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Abstract. Argumentation is a prominent approach for reasoning with inconsis-
tent information. It is based on the justification of formulas by arguments gener-
ated from propositional knowledge bases. It has recently been shown that similar-
ity between arguments should be taken into account when evaluating arguments.
Consequently, different similarity measures have been proposed in the literature.
Although these measures satisfy desirable properties, they suffer from the side
effects of being syntax-dependent. Indeed, they may miss redundant informa-
tion, leading to undervalued similarity. This paper overcomes this shortcoming by
compiling arguments, which amounts to transforming their formulas into clauses,
and using the latter for extending existing measures and principles. We show that
the new measures deal properly with the critical cases.

1 Introduction

Argumentation is a reasoning process based on the justification of claims by arguments,
i.e., reasons for accepting claims. It has been extensively developed in Artificial Intelli-
gence. Indeed, it was used for different purposes including decision making (eg. [1,2]),
defeasible reasoning (eg. [3,4]), and negotiation [5,6].

Argumentation is also used as an alternative approach for handling inconsistency
in knowledge bases [7,8,9]. Starting from a knowledge base encoded in propositional
logic, arguments are built using the consequence operator of the logic. An argument is a
pair made of a set of formulas (called support) and a single formula (called conclusion).
The conclusion follows logically from the support. Examples of arguments are A =
〈{p∧ q ∧ r}, p∧ q〉, B = 〈{p∧ q}, p∧ q〉 and C = 〈{p, q}, p∧ q〉. Once arguments are
defined, attacks between them are identified and a semantics is used for evaluating the
arguments, finally formulas supported by strong arguments are inferred from the base.

Some semantics, like h-Categorizer [7], satisfy the Counting (or Strict Monotony)
principle defined in [10]. This principle states that each attacker of an argument con-
tributes to weakening the argument. For instance, if the argumentD = 〈{¬p∨¬q},¬p∨
¬q〉 is attacked by A,B,C, then each of the three arguments will decrease the strength
of D. However, the three attackers are somehow similar, thus D will lose more than
necessary. Consequently, the authors in [11] have motivated the need for investigating
the notion of similarity between pairs of such logical arguments. They introduced a set
of principles that a reasonable similarity measure should satisfy, and provided several
measures that satisfy them. In [12,13,14] several extensions of h-Categorizer that take
into account similarities between arguments have been proposed.
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While the measures from [11] return reasonable results in most cases, it was shown
in [15], that they may lead to inaccurate assessments if arguments are not concise. An
arguments is concise if its support contains only information that is useful for inferring
its conclusion. For instance, the argument A is not concise since its support {p∧ q ∧ r}
contains r, which is useless for the conclusion p ∧ q. The similarity measures from
[11] declare the two arguments A and B as not fully similar while they support the
same conclusion on the same grounds (p ∧ q). Consequently, both A and B will have
an impact on D using h-Categorizer. In [15], such arguments are cleaned up from any
useless information by generating the concise versions of each argument, the measures
from [11] are applied on concise arguments. However, these works fail to detect the
full similarity between the two concise arguments B and C. In this paper, we solve
the above issue by compiling arguments. The idea is to transform every formula in an
argument’s support into clauses. We extend the Jaccard-based similarity measures from
[11] and show that new versions improve accuracy of similarity.

The article is organised as follows: Section 2 recalls the notions of logical argument
and similarity measure. Section 3 introduces compilation of arguments. Section 4 ex-
tends some measures of similarity. Section 5 extends and propose new principles for
similarity measures, and the last Section 6 concludes.

2 Background

2.1 Logical Concepts

Throughout the paper, we consider classical propositional logic (L,`), where L is a
propositional language built up from a finite set P of variables, the two Boolean con-
stants > (true) and ⊥ (false), and the usual connectives (¬, ∨, ∧,→,↔), and ` is the
consequence relation of the logic. A literal is either a variable or the negation of a vari-
able of P , the set of all literals is denoted P±. Two formulas φ, ψ ∈ L are logically
equivalent, denoted by φ ≡ ψ, iff φ ` ψ and ψ ` φ.

A formula φ is in negation normal form (NNF) if and only if it does not contain
implication or equivalence symbols, and every negation symbol occurs directly in front
of an atom. Following [16], we slightly abuse words and denote by NNF(φ) the formula
in NNF obtained from φ by “pushing down” every occurence of ¬ (using De Morgan’s
law) and eliminating double negations. For instance, NNF(¬((p→ q)∨¬t)) = p∧¬q∧t.

Let φ ∈ L, φ is in a conjunctive normal form (CNF) if is a conjunction of clauses∧
i ci where each clause ci is a disjunction of literals

∨
j lj . For instance p ∧ (q ∨ t) is

in a CNF while (p ∧ q) ∨ t is not.
We denote by Lit(φ) the set of literals occurring in NNF(φ), hence Lit(¬((p →

q) ∨ ¬t)) = {p,¬q, t}. The function Var(φ) returns all the variables occurring in the
formula φ (e.g., Var(p ∧ ¬q ∧ t) = {p, q, t}).

A finite subset Φ of L, denoted by Φ ⊆f L, is consistent iff Φ 0 ⊥, it is inconsistent
otherwise. Let us now define when two finite sets Φ and Ψ of formulas are equivalent.
A natural definition is when the two sets have the same logical consequences, i.e., {φ ∈
L |Φ ` φ} = {ψ ∈ L |Ψ ` ψ}. Thus, the three sets {p, q}, {p ∧ p,¬¬q}, and {p ∧ q}
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are pairwise equivalent. This definition is strong since it considers any inconsistent sets
as equivalent. For instance, {p,¬p} and {q,¬q} are equivalent even if the contents
(i.e. meaning of variables and formulas) of the two sets are unrelated (assume that p
and q stand respectively for “bird” and “fly”). Furthermore, it considers the two sets
{p, p → q} and {q, q → p} as equivalent while their contents are different as well.
Clearly, the two rules “birds fly” and “everything that flies is a bird” express different
information. Thus, the two sets {p, p → q} and {q, q → p} should be considered as
different. Thus, in what follows we consider the following definition borrowed from
[17]. It compares formulas contained in sets instead of logical consequences of the sets.

Definition 1 (Equivalent Sets of Formulas). Two sets of formulas Φ, Ψ ⊆f L are
equivalent, denoted by Φ ∼= Ψ , iff there is a bijection f : Φ→ Ψ s.t. ∀φ ∈ Φ, φ ≡ f(φ).

Example 1. {p, p → q} 6∼= {q, q → p}, {p,¬p} 6∼= {q,¬q}, {p, q} 6∼= {p ∧ q} while
{p, q} ∼= {p ∧ p,¬¬q}.

Let us define the notion of argument as in [7].

Definition 2 (Argument). An argument built under the logic (L,`) is a pair 〈Φ, φ〉,
where Φ ⊆f L and φ ∈ L, such that:

– Φ is consistent, (Consistency)
– Φ ` φ, (Validity)
– @Φ′ ⊂ Φ such that Φ′ ` φ. (Minimality)

An argument 〈Φ, φ〉 is trivial iff Φ = ∅ and φ ≡ >.

Example 2. The three pairs A = 〈{p ∧ q ∧ r}, p ∧ q〉, B = 〈{p ∧ q}, p ∧ q〉 and
C = 〈{p, q}, p ∧ q〉 are arguments.

Notations: Arg(L) denotes the set of all arguments that can be built in (L,`). For any
A = 〈Φ, φ〉 ∈ Arg(L), the functions Supp and Conc return respectively the support
(Supp(A) = Φ) and the conclusion (Conc(A) = φ) of A.

Note that the argument A in the above example is not concise since r is irrelevant
for the argument’s conclusion. In [15], the concise versions of arguments are computed
using the following technique of refinement.

Definition 3 (Refinement). Let A,B ∈ Arg(L) s.t. A = 〈{φ1, . . . , φn}, φ〉, B =
〈{φ′1, . . . , φ′n}, φ′〉. B is a refinement of A iff:

1. φ = φ′,
2. There exists a permutation ρ of the set {1, . . . , n} such that ∀k ∈ {1, . . . , n},
φk ` φ′ρ(k) and Lit(φ′ρ(k)) ⊆ Lit(φk).

Let Ref be a function that returns the set of all refinements of a given argument.
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Compared to the definition in [15], we extended the second constraint so that lit-
erals of φ′ρ(k) are also literals of φk. The reason is that we would like the arguments
〈{p∧(p∨q)}, p∨q〉 and 〈{(p∨¬q)∧(p∨q)}, p∨q〉 can be refined into 〈{p∨q}, p∨q〉
while this was not possible in the original definition.

It is worth mentioning that an argument may have several refinements as shown in
the following example.

Example 2 (Continued). The following sets are subset of refinement of these arguments.

– {〈{p ∧ q ∧ r}, p ∧ q〉, 〈{p ∧ q ∧ (p ∨ q)}, p ∧ q〉, 〈{p ∧ q}, p ∧ q〉} ⊆ Ref(A)

– {〈{p ∧ q}, p ∧ q〉, 〈{p ∧ ¬¬q}, p ∧ q〉} ⊆ Ref(B)

– {〈{p, q}, p ∧ q〉, 〈{(p ∨ p) ∧ q}, p ∧ q〉} ⊆ Ref(C)

Every argument is a refinement of itself.

Proposition 1. For any argument A ∈ Arg(L), A ∈ Ref(A).

2.2 Similarity Measures

In [11], various measures have been proposed for assessing similarity between pairs
of logical arguments. They extended existing measures which compare sets of objects
including Jaccard measure [18]. Due to space limitation, in this paper we will focus
only on the latter.

Definition 4 (Jaccard Measure). Let X , Y be arbitrary sets of objects. if X 6= ∅ or
Y 6= ∅, then

sjac(X,Y ) =
|X ∩ Y |
|X ∪ Y |

3

If X = Y = ∅, then sjac(X,Y ) = 1.

We recall below how the above measure is used in [11] for logical arguments.

Definition 5 (Jaccard Similarity Measure). Let 0 < σ < 1. We define simσjac as a
function assigning to any pair (A,B) ∈ Arg(L)× Arg(L) a value simσjac(A,B) =

σ.sjac(Supp(A), Supp(B)) + (1− σ)sjac({Conc(A)}, {Conc(B)}).

Example 2 (Continued). sim0.5jac(A,B) = sim0.5jac(A,C) = sim0.5jac(B,C) = 0.5 · 0 +
0.5 · 1 = 0.5.

3 || stands for the cardinality of a set.
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3 Compilation of arguments

Recall that {p, q} 6∼= {p ∧ q} while the two sets contain the same information. For get-
ting them equivalent, we transform every formula into a CNF, then we split it into a
set containing its clauses. Note that it is well known (eg. [19]) that any formula can
be transformed into equivalent CNFs using the same literals. In our approach, we con-
sider one CNF per formula. For that purpose, we will use a finite sub-language F that
contains one formula per equivalent class and the formula should be in a CNF.

Definition 6 (Finite CNF language F). Let F ⊂f L such that ∀φ ∈ L, there exists a
unique ψ ∈ F such that:

– φ ≡ ψ,
– Lit(φ) = Lit(ψ),
– ψ is in a CNF.

Let CNF(φ) = ψ.

While we do not specify the elements of F , we use concrete formulas in the exam-
ples, and they are assumed to belong to F .

Notation: For Φ ⊆f L, UC(Φ) =
⋃

φ∈CNF(Φ)

⋃
δ clause ∈φ

δ.

Let us now introduce the notion of compiled argument.

Definition 7 (Compiled Argument). The compilation of A ∈ Arg(L) is
A∗ = 〈UC(Supp(A)), Conc(A)〉.

Example 2 (Continued). The compilations of the three arguments A,B,C are:

– A∗ = 〈{p, q, r}, p ∧ q〉,
– B∗ = 〈{p, q}, p ∧ q〉,
– C∗ = 〈{p, q}, p ∧ q〉.

Note that the compilation of an argument is not necessarily an element of Arg(L)
as it may violate the minimality condition. For instance, we can see that A∗ /∈ Arg(L)
since the set {p, q, r} is not minimal.

To solve this problem of non-minimal compiled arguments, we will extend the no-
tion of concise argument (from [15]) while fixing the syntax-dependency issue. To de-
fine what a concise argument is, we first need to introduce what equivalent arguments
are.

Thanks to the use of the language F in the compiled arguments, any equivalent for-
mulas using the same literals have an identical syntax. Using this feature, we define that
arguments are equivalent when they have identical compiled supports and conclusions.

Definition 8 (Equivalent Arguments). Two arguments A,B ∈ Arg(L) are equiva-
lent, denoted by A ≈ B, iff

UC(Supp(A)) = UC(Supp(B)) and UC({Conc(A)}) = UC({Conc(B)}).

We denote by A 6≈ B when A and B are not equivalent.
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Example 2 (Continued). B ≈ C while A 6≈ B and A 6≈ C.

Note that arguments having the same compilation of their supports may not be
equivalent. This is for instance the case of the two arguments D and E such that
D = 〈{(p ∨ q) ∧ (p ∨ ¬q)}, (p ∨ q) ∧ (p ∨ ¬q)〉 and E = 〈{(p ∨ q) ∧ (p ∨ ¬q)}, p〉.
Clearly, D 6≈ E.

We show that trivial arguments are not equivalent. For instance 〈∅, p∨¬p〉 6≈ 〈∅, q∨
¬q〉 because {p ∨ ¬p} 6= {q ∨ ¬q}.

Proposition 2. Trivial arguments are pairwise non equivalent.

The objective of the notion of concise arguments is to produce the set of compiled
arguments that satisfy the Definition 2. To do this, we observed that any non-equivalent
refined argument A′, of a compiled argument A∗ ∈ Arg(L), produces a new clause by
inference between several clauses of the same formula.

Proposition 3. Let A ∈ Arg(L). If A′ ∈ Ref(A), A′ 6≈ A and A∗ ∈ Arg(L) then
∃δ′ ∈ UC(Supp(A′)) such that ∀δ ∈ UC(Supp(A)), δ 6= δ′.

Let us define a concise argument.

Definition 9 (Conciseness). An argument A ∈ Arg(L) is concise iff for all B ∈
Ref(A) such that:

– B∗ ∈ Arg(L) and,
– ∀δ ∈ UC(B), ∃δ′ ∈ UC(A) s.t. δ = δ′,

we have A ≈ B.
Let CR(A) denote the set of all A′ concise refinements of A such that UC(Supp(A′)) ⊆
UC(Supp(A)).

The first constraint ensures that argument A does not have unnecessary information
(clause) to infer its conclusion. The second constraint prevents argument A from being
compared with arguments that have created new information (clause) in their support.

Example 2 (Continued). The following sets are subset of concise refinements of the
arguments A,B,C:

– {〈{p ∧ q}, p ∧ q〉, 〈{p ∧ p ∧ q}, p ∧ q〉} ⊂ CR(A)
– {〈{p ∧ q}, p ∧ q〉, 〈{p ∧ q ∧ q}, p ∧ q〉} ⊂ CR(B)
– {〈{p, q}, p ∧ q〉, 〈{p ∧ p, q ∧ q}, p ∧ q〉} ⊂ CR(C)

The non trivial argument have an infinite set of concise refinements.

Proposition 4. Let A ∈ Arg(L), if A is not trivial then |CR(A)| =∞.

A trivial argument have only one concise refinement, itself.

Proposition 5. Let a trivial argument A ∈ Arg(L), CR(A) = {A}.
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We show in the following theorem that the notion of a concise argument is equiva-
lent to that of a compiled argument satisfying the conditions of the Definition 2.

Theorem 1. For any A ∈ Arg(L), A is concise iff A∗ ∈ Arg(L).

When two arguments are equivalent they have equivalent concise refinements. In
the same way that we define a set of equivalent formulae (Definition 1), we may define
a set of equivalent arguments.

Definition 10 (Equivalent sets of Arguments). Two sets of arguments ΩA, ΩB ⊆f
Arg(L), are equivalent, denoted byΩA ∼=arg ΩB , iff there is a bijection f : ΩA → ΩB
s.t. ∀A′ ∈ ΩA, A′ ≈ f(A′). Otherwise ΩA and ΩB are not equivalent, denoted by
ΩA 6∼=arg ΩB .

Equivalent arguments have equivalent concise refinements.

Proposition 6. Let A,B ∈ Arg(L), if A ≈ B then CR(A) ∼=arg CR(B).

Example 2 (Continued). B ≈ C and CR(B) ∼=arg CR(C).
We can also see in this example that there are non-equivalent arguments with equivalent
concise refinements: A 6≈ B and CR(A) ∼=arg CR(B). This is because the equivalent
arguments take into account irrelevant information.

Finally, note that when a compiled argument is not minimal, this may be due to
the presence of unnecessary literals in the support which will be removed in the con-
cise arguments; or because the argument is complex, i.e. it has different reasonings to
conclude, which will produce different concise arguments.

Example 2 (Continued). Let A = 〈{p ∧ q ∧ r}, p ∧ q〉, F = 〈{p ∧ q, (p → r) ∧ (q →
r)}, r〉 ∈ Arg(L).
The compiled argument of A and F are:

– A∗ = 〈{p, q, r}, p ∧ q〉, and
– F ∗ = 〈{p, q, p→ r, q → r}, r〉.

Clearly, r is irrelevant in A∗ and F ∗ may infer r according to p or q. We may see in the
concise versions of the arguments A and F that unnecessary information is removed
and complex information is separated to have minimal arguments:

– {〈{p ∧ q}, p ∧ q〉} ⊂ CR(A), and
– {〈{p, p→ r}, r〉, 〈{q, q → r}, r〉} ⊂ CR(F ).

4 Extended Similarity Measures

We are ready now to introduce the new extended similarity measures.
First, we propose to apply similarity measure between set of objects on compiled

supports and conclusions.
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Definition 11 (Extended Jaccard Similarity Measure). Let 0 < σ < 1. We define
simσjac∗ as a function assigning to any pair (A,B) ∈ Arg(L) × Arg(L) a value
simσjac∗(A,B) =

σ.sjac(UC(Supp(A)), UC(Supp(B))) + (1− σ)sjac(UC(Conc(A)), UC(Conc(B))).

Example 2 (Continued).

– sim0.5jac∗(A,B) = sim0.5jac∗(A,C) = 0.5 · 23 + 0.5 · 1 = 5
6 = 0.833.

– sim0.5jac∗(B,C) = 0.5 · 1 + 0.5 · 1 = 1.

As we can see, working only with the compilation of arguments is not sufficient
to assess degrees of similarity. It is also necessary to eliminate irrelevant information.
In the following we propose to extend the two family from [15] dealing with concise
refinements of an argument.

Definition 12 (Finite Conciseness). Let A ∈ Arg(L). We define the set

CR(A) = {B ∈ CR(A) | Supp(B) ⊂ F}.

In this way, we obtain a finite set of non-equivalent concise refinements.

Proposition 7. For every A ∈ Arg(L), the set CR(A) is finite.

We may now extend the two families of similarity measures (from [15]), to add a
syntax independent treatment.

Definition 13 (A-CR Jaccard Similarity Measure). LetA,B ∈ Arg(L), and let simσjac∗
and σ ∈]0, 1[. We define A-CR Jaccard Similarity Measure4 by
simACR(A,B, sim

σ
jac∗) =∑

Ai∈CR(A)

Max(Ai, CR(B), simσjac∗) +
∑

Bj∈CR(B)

Max(Bj , CR(A), sim
σ
jac∗)

|CR(A)|+ |CR(B)|
.

The value of A-CR Jaccard Similarity Measure always belongs to the unit interval.

Proposition 8. LetA,B ∈ Arg(L), simσjac∗ and σ ∈ ]0, 1[. Then simACR(A,B, sim
σ
jac∗)

∈ [0, 1].

Now we define our second family of similarity measures, which is based on com-
parison of sets obtained by merging supports of concise refinements of arguments. For
an argument A ∈ Arg(L), we denote that set by

US(A) =
⋃

A′∈CR(A)

UC(Supp(A′)).

4 The letter A in A-CR stands for ”average”.
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Definition 14 (U-CR Jaccard Similarity Measure). Let A,B ∈ Arg(L), 0 < σ < 1,
and sjac. We define U-CR Jaccard Similarity Measure5 by simUCR(A,B, sjac, σ) =

σ · sjac(US(A), US(B)) + (1− σ) · sjac(UC(Conc(A)), UC(Conc(B))).

More generally, using the compilations allows to be more accurate even in the sup-
ports. Given that each clause are a formula the similarity degree can increase or de-
crease.

Example 3. Let A = 〈{p ∧ q, t}, p ∧ q ∧ t〉, B = 〈{p ∧ q, r}, p ∧ q ∧ r〉, C = 〈{p ∧
q, r}, p ∧ q ∧ r〉, D = 〈{s ∧ t ∧ u ∧ v, r}, s ∧ t ∧ u ∧ v ∧ r〉 ∈ Arg(L) and σ = 0.5.

– sim0.5jac(A,B) = 0.5 · 13 + 0.5 · 0 = 1
6 = 0.167.

– sim0.5jac∗(A,B) = 0.5 · 24 + 0.5 · 24 = 1
2 = 0.5.

– sim0.5jac(C,D) = 0.5 · 13 + 0.5 · 0 = 1
6 = 0.167.

– sim0.5jac∗(C,D) = 0.5 · 17 + 0.5 · 17 = 1
7 = 0.143.

Therefore sim0.5jac(A,B) ≤ sim0.5jac∗(A,B) and sim0.5jac(C,D) ≥ sim0.5jac∗(C,D).

Returning to our running example (from the introduction), we see that the three
arguments A,B,C are now identified as being completely similar. That is, we have
dealt with both the irrelevant information problem and the syntax-dependency problem.

Example 2 (Continued). For any σ ∈ ]0, 1[:

– simACR(A,B, sim
σ
jac∗) = simACR(A,C, sim

σ
jac∗) = simACR(B,C, sim

σ
jac∗) = 1.

– simUCR(A,B, sjac, σ) = simUCR(A,C, sjac, σ) = simUCR(B,C, sjac, σ) = 1.

The next Theorem ensure that the two family of similarity measures (A-CR and U-
CR) give the maximal degree of similarity between arguments only on arguments having
equivalent concise refinements.

Theorem 2. LetA,B ∈ Arg(L), for any σ ∈ ]0, 1[, simACR(A,B, sim
σ
jac∗) = simUCR(A,

B, sjac, σ) = 1 iff CR(A) ∼=arg CR(B).

From Proposition 6, we know that if A ≈ B then CR(A) ∼=arg CR(B), then we can
deduce the following corollary.

Corollary 1. LetA,B ∈ Arg(L), for any σ ∈ ]0, 1[, ifA ≈ B then simACR(A,B, sim
σ
jac∗)

= simUCR(A,B, sjac, σ) = 1.

5 Extended Principles

The issue of syntax-dependence also exists in some principles. We propose here new
principles for similarity measure between pairs of logical arguments and we extend
some principles from [11].

The first new principle, called Minimality, ensures that similarity depends on the
content of arguments. It states that if two arguments do not share any variables, then they
are completely different. An example of such arguments are 〈{p}, p ∨ q〉 and 〈{t}, t〉.

5 U in U-CR stands for ”union”.
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Principle 1 (Minimality) A similarity measure sim satisfies Minimality iff for allA,B
∈ Arg(L), if

–
⋃

φi∈Supp(A)

Var(φi) ∩
⋃

φj∈Supp(B)

Var(φj) = ∅ and

– Var(Conc(A)) ∩ Var(Conc(B)) = ∅,

then sim(A,B) = 0.

Example 4. Let A = 〈{p, q}, p ∧ q〉, B = 〈{r}, r〉 ∈ Arg(L). A similarity measure
sim satisfying Minimality ensure that sim(A,B) = 0.

The second new principle consider that when two concise arguments have common
information in their supports or conclusions hence they own some similarity between
them.

Principle 2 (Non-Zero) A similarity measure sim satisfies Non-Zero iff for allA,B,A∗,
B∗ ∈ Arg(L), if

– UC(Supp(A)) ∩ UC(Supp(B)) 6= ∅, or
– UC(Conc(A)) ∩ UC(Conc(B)) 6= ∅,

then sim(A,B) > 0.

Example 5. Let A = 〈{p, q}, p ∧ q〉, B = 〈{p}, p〉 ∈ Arg(L). A similarity measure
sim satisfying Non-Zero ensure that sim(A,B) > 0.

The Maximality, Symmetry, Substitution, Syntax Independence principles defined
in [11] do not need to be extend while (Strict) Monotony and (Strict) Dominance have
to because they are dependent of the content.

Monotony states that similarity between two arguments is all the greater when the
supports of the arguments share more formulas.

Principle 3 (Monotony – Strict Monotony) A similarity measure sim satisfies Mono-
tony iff for all A,B,C,A∗, B∗, C∗ ∈ Arg(L), if

1. UC(Conc(A)) = UC(Conc(B)) or Var(UC(Conc(A))) ∩ Var(UC(Conc(C))) = ∅,
2. UC(Supp(A)) ∩ UC(Supp(C)) ⊆ UC(Supp(A)) ∩ UC(Supp(B)),
3. UC(Supp(B)) \ UC(Supp(A)) ⊆ UC(Supp(C)) \ UC(Supp(A)),

then the following hold:

– sim(A,B) ≥ sim(A,C) (Monotony)
– If the inclusion in condition 2 is strict or, UC(Supp(A)) ∩ UC(Supp(C)) 6= ∅ and

condition 3 is strict, then sim(A,B) > sim(A,C). (Strict Monotony)

This extended monotony principle works only on concise arguments (i.e. using only
relevant clauses). Indeed, when an argument has irrelevant information (e.g. 〈{p ∧ q ∧
r}, p ∧ q〉, r is irrelevant), this distorts the measurement.
In addition, constraints 2 and 3 are more precise than the original one. By making this
compilation of supports we can go deeper into the formulas for a better evaluation.
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Example 6. Let A = 〈{p∧ q, r}, p∧ q∧ r〉, B = 〈{p, q, s}, p∧ q∧ s〉, C = 〈{p, s, (p∧
s)→ t}, t〉 ∈ Arg(L). Their compiled arguments are:

– A∗ = 〈{p, q, r}, p ∧ q ∧ r〉,
– B∗ = 〈{p, q, s}, p ∧ q ∧ s〉, and
– C∗ = 〈{p, s,¬p ∨ ¬s ∨ t}, t〉.

Thanks to the compilation of arguments, a similarity measure sim which satisfies the
new principle of Strict Monotony, ensures that sim(A,B) > sim(A,C).

Let us present the last principle dealing with the conclusions.

Principle 4 [Dominance – Strict Dominance] A similarity measure sim satisfies Dom-
inance iff for all A,B,C,A∗, B∗, C∗ ∈ Arg(L), if

1. UC(Supp(B)) = UC(Supp(C)),
2. UC(Conc(A)) ∩ UC(Conc(C)) ⊆ UC(Conc(A)) ∩ UC(Conc(B)),
3. UC(Conc(B)) \ UC(Conc(A)) ⊆ UC(Conc(C)) \ UC(Conc(A)),

then the following hold:

– sim(A,B) ≥ sim(A,C). (Dominance)
– If the inclusion in condition 2 is strict or, UC(Conc(A)) ∩ UC(Conc(C)) 6= ∅ and

condition 3 is strict, then sim(A,B) > sim(A,C). (Strict Dominance)

Example 7. Let A = 〈{p ∧ q, r}, p ∧ q ∧ r〉, B = 〈{p, p→ q}, p ∧ q〉, C = 〈{p ∧ p→
q}, q〉 ∈ Arg(L). Their compiled arguments are:

– A∗ = 〈{p, q, r}, p ∧ q ∧ r〉,
– B∗ = 〈{p,¬p ∨ q}, p ∧ q〉, and
– C∗ = 〈{p,¬p ∨ q}, q〉.

Thanks to the compilation of arguments, a similarity measure sim which satisfies the
new principle of Strict Dominance, ensures that sim(A,B) > sim(A,C).

Theorem 3. The three novel extended jaccard similarity measures satisfy all the prin-
ciples.

simσjac sim
σ
jac∗ sim

A
CR sim

U
CR

Minimality • • • •
Non-Zero ◦ • • •
Monotony ◦ • • •
Strict Monotony ◦ • • •
Dominance ◦ • • •
Strict Dominance ◦ • • •

.

.
The symbol • (resp. ◦) means the measure satisfies (resp. violates) the principle.

Table 1: Satisfaction of the principles of similarity measures
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Note that the use of compilation in conclusions provides more accurate syntactic
measures than in [11], as seen with the satisfaction of Strict Dominance.

Clearly, the original Jaccard measure is syntax-dependent and violates all the prin-
ciples except Minimality (because without common literals, the syntax of the content
does not matter).

Finally, we may also remark that the measure (Finally, we may also remark that the
measure (simσj∗ ) not taking into account concise arguments satisfies all the principles.
This is due to the fact that the compiled arguments belong to the universe of possible
arguments. We made this choice because a principle is a mandatory property. Thanks to
this condition we keep the application of the principles general, by basing them on

simσj∗ ) not taking into account concise arguments satisfies all the principles. This
is due to the fact that the compiled arguments belong to the universe of possible argu-
ments. We made this choice because a principle is a mandatory property. Thanks to this
condition we keep the application of the principles general, by basing them on simple
cases.

6 Conclusion

The paper further investigates the similarity between logical arguments. Based on the
observation that existing similarity measures are syntax-dependent, they may provide
inaccurate evaluations. We propose to compile the arguments in order to make the ex-
isting principles and similarity measures syntax-independent.

This work may be extended in several ways. The first is to identify a principle,
or formal property, for distinguishing families of measures on concise arguments. The
second is to use the new measures to refine argumentation systems that deal with in-
consistent information. The third is to study the notion of similarity for other types of
arguments, such as analogical arguments. The fourth is to study the usefulness of com-
piled arguments to produce simple and accurate explanations. Finally, we plan to study
the notion of compiled arguments between other types of argument relations such as
attacks and supports.
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