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Abstract

This paper deals with the convergence of the Doi-Navier-Stokes model of liquid
crystals to the Ericksen-Leslie model in the limit of the Deborah number tending
to zero. While the literature has investigated this problem by means of the Hilbert
expansion method, we develop the moment method, i.e. a method that exploits
conservation relations obeyed by the collision operator. These are non-classical
conservation relations which are associated with a new concept, that of Generalized
Collision Invariant (GCI). In this paper, we develop the GCI concept and relate
it to geometrical and analytical structures of the collision operator. Then, the
derivation of the limit model using the GCI is performed in an arbitrary number of
spatial dimensions and with non-constant and non-uniform polymer density. This
non-uniformity generates new terms in the Ericksen-Leslie model.
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1 Introduction

We consider the Doi kinetic model of liquid crystals coupled with the Navier-Stokes equa-
tion for the fluid solvent. We investigate the limit of the Deborah number tending to zero
by means of a moment method. The limit model is a system of fluid equations named the
Ericksen-Leslie model [26, 36, 57]. In classical kinetic theory, there are two methods to de-
rive fluid equations, the Hilbert expansion method [6] 10, 24] [33] and the moment method
[4, 50]. However, for a number of kinetic models including the Doi kinetic model, only
the Hilbert method can be used. Indeed, the moment method is subject to a condition on
the number of conservation relations satisfied by the collision operator and this condition
is not satisfied by the Doi model. This is why the Hilbert expansion method is the only
method developed in the literature so far (see e.g. [20], 36, 57]). In the present work, we
address the question whether the moment method can be used for the Doi kinetic model.

To make this question clearer, let us temporarily consider the Boltzmann equation of
rarefied gases for which both methods work. The Boltzmann equation is historically the
first kinetic model ever written and the most emblematic one [5, 9, 49]. It is schematically
written

Tf = (B +v- V) f = écu’e), (1.1)

where f€ = f¢(x,v,t) is the distribution function of particles at position x, velocity v and
time t, ¢ < 1 is the dimensionless Knudsen number and C' is the collision operator. In
the fluid limit € — 0, we have (at least formally) f¢ — f° with C'(f°) = 0. Such equilibria
fO are given by

1O = pMyr. (1.2)

where (p,u,T) € (0,00) x R™ x (0, 00) (n being the dimension) depend on (x,t) and M, :
v — M,r(v) € (0,00) is a specific function of v called a Maxwellian. The fluid limit
requires finding equations that specify the dependence of (p,u,T) with respect to (z,1).

Finding these equations requires dealing with the singular factor  in (L1.1). The most
straightforward approach is to expand f¢ in powers of e: f¢ = f0 + ef! + O(e?), insert
this expansion in and cancel each power of ¢ separately. This is the so-called Hilbert
expansion method. The leading order term is C(f°) = 0 which recovers that f° is of the
form (1.2). The next order gives D;oC(f') = T'f°, where D;C(f') is the derivative of C
(which is nonlinear) with respect to f at f° applied to f!. The existence of f! requires



that Tf° be in Im(DC'), the image of the operator DpC. Under spectral properties
of Dy C which are satisfied in a large number of situations and which we will not detail
here, we have Im(D;C') = ker(D;C*)* where ker’ denotes the kernel and the exponent
"s”, the adjoint. Thus, the requirement on 7'f° can be written

/Tfog/)dv =0, V¢ €ker(DwpC). (1.3)

One can show that ker(D;C*) = Span{1, v, |v|?}, so that written for ¢ successively
equal to 1, v, |v|* gives rise to the system of compressible Euler equations, which thus
constitutes the fluid limit of the Boltzmann equation. We note that this system is closed,
because there are n + 2 unknowns (p, u,T’) and n + 2 equations (indeed, the dimension of
ker(DpC*) is n + 2).

However, there is a more direct route, which is to notice that the collision operator
satisfies

/C(f)wdv _0,¥f <= o e Span{l, v, [0}, (1.4)

A function v that satisfies the left-hand side of is called a collision invariant. Prop-
erty states that the only collision invariants are linear combinations of 1, v and |v]?.
Physically, this means that collisions conserve mass, momentum and energy and that these
are the only conserved quantities. Thus, multiplying the Boltzmann equation by ¢ €
Span{1, v, |v|*} we get [Tf4 dv = 0. This removes the I singularity and allows us to
pass to the limit e — 0. This leads to [T f°¢ dv = 0 which, again, gives rise the system
of compressible Euler equations. Integrals of the type [ f°¢ dv are called “moments”,
hence the name “moment method” for this method. This should not be confused with
the numerical moment method which consists of approximating the distribution function
by a finite number of moments. However, the two are obviously linked.

We note that the Hilbert expansion method works provided Im(DC') = ker(D;oC*)*,
which is satisfied in a large number of cases. On the other hand, the success of the
moment method relies on the requirement that the space of collision invariants has the
same dimensions as the number of free parameters in the equilibrium distribution function
(here (p,u,T)). This requirement is not satisfied in general and specifically for the Doi
model. So, should we abandon the moment method for such instances? The goal of this
paper is to show that the moment method can still be used for the Doi model. However,
this necessitates to revisit the concept of collision invariant and to design a weaker concept:
the “generalized collision invariant” or GCI.

The GCI concept has first been introduced in [22] for the Vicsek model [53], a model
of self-propelled particles moving at constant speed and tending to align their direction
of motion with their neighbors. Here, the absence of conservation relations beyond the
conservation of mass is a consequence of the active character of the particles, i.e. the
fact that they sustain a constant speed motion in all circumstances. In [22], thanks to
the GCI concept, the fluid limit of the Vicsek model is derived and gives rise to a new
kind of fluid dynamics model, now referred to as the Self-Organized Hydrodynamic model
[19]. Since then, the GCI concept has been applied to a variety of collective dynamics
models [16, 17, 18, 20, 21, 29]. The present work is its first application to visco-elastic
fluid models.



Visco-elastic fluids have been the subject of an abundant literature (see e.g. [II, 2
15, 23, BT (6] for reviews). The Doi model is one of the most fundamental models of
visco-elastic fluids [23]. It models the dynamics of an assembly of polymer molecules
flowing in an incompressible fluid (the solvent). The polymer molecules are assumed to
be rigid spheroids mutually interacting through alignment and subject to noise. They are
represented by a distribution function of their position and orientation. After Onsager and
Maier-Saupe [48, [51], alignment accounts for the volume exclusion interaction between the
molecules. Alignment is supposed to be of nematic type, i.e. invariant if the head and tail
of the molecules are flipped. To account for this, following Landau and de Gennes [15],
the interaction is written in terms of the so-called Q-tensor which is a quadratic quantity
of the orientation and thus, respects this invariance. The fluid solvent is modelled by the
incompressible Navier-Stokes equations. Polymer molecules are transported by the fluid
and rotated by the fluid gradients. In turn, the polymer molecules influence the fluid
through extra-stresses whose expressions involve the polymer distribution function. The
mathematical theory of the Doi-Navier-Stokes system has been investigated in [44], [52] 60]
and for active particles, in [12].

In the Doi model, alignment occurs at a rate characterized by a dimensionless param-
eter, the Deborah number. When this parameter goes to zero, the distribution of polymer
molecule orientations gets a definite profile which has analogies with the Maxwellian veloc-
ity distribution of gas dynamics . It depends on two parameters, the polymer density
p and the polymer molecules average orientation {2 which are functions of space and time.
In the case of a constant density p, it is shown in [20, [36] [57] that the mean orientation sat-
isfies a transport-diffusion equation. Its coupling with the Navier-Stokes equations leads
to the so-called Ericksen-Leslie system [25] [37]. The convergence is formal in [26], 36] and
rigorous in [57]. In all cases, the method relies on the Hilbert expansion. There is an
abundant mathematical literature on the Ericksen-Leslie system per se [34] [41), 42, 43, [58].

Here, our goal is to provide a formal convergence proof of the Doi model to the
Ericksen-Leslie model using the moment method and the new generalized collision invari-
ant concept. Specifically, we will derive the appropriate GCI concept, discuss its rationale
and its relation to ker(D 0 C*) which is the central object in the Hilbert expansion method.
There are several motivations to develop a moment method even if a Hilbert expansion
theory already exists. The first one is that the GCI concept has an underlying geometrical
structure which we will highlight. In view of Noether’s theorem relating conservations to
invariance under transformation groups, this may lead to new useful structural invariance
properties of the Doi collision model. The second reason is that a mathematical theory
based on the moment method often requires less regularity than the Hilbert expansion
method (compare e.g. [3] with [6]). This potentially opens the ways to simpler conver-
gence proofs from the Doi to the Ericksen-Leslie models. The third reason is that the
moment method naturally leads to the development of efficient numerical methods [32], 38]
which might enable us to handle the complexity of the Doi kinetic model in a systematic
way.

Aside to this main goal, we will also pursue two secondary goals. The first one is
to provide a treatment of the small Deborah number limit in arbitrary dimension. So
far, this has only been done in dimension 3. This extension is made possible by Wang
and Hoffman [55] who have determined the spatially uniform equilibria in any dimension.



Although dimension three is the physically relevant case, there are several reasons for
considering an arbitrary dimension. The first one is that the use of dimension 3 often
conceals simple structures under dimension-specific concepts and notations. For instance,
in many references, the use of the rotation operator traditionally denoted by R whose
construction depends on the cross-product and is dimension 3-specific is unnecessary and
cumbersome. As argued in [I1], the use of an arbitrary dimension often reveals hidden
and interesting mathematical properties. Finally, fluid-dynamic equations are based on
simple postulates that may be relevant for other objects. For instance, the Doi-Navier-
Stokes model could describe flows of different types of information in an abstract space of
large dimension. Of course, an information flow model cannot simply be a copy-paste of
the Doi-Navier-Stokes model. However, the latter could constitute a good starting point
on which further elaboration could be made.

The second side goal is to investigate the effect of a spatially non-uniform density of
polymer molecules. To the best of our knowledge, earlier work on the small Deborah
number limit [26] 36, 57] have assumed the density of polymer molecules to be constant.
Investigation of Ericksen-Leslie models with non-uniform order parameter has been made
in the literature [7, 8, 25] [39, 40} [45], but none has explicitly linked this non-uniform order
parameter to the non-uniform polymer density (as is should as we will see) and derived
these models from kinetic theory. Non-uniform polymer density results in modifications
of the equations for the mean director 2 and for the extra-stresses that will be highlighted
in this work.

The organization of this paper is as follows: Section |2 gives an exposition of the
Doi-Navier-Stokes model and the small Deborah number scaling. Section [3| is devoted
to the statement of the main result, namely the formal convergence of the Doi-Navier-
Stokes model to the Ericksen-Leslie model in the zero Deborah number limit. Section
describes the local equilibria (i.e. the analogs of the Maxwellians for the Doi
model). Section |5 develops the GCI concept for the Doi model and discusses it. In
Section [0} the limiting equations of the Doi model when the Deborah number tends to
zero are derived. Conclusions and perspectives are drawn in Section [7} Auxiliary results
stated in Sections [2] [3] [5] and [6] are proved in appendices [Al [B] [C] and [D] respectively.

2 Kinetic model for rod-like polymer suspensions and
scaling

2.1 The Doi equation

In this paper, we consider the Doi model [15], 23] 26, 36, (2, 54, 57|, where polymer
molecules are identified as spheroids. We consider the semi-dilute regime [23, 26, [54]
where a volume-exclusion interaction potential needs to be incorporated. We neglect the
inertia of the polymer molecules. Following [26], 36, [54], we describe the polymer molecules
by a kinetic distribution function f(z,w,t) where x € R" is the position, w € S*! is the
molecule orientation and ¢ > 0 is the time. We let S*~! be the unit (n — 1)-dimensional
sphere and since w and —w refer to the same molecular orientation, we impose

flz,w,t) = f(z, —w,t). (2.1)
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Let u(z,t) € R" be the fluid velocity. In general, the dimension n = 2 or 3 but the theory
will be developed for any value of n. The equation for f (the so-called Doi equation)
reads as follows:

O0f + Ve (uf)+ V- (f(APLE —W)w) =DV, - (V. f+ fv Uf). (22)

Here, D denotes the rotational diffusivity, T, the fluid temperature and kg, the Boltzmann
constant. The tensors E and W are respectively the symmetric and anti-symmetric parts
of the velocity gradient, given by

1 1
E = §(qu + Vul), W = i(vxu — Vu'). (2.3)

The symbols V, and V- refer to the spatial gradient and divergence operators while V,,
V. to the gradient and divergence operators on the sphere S*~! respectively. The notation
V. u refers to the gradient tensor of u defined by (V,u);; = 0,,u; and the exponent "T"
indicates the transpose. The dimensionless quantity A is related to the aspect ratio (ratio
between the semi-axes) of the spheroidal polymer molecules. Finally, P,. = Id — w ® w
for w € S"! denotes the projection operator of vectors onto the normal hyperplane to
w. Throughout this paper, Id denotes the identity matrix and if v = (u;);=1, ., and
v = (v;)i=1,..n are two vectors, u ® v denotes their tensor product, i.e. the n x n tensor
(u®wv);; = u;vj. For two n x n tensors S and S’, S5’ stands for the matrix product
of S and S’, hence the meaning of P, . E. The surface measure on the sphere will be
normalized, meaning that [, , dw = 1.

The quantity U ;% is the interaction potential stemming from volume exclusion between
the polymer molecules. In the Maier-Saupe theory [48], this interaction potential reads

1 |Z‘—l’/’ / o W
Ufi(z,w,t) = kpTv /Rnxgm1 EK< I ) (1—(w-w)?) fla' o, t)do’ da’,  (2.4)

where v is the potential strength. Following the formalism proposed by [26], 54], a spatial
non-locality is introduced by means of the kernel K: [0,00) — [0,00), & — K(§) which
describes the influence of two neighboring molecules. Specifically, two molecules sepa-
rated by a distance £ influence each other with strength 4z K (%), where R is the typical
1nteract10n range. The kernel K satisfies [p, K(|z|) dz = 1. An equivalent expression of

U

n—1
Uf(z,w,t) = kgTvpf [ — (w- Qfw) + |,

where pf? and Q? are the locally averaged particle density and orientational de Gennes
Q-tensor given by

(2.5)

pi(z,t) = /R ! <| 7 |> (2, w,t) dw dx’, (2.6)

ny§n—1 R?"L

f
(PF Q) (x,t) = /Rnxgn 1 };” < 7 > (w@w— %Id) f@' w,t)dwds’. (2.7)



Note that QJ]? is a trace-free symmetric matrix obtained by averaging w ® w — %Id over
the probability distribution pff(z,t)™" R™"K (|z — 2/|/R) f(«',w,t) dw dz'. Consequently,
thanks to the min-max theorem, its eigenvalues A satisfy the inequality

1 1
<A<l (2.8)
n n

The following fully local versions of the polymer density and orientational tensor:

_ — T AR
= fdw = lim py, (2.9)
piQr = (w ®w — lId> fdw = lim pRQ% (2.10)
f f sn—1 n R—0 f f7
will also be useful. From ({2.5)), it follows that

1

T VWU;DL([E,W,t) = —2Vp]}? PwLQ?w,

so that an alternate formulation of the Doi equation ([2.2)) is given by
Ohf+ Vo (uf) + V- (f AP E—W)w) = D(Auf —2vpf Vi - (f PrQf w)).(2.11)

We note that Eq. preserves the symmetry constraint . The second and third
term at the left-hand side of model passive transport of the polymer molecules by
the fluid: the second term corresponds to translation of the molecules by the fluid velocity
and the third term to their rotation by the gradient of the fluid velocity. Here, we assume
that the polymer molecules can be described by spheroids, i.e. ellipsoids, in which n — 1
semi-axes b are equal. The aspect ratio p is the ratio a/b where a is the remaining semi-

axis. The quantity A is related to p by A = gzﬁ In particular, A € [-1,1] and A =1 for
infinitely thin rods, A = 0 for spheres, and A = —1 for infinitely flat disks. The rotation
operator is derived from Jeffery’s equation [35]. The first term at the right-hand side
of describes Brownian effects due to rotational diffusion. We neglect translational
diffusivity, as it is usually much smaller than rotational diffusivity [15]. The second term at
the right-hand side of takes into account the volume exclusion interaction between
the molecules and drives the distribution to that of a system of fully aligned polymer

molecules. To measure the degree of alignment of the molecules, one introduces

Xf= %)\f with Ay = the largest eigenvalue of @y, (2.12)

where Q)5 is given by . This quantity can be seen as the order parameter for the
distribution f. We have x; € (0,1). If f is close to the uniform distribution on the sphere,
which corresponds to a fully disordered distribution of polymer orientations, then x; is
close to 0. By contrast, if f is close to %((59 +0_q) where 2 is any vector on S*1, which
corresponds to a fully aligned distribution of polymer orientations in the direction +££2,
then, x is close to 1.

To ensure thermodynamic consistency, one introduces the polymer free energy [20]:

AL (t) :/ [ksT (f log f — f) + lUj? f] dz dw.
Rn xSn—1 2
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From (2.4), it is easy to check that the quantity [, c.-. Uf gdzdw defined for two
functions f and g of (z,w) is a symmetric bilinear form. Then the functional derivative
,u? = 534;1? also referred to as the chemical potential, is given by

f b
n—1
,u? = kgTlog f + Uf = kgT ( log f — Vp? [(w- Q?w) - ]) (2.13)
Thus,
Vi
Voul = kT <Tf — 2wpf P Qfw), (2.14)

so that (2.2) can also be written:

D

O + Ve (uf) 4 Voo ( (AP E = W) = 1

Vo (f Vouf). (2.15)
The right-hand side of (2.15) can be viewed as describing the steepest descent in the
direction of the minimum of the polymer free energy. This is also known as the maximal
dissipation principle. Using Green’s formula, we have the following identity (provided f
vanishes fast enough at infinity), whose proof is sketched in Appendix [A.1}

dAR_/ UR.vudsc—/ FRoude — 2 FIVoB 2 dedw,  (2.16)
dt Je CF L keT Janann ! <P ’ '

where af is the extra-stress tensor and F f” is a body force, given by :

of = /S (AMwe Vard), + (o Voul)),) fdw, Ff=- Ve fdo (20)

Here, for two n x n tensors S = (S;;)ij=1....
Sij Si; their contraction (with the repeated index summation convention) while S, and
S, are respectively the symmetric and antisymmetric parts of S namely S, = %(S + ST,
Se = 3(S — ST). Contractions and tensor products will be defined and noted similarly
for tensors of higher order.

nand S" = (S};)ij=1,..n, We denote by S : S’ =

-----

2.2 The Navier-Stokes equations

The Doi equation (2.2)) (or equivalently, (2.11]) or (2.15]) is coupled to the Navier-Stokes
equation for the fluid velocity, which is written [23] 26], [54]:

pF(atquu-ku) +V.,p=V,- (U?+Tu+7},u) +F;%, (2.18)
Ve -u=0. (2.19)
Here pp is the fluid mass density. The extra-stress tensor a}% is given by ([2.17) while

7, and Ty, are contributions of the fluid and polymer molecules to the viscous stresses
respectively given by

ksT
Te =2 E, 7}#:5%”1@;15,
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with the fourth order orientational tensor T given by

psTy = /s B w® f dw. (2.20)

For a n x n tensor S, its divergence V, - S denotes the vector defined by (V, - S); =
05, 5; (using the repeated index summation convention). As above, Ty : E denotes the
contraction of Ty and E with respect to two indices. Although T is a fourth order tensor,
it is symmetric, so which pair of its indices is concerned by the contraction is indifferent.
The quantity 7 is the fluid viscosity. Using the divergence-free condition , we remark
that V, - 7, = n Ayu. The quantity ¢ is a dimensionless number. In [23], for the dilute
polymer regime in dimension 3, it is shown that ( = % But this derivation requires the
use of the Oseen tensor which has dimensional dependence [11] and thus, the value of ¢
changes with the dimension. Moreover, even in dimension 3, in the semi-dilute regime
considered here, the value of ( may be different from % [23, Section 9.5.1]. So, we shall
consider ( as a free parameter of the model.
We have the following expression for the extra-stress:

A+1 A-1
of =nkgTApsQs + /Snl [Tw ® VL,UF + 5 Vo, UF ® w] fdw. (2.21)

However, although more complicated, the following expression, which is valid if f is a
solution of the Doi equation ({2.2)), will turn out to be more useful:

kpT A 20
of = “55pr[MEQs + QrE) + QW = WQp + ~~E — 20T : E — DiQy]
1
+§/ (w® VLU =V, UF @w) fdw, (2.22)
Sn—1
where
Dy =0, +u-V,, (2.23)

is the material derivative. Eq. results from the first equation of after insertion
of (2.14). Eq. is obtained by multiplying Doi’s equation by w®@w — +1d and
integrating with respect to w, followed by some algebra. These computations have been
done in [26], 36, 57] for n = 3 and are sketched in Appendix for any n.

The rationale for involving JJ@ and F¥ in the coupling between the Navier-Stokes
equations and the Doi equation is thermodynamical consistency. Indeed, we
have the following total free energy dissipation identity (provided spatial boundary terms
vanish in the integrations by parts):

d
aeR + D =0, (2.24)

where £F is the total free energy (sum of the fluid and polymer free energies):

1
SR(t):/ Epp|u]2dw+AR,



and D! is the total free energy dissipation:

D
k:BT RnxSn—1

DR(t) f\kuf|2dxdw+/ (2nE:E+ kT

psTs: (E® E)) dz,
Rn D
where now, T; : (E ® E) indicates the contraction of the fourth order tensors T; and
E ® E with respect to all four indices. We have omitted the dependence of F on u for
simplicity.

2.3 Scaling

We now introduce a suitable scaling of this model. Let xg, o and pg be space, time
and polymer density units and let ug = xzo/to, fo = po, 00 = ksTpo, Po = pr ug, Fy =
00/xo, Uy = kpT be units for velocity, distribution function, stress tensor, fluid pressure,
elastic force and potential respectively. Then, we introduce the following dimensionless
quantities:

1 UgToPF nD _ R
€ Dt[)? € n ) r kBTp(), «Q Vpo, Zo

The dimensionless quantities De, Re and Er are the classical Deborah, Reynolds and Er-
icksen numbers, which respectively encode the relaxation time of the polymer molecular
assembly to equilibrium, the ratio of inertial to viscous forces in the fluid and the ratio
between the viscous and extra stresses. The parameters o and R are measures of the
molecular interaction intensity and range respectively. The other dimensionless param-
eters of the model are ¢ and A. Introducing scaled variables ' = x/xo, t' = t/ty and
unknowns f(z,w,t) dxdw = po f'(2',w,t") dz’ dw, u(x,t) = upu'(2',t'), ..., we can deduce
the following dimensionless form of the Doi model (dropping the primes for clarity):

Wf+Ve (uf)+ Ve (f(APLE —W)w) = %vw A(Vof +fVLUF),  (225)
with i i i ]
Ufzap?[—(w-@?w)jLn_ I,

n

and p?, Q? given by (2.6)), (2.7) with R replaced by R. The polymer free energy is now
given by

AR(t):/ (flogf — f+ 2 UR f)dedw
R7xSn—1 2

and the chemical potential ,uf“ = % by

— — — — n — 1 _
pj =log f+Uf' =log f —a(w- pfQfw) +a—pf.
Thus, the expression at the right-hand side of (2.25) is equivalently written

Vo (Vof + FVLUR) =V - (fVouf) = Auf — 20pFVu(f P QFw).

10



The scaled Navier-Stokes equation reads as follows

1

R R
+ ReEr De (Vx'gf + Iy )’

1 1
0, *Vz P — 5~ Vo' \Uu - u
it Vau+ Vop = 2=V (Tu + =T )

Ve u=0,

Tu:2E, ﬂvuzgprfiE,
with 0?, F fi given by (2.17) with R replaced by R and p;, T; given by (2.9), (2.20).
Expressions (2.21)), (2.22]) for the stress tensor are scaled into
[A +1 A —

_ 1 —
——w® VLU + ——VUf g w| fdw

af = nAprf—i—/

Sn—1

A 2A
= Degpy [A(EQf + QsE) + QW — WQ; + —E 20T E - D,Qy]
1 — —
+5 /SM(“ ® VLU =V, UF @w) f dw, (2.26)

with @ still given by (2.10)). The free-energy dissipation identity is still written as (2.24)
with £ and D now given by

gR — Qd - R
2 Rn|U| x+ReErDeA’
5 1 1
DR = — Lulfde + —— T;: (F® E)d
Re Rn‘v u x+ReErC Rnpf ri(E@E)de
1 512
t— Vo do dw, 2.27
Re Er De? /RnXSn—lf‘ 'uf’ v ( )

where, for a n xn tensor S, |S| denotes the Frobenius norm of the S, i.e. |S]? = Tr{STS}.

The goal of this article is to investigate the limit of the Deborah number De tending
to zero through the use of the new “generalized collision invariant” concept. In doing so,
we will keep the parameters Re, Er and « of order unity. As for R, following [26, 57],
we make the scaling R = O(v/De). This scaling assumption is analogous to the weakly
non-local interaction scaling of the Vicsek model [19]. As we may choose the time and
space units independently, we assume:

De = ¢, R = /e, e — 0,

and assume Re, Er and « independent of €. A straightforward Taylor expansion shows
that

Pl =pr+eBlupr+OE),  pf QY =pyQr+2B8A0; Q) + O,

where .
p= .. K(|z|) |z]* dx. (2.28)

Then, we can expand U}E = Uy +cU; + O(e?), u}ﬁ = p} +epy + O(e?) with

n—1
Uy = aps[—(w- Q)+ 1. g =log f + U} (2.29)

Up = pp=BAU7 (2.30)
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Straightforward computations show that
0 272, L
/ w®vaf fdw:—QOzpf[Qf—f-ﬁQf—TfiQf}, (2.31)
S§n—1

so that the left-hand side of (2.31)) is a symmetric tensor. We deduce that the integral
term in (2.26]) is O(e), so that a}/g = O(e). Additionally, similar computations as for
(2.31)) lead to

/Sn_l(w ® VoU; = VU @) fdw =208 ps [AalprQr)Qr — QrAa(psQy)].
So, we can write 0? = eo; + O(g?) with
A 2A
O'ch = pr [A(EQf + QfE) + QfW - WQf + 7E - QATf B — Dth]
+aB pr [AalprQr)Qr — QrAu(psQy)]. (2.32)

We also note that FJE/E = =V} +eF} + O(e?), with

n—1

], Fp=— Vit fdw. (2.33)

0 a o _
o1 = pr— 5@ Qs -
Sn—l

We let p° = p* + Lgim9}. We will omit the tilde below for simplicity. Since the O(g?)
terms in all these developments have no contribution to the limit model when ¢ — 0 (at
the leading order), we will just ignore them.

We finally get the following perturbation problem:
Off+ V- (W f)+ V- (fF(APLE —Ww) + 208V, - (fF Py Au(ppe Qpe ) w)

1
= g(Awfg - 2a/pf€vw : (fa PwiQfE w)>7 (234)
ot +ut - Vyout + Vp® = é{Amue + % [C V.- (pfeTfs : Es)
V. oh+ PR (239)
V., - uf =0, (2.36)

where 0}5 is given by (2.32)) and F’ }E by (2.33)).

We define the transport operator T,(f) (for a given time-dependent vector field wu:
R™ x [0,00) — R™) and the collision operator C(f) by

T(f) = 0uf+ Ve - (uf)+Vu- (f (AP E - W)w)

+20 BV - (f PorAu(pr Q) w), (2.37)
C(f) = Auf—2apVy-(fPuQrw) =V (fVou}) (2.38)
= V.- (Vuf + fVLU}), (2.39)
so that is written
1
Te(f) = ZC(f). (2.40)

12



We note that ,ug)c = % is the functional derivative of the free energy A° = lim,_,q.AV®
given by
1
A%ﬂ:/‘ (f log f — f 45U} ) dodeo, (2.41)
R xSn—1

and recall that U} and u§ are given by (2.29). We refer to [26] for the formulation of the
free energy dissipation identity for the whole model ([2.34) - ([2.36]).

3 Main result

3.1 Preliminaries

The purpose of this paper is to derive the limit of model (2.34)) - (2.36]) when ¢ — 0. Before
stating the result, we need a few preliminaries. We note that C' given by (2.38)) operates
on the variable w only and leaves (z,t) as parameters. This justifies the definition:

Definition 3.1 A function f: "1 - R, w f(w) is called an equilibrium of C if and
only if it satisfies
C(f)=0. (3.1)

Remark 3.1 We note that f is an equilibrium if and only if f is a critical point of the
free energy functional A° given by in the spatially homogeneous case (i.e. when
f is a function of w only and integration with respect to x in the definition of A° is
ignored) [46, [57]. Moreover, such equilibria will be called “stable” if they correspond to
local minimizers of this free energy (see [27] for n = 2, [28, [J6] for n = 3 and [30] for
n=4).

The equilibria will attract the dynamics as ¢ — 0 and their determination is of key
importance. For this purpose, we introduce the Gibbs distributions:

Definition 3.2 (Gibbs distribution) Let S be a trace-free symmetric matriz. Then,
the Gibbs distribution Gg associated with S is given by:

1

cm@:ZwM,%zéqw%m. (3.2)

Next, we introduce the

Definition 3.3 (Normalized prolate uniaxial trace-free tensor) Let 2 € P! =
S~ /{41}. Then, the normalized prolate uniaxial trace-free tensor in the direction of €,

Agq, is defined by
1
Ag =020 — ﬁId. (3.3)

Agq is a traceless symmetric tensor with leading eigenvalue equal to ”T_l
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Agq is called a uniaxial tensor because it has only two eigenvalues with one being
simple. The simple eigenvalue has associated normalized eigenvectors +€). The line
spanned by € is called the axis of the uniaxial tensor. It is trace-free and consequently,
the two eigenvalues have opposite signs. It is called prolate because the simple eigenvalue
is positive (it would be called oblate in the converse case). It is normalized meaning
that its leading eigenvalue is exactly ”T_l We note that Aq is invariant by the change
) — —€) showing that it actually depends on {2 seen as an element of the projective space

Prt = §r1 /{411,

Proposition 3.4 (Gibbs distributions of uniaxial tensors) The Gibbs distributions
Gy A, associated to tensors of the form n Aq with n > 0 are given by

Z

n

1
GUAQ (O.)) = —¢' (w-Q)27 Z77 - / en(w-Q)2 dw, (34)
S§n—1

where the normalization constant Z, does not depend on € but only on n.

Proof. Eq. (3.4) is obvious from (3.3). Defining 6 € (0,7) such that cosf = (w - Q)
and changing w to (#,z) where 2 € S" 2 through w = cosfQ + sinf z, with dw =
C, sin" 60 df dz (C, being such that C, [ sin"?0df =1 and [, ,dz = 1), we get:

Z, = C’n/ e 03”0 gipn—2 0do,
0

which does not depend on 2. [

For two functions g and ¢: S"! — R, with ¢ > 0 a.e., we define:

o 9(0) () de

() Jsn—r p(w) dw

We introduce the following

Definition 3.5 (Definition of Sy and Sy) The quantities Sy(n) and Sy(n) are defined

by
S2(n) = (Po(w - D)ayag,  Sa(n) = (Palw - D)), (3.5)
where Py(X) and Py(X) are the polynomials
Py(X) = - i : (nX? —1), (3.6)
L 2 4
Py(X) = CESCEY [3—6(n+2)X*+ (n+2)(n+4)X"].

For the same reason as in Proposition [3.4] Ss and S; do not depend on Q. In di-
mension n = 3, the polynomials P, and P, are the Legendre polynomials of degree 2
and 4 respectively. About S, we have the following proposition, which will be proved in

Appendix [B.1]
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Proposition 3.6 (Properties of Sy) (i) We have

Qa, 4, = 52(n) Aq. (3.7)
(ii) The order parameter of the distribution pGyaqg S XpG,a, = S2().
as n — o0o.

We note that, when  — 0, G, 4, converges to the uniform probability distribution on
Sm~1. Likewise, when n — 00, G4, concentrates on two Dirac deltas 3 (0o + d_o) which
characterizes fully aligned distributions of molecules in the direction €2. Therefore, So
takes the value 0 on fully disordered distributions and the value 1 on fully ordered ones. As
n increases, Gy a,, shows increasing order evidenced by the increase of the order parameter
Sy. Now, we have the following

Proposition 3.7 (Implicit definition of n(p)) The implicit equation
n
— =S5 3.8
L — 5i(n), (39

has at least a root n if and only if p € (p*,+o00) where p* > 0. It has at most two
roots. By choosing the largest root (which is necessarily nonnegative), it defines a smooth
non-decreasing function (p*, +00) — (%, +00), p — n(p), where n* = lim,, ,~n(p) > 0.

This proposition is a consequence of the result of Wang and Hoffman [55] which will
be recalled in Section [d With this, we formulate the following conjecture, which has been
verified in dimension n = 2 [27], n = 3 |28, 46] and n = 4 [30].

Conjecture 3.1 (Stable anisotropic equilibria) The set £ of stable anisotropic equi-
libria (in the sense of Remark 15 given by

€= {pGW(P)AQ | p € (p+00), L€ ]mel}.

We will only consider anisotropic equilibria, i.e. belonging to the set £ above. Stable
isotropic equilibria (i.e. such that f = p is independent of w) do exist but will not be
used here.

Remark 3.2 In the case n = 3, using the change of variables z = cos 6 and an integration
by parts, Eq. (3.8) can be recast as

3e” An?
fo enzdz ap

Upon changing n into —n and making p = 1, we recover Eq. (1.9) of [46] and Eq. (3.2)
of [57] (up to a typo in the latter: a factor 4 is missing in front of the n* term,).
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Now, we introduce the molecular interaction potential at equilibrium U OG g where

Uf is given by ([2.29 - Thanks to (| -, -, we have
apQa, ., =n(p)Aq. (3.9)
Thus, introducing 6 € [0, ] such that w - Q = cos ), straightforward computations give

0 n—1 1 n—1

Upa,a, = —Nw-Aqw)+ ap=—n(w-Q)?*— E) + ap  (3.10)
1 -1 -
= —n(cos’ - 5) + 2 ap =: Uy(0),
so defining the function Uy(#). We note that
d;éo = 27 cos 6 sin6. (3.11)

For two functions ¢ and v defined on [0, 7] with ¢ > 0, a.e., we define
Jo 0(0)¥(6) sin"*6 db
«90»7# = m ..n—2
Jo ©(0) sin"*0db

Thanks to these notations, we can state the

Definition 3.8 (Auxiliary function g) The function g: [0,7] — R, 6 — ¢(0), is the
unique solution (in a sense made precise in Section@) of the elliptic equation
1 d 2 ,dg\ AUy dg q dU,
n-2 g9 ) o9 _dUo
" 20d9( W) " a "V T T w

Note that, in the special case n = 3, (3.12) coincides with Eq. (5.31) of [36]. Thanks
to g we have the following proposition, proved in Section 6.2}

(3.12)

Proposition 3.9 (Constant ¢) Assume A # 0. Then, the constant ¢ given by

(O -

In dimension n = 3, this formula coincides with formula (5.33) of [36]. We now
introduce the following definitions

Definition 3.10 (Definition of the Leslie constants oy, k =1,...,6) The Leslie con-
stants ay,, k =1,...,6 are defined by

is such that ¢/A > 0.

ar = (C=A»S,, ay= —%(c +1), o3 = ﬁ(%—1), (3.14)
o 2(¢ A 2 (C A?) 2(¢ — A?)
= (n+2)(n+4)s4__<7 ) ( n+ 2 )’ (3.15)

C2C—AY) A A2 @—M)
a5 = =St (5 )% (3.16)

2(¢ = A2) AL A AN

ag = ——S4+<——

3.17
n+4 2 2 n+4 ( )

16



where Sy and Sy are given by (3.5) and their dependence on 1 has been omitted for sim-
plicity, and where c is given by (3.13|). We note Parodi’s relation: ag — a5 = ag + .

3.2 Main result: statement and comments

Now, our aim is to prove the following formal result:

Theorem 3.11 (Formal limit of model - ) We assume n > 2, A # 0.
For n > 5, we assume that Conjecture is true (for 2 < n < 4, this conjecture is a
theorem [27, (28, (30, [6]). When ¢ — 0, we assume that (f*,u®) — (f,u) as smoothly as
needed, where f(x,-,t) is a stable anisotropic local equilibrium for all (x,t). Then, on the
open set

B ={(z,t) e R" x [0,00) | py(x,t) > p*}, (3.18)
(where p* is defined at Proposition , we have
f(xv W, t) = P(a’f’ t)Gn(p(a:,t))AQ(m,t) (w)a (319>

where the function (p*,00) > p — n(p) € [0,00) is defined by (3.8). The functions
(x,t) = (p, Q,u)(z,t) satisfy the following system of partial differential equations (called
the Ericksen-Leslie system):

O+ V- (pu) =0, (3.20)
2
1 1
v, — (At —V,-0), 22
Owu+u-Vyu+ Vp Re( u—l—ErV o) (3.22)
Ve u=0, (3.23)
oc=o0+0g, (3.24)
UL:p{Oél(EZ (Q®Q))Q®Q+QQQ®N+Q3N®Q
+asE+o5(Q@QE +asE(Q®Q)}, (3.25)
2
75 = 2T, (V.9
1 -1
+M Ve ® Ven + (n=Dop Vaip @ Vap, (3.26)

no

n

where W and E are given by (2.3), 8 by (2.28), ¢ by (3.13), ag, k=1,...,6 by (3.14)-
BT7), and N by

N = DQ+ W, (3.27)

with Dy given by (2.23)).
Remark 3.3 Using (3.8), we have the following equivalent expression of op:

__% r_(=DB L Sy
op = —— V.V, —[1 53(1 ng.) 1 Ven @ Van,

where S denotes the derivative of Se with respect to n. In particular, this formula shows
that the contribution of the density gradient to og is a rank-1 tensor (which is not obvious

from (3.26)); on the other hand, (3.26]) has more symmetry between ¥V ,p and V,n).
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Remark 3.4 In the case A = 0, the result is still valid, except that (3.21]) must be replaced

by
A+ u- Vo Q + WQ — 26¢ Pyt Ay (nQ) = 0,

where ¢ = (TL - 1>S2(77)/<<9 %»exp(ncos2 0) -
In the literature [36, [57], Eq. (3.21]) is written differently. For this we need the

Definition 3.12 (Molecular field and 7y-constants) We define

AS,

H = 2BS5A,(nQ).
The quantity H is called the molecular field.
Then, we have the following proposition, whose proof is immediate:
Proposition 3.13 (Equivalent form of Eq. ) Eq. is equivalent to

Poi(H =N —»EQ) = 0. (3.29)

We compare System (3.20))-(3.26) with the literature. Ref. [36] considers a spatially
homogeneous model in dimension n = 3 with ¢ = 0. Spatial homogeneity means that p
and €2 do not depend on z, and so H =0, o = 0 and N = 9,Q2 + WQ while E and W
are constant. In this case, our model reduces to (with H = 0) and 0 = o, with
oy, given by , which are the two equations obtained in [36], provided the external
magnetic field considered in [30] is set to 0. Finally, formulas (3.14)-(3.17) for n = 3 and
¢ = 0 are identical with Formula (6.2) of [36]. So, our model is consistent with [36].

Then, Refs. [20, 57] consider a spatially non-homogeneous setting, but still with
a constant and uniform p (we easily see that p = Constant is consistent with both the
kinetic model and the fluid one due to the incompressibility conditions
and (3.23)). Their setting is n = 3, ( = 5 and A = 1. In this case, we see that formulas
(3.14)-(3.17) are identical with Formulas (2.6), (2.7) of [57]. If p = Constant, then, n =
Constant as well. So, the Ericksen stresses and molecular field reduce to

2
op = —kV . QV.QF pH =kA,Q, with k= EﬁnQ, (3.30)

which are the corresponding expressions (see top of p. 7) of [57]. With these expressions,
our model reduces to coupled with (3.22))-(3.25)) and (3.30)). It is identical with the
model obtained in [57].

So, our model is consistent with the literature but has two additional features: the
consideration of an arbitrary dimension n > 2 and the spatial non-homogeneity of p (and
consequently, of 1) which brings additional components to the elastic stresses and, as we
will see below, to the elastic energy. Non-uniform 7 has been previously considered in
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[8, 7, 25], 39], 40}, 45], but to the best of our knowledge, none has explicitly linked it to the
polymer density and to kinetic theory.

A well-posedness theory of System - is outside the scope of this paper (see
e.g. [34, A1l 42, [43], 58] for existence results of the Ericksen-Leslie system in a variety of
forms). Note however that a condition for the well-posedness of the parabolic equation
is that % > (. This is indeed ensured by Prop. .

The main objective of this paper is to provide a (formal) derivation of Egs. (3.20]),
(3.21)) using the moment method and the generalized collision invariant (GCI) concept.
Prior to this, in Section [4, we will return to the determination of the stable equilibria of
the Doi model and provide support to Conjecture [3.1 and to Formula linking p and
n. Then, in Section |5, we develop the GCI concept and discuss its rationale and how it
can be linked to the Hilbert expansion procedure. The derivation of itself will be
performed in Section [} The second main objective of the paper is to provide expressions
for the Leslie and Ericksen stresses in arbitrary dimension and for spatially inhomogeneous
densities, which, to the best of our knowledge, has not been considered before. As these
computations are lengthy, they are deferred to Appendix [B] Other auxiliary results can
be found in this appendix and in the subsequent ones, Appendices [C| and [D}

3.3 Energetics of the Ericksen-Leslie system

Next, we define the following energies:

Definition 3.14 (Oseen-Franck and Ericksen-Leslie energies) (i) The Oseen-Franck
enerqy is defined by:

2 _ 2 2
Er = 28 [ Ve[ dx—aﬁn 1/ [Varl dx—ﬁn—l—l/ [Van dx

a Jpn 2 n 2 no 2
= ER+EL+ER (3.31)
(ii) The Ericksen-Leslie energy is defined by

Er.

Epr = 2dt
EL Rn |U| + ReEr

Remark 3.5 (i) If p is uniformly constant (and hence, n too), Er reduces to
208n? Q2
e} no 2

which is the classical Oseen-Franck elastic energy [26, [57]. The additional terms £ and
EL make up for the non-uniformity of p and n.

(i) Using (3.8)), we find an alternate expression of Ep:
2 QJ? -1 1 ; 2
g 2B [ 2 INLOF (=18 (1——(1—77%)2) [Vl

R" 2

a Jrn no S3 2
In particular, we see that this energy is positive if the following relation holds
1 N
1— = (1-n=2)" >0.
S2 (1-n 52) =

The investigation of this property is left to future work.
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Now, we have the following proposition, which relates the molecular field to the deriva-
tive of the Franck energy with respect to the orientation field €2.

Proposition 3.15 (Relation between the Franck energy and the molecular field)
We have the following relation:

_dtr
o€

2p

pH = (n,Q) = o n Az (nS2), (3.32)

where ‘S(SE—QF(U, Q) is the functional derivative of Er with respect to the field Q evaluated at
the pair (n, ).
Proof. For a n x n tensor S, we introduce the following energy density

28 |52
(s = 215

so that we can write
£l = / e (V.(nQ)) da.
Now, straightforward computations show that the functional derivative ‘555—5 is given by

6Ep e B D 28 B
5—9(77, Q) = 5—9(77,9) = -V, - (%(W(nﬂ))) = —;nAw(nQ) = —pH,

where the first equality is due to the fact that the energies £ and &£} do not depend on
2, and the last one, to (3.8). Then, Eq. (3.32)) follows. ]

The following proposition gives the energy identity for the Ericksen-Leslie system. Its
proof is developed in Appendix

Proposition 3.16 (Energy identity for the Ericksen-Leslie system) We have the
following identity:

d€gpr
Dy = |
a D=0 (3.33)
1 1 ~2 )
Dp= g [ [Vaul'd 2V(E: Qe B2
PET Re Rnlvul x+ReEr/Rnp{<a1+%)( (Q® Q)" + a4l Bl

2
+<Q’5 + Qg — 7—2> ’EQP =+ i|PQJ_[‘[’2} dx.
gi! T
Remark 3.6 (i) The use of this energy identity to derive a priori bounds for the solution
of the Ericksen-Leslie equations is subject to two conditions: first, that the Oseen-Franck
energy is positive as already mentioned in Remark [3.5; second, that the dissipation func-
tional Dgy, is positive as well, which is not obvious given that the coefficients are not all
1

positive. In [57], it is shown that, in the case n =3, ( = 5 and A = 1, Dgy, is positive.

Besides, conditions for the positive-definiteness of Dgr with coefficients which are not
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necessarily linked with a microscopic model can be found in [58]. The inspection of the
positivity of Eg and Dgy for the present model is left to future work.

(1) It is expected that this energy identity is the limit as e — 0 of the free-energy dissi-
pation identity of the Doi-Navier-Stokes system. This is indeed formally shown in
[26]. However, due to the presence of the square of the Deborah number at the denomina-

tor of (2.27), we expect that the limiting free-energy dissipation identity will involve the
fE,fO
€

first order correction f! = lim,_, . Showing that the terms involving f' eventually
vanish is not obvious and left to future work.

4 Local equilibria

In this section, we develop the rationale for Conjecture Since we aim at formal
convergence results only, we suppose that the solution f¢ to ([2.40|) satisfies

ff—=f as e—0 assmoothly as needed.

Then, from , it follows that f should satisfy , i.e. should be an equilibrium
for any (x,t). Eq. leaves the dependence of f on (z,t) undetermined. Such an
equilibrium is called 'local’ (by contrast to a global equilibrium where f should not depend
on (z,t)).

In this section, our goal is to determine the stable equilibria. Indeed, we anticipate
that only stable equilibria can lead to a long time dynamics described by hydrodynamic
equations. First, we should note that local equilibria are known in any dimension n [55]
(see also [14], 27, [47] for the case n = 2 and [13], 28] 146, [59] [61] for the case n = 3). However,
the stability of these equilibria is not known for general dimension n but only for n = 2
[27], n = 3 [28, [46] and n = 4 [30]. These results strongly support a conjecture about
the stable equilibria in general dimension n that we will make below and whose rigorous
investigation is deferred to future work. We first need to introduce a set of notations and
intermediate results.

Definition 4.1 (Auxiliary operator) Let S be a trace-free symmetric matriz. Then,
the auziliary operator Lg is given by

Lsf =V, [Gsvw(GiS)]. (4.1)

with Gg given by (3.2)).

The relation between the collision operator C(f) and the auxiliary operator Lg is
given by the following lemma. Note that Lg is NOT the linearization of C' about Gg.

Lemma 4.2 (Relation between C' and L) We have

C<f) = Laﬁf fo' (4-2>
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Proof of Lemma [4.2. We can write
Lsf = Vu-|Vof = fVu(logGs)).

But —logGs = —w - Sw +log Zg. So, —logGap,q, = U} + Z(f) where Z(f) does not
depend on w. Thus, —V,,(log Goy,q,) = VwU}) and s0, Lap,q, = C(f), thanks to (2.39).

| ]
Now, we have a first result:

Lemma 4.3 (First step towards a characterization of the equilibria) (i) Let f >
0, f # 0 be an equilibrium. Then, there exists p > 0 and a trace-free symmetric matriz )
such that

f = pGapQ. (43)
(ii) Reciprocally, let f be given by (4.3). Then, f is an equilibrium if and only if Q
satisfies the fized-point equation also known as the compatibility equation:

Q = QpGapr (44)
where we recall that for a distribution f, Q; is given by (2.10)).

Proof. (i) Suppose C(f) = 0. Letting S = aps Qy, (4.2) implies Lgf = 0. Multiplying
[4.1) by f/Gs, integrating over S and using Green’s formula leads to

/Snl G ]vw(Gisﬂgdw —0.

Since the quantity inside the integral is nonnegative, and Gg > 0, this implies Vw(GLS) =0.
So, there exists p > 0 such that f = pGs which leads to (4.3]).

(ii) Let f be given by (4.3). Then, since G, ,¢ is a probability density, we have py = p.
Now, from the proof of Part (i), if f is an equilibrium, then f = p;Ga,;q,. We deduce
that Go,q; = Ga,q, and, by taking the logarithm, that

1
w-(Qf — Q= ap (log Zapq, =108 Zapq) =: i,
where p is a constant, independent of w. So, @y — ) — p1d is the matrix of a quadratic
form which is zero on S"! and so, by homogeneity, on R". Thus, Q; — @ — pId = 0 and,
owing to the fact that @y and @) are trace-free, we have p = 0. It follows that Qf = Q.

Replacing f by its expression (4.3), we get (4.4)). ]

To complete the characterization of the equilibria, we need to solve the compatibility
equation (4.4). As pointed out above, this has been done in any dimension n in [55] (see
also [47] for n = 2 and [28] 46, [61] for n = 3). This result is summarized without proof in
the following lemma

Lemma 4.4 (Final characterization of the equilibria [55]) Let f be an an equilib-
rium. Then Qf has at most two distinct eigenvalues.
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o [f all eigenvalues of Q¢ are identical, then Q¢ = 0 and f = p is a uniform equilib-
TIUm.

o If Qs has exactly two distinct eigenvalues, denote by \; its largest eigenvalue and
by Yy the associated eigenspace, supposed of dimension d such that 1 < d <mn — 1.
Then, 0 < A\f < Lli — % and Q5 is written

d
Qf:B)\fyf = )\f(ny—— ny), (45)

n—d
where Py, and nyL are the orthogonal projections of R™ onto Yy and yfl respectively.
Then, f is of the form
f=pi(Ar) GaﬂE(Af)BAf,yf’

where pjj: (0,5 — L) = [0,00), A — p4(A) is a specific function (not detailed here

except for the case d =1, see below). Furthermore, \s is a root of the equation

pi(A) = p. (4.6)

The existence and number of classes of equilibria such that py = p are determined
by the existence and number of roots \ of Eq. . A given root N gives rise
to a family of equilibria parametrized by the Grassmann manifold Gr(k,n) of d-
dimensional vector subspaces Y of R™.

Here, we are only interested in the case d = 1 as we will conjecture that this is the
only case which includes stable equilibria (see conjecture below). For simplicity, p"
stands for the function p?. In the case n = 2, p? is monotonously increasing and maps
[0,1) onto the interval [p*, +00) with p* = p*(0) (see Fig. . In the case n > 3, p" is
decreasing in the interval [0, A\*] and increasing in [A*,1— L), Thus p* = p(\*) is a global
minimum of p" (see Fig. [ID)). In all cases, the equation p,(\) = p has a solution if and
only if p > p* and this solution is unique in the case n = 2 while, in the case n > 3, there
are two solutions if p € (p*, p"(0)], and one solution if p € {p*} U (p"(0), 00) (see [55] for
details).

As already stated, for general n, the stability of the equilibria described in Lemma
is not known yet. However, their stability is known for n = 2 [27], n = 3 [28] [40]
and n = 4 [30]. Based on these results, we formulate the following conjecture for any
dimension n > 2 and refer to the above-mentioned references for details on the notion of

stability involved.

Conjecture 4.1 (Stable anisotropic equilibria) For any dimensionn > 2, the branch
of solutions to the equation p™(\) = p (which corresponds to d = 1) with largest A\, which
is defined for p € (p*,00), corresponds to the unique class of stable anisotropic equilibria.

We denote by the function A: (p*, +00) — (A*,1— 1), p = A(p), the largest solution

n

to p"(A) = p. With Conjecture the stable equilibria f correspond to the class of
equilibria described in Lemma , Case 2, with d = 1 and Ay = A(p). In this case,
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(a) n=2 (b)n>3

Figure 1: Graphical representation of the function A — p"(\) (after [55]). (a) case n = 2.
(b) case n > 3. The portions of the curves that correspond to stable equilibria are in
blue, the unstable ones, in green.

Yy is one-dimensional and thus, spanned by a unique normalized vector (up to a sign)
Q € P"". Hence, we have P, = Q® Q and Py, = Por. Then by [4.5)),

n
= Ap) A 4.
Qs P (p) Aq, (4.7)
where Ag is the normalized uniaxial tensor given by ({3.3)). Defining
n
= A 4.
n(p) = ——7 apAlp), (4.8)

from we get that the equilibria are of the form f = p G, a,where p is arbitrary
as long as A(p) is defined, i.e. p € (p*,00), and where € is arbitrary in P"~!. Hence,
Conjecture [3.1] is a direct consequence of Conjecture [4.1] provided we show that the
function p — n(p) is the one given by Proposition , which we do now:

Proof of Proposition Equating (4.7) with (3.7)) and using (4.8)), we get (3.8]). The

root with the largest 7 must be chosen because this corresponds to the choice of largest
A in Conjecture (as A is proportional to n by (4.8)). [

From ([2.40) and Conjecture , we deduce the:

Corollary 4.5 (Local equilibria) Let f be the formal limit of f¢ ase — 0 and suppose

that u® — w smoothly. On the open set B defined by (3.18)), f is given by (3.19) where
p=ps: (x,t) €R" x [0,00) — [p*,00) and Q: (z,t) € R" x [0,00) — P! are functions

such that f satisfies
T.(f) = lim cu )

e—0 g

(4.9)

24



Note that p = py is the local density associated to f, while Q(z,t) if the axis of the
uniaxial Q-tensor ) thanks to (3.7). The restriction to the set B is needed to ensure
that n(p(z,t)) is well-defined. The determination of the functions (p, {2) such that
holds is quite challenging, due to the presence of ¢ in the denominator at the right-hand
side. It will require the Generalized Collision Invariant concept as detailed below.

5 Generalized collision invariants

5.1 Collision invariant

We first recall the notion of Collision Invariant (CI). The goal is to eliminate the singular
right hand side of (4.9) by using integration against appropriate test functions. More
precisely we have:

Definition 5.1 A Collision Invariant (CI) ¥ (w) is a function such that

/Snl C(f)vdw=0, Vf.

Here, we do not specify any regularity requirement on 1 since our goal is to develop
a formal theory only. If ¢ is a CI, using it as a test function for (2.40)), we have, after
integration with respect to w and omitting € as the identity is valid for any e:

at( e dw) 4V, <u I dw) | Vo (AP E— W)w fdw

Sn—1 Sn—1

—2a Vot - PorAy(pr Q) w f dw = 0, (5.1)
S§n—1

which is an evolution equation for the moment fSnfl f1dw. Since this equation does not
depend on ¢, it is still verified by the solution of (4.9). We have an obvious CI, namely,
Y = 1, which leads to the mass conservation (or continuity) equation

Oy + V- (pyu) = 0. (5.2)

In particular, taking the limit &€ — 0, it shows (3.20). As u is divergence free thanks to
(2.36)), (5.2) can be equivalently written

Dtpf = O? (53>

with D, given by .

Any odd function 9 of w is also a CI. However, it is not invariant when w is changed
into —w, a condition that has been enforced throughout this work (see e.g. (2.1)). Indeed,
Eq. with odd functions ¢ have all their terms identically zero and do not provide
any useful information. We do not have any other obvious CI. Therefore, we are lacking
an equation for 2. In order to overcome this problem, we use the concept of “Generalized
Collision Invariant (GCI)” introduced in [22] and adapted to the present context.

25



5.2 Generalized collision invariant: definition and characteriza-
tion

To introduce the GCI concept, we first need some additional notations and definitions.

Definition 5.2 (and notations) (i) S? is the vector space of symmetric trace free n xn
matrices.

(11) U° is the subset of S8° consisting of tensors whose leading eigenvalue is equal to "T_l
and is simple.

(111) We denote by Ay the leading eigenvalue of Q¢ and by 1y the following quantity:

n
= — s 5.4
g =opp A (5.4)
From (2.8]), we have
n
0< Ar < 1.
S oM s

Note that in general, A\ may not be simple.
(iv) If Q¢ # 0, then Ay # 0 and we define the “Normalized Q-Tensor (NQT) of 7, ¥

by
_n—l&

X .
f n )\f

(5.5)

Y €8V Its leading eigenvalue is ”T_l which, again, may not be simple.

(vi) Let ¥ € U°. We denote by Qs € P! the normalized eigenvector (up to a sign)
associated with the simple eigenvalue =2 of . Note that the tensor Aq,. is uniquely
defined, irrespective of the choice of the sign of Qs.

(v) Suppose ¥y € UY). Then, Qs is simply denoted by Q.

Remark 5.1 From (3.7), we get that XpGya, = Ao meaning that the NQT's of the stable
anisotropic equilibria are all equal to Agq.

We recall that the auxiliary operator Lg for S € 89 is defined by (4.1]). The GCI are
now defined in the following

Definition 5.3 Let (n,X) € (0,00) x U°. A Generalized Collisional Invariant (GCI)
associated to the pair (n,X) is a function ¥ such that

/ (Lysf)¥dw =0 forall f such that Pﬂé(Qng) = 0. (5.6)
Snfl

The set of GCI associated to a given pair (n,%) € (0,00) x UL is a linear vector space and
is denoted by C,s;.

There is a rationale for this definition, which is developed in Section below.
The following lemma gives the equation satisfied by the GCI:
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Lemma 5.4 Let (n,%) € (0,00)xUL. Then) € Cpx if and only if there exists V € {Qs}+
such that
Vo (Gusw)Vot) = (w-Qs) (w- V) Gys(w), Ywe S (5.7)

Proof. For Q € S"7!/{+£1}, we define the following space of functions:
Xo={S"'owr (Q-w)(V-w)eR |V ec{Q}}, (5.8)

The space X is a finite-dimensional subspace of L?(S"7!). We first note that for any
f e L*S™ 1), we have

Poi(Qs2) =0 = - fl@(w-V)(w-Q)dw=0, VVe{Q}+

— [eXy, (5.9)

where the orthogonality is meant with respect to the standard L-product on L*(S"™1).

On the other hand, we note that fgn,l(Lng f)Ydw = 0 is equivalent to saying that
fe {Lj;zw}l where again, the orthogonality is meant with respect to the standard L?-
product on L*(S"~") and where L}, is the formal L*-adjoint of L,s, i.e.

. 1
Ln2¢ = G_ vw : (GnE leﬁ)

nx

Therefore, thanks to (5.9)), Condition ([5.6]) is equivalent to saying that
feXy, = fe{lyv},

or in other words, that Xo. C {L;s¢}*. Taking the orthogonal to this relation and
noting that both X, and Span{L;s1} (where for a subset B of a vector space, Span
B denotes the subspace generated by B) are finite-dimensional, hence, closed subspaces
of L*(S"7), we get Span{L;s1)} C Xq.. In particular, this implies that there exists
V e {Qx}* such that Lisi(w) = (w- Q) (w- V), which, upon multiplying by G, gives
. The converse is straightforward. n

Now, we give an existence theory for the solutions of (5.7). We denote by H*(S"™!) the
space of square integrable functions of S"~! into R whose derivatives are square integrable
and introduce

i) = fue H'(E)] /S u(w)dw =0},

Then we have the

Proposition 5.5 Let (1,%) € (0,00) x U} and V € {Qs}*. Then, there exists a unique
solution of (5.7) in H'(S"') denoted by vysy. The linear vector space Cys of GCI
associated with (n, %) is given by

Com = {Co+ Uy | CoeR, Ve {Qs}"}. (5.10)
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Proof. We look for solutions of ({5.7)) in variational form. Those solutions read as follows:
find ¢ € H'(S"!) such that

/ G Vb - V0 dw = —/ Gps (w- Q) (w-V)0dw, VOe H'(S"). (5.11)
Sn—1 S§n—1

By Poincaré inequality and the fact that G5 is smooth and bounded from above and
below, the bilinear form [ Gys V1 - V,0dw is continuous and coercive on HY(S"™1).
Therefore, by Lax-Milgram theorem, the variational formulation has a unique so-
lution in H*(S*") denoted by 1,51 when 6 is restricted to belong to H*(S*~'). To show
that this is a solution for all € H'(S"™1!), it is enough to show that it satisfies for
0 =1, i.e. that the following holds:

/ Gps (w-Qs) (W-V) do=0, VYV e{Qxs}t (5.12)
S§n—1

Let (eq,...,e,) with e, = Qs be an ortho-normal basis of R" consisting of eigenvectors
of . Let A\, ..., A\, be the associated eigenvalues. Let w = ZZ=1 wy, ex be the decompo-

sition of w in this basis. It is enough to show (5.12)) for V =e; with j € {1,...,n —1}.
Then, we have

1
/ Gy (w- Q) (w-ej) dw = 7o 1Tt Ane) wj wy, dw =0,
Sn—1 772 Sn—1

thanks to the change of w,, into —w,,. This shows and so, the existence and unique-
ness of a solution of in H'(S*1) is proved.

Now, all solutions in H*(S"™!) of are of the form v,x y + Cy where Cj is any
constant. Collecting all the solutions for all the possible V € {Qs}+ leads to and
ends the proof. [

Remark 5.2 We note that if Qs is changed into —Qs, ¥,y must be changed into
Uy —v. It follows that (5.10) remains unchanged.

We now define a vector-valued GCI 1@72 in the following way

Definition 5.6 Given (1,%) € (0,00) x Uy, we introduce the function Pps: ST R,
defined as the unique solution (in H(S"™')) of the following vector-valued equation:

V- (Gng(w)vwﬁng) = (w-Qx) Pouw Gys(w), Vwe S
We note that
bpsw =Uys -V, YV e {Qn}t  and s Qn =0,

and that ’Q;nz is changed into —1/7,72 if Qs is changed into —(Qs..
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We can provide an explicit expression of Jn Ag, for all (n,Q) € (0,00) x S™™! as the
next proposition shows. Let us first define the following space:

" = {h; (—1,1)%11%‘ /_11(1—r2)’31|h(r>|2dr<oo,

/_1(1 — )T ()P dr < 0o},

1

where h' denotes the derivative of h.
Proposition 5.7 Let (n,Q) € (0,00) x S"~! be given. We have
Unag (@) = hylw - Q) wy, (5.13)
where w| = Porw and h,, is the unique solution in H of the following equation:
—(1— rz)n%l e’ (2nr* +n—1)h,

d n— 2
+— [(1 —r) 2 e | =71 (1— 7“2)71 e . (5.14)
dr
Furthermore, h, is odd and h,(r) <0 forr > 0.

Proof. We apply [20], Proposition 4.2 (ii) (with the following changes: u — €, § — n,
d—n, I"(,u) = L; 4,9). Note that these techniques were first developed in [18, 29]. =

Remark 5.3 Formula shows that the vector GCI 1/7,7 Ag, 45 tnvariant under rotations
leaving Q2 fized. This is a consequence of the fact that Aq is uniaxial with axis 2. No
simple formula like (5.13)) is available for more general vector GCI 2/7,]2, when ¥ € U is
not uniazial. However, while we will need vector GCI for general ¥ € U°, we will only
need an explicit expression of them in the case of a uniazial tensor 3 = Aq. So, Prop.

is enough for our purpose.

The following proposition provides an alternate equation satisfied by A, in terms of
the function g defined in (3.12). Its proof is easy and is sketched in Appendix for the

reader’s convenience.

Proposition 5.8 (Alternate equation for h,) For 6 € [0, 7], we define the function
g(0) = —2n h,(cos ) sinb. (5.15)

Then g satisfies the equation .

Finally, the following proposition will have important consequences for the derivation
of the macroscopic model:
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Proposition 5.9 Let f: S"! — R be twice continuously differentiable such that Qs # 0
and Xy € UL. Then, the vector GCI Un,s, 15 well-defined and we have

/SH C(f) thnys, dw = 0. (5.16)

Remark 5.4 Proposition expresses an important structural property of C'. Let (n, %) €
(0,00) X UY. The GCI s cancels the collision operator acting on all functions f which
satisfy (ny,25) = (n,2).

Proof. We show that PQJ%(Qfo) = 0. Indeed, if this is the case, from (5.6)), we get

/S‘n1 LT]fEff TanEf dw = 07

and using (4.2)), (5.4) and (5.5), this shows (5.16]). But, by definition, Q; is the leading
eigenvector of Q)¢ with eigenvalue A;. So, QQr = ¢y and thus PQJ%(Qfo) = 0, which

ends the proof. "

Thanks to the GCI, we can now find how (4.9)) translates into an equation for the Q-
tensor principal direction €2. This will be done below but first we provide some discussion
of the GCI concept.

5.3 Discussion of the GCI concept
5.3.1 Rationale for Definition [5.6]

First, let us note that the condition Pﬂé(Q #y) = 0 involved in Definition simply
means that 2y is an eigenvector of ()y. We now try to provide a geometric interpretation
of Condition (5.6). First let us introduce a few additional notations. We endow SY with
the inner-product S : P = Tr{SP} and for a subset B of S, its orthogonal with respect
to this inner-product is denoted by Bt. We recall that B is a linear subspace of S and
that (B1)* = Span(B).

We now define the submanifold A/ of U which consists of normalized prolate uniaxial
Q-tensors i.e.

1
N ={Aq | QeP"‘l}:{Q®Q—EId|QEIP”H}.

Note that A is the manifold spanned by the NQT’s of the equilibria (see Remark .
The mapping P*~! 3 Q +— Ag € N is a diffeomorphism. The tangent space of N at Agq
is given by:

Ta N ={Q2V+VeQ|Ve{Q}'}. (5.17)
Indeed, for V € ToP" ! = {Q}+, consider a curve I > t + £(t) € P*! where I is an
open interval of R containing 0, such that £(0) = Q and ¢/(0) = V. Then, 4(Agy) =
QRV +V ®Q, showing the claim. We denote by Py 4, N the orthogonal projection of 89
on Ty, N for the inner product defined just above.
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We have a mapping p: U? — N, ¥ — Aq.. For any Q € P"!| the pre-image
p 1({Aq}) is denoted by Fq. All these pre-images are homeomorphic to one-another. Let
us choose one of them and denote it by F. This endows U° of a fiber bundle structure of
base N and fiber F. Now, we have the following lemma:

Lemma 5.10 Let Q € P*! be given.
(i) Let Q € SF. Then, P (QQ) =0 <= Q € (TayN)™.
(i1) Fq is a subset of (TAQN)L.

Proof. (i) Using the symmetry of @ and (5.17)), we have:

Poi(QQ) =0 <= (QQ)-V =0, VVe{Q}*
= Q:(Q®V)=0, VVe{Q}*
= Q:(AV+VeN =0, VVe{Q}
— Q:B=0, VBE€TyN — Qe(TAQN)L,

which shows (i).
(ii) Suppose 3 € Fq. Then Aq, = Ag which implies Qs = Q (in P*~!). Thus,  is an
eigenvector of ¥ i.e. Pq1(2€2) = 0. Hence, by (i), X € (TAQ/\/’)L. ]

So, Eq. (5.6) can be equivalently written:
/ (Lysf)¥dw =0 forall f suchthat Q; € (TAQZN)L. (5.18)
Snfl

This can be geometrically interpreted as follows: to any ¥ € U we consider its projection
(in the fiber bundle sense) p(¥) = Agq, onto N. Then, means that the GCI
associated to (n,X) are all the functions 1) whose integrals against L,y f cancel when
@y belongs to the orthogonal of the tangent space to N at Aqg,. This is illustrated in
Fig. 2l It is likely that this geometrical structure persists with other collision operators
as it seems to express some intrinsic geometrical constraint. This point will be further
developed in future work.

5.3.2 Relation between the GCI and the linearized collision operator

Let D;C the linearization of the collision operator C' about the distribution function f
and let D;C* be its formal L*-adjoint. For a distribution function f, we call (n;, %) the
‘moments’ of f. In this section, we show the following: suppose (7,X) € (0,00) x U
is the moment of an equilibrium distribution function, i.e. (n,%) = (n(p), Aq) where
(p, Q) € (p*,00) xS" 1 /{£1} and denote by f° = pG,(,)a, the corresponding equilibrium.
Then, we have

Cn(p)AQ = ker(DfoC'*). (519)

On the other hand, if (n, ) is not the moment of an equilibrium, then, although there
exist Gibbs distributions f = pG,x associated with (7, %), in general, we have

Cys # ker(D;C™). (5.20)
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Figure 2: Graphical representation of Condition . The ambient three-dimensional
space in the figure represents the flat space S§j in which Uj is an imbedded manifold
represented by a surface. N is a submanifold of U} depicted as the curvy blue line. It
endows U of a fiber bundle structure of base N. Let X € UJ. It projects (in the bundle
sense) onto Ag € N and so, belongs to the fiber Fg represented by the curvy red line.
The tangent space to N at Aq, T, N is represented by the magenta straight line. Its
orthogonal (T4, N)* is the gray-shaded plane on the figure. It contains Fq by virtue of
Lemma [5.10] (ii). Then, condition (5.18) means that the GCI associated with (7, X) are
the functions v that cancel L,y f for all f whose Q-tensor )y (represented by the point Q
on the figure) belongs to (Ta,N)*.

Thus, a GCI associated to an arbitrary moment (7,3) is in general not in the kernel of
the adjoint linearized collision operator about the corresponding Gibbs distribution. It is
only so if (n,Y) is the moment of an equilibrium in the above sense. Consequently, GCI
are different and truly more general concepts than elements of such kernels. Likewise,
Eq. linking the GCI to the auxiliary function g given by is only valid for
moments (n(p), Aq) related to equilibria. Observe however that we will not need to
explicit the form of the GCI for general moments, but only for those corresponding to an
equilibrium (see Section [6] below).

Formula is unsurprising. Indeed, Eq. has been shown in [36} 57] using the
Hilbert expansion method. This method corresponds to inserting the Hilbert expansion
¢ = fo+ef'+0O(£?) into the kinetic equation (2.40) and matching identical powers of .
We get

C(f% =o, DCof' =T f°,

for the terms of order e~ and &° respectively (note that we also need to Hilbert-expand
the velocity u®). Now, the first equation implies that f° is an equilibrium f° = pG ),
Then, one looks for a necessary and sufficient condition for the existence of a solution f1
to the second equation. Assuming that Im DCjo = (ker DC’}"O)L (which can be proved

1
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via a careful study of the spectral properties of DC/o, see [57]), such a condition is

/ ToflYdw=0, Y€ kerDC'o.
S§n—1

Since this is also what we get when ¢ ranges in Cy,)a,, (see Eq. ( - below ), Eq. ( -
must be true. However, it would be desirable to have a direct proof of ((5.19)). This is our
goal here. As a by-product, we will also see why we have . We ﬁrst compute the
adjoint linearized collision operator.

Lemma 5.11 (Adjoint linearized collision operator) Let p € (0,00), S € Sf. We
have

Dty C"9(w) = Ly 9() — ap (pQ)gis1z9 : 0 B, (5.21)

where G is defined by (3.2), the auxiliary operator L by (4.1) and L* is its formal L?*-
adjoint. Here (pQ)agrzgy stands for the right-hand side of (2.10) with f replaced by GsLgg
(note that pgsryg = 0 so that Qagryg is not defined but (pQ)gsryg itself is well-defined).

Proof. From ([2.39) and the fact that UJ? depends linearly on f, we get
DyesCf =V - (Vwf + fV,Uiq, + pGsV,U}). (5.22)
We note that VwU,SGS = —Vw(log Gaprc:S)- Inserting this into (5.22)), we get
DpGSCf = LaprGSf +p Gg LEU}J (523)

Thanks to , we also note that LU} = L Uf with Uf = —a(w-prQsw). Thus, using
- Stokes formula and that Lg(Ggg) = GsL5g, we get

D, Cfgdw = fLZprGSgdw—f—p/ UJ? Gs Lggdw.
S§n—1 S§n—1 S§n—1

Inserting the expression of (7}) into this formula, using the expression (2.10)) of p;Q; and
exchanging w and w’ in the resulting integral, we are led to (5.21)). ]

Now, in the case of an equilibrium, we compute the kernel of the adjoint linearized
collision operator:

Lemma 5.12 (kernel of DC* when f° is an equilibrium) Let p € (p*,00) and ) €
S*H/{£1}. Let [0 = pGyyp) Aq be an equilibrium of C', where the function p n(p) is
defined in Prop. |3.7. Define XPQ to be the space of functions ¢ : w +— p(w) which satisfy

pw) = ap(pQ)a,yane W OwW, YweSh (5.24)

Then we have

g € ker (D, ), C7) < - Ly f gdw =0, Vfe X, (5.25)

where the orthogonality is with respect to the standard L?(S"~1)-inner product.
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Proof. Defining S = n(p)Aq, we have

apQucs = apQpc,, = NAa =5, (5.26)
thanks to (3.7) and (3.8]). Thus, thanks to (5.21)), we are led to
DyeCg(w) = Lg(w) — ap (pQ)cre - w @ w, (5.27)

where here and in the remainder of the proof, we omit the dependence of i on p, as well
as the index nAq on L* and G and the indices p, {2 on X" for clarity.
For any smooth enough function f, we have by the Stokes formula:

/ Lfgdw= fL'gdw = fodw,
S§n—1 S§n—1

S§n—1
with ¢ = L*g. Thanks to (5.27) and the fact that g € kerD,cC", ¢ satisfies (5.24)),
so p € X. If f € X+, we deduce that [ Lfgdw = 0, which shows the left-to-right
implication of ([5.25)).

Conversely suppose that g is such that [ Lfgdw =0, Vf € XL ie.
feXt = fe{Lg}*.
Taking the orthogonals, we get 3
Span{L*g} C X.

Indeed, both Span {L*g} and X are finite-dimensional, hence closed. This is obvious
for the former which is one-dimensional. For the latter, by , X is included in the
space of quadratic polynomials in w, which is a finite-dimensional space. So, defining
¢ = L*g, we have ¢ € X. Replacing ¢ by its expression in terms of g in , we get
D,cC*(g) = 0, which shows the right-to-left implication of and ends the proof. =

Next, we prove an alternate characterization of the space X, q.
Lemma 5.13 Let p, 2, f* and n as in Lemmal5.14 Then,
X,0 = X, (5.28)

where Xq is defined by (5.8)).

(using the simplified notations of the previous proof). From (5.24)),

Proof. Let ¢ € X
= K : w®w where K = ap(pQ)q,. Hence, K satisfies the fixed point

we have p(w)

equation
K =ap (pQ) g usw (5.29)
which implies that
TrK = 0. (5.30)
Using (2.10)), (2.20) and (5.30]), we can develop (/5.29) into:
K=apTq,,, : K. (5.31)
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According to (B.17]), there are three real numbers ax, k = 1, ..., 3, such that

Te, ., = a1 Q% + 6az (Q® Q@ 1d) _ + 3a3(1d @ 1d) (5.32)

nAq s’

We uniquely define V € {Q}+ and r € R by KQ = rQ + V. inserting (5.32)) into (5.31)
and using (5.30)), we get

1 1

<2— - ag)K = a2 (Q X % + V® Q) + 5((@1 -+ 4&2)7’9 X Q -+ Clg?“Id) (533)
ap

We now state the following lemma, whose proof can be found in Appendix

Lemma 5.14 We have

1
% — az = ag 7é 0, (534)
ay + (n + 4)&2 = 52(77) (535)

Using (5.34), Eq. (5.33)) leads to

1
K:Q®V—|—V®Q+2—[(a1+4a2)rQ®Q+a2rId]
a2
With ((5.30)), we get
1
0=TrK = 5

a2

which, with (5.35]) and the fact that Sa(n) # 0 (see Prop. [3.6| (iii)), leads to r = 0 and

[(al + (n+ 4)a2)} T,

K=QV+V O

Thus,
=22 w)(V-w). (5.36)

Reciprocally, by similar but simpler computations, we easily get that ¢ given by (5.36)
with arbitrary V € {Q} satisfies (5.29)). In the end, we find

X={(Qw)(V-w)|Ve{Q} =1,
which ends the proof. n
We can now state the following
Theorem 5.15 Let [0 = pGpa, be an equilibrium of C. Then, we have
Cuip)an = ker (D ),

PGry(p)Aq

where Cyp) a,, 5 the space of GCI associated with the equilibrium moments (n(p), Aq) (see

Definition .
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Proof. Indeed, we have the sequence of equivalences:

Y is a GCI associated with (n(p), Aq) <~

= (fexs — /Snan(p)Aﬂfwdwzo)

— (f € ')E'PL{Z = / LU(P)AQJC@Z)dw = O)
S§n—1
= ¥ e ker (Dya, 4,07,

where the first equivalence comes from (5.6) and (5.9)), the second one from ([5.28]) and
the third one, from ({5.25)). This ends the proof. ]

The key property which led to Theorem in the case where f° is an equilibrium is
(5.26). It gave rise to the structure

DpeCg = plw) — ap (pQ)ay : w @ w, (5.37)

with ¢ = L*g which led to the definition of the space X,q. Now, if (n,¥) is not a
moment of an equilibrium, we have apQ,c, 7# S as the equality is a characterization of
the moments of equilibria. Then, by inspection of , we see that the structure ((5.37))
is lost and the proof cannot be continued. These considerations strongly support ({5.20]).
Indeed, we have the following counter-example in dimension n = 3 whose proof can be

found in Appendix [C.3|

Proposition 5.16 Letn = 3. Let f = pG, 4, where n # n(p) (in other words, in spite of
being a Gibbs distribution, f is not an equilibrium). Then we have (5.20) (with ¥ = Ag).

So, the space of GCI C,x is related to important structural properties of C' such as
Prop. |5.16] By contrast, the space ker (D;C*) does not play any particular role. The
exception is when the Gibbs distribution pG,y is an equilibrium, in which case the two
spaces are equal. This shows that GCI are a more relevant and general concept than the
space ker (D;C*) which appears in the Hilbert method.

6 Equation for the Q-tensor axis direction ()

6.1 Abstract derivation

In this section, we provide an abstract set of equations allowing us to determine the
evolution equation for the Q-tensor axis direction 2. We recall the expression ([2.37)) of
T.(f). We have the:

Proposition 6.1 Let f = lim. f© with f(z,w,t) = p(x,t) Gypat)age., W) for all
(z,t) € B where B is given by (3.18) and the function p — n(p) is defined in Prop. [3.7

Then, we have

/S - Tu(p(@8) Goote) A0gen) Vatote) Age (W) dw = 0, (6.1)

where djn(p(m,t))Amx,t) is the vector GCI associated with (n(p(x,t)), Aaw,)) (see Sectz’on.
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Remark 6.1 We note that (6.1]) is unchanged if Q(z,t), and consequently QEAQ(N), are
changed in their opposites.

Proof. Let (x,t) € B be given. For simplicity, in the proof, we omit the variables (z,t).
We also denote p° := pyre, QF := Qye, A° 1= Aj=, ete. and p 1= py, Q := Qf, X 1= Ay, ete.
By the fact that f© — f, we get p°Q° — pQ = p 5\ Aq, with =\ = %f)). Since p # 0
(because (z,t) € B) and A is a simple eigenvalue of @, then, for € small enough, p° # 0,

Q° — @ and )¢ is a simple eigenvalue of Q¢ such that \* — X (because the subset of S°

of matrices which have simple leading eigenvalue is an open set). Thus, ¢ = 21 is

defined, belongs to U2 and is such that ¢ — 3 = Ag as ¢ — 0. "

By the smoothness of 3¢ with respect to €, we can find a smooth lifting of Q. € P*1
into Q° € S* 1. Thus, we can form the GCI Jnsga using this smooth determination of
Qse (remember that we need to fix the sign of Q- because the sign of Jnags depends
on it). This makes l/jnsz;s a smooth function of £ (because 15,75 is a smooth function of
(n,5) € [0,00) x U such that Jnazs — JnAQ when ¢ — 0.

Thanks to , we have

/S o) Uese dw = 0.

So, multiplying (2.40) by 77;77526, integrating the resulting expression with respect to w
leads to

/ T’U,E (fé) Jnszs dw - 0
S§n—1

Now letting ¢ — 0, with u® — u, f* = pGypaq, 1° = 1(p), X° = Aq, 1/777525 — ’l/;"r](p)Aga
we get (6.1]). This ends the proof. ]

6.2 Derivation of the equation for

In this section, we derive the explicit equation for € by inserting expression (5.13)) into
the abstract formulation (6.1)) and compute the integral explicitly. This is summarized in
the following

Proposition 6.2 Let f = lim.0 f* = p(2,1)Gpen)Aqe.,, a5 given in Corollary .
Then, Q) satisfies (3.21))

Proof of Proposition [6.2] For simplicity, we omit the dependencies of  and A on p, of
hy on (w - ), of Gya, on w and of p and Q on (z,t). Inserting (5.13)) into (6.1f), we get:

VQ = / Tu(PGnAQ)hnWJ_ dw = 0. (62)
S§n—1

We define

Dt = 8t+u-Vx,
Af = V- (f(APLE—W)w),
Bf = 2a(V,- (waJ_Ax(pf Qf)w),
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so that T,,(f) = D.f + Af + Bf and
_ _ 0 (2) (3)
Sn—l

Using ((5.3) which gives D;p = 0 and D;n = ' D;p = 0, where 7’ is the derivative of 7
with respect to p, we get

Dt(p GUAQ) = pGUAQ 2n (w : Q) (PQLW) - D12,

where we have used that the denominator of (3.4)) does not depend on €. Then, we apply
(B.2)) and the fact that D;Q is orthogonal to €2 and get

ViV =3 D, (6.4)

with

5, = 2P /S Gy by (w- Q) (1= (w- Q)2) dw. (6.5)

n—1
Next, we have
A(p GT?AQ) = V- (:0 GHAQ (APwJ-E - W>w)
= pGua, [VologGua,) - (AP E —W)w+V,, - (AP E — W)w)].

First, we compute V,, - ((AP‘ULE — W)w) Let X = AFE — W for simplicity and let
(€;)i=1...n be the canonical basis of R". Define X; = 2?21 X,jej. Then, we can write

X = Z?:l e; @ X;. Then, PuXw = >" (X -w)P,re;. We note that V,, - Pie; =
Ay(w-e;) =—(n—1)(w-e;) because (w - ¢;) is a spherical harmonic of degree 1 hence an
eigenfunction of the spherical laplacian associated to the eigenvalue —(n — 1). Thus,

V. (P, Xw) = i [Pwmci Pyiei—(n—1)(X-w)(w- ei)}

—E Xij (Porei- Poiej — (n—1)w;w;)) E X (i — nw; w;)

i, 5=1 i, =1

=TrX —nX: (w®w),

where 6;; is the Kronecker symbol and TrX is the trace of X. Now, with X = AF — W,
owing to the facts that TrX = AV, -« = 0 and remembering that F is symmetric and
W, antisymmetric, we get

AlpGrag) = pGuag 20 (w- Q) PuQ - (APLE —W)w —nAE : (wQw)]
:pGnAQ{A[Qn(w-Q)PWLQ@)w—nw®w} E—-2n(w-Q) (PUJLQ®(U):W}.

Using the decomposition (B.3)), we get P,iQ = (1 — (w-Q2)?)Q — (w- Q) w,, and so,

Ap Goay) = pGyay 20(w - Q) [A(1 . % 2w 9)2) (W ®Q): E+(w ®9): W]

+ even tensor powers of w .
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Now, multiplying by hw, and integrating over w, the resulting odd tensor powers of w;
vanish in the integration thanks to (B.1]). Thanks to (B.2)), we find that

Ve = 5 WQ + 53A Py EQ, (6.6)
with
~ ny . ~
Y3 = (1 - 5) T — 27, (6.7)
. 2
Go = —L /S  Graghy (- (1= (@ Q) do (6.8)

The computation of Vgg?’) is the same as that of Vfgz) with AE — W replaced by
208 Ay (pQa, ). Since Ay (pQg,,,) is a symmetric trace-free tensor, we get from (6.6):

Vs? = 2089 Por (An(pQc,0,)92)-
With , we get
QAI(pQGnAQ) = Am<77AQ) = Axn AQ + 4[<(v:c77 ’ Vz)Q> ® Q:| 5
+2n (V)T (Vo) + [(A.Q) © Q] ),. (6.9)

where the index s means the symmetric part of a tensor (i.e. Sy = 1(S+57) foran nxn
matrix S). Then, owing to the fact that any derivative of Q2 is orthogonal to €2, we have

aAz(pQGnAQ)Q =AnQ+ 2(Vx77 . VI)Q +n (AxQ + (2-AQ) Q),
and with ([4.8),
aPoi(As(pQa,a,)) = 2(Vaen - Vi) Q41 Par A Q = Pou AL (n9).

It follows that
VY = 2855 Py AL (nQ). (6.10)

Inserting , , , into , we get
Vo =51 (D + WQ) + 73 Por (AEQ + 28 A, (n9)).
So, with and , we get with

c:—A$:A<E—1+2¥). (6.11)
N Ui T
Now, the following formulas are shown in the Appendix [D.1}
- pSm) . p dUy
p— —_ - 5 . .].2
73 277 Y ,71 2n(n o 1) <<g da >>eﬁ cos2 0 (6 )
Thus, (6.11)) leads to (3.13)) and ends the proof. ]

We now investigate under which conditions ¢ is non-negative:
Proof of Proposition 3.9 From Prop. .6 (iii), we know that the (n — 1)Sy(n) > 0.

Now, Prop. and Eqs. (5.17) and (3.11) show that both g(#) and %2 (6) have the

sign of cosf. This implies that g(@)%(@) is positive on [0, 7] and consequently, that the
denominator of (3.13)) is positive. Altogether, this shows that £ > 0 and ends the proof.
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7 Conclusion

We have investigated the passage from the Doi-Navier-Stokes model of liquid crystals
to the Ericksen-Leslie system when the Deborah number goes to zero. By contrast to
previous literature, we have developed a moment method, exploiting the conservations
satisfied by the collision operator. These conservations are of a non-classical type and have
required the development of a new concept, the generalized collision invariants. Their link
to geometrical and analytical structures of the collision operator has been discussed and
their use for the derivation of the limit model has been detailed. This derivation has been
achieved in arbitrary dimensions and assuming a full spatio-temporal dependence of the
polymer molecule density. The latter generates additional terms in the Ericksen stresses
that have not been previously described in the literature.

This works open many research directions. The first one is the development of a rig-
orous convergence result using this moment method. This is a quite challenging task but
one may hope that, if successful, it would lead to a result in a weaker setting than the
currently available results. The energetic properties of the limit model must be investi-
gated. A proof that the extra terms appearing in the Oseen-Franck energy due to the
spatio-temporal dependence of the polymer molecule density lead to a positive energy is
missing at the present time. This would be a necessary step for a well-posedness theory for
the resulting Ericksen-Leslie system. In spite of using Q-tensors as auxiliary quantities,
the Doi model and its limit, the Ericksen-Leslie system are, in essence, vector models, i.e.
models for polymer orientations only. Currently, attempts are being made to build truly
tensorial models in association with Landau-de Gennes energies i.e. energies depending
on the local average Q-tensor and its gradients. This is clearly an interesting playground
to test the applicability of the GCI concept to more general situations.
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Appendices

A Appendix to Section 2| on Doi’s model

A.1 Proof of the virtual work principle (2.16))
We have, with ([2.15)):

dAFE SAR 0 0
= (.9 = /M B g

dt of ot
D
= AR v -V, - AP, E —W)w) + —=V. - (f Vou) tdz d
/Rnxsnluf{ (uf) (£ ) + Ve (f Vanf) o do
=: I+ 114 1III

Using Stokes’s formula, assuming that all terms vanish at infinity and with (2.17)), we find

D
I:—/ FE . yde, 1l=-—— Vo uf)? de dw.
" f k?BT Rnxgn*1f| :uf’

Then, using Stokes’s formula, the fact that Vw,u? -w = 0 and straightforward tensor
algebra, we have

II = / fAE -W)w- Vw,u? dx dw
Rn xSn—1
= / (/ [ (w® Vopf) dw) : (AE+ W) da
n S§n—1

LT
/[

— / (/ A w®Vw,uf — (w®Vw,u?)a} dw) :Veudr
Sn—1

:/ :Vyoudr.

This leads to (2.16)). .

1 A—-1
+ (w ® un?) + T(Vw,u? ®w)] dw) :Veudr

A.2 Proofs of Formulas (2.21)) and (2.22)) for the extra-stresses

We begin with a Lemma:

Lemma A.1 Let f and ¢: S*™1 — R be two smooth functions. Then, we have

/ Vofpdw=— fVepdw+ (n—1) fowdw. (A1)
S§n—1 S§n—1 S§n—1
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Proof: Let B € R" be a fixed vector and denote by X the left-hand side of (A.1). Then,

using Stokes formula, we have
X-B = / Vof - Bpdw= Vof PooBpdw=— Ve (P,.By)dw
Sn—1 Sn—1 Sn—1

= — [V (P,nB)pdw— fP,.B-V,pdw.
S§n—1 S§n—1

We have
Vo (PauB)=V, - Vy(w-B)=A,(w-B)=—(n—-1)w-B,

where the last identity follows from the fact that the function w +— w - B is a spherical
harmonic of degree 1. Thus,

X -B=(n-1) fow- Bdw — f Vep - Bdw,
Sn—1 Sn—1

which leads to (A.1)). ]
Proof of (2.21)): Inserting (2.13) into the first equation of (2.17), we have 07 = Ag 4,

with
g = - flw® Vuf) dw
= k:BT/S W@ Vofdw+ - f(w® V,UF) dw. (A.2)
Using with ¢ = w;, we get
/Snlwivwfdw = —/Sn1 Vow; fdw+ (n—1) Snilfwwidw

= _/ P,ie; fdw+ (n—1) fw(w-e;)dw
S§n—1 Sn—1
— [ o) ot - [ e sods
sn—1 Sn—1
1
= n/Snlf(w(w‘ei) —ﬁei) dw,

where e; denotes the i-th vector of the canonical basis of R”. In view of (2.10)), it follows
that [, w® V, fdw =npsQ;. Inserting this in (A.2)) leads to

& =nkpTp;Q; +/ [ (w® VLU dw,
Sn—1

which, in turn, leads to (2.21)). [
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Proof of ([2.22)): We multiply Doi’s equation (2.15)) by w ® w — %Id and integrate it with
respect to w. This leads to

0 = / ((9tf—|-Vx~(uf))(w®w—lId)dw
§n—1 n

1

+ Vo  (fAPLE-W)w) (w@w — EId) dw

S§n—1
- = : |

R Jons Vi - (f Voprg) (w @ w - d) dw

D
= I+4+1II - —=IIL A.
+ T (A.3)

Using ([2.19)), for any smooth function g(z,t), we have d,g + V, - (ug) = D;g, where D, is
given by (2.23)). It follows that I = D;(p;Qf) and, using (5.3)), that

I=p; DiQy. (A.4)
Using Stokes theorem, we get:
IL; = - Ve (f un?) w;w; dw = — - wa,u? - Vi(wiwj) dw
= - - wa,u? (wiP,re; +w;P,re;) dw
= [ Vet V) do = —%((aﬁ)s)zj, (A5)

S§n—1

where again, e; denotes the i-th vector of the canonical basis of R". Now, similarly to III,
we have,

I, = / Vo  (f(APLE = W)w) w; wj dw
Sn—1
s

which leads to

= /n 1 f ((APWJ_E - W)w) - (wiej + wje;) dw
((

F(AE —W)(w@w)+ (w@W)(AE+ W) — 2Aw®* E)Z.j dw,

—1

22}

H:pf(—A(EQf+QfE)+WQf—QfW—%E—FQAT}C:E). (A6)

Finally, using (2.21)), the antisymmetric part of 0]1? is given by:

1
(0f)a = 5/ (W VLUF =V UF @w) fdw. (A7)
S§n—1
Now, inserting (A.4), (A.5), (A.6) and (A.7)) into (A.3) leads to (2.22)). ]
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B Appendix to Section (3| on main result
B.1 Proof of Prop. on properties of 5,
The proof uses Lemma 4.1 of [20] which we recall here without proof.

Lemma B.1 Letn > 2. Definew, = Poiw. For any function k: [—1,1] = R, r — k(r),
we have:

/ k(w- Q) w* qu =0, VkeN, (B.1)
Sn 1

n—1

/ k(w- Q) wi ®w, dw— / F(w-Q)(1— (w-Q))dw Py, (B.2)
S’IL 1 Sn—l

Proof of Proposition (i) The decomposition
w=(w-Q)Q+w,, (B.3)
leads to
WwRw=(w- VD20 + W - D)W, 0+QRw,)+w, @w,. (B.4)

We insert (B.4]) into (2.10) with f = pGja,. Thanks to (3.4), pGja, is a function of w - €2
only. So, the contribution of the middle term of (B.4) vanishes thanks to (B.1)) and the

contribution of the last term can be computed using (B.2)). Using that Py: = Id —Q® €,
we get

QGnAQ = <(w ’ Q)2>G

Rearranging these terms, we find (| .

(ii) The leading eigenvalue of Qg, , , is 2=18,(n) and is associated with the eigenvector Q.
Thus, by virtue of - the order parameter X,c, ., i equal to Sa(n).

(iii) We first compute S3(0). When 7 = 0, we have G4, = 1. Thus, S5(0) = ((n(w-Q)* —
1)/(n —1)); =: r/s, where, using the spherical coordinates as in the proof of Proposition
3.4 the numerator r is given by

1 ) 1
Qo0+ ——(1-(@ 07, (d-20)-—I

nAq

r= / (ncos’d — 1) sin" 20df = (n — 1)W,,_y — nW,,.
0

Here, W,, is twice the Wallis integral W,, = foﬂ sin” #df. From the well-known recursion
formula for the Wallis integral (which can be easily proved by integration by parts):
W, = ”T’an,Q, we get that » = 0 and thus, that S3(0) = 0.

We now show that Sj(n) > 0, for all n > 0, where the prime denotes the derivative
with respect to 7. We have S3() = 1 — 25(1 — (w - Q)%)g,,, = 1 — 25F(n). We
Shovv that F " < 0. Using again the spherical coordinates, we have F' = [,,/I, o with

fo exp(n cos? 0) sin™ 0 df (by symmetry, we can reduce the interval of integration
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to [0,7/2]). Thus, F' = (I'l,_o — I ,1,)/1? 4 =: A/I> ,. We check the sign of the

numerator A. We have
An) = / gl1(eos” O+eos™ ) inn=2 9 gin"2 ¢’ sin? @ (cos® O — cos® 0') d db’
[0,5]?

1 /
=3 / gleos” 0+eos®0) inn=2 g gin"2 ¢’ (sin? 6 — sin® ') (cos® § — cos® ¢ db ¢/,
0,5

where we pass from the first to the second line by exchanging # and €. Since sin is
increasing and cos is decreasing on [0, 7], we have A < 0.

Finally, when n — 0o, the measure G, 4, dw concentrates onto the sum of Dirac deltas
1(6g+6_q). Since Py(£1) = 1, it follows that Sy — 1 when 17 — oo. This ends the proof.

B.2 Proof of Eq. (3.25) for the Leslie stresses

We have f© — f as ¢ — 0 with f given by (3.19). We will abbreviate G, 4, into G for
simplicity. We define

: . e 1 _ . 1
a:g%(gpfsﬂ‘fsﬂ +05) =CpTg: E+o).

From ([2.32)), we get

2 2

A A A
o =p {7(1@@@ +Qck) + §(QGW -~ WQea) + WE

+(C— AT - E — %DtQG + af[As(pQc)Qc — Qee(pQc)] } (B.5)

Now, for a generic distribution function f, we introduce the fourth-order tensorial order
parameter given by

3
(n+2)(n+4)

Here, ((w ® w); ® Id)s and (Id ® Id), denote the symmetrizations of the fourth-order
tensors (w ® w)r ® Id and Id ® Id respectively. Specifically,

6(((w®w)y®Id®Id),)

Q=T — (wew)roId) + (Id ® Id)s. (B.6)

n+4

ikt (wit;) r Oke + (witwr) 1 0je + (wite) 1 0
+{wjwr) 5 i + (Wjwe) £ dik + (Wrwe) 1 O,

3((Id ® Id)s)ijké = 04;0ke + 0ir0je + 0300,

where 0 denotes the Kronecker symbol. Eq. corresponds to the decomposition
of Ty into irreducible tensors, i.e. invariant tensors under the action of the orthogonal
group. The coefficients of the decomposition can be obtained by the requirement that
the contraction of Q; with respect to any two indices is zero. Owing to the fact that
(w@w)y = Qs + =1d, we get

Q=T — L(Qf@)Id)s —

I1d ® Id),, B.
. (14 & 14) (B.7)

n(n + 2)
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where the definition of (Q; ® Id), is similar to that of ((w ® w); ® Id ® Id)s. Then, using
(B.7), we have

2
n(n +2)

2 1
T,: E= E+ —(F E - BEHId.
/ Qy +n+4( Qs+ QL) + +n+4(Qf )

Inserting this identity (with f = G) into (B.5]), we get

A% 2(C—A? A 1 2(¢ — A?
o = P{(7 + %)(EQG +QcFE) + §<QGW -~ WQg) + H(AQ + %)E
L AN A
+((=A*)Q¢: E+ T (Qe: E)1d — EDtQG
+aB[A:(pQe)Qc — Qo (pQc)] |- (B3)

Now, we state two lemmas whose proofs are deferred to the end of the present proof

Lemma B.2 We have
Qa,a, = Sa(n) Aq, (B.9)

where Sy(n) is given by (3.5) and where

6 3
Ag=0%"— — (QOx1d), +
¢ nral ) (n+2)(n+4)

(Id ® 1d),. (B.10)

Lemma B.3 We have

AS;(”) E(N@ Q-Q&N)

—(BEQeQ) - (Qe Q)E)] , (B.11)

paf[As(pQc)Qc — Qala(pQc)] = p

with N given by (3.27)).

From and (B.10]), it follows that
2

Qw:E = 54{(E:(Q@Q))Q®Q—n+4[(Q®Q)E+E(Q®Q)}
1 2
—n+4(E: (Q®Q))Id + (n+2)(n+4)E}, (B.12)

where the dependence of S, on 7 is omitted for simplicity. Likewise, with (3.7)), we get

EQc+QcE = S[(Q0N)E+EQ®Q) - %E], (B.13)
QcW —WQe = S[(Qe0W —-W(Qe )], (B.14)
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In (B.15)), we have used that D.;Ss(n(p)) = %(n(p))fl—z(p) Dip = 0 thanks to (5.3)).
Inserting Eqs. (B.11)) to (B.15) into (B.8]), we get 0 = o + V., where ¢ is a scalar

function which can be absorbed in the pressure, and o is given by (83.25) with the
constants, oy, k =1,...,6 given by (3.14)-(3.17). This ends the proof. ]

Proof of Lemma [B.2| Using (B.7), (3.7), (3.5) and (B.€]), we get that

682 652 3
Qg = Ty = g (2OQ@ 1), + (n(n+4) - n(n+2)) (1d @ 1d),
_ 6(n(X?) —1)
6(n(X?) —1) 3

where X = w - Q and where we drop the index G, 4, on the brackets (-). Now, using the
decomposition (B.3)), we get

Te . = (X1 Q% 1 ((XQWL Ruw)® Qe Q)) + (WP,

nAq

We use (B.2) to compute (X*w, ® wi). To evaluate (w$*) we recall the last part of
Lemma 4.1 of [20] without proof: with the notations of Lemma we have

4 3h(w- Q) (1= (w-92))*
/Sn_l k(wQ)wﬁ? dw —/Sn_1 (n_ 1)(n+1) dw (PQL ®PQL)S.

This leads to
6(X2(1 — X2)>

n—1

3((1—X*))

TGWAQ = <X4> Q% 4+ (n—1(n+1

(QeQ® Por), +

) (PQJ_ & PQJ_)S.

Using that Py = Id — Q ® 2, we obtain

(i S = X)) 3= X))\ e
TG"AQ_<<X>_ n—1 (n—l)(n~|—1)>Q
+<6<X2(1 —X7) _ 6{0—-X*?

n—1 _(n—1)(n+1)>(Q®Q®IODSJr

3((1—-X?)?)
(n—1)(n+1)

(Id®1d) . (B.17)

Now, inserting (B.17) into (B.16), we get (B.9). ]
Proof of Lemma . Thanks to (3.9) and , we have

@’y (pQc)Qa = 1 Ar(nAg)Ag
2(n —1 2

2 1
g 0rv,0+ M =VA as0- Tos A0+ Q- A0 Q0] (B.18)
n n n
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Let M be the tensor given by the left-hand side of (B.11). Using (3.21)) and (3.8]), it
follows from (B.18)) that

M = %[2((an.vm)Q®Q—Q@(Vﬂpvm)Q)+77(AIQ®Q—Q®AIQ)}

_ g A.(09) ® (1) = (1) @ A, (79) |
_ % [(g ~ Par BQ) @ (1) - (1) @ (% ~ PorEQ)|
B pA252 [(g P BQ) Q- Qe (g - Py Q)| (B.19)

Then, we note that there exists a real number z such that
(PrEQ)@Q=(EQ)0+2000=E0®Q)+ 20 Q,

and that the same real number z is involved in the expression of Q ® (Pq1 ES2), so that

we get
(PprEQ) Q- Q@ (Pt EQ)=E(Q®Q) - (2 Q)E.

Inserting this expression into (B.19), we get (B.11]) which ends the proof of the Lemma. n

B.3 Proof of Eq. (3.26) for the Ericksen stresses
We now compute lim., Fjj. = Fj¢, a,- Thanks to (2.33), (2.30) and (3.10), we have

1 _ 1
Fograg = —P(Vata e,

1
= Bo{(Vala(n(w- Q) — ~Va A, [n+ (n—1)ap]}.  (B.20)
We compute, using the repeated index summation convention:

00 [Au(n(w- Q)] = 2w D)0+ (- D

40, U Wik Op, U wieOpn+4(w-Q) éﬁka Wy Or; 1
4(w- ) By Qe wik 02, 1+ 200, Qe win O, Qew 1o,
402, Qo wy 0p Quwien +2(w - Q) 92, QU wi D,

28§jxjﬂk Wi Op, Qwien +2(w- Q)03 Sl wi . (B.21)

TiT;T

+ o+ o+ +

Thanks to (3.5) and (3.6, we have the following identities
(n — 1)52 +1 n—1
(W D)y = (1= (W -Da,,, =

n

(1 — Sg)

n
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Furthermore, the decomposition (B.3)) and the fact that |Q2]?> = 1, lead to the following
identities

0, U = 0, 0, U e = =0, U O U,

1
(Pwl)kfaerZ = aijlm ai.ijk amj Qk: = 58:131 (ax]Qk az]Qk>
1
0oy U = =0y (00,9 00, ) — 500, (01, 00,0,

TiT T
1

02 o, W00 = Dy (00 U D0 W) — 50, (0, O, ).

Thus, taking the bracket (-)q, ag Of (B.21)), noting that all odd powers of w - 2 or of w,
vanish by antisymmetry and using (B.2]) and the previous identities, we finally get

n
— 25,(2v,QV,Q" + |V, Q'1d) V.1
— SV, (2V.QV,Q" + |V, Q’1d)n.

(Vaolo (n(w - 92)%))

nAQ

Inserting this equation into (B.20]), using (3.8) and noting that for a n x n tensor S and
a scalar ¢, we have V, - (Sp) = (V.- S)p + STV,p, we get

Frga = —gvx : [n2 (2v.Qv,0" + |V$Q|21d)}
— 1 _ 1
b ywam - g ) (5.22)

The first of the following identities follows again from the fact that |Q2]* = 1 and the
second one is just straightforward algebra (which will also be applied with p replacing n):

VAV 0T = V.(nQ) V.(nQ)! — V. @ Van,
1
NVelen = =V (Von ® Van) + Vi (nAun + §!Vm77|2)-

Inserting these identities into (B.22)), we get F' [}Gn ay = V. 0+ Ve, where o is given by

(3.26)) and ¢ is a scalar function (different from the one appearing at the end of Section
B.2|) which can be absorbed in the pressure p. This ends the proof. ]

B.4 Proof of the energy identity (3.33)

Taking the dot product of (3.22) with u, integrating with respect to z on R™ and using
Stokes formula assuming that the spatial boundary terms vanish at infinity, we get

d |u? 1 ) 1
— — — LUl d —_— - Vyudr = 0. B.23
o /Rn 5 dx + Re /o |V ul” dx + Robr Rn(aL +og): Vyudr ( )
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We first compute the contribution of the Leslie stresses. Using the symmetry of E
and  ® ), we first have

[ (E:(QoM))Q@Q+wmE] :Vau=a(E: (Q® Q))2 + ay| B (B.24)
Then, we remark that

(Q@QE) : V,u = |EQ? — (EQ)- (WQ),
(EQ®Q)):Vou = |EQP+ (EQ) - (WQ),

which, with the second equation ({3.28]), gives
[a5(Q® VE + aE(Q® Q)] : Vou = (a5 4 ag)|[EQP* + 72(EQ) - (WQ). (B.25)
Also, with (3.29)), we have

1
N=-2P, EQ+ Py H:= N, + Ny.
Al !

Remarking that (2 ® ) : W = 0 by the antisymmetry of W, we get

Q& N): Vou = —$[Q®(EQ—(Q-EQ)Q)]:(E+W)
= —2[EOP - (B (@2 9) — (B9) - (W),

and similarly

(N, @ Q) : Vou=—L2[|EQ? — (E: (20 Q) + (EQ) - (WQ)],

gt
which, using (3.28)) gives

[02Q® N1+ asN; @ Q] : Vu = —%[\EQ\Z —(E: (Q®0)°] —(EQ) - (WQ). (B.26)

Then, using (3.28)), we compute

1
(022 @ Ny + azNo @ Q] : Vyu = 7_[0@9 ® PorH + asPor H® Q| : (E+ W)
1

- %[(az +og)(Por H @ Q) 1 B+ (a3 — ag)(Por H @ Q) : W]

= Py H - [%EQ +WQ] = Py H - Pou [%EQ + Q]
1 1

1
1

where, for the last equality, we have used (3.29)) and (3.27)) and the fact that 9,Q +u -V,
is normal to €2. Then, collecting (B.24)) to (B.27)) and using (3.25)) leads to

. _ 7_3 . 2 2
/naL'vadx_/np{(al—i_%)(E'(Q®Q>) + ay|E|

1
+(a5 + ag — l) |EQ)? + %yPQLHP —H- - (0Q+u- va)} dr. (B.28)

2
2
4!
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Expression for the Ericksen stresses involves three terms which we will denote
by 0%}, o}, of in the order in which they appear in this expression. We compute the
contribution of each term successively. We have, using Stokes’s formula, ,
and assuming that the boundary terms vanish at infinity:

/n : Veyude = _¥ (Vo (nQ)Vo(n)") : Vyude

(e R

=2 [ {2 (- T09) + a0 (0 VTl }
:% . {nA (1) - ((u- V,)Q) + (u-Vx)U+Vx-(uw>}dx
:/n pH - ((u- Eﬁ/ Q(u-V)nde. (B.29)
A similar computation gives
/na}zjzvmudw = —W RnAxn(u-Vm)ndx, (B.30)
/nag:vmudx - —W [ A Vapdr (B.31)

Now, we consider the Oseen-Franck energy and successively compute the time deriva-
tive of each of the terms in (3.31)). We first have, thanks to Stokes’s formula:

deg 2 2
d—f _¥ Tr{Vx(nQ)(é?th(nQ))T} dx = _¥ AL (nQ) - 0:(nQ) dx
With(3.32)), this leads to:
dEF
o + [ pH-0Qdx + — [ A,(nQ2)-QoOmdx =0. (B.32)
Rn n
Straightforwardly, we get
d&} 1
& _(n+1)8 Ayn- Omdx = 0, (B.33)
dt no R
d&y -1
& _ (n=1)af Ayp- Opdr = 0. (B.34)
dt n Rn

Now, adding (B.23), (B.32)), (B.33), (B.34) together, using (B.28)), (|B 29), (B.30)),
- to eliminate oy, and op and finally using that D;p = 0 and D;n = —Dtp =0, we

get Eq. (3.33). .
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C Appendix to Section [5| on GCI

C.1 Proof of Proposition |5.8

We first note that Eq. (5.14) which defines h, can be alternately written as (dropping
the index 7 for simplicity):

(L=r)0"+ 2n(1 —r*) = (n+1))rh = 2pr* +n—1)h=r. (C.1)

With (5.15)), we have
1 1

_ 1 —1
h(r) = TN g(cos™ ).
Then,
1 g (cos™tr) rg(cos™ir
! — —— —

wir) = 277[ 1—r? (1—r2)3/2]’

W) 1 [g”(cos1 r)  3rg'(cos™tr)  (1+42r?)g(cos™!r)
on L(1 = r2)372 (1-r2)2 (1— 1252

Inserting these expressions in ((C.1)) and changing r into cosf, we get
cos 6 (n —-2-— 2nsin29) , n—2

" = -2 0 sin 6 C.2
g+ sin 6 sin” § g peosysmy, (C2)
But, we have
1 9 / cosf
LI 0 / — ! _ 2 /‘
sin" 29 ( S g ) g +(n ) sin ¢ g
With this and (3.11)), we realize that (C.2)) is nothing but (3.12]). ]

C.2 Proof of Lemma [5.14]
We use the same notations as in the proof of Lemma . From (B.17)), we get

( o 6(XP(1-X7%) | 3(0-X?)?)

a; = (X*) — — CEICESE (C.3)
(XPA-X7) ((1-=-X%)?)

42 = n—1 B (n—1)(n+1) (C4)

o (1-X?)%)

T =D+ 1)

Thus, with the change to spherical coordinates used in the proof of Prop. [3.4] an integra-

tion by parts, and Eqgs. (3.5)), (3.6) and (3.8)), we get

X(1 - X2 g
as +az = X 1 ) = ( Cz)Z / %0 c0s? 0 sin™ 0 df)
n-—= n—==1)%n Jo
= L/ 15 % (n cos® § — 1) sin" 260 df
2(n—1)nZy, Jo
20 n—1  2n  2ap’ '
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which shows the equality in ([5.34]).
Now, we have, thanks to (C.5))

n+2

(n = 1)(n + Day = (n+ 2)(XH(1 = X)) = (1 - X) = =~

(nX?—1) — (1 - X?).

Thanks to (3.5), (3.6)), we have (X?) = 1(1 + (n — 1)Sy(n)). So,
2n(n+ nay = ——[(n(n+2)+29)(X?) = (n+2+2n)]
= (n(n+2)+2n)S2(n) — 2n.
Thus, with the change to spherical coordinates used in the proof of Prop. we have
2n(n —1)(n+ 1)772,]0*1 ay =
= /W gl1cos” 0 (n(n +2) 4 2n) (ncos®0 — 1) — 2(n — 1)n] sin" > df

= / el1eos” n(n +2)(ncos*# — 1) + 2nn(cos® 6 — 1)] sin" > 6 db
0 i

™ -

= "% 190 (n 4 2)1 cos® 0 sin® @ — 2nn sin? 0] sin™ 26 do

= 27)7@/ ehneos’o ((n+2)cos®d — 1) sin™ 6 df
0

The passage between the third and fourth lines uses the same integration by parts as in
(C.5). The other equalities are just simple algebraic rearrangements. Comparing with

, , we notice that the integral of the last line is equal to the quantity S§n+2) which
is the quantity Sz in dimension n + 2 up to a prefactor (n + 1)Z,C,'. Thus, we have
as = S§n+2)/(n —1). Now, we can apply Prop. (iii) and conclude that 0 < ay < —15.
In particular, ay # 0, which finishes to show ([5.34)).
Finally, it is a simple algebra, using and to show that
(nX?—1)

ar + (n+4)ay = 1 Sa(n),

showing (5.35)). This ends the proof. ]

C.3 Proof of Prop. [5.16]
Let f = pG,a, with n # n(p). This means that (3.8]) is not satisfied. In other words,

1= apSx(n) # . (C.6)
From (3.7), it follows that apQ,q, ., = n'Ae. So, with (5.21), we get
Dy a, C9(w) = Ly an9(w) — ap (pQ)GnAQL;;AQg W w. (C.7)
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Suppose that g is a GCI associated with (n, Ag). Then, by (5.7)), there exists V € {Q}+
such that
GT?AQL;;AQQ = (w : Q) (w ’ V) GnAQ' (08)

By a similar computation (using the same notations) to what was done in the proof of
Lemma [5.13] we get

ap (ﬂQ)GnAQL TWwQRQw = 2ap(a2 + ag)(w . Q) (w . V)

* .
nAnd
/

= L Q)w- V). (C.9)

n

Sa(n)
o (

For the second equality, we have used that as 4+ a3 = see the proof of Lemma [5.14
in Appendix |C.2) and (C.6). On the other hand, simple algebraic manipulations and the
use of ((C.8]) show that

Lyagg(w) = Lys,9w) +2(n —n)(w QP Q- Vg
(w- Q) (w-V)+2(n —n)(w-Q)P,.Q-V,g. (C.10)

Inserting (C.9)) and (C.10]) into (C.7) gives

Ditiyao C9(w) = (" = n)(w- Q) [ -

1
E(w~V)+2PMLQ«VMg].

Suppose now that g is also an element of ker (D,q, g C*). This implies that

1
2P, Q-V,g9= Q—(W'V). (C.11)
n
From now on, we restrict to dimension n = 3 and use the spherical coordinates (6, ¢)
associated to the cartesian basis (V, W, Q) with pole at Q (defining W = Q x V, using
the symbol x for the cross product). In these coordinates, (C.11) is written in terms of
9(0,¢) = g(w) according to
1
0pg = — COS .
2n
Thus,

3 1
g(0,¢) = o 0 cosp + h(p),

where h is an arbitrary function. The smoothness of g at w = (2 requires h = 0. However,
we see that g cannot be smooth at w = — (i.e. for § = ) because the function € cos ¢
does not tend to a constant when 6§ — 7. However, by the elliptic regularity theorem,
g € C(S"7'). This is a contradiction. This means that the only possible solution is
when V' =0, i.e.

Cpag Nker (Dpg, 4, C™) = {0}.

Since Cpa,, # {0}, this shows (5.20) (with ¥ = Ag) and ends the proof. ]
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D Appendix to Section [6] on the derivation of the
equation for ()

D.1 Proof of Eq. (6.12)

We first consider 43. With (6.7, and (6.5)), and using the spherical coordinates
and the notations C,, and Z, described in the proof of Prop. as well as the change
r = cos @, we have (dropping the indices nAq to G and 7 to h for simplicity):

gy = P Gh(w-Q)(1- (-2 (20(1 - 2w- Q)?) = 2n) dw
n_l Sn—l
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Besides, multiplying Eq. (5.14) by r, integrating with respect to r € [0, 1], and noting
that, thanks to two successive integration by parts we have
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0 0

we get
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0 0
Inserting (D.2) into (D.1)) and integrating by parts once more, we get
1
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where, in the last line, we have reverted back to the variable w and used (3.5 and (3.6)).
This shows the first equation in Formula (6.12)).
We now consider 7;. Changing to spherical coordinates in (6.5)), we get

2 ™
= me_Cn "5 % h(cos 6) cos 6 sin™ 6 db.
Using (5.15)) and (3.11)), this can be changed into
~ p Cn " ncos? 0 dUO s n—2
= 0) — 6df
n 2n(n—1) Z, /0 c 9(0) a "

But from (3.4)), we have % = foﬂ €750 sin"2 9 df, which leads to the second equation

in Formula (6.12)). ]
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