊗ ω = 2αρ(a2 + a3)(ω · Ω) (ω · V )

=
η′

η
(ω · Ω) (ω · V ). (C.9)

For the second equality, we have used that a2 + a3 = S2(η)
η

(see the proof of Lemma 5.14

in Appendix C.2) and (C.6). On the other hand, simple algebraic manipulations and the
use of (C.8) show that

L∗η′AΩ
g(ω) = L∗ηAΩ

g(ω) + 2(η′ − η)(ω · Ω)Pω⊥Ω · ∇ωg

= (ω · Ω) (ω · V ) + 2(η′ − η)(ω · Ω)Pω⊥Ω · ∇ωg. (C.10)

Inserting (C.9) and (C.10) into (C.7) gives

DρGηAΩ
C∗g(ω) = (η′ − η)(ω · Ω)

[
− 1

η
(ω · V ) + 2Pω⊥Ω · ∇ωg

]
.

Suppose now that g is also an element of ker (DρGηAΩ
C∗). This implies that

2Pω⊥Ω · ∇ωg =
1

2η
(ω · V ). (C.11)

From now on, we restrict to dimension n = 3 and use the spherical coordinates (θ, ϕ)
associated to the cartesian basis (V,W,Ω) with pole at Ω (defining W = Ω × V , using
the symbol × for the cross product). In these coordinates, (C.11) is written in terms of
g̃(θ, ϕ) = g(ω) according to

∂θg̃ =
1

2η
cosϕ.

Thus,

g̃(θ, ϕ) =
1

2η
θ cosϕ+ h(ϕ),

where h is an arbitrary function. The smoothness of g at ω = Ω requires h = 0. However,
we see that g cannot be smooth at ω = −Ω (i.e. for θ = π) because the function θ cosϕ
does not tend to a constant when θ → π. However, by the elliptic regularity theorem,
g ∈ C∞(Sn−1). This is a contradiction. This means that the only possible solution is
when V = 0, i.e.

CηAΩ
∩ ker (DρGηAΩ

C∗) = {0}.
Since CηAΩ

6= {0}, this shows (5.20) (with Σ = AΩ) and ends the proof.
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D Appendix to Section 6 on the derivation of the

equation for Ω

D.1 Proof of Eq. (6.12)

We first consider γ̃3. With (6.7), (6.8) and (6.5), and using the spherical coordinates
and the notations Cn and Zη described in the proof of Prop. 3.4 as well as the change
r = cos θ, we have (dropping the indices ηAΩ to G and η to h for simplicity):

γ̃3 =
ρ

n− 1

∫

Sn−1

Gh (ω · Ω)
(
1− (ω · Ω)2

)(
2η
(
1− 2(ω · Ω)2

)
− 2n

)
dω

=
ρ

n− 1

Cn
Zη

∫ 1

0

(1− r2)
n−1

2 eηr
2

r
(
2η(1− 2r2)− 2n

)
h dr, (D.1)

Besides, multiplying Eq. (5.14) by r, integrating with respect to r ∈ [0, 1], and noting
that, thanks to two successive integration by parts we have

∫ 1

0

r
(
(1− r2)

n+1
2 eηr

2

h′
)′
dr =

∫ 1

0

(1− r2)
n−1

2 eηr
2

r
(
2η(1− r2)− (n+ 1)

)
h dr,

we get
∫ 1

0

(1− r2)
n−1

2 eηr
2

r
(
2η(1− 2r2)− 2n

)
h dr =

∫ 1

0

(1− r2)
n−1

2 eηr
2

r2 dr. (D.2)

Inserting (D.2) into (D.1) and integrating by parts once more, we get

γ̃3 =
ρ

n− 1

Cn
Zη

∫ 1

0

(1− r2)
n−1

2 eηr
2

r2 dr

=
ρ

n− 1

Cn
Zη

1

2η

∫ 1

0

(1− r2)
n−3

2 eηr
2

(nr2 − 1) dr

=
ρ

2η

∫

Sn−1

G
n(ω · Ω)2 − 1

n− 1
dω =

ρ
〈
P2(ω · Ω)

〉
G

2η
=
ρ S2(η)

2η
,

where, in the last line, we have reverted back to the variable ω and used (3.5) and (3.6).
This shows the first equation in Formula (6.12).

We now consider γ̃1. Changing to spherical coordinates in (6.5), we get

γ̃1 =
2ηρ

n− 1

Cn
Zη

∫ π

0

eη cos2 θ h(cos θ) cos θ sinn θ dθ.

Using (5.15) and (3.11), this can be changed into

γ̃1 = − ρ

2η(n− 1)

Cn
Zη

∫ π

0

eη cos2 θ g(θ)
dŨ0

dθ
sinn−2 θ dθ

But from (3.4), we have Zη
Cn

=
∫ π

0
eη cos2 θ sinn−2 θ dθ, which leads to the second equation

in Formula (6.12).
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