Leila Amgoud
email: leila.amgoud@irit.fr

Victor David
email: victor.david@irit.fr

Similarity Measures based on Compiled Arguments

Argumentation is a prominent approach for reasoning with inconsistent information. It is based on the justification of formulas by arguments generated from propositional knowledge bases. It has recently been shown that similarity between arguments should be taken into account when evaluating arguments. Consequently, different similarity measures have been proposed in the literature. Although these measures satisfy desirable properties, they suffer from the side effects of being syntax-dependent. Indeed, they may miss redundant information, leading to undervalued similarity. This paper overcomes this shortcoming by compiling arguments, which amounts to transforming their formulas into clauses, and using the latter for extending existing measures and principles. We show that the new measures deal properly with the critical cases.

Introduction

Argumentation is a reasoning process based on the justification of claims by arguments, i.e., reasons for accepting claims. It has been extensively developed in Artificial Intelligence. Indeed, it was used for different purposes including decision making (eg. [START_REF] Amgoud | Using arguments for making and explaining decisions[END_REF][START_REF] Zhong | An explainable multi-attribute decision model based on argumentation[END_REF]), defeasible reasoning (eg. [START_REF] Governatori | Argumentation semantics for defeasible logic[END_REF][START_REF] García | Defeasible logic programming: an argumentative approach[END_REF]), and negotiation [START_REF] Sycara | Persuasive argumentation in negotiation[END_REF][START_REF] Hadidi | Argumentative alternating offers[END_REF].

Argumentation is also used as an alternative approach for handling inconsistency in knowledge bases [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF][START_REF] Amgoud | Logical limits of abstract argumentation frameworks[END_REF][START_REF] Vesic | Identifying the class of maxi-consistent operators in argumentation[END_REF]. Starting from a knowledge base encoded in propositional logic, arguments are built using the consequence operator of the logic. An argument is a pair made of a set of formulas (called support) and a single formula (called conclusion). The conclusion follows logically from the support. Examples of arguments are A = {p ∧ q ∧ r}, p ∧ q , B = {p ∧ q}, p ∧ q and C = {p, q}, p ∧ q . Once arguments are defined, attacks between them are identified and a semantics is used for evaluating the arguments, finally formulas supported by strong arguments are inferred from the base. Some semantics, like h-Categorizer [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF], satisfy the Counting (or Strict Monotony) principle defined in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. This principle states that each attacker of an argument contributes to weakening the argument. For instance, if the argument D = {¬p∨¬q}, ¬p∨ ¬q is attacked by A, B, C, then each of the three arguments will decrease the strength of D. However, the three attackers are somehow similar, thus D will lose more than necessary. Consequently, the authors in [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF] have motivated the need for investigating the notion of similarity between pairs of such logical arguments. They introduced a set of principles that a reasonable similarity measure should satisfy, and provided several measures that satisfy them. In [START_REF] Amgoud | Gradual semantics accounting for similarity between arguments[END_REF][START_REF] Amgoud | An adjustment function for dealing with similarities[END_REF][START_REF] Amgoud | A General Setting for Gradual Semantics Dealing with Similarity[END_REF] several extensions of h-Categorizer that take into account similarities between arguments have been proposed.

While the measures from [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF] return reasonable results in most cases, it was shown in [START_REF] Amgoud | Similarity measures between arguments revisited[END_REF], that they may lead to inaccurate assessments if arguments are not concise. An arguments is concise if its support contains only information that is useful for inferring its conclusion. For instance, the argument A is not concise since its support {p ∧ q ∧ r} contains r, which is useless for the conclusion p ∧ q. The similarity measures from [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF] declare the two arguments A and B as not fully similar while they support the same conclusion on the same grounds (p ∧ q). Consequently, both A and B will have an impact on D using h-Categorizer. In [START_REF] Amgoud | Similarity measures between arguments revisited[END_REF], such arguments are cleaned up from any useless information by generating the concise versions of each argument, the measures from [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF] are applied on concise arguments. However, these works fail to detect the full similarity between the two concise arguments B and C. In this paper, we solve the above issue by compiling arguments. The idea is to transform every formula in an argument's support into clauses. We extend the Jaccard-based similarity measures from [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF] and show that new versions improve accuracy of similarity.

The article is organised as follows: Section 2 recalls the notions of logical argument and similarity measure. Section 3 introduces compilation of arguments. Section 4 extends some measures of similarity. Section 5 extends and propose new principles for similarity measures, and the last Section 6 concludes.

Background

Logical Concepts

Throughout the paper, we consider classical propositional logic (L,), where L is a propositional language built up from a finite set P of variables, the two Boolean constants (true) and ⊥ (false), and the usual connectives (¬, ∨, ∧, →, ↔), and is the consequence relation of the logic. A literal is either a variable or the negation of a variable of P, the set of all literals is denoted P ± . Two formulas φ, ψ ∈ L are logically equivalent, denoted by φ ≡ ψ, iff φ ψ and ψ φ.

A formula φ is in negation normal form (NNF) if and only if it does not contain implication or equivalence symbols, and every negation symbol occurs directly in front of an atom. Following [START_REF] Lang | Propositional independence-formula-variable independence and forgetting[END_REF], we slightly abuse words and denote by NNF(φ) the formula in NNF obtained from φ by "pushing down" every occurence of ¬ (using De Morgan's law) and eliminating double negations. For instance, NNF(¬((p → q)∨¬t)) = p∧¬q∧t.

Let φ ∈ L, φ is in a conjunctive normal form (CNF) if is a conjunction of clauses i c i where each clause c i is a disjunction of literals j l j . For instance p ∧ (q ∨ t) is in a CNF while (p ∧ q) ∨ t is not.

We denote by Lit(φ) the set of literals occurring in NNF(φ), hence Lit(¬((p → q) ∨ ¬t)) = {p, ¬q, t}. The function Var(φ) returns all the variables occurring in the formula φ (e.g., Var(p ∧ ¬q ∧ t) = {p, q, t}).

A finite subset Φ of L, denoted by Φ ⊆ f L, is consistent iff Φ ⊥, it is inconsistent otherwise. Let us now define when two finite sets Φ and Ψ of formulas are equivalent. A natural definition is when the two sets have the same logical consequences, i.e., {φ ∈ L |Φ φ} = {ψ ∈ L |Ψ ψ}. Thus, the three sets {p, q}, {p ∧ p, ¬¬q}, and {p ∧ q} are pairwise equivalent. This definition is strong since it considers any inconsistent sets as equivalent. For instance, {p, ¬p} and {q, ¬q} are equivalent even if the contents (i.e. meaning of variables and formulas) of the two sets are unrelated (assume that p and q stand respectively for "bird" and "fly"). Furthermore, it considers the two sets {p, p → q} and {q, q → p} as equivalent while their contents are different as well. Clearly, the two rules "birds fly" and "everything that flies is a bird" express different information. Thus, the two sets {p, p → q} and {q, q → p} should be considered as different. Thus, in what follows we consider the following definition borrowed from [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF]. It compares formulas contained in sets instead of logical consequences of the sets.

Definition 1 (Equivalent Sets of Formulas). Two sets of formulas Φ, Ψ ⊆ f L are equivalent, denoted by Φ ∼ = Ψ , iff there is a bijection

f : Φ → Ψ s.t. ∀φ ∈ Φ, φ ≡ f (φ). Example 1. {p, p → q} ∼ = {q, q → p}, {p, ¬p} ∼ = {q, ¬q}, {p, q} ∼ = {p ∧ q} while {p, q} ∼ = {p ∧ p, ¬¬q}.
Let us define the notion of argument as in [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF].

Definition 2 (Argument). An argument built under the logic (L,) is a pair Φ, φ , where Φ ⊆ f L and φ ∈ L, such that:

-Φ is consistent, (Consistency) -Φ φ, (Validity) -Φ ⊂ Φ such that Φ φ. (Minimality)
An argument Φ, φ is trivial iff Φ = ∅ and φ ≡ .

Example 2. The three pairs A = {p ∧ q ∧ r}, p ∧ q , B = {p ∧ q}, p ∧ q and C = {p, q}, p ∧ q are arguments.

Notations: Arg(L) denotes the set of all arguments that can be built in (L,). For any A = Φ, φ ∈ Arg(L), the functions Supp and Conc return respectively the support (Supp(A) = Φ) and the conclusion (Conc(A) = φ) of A.

Note that the argument A in the above example is not concise since r is irrelevant for the argument's conclusion. In [START_REF] Amgoud | Similarity measures between arguments revisited[END_REF], the concise versions of arguments are computed using the following technique of refinement.

Definition 3 (Refinement). Let A, B ∈ Arg(L) s.t. A = {φ 1 , . . . , φ n }, φ , B = {φ 1 , . . . , φ n }, φ . B is a refinement of A iff: 1. φ = φ , 2.
There exists a permutation ρ of the set {1, . . . , n} such that ∀k ∈ {1, . . . , n},

φ k φ ρ(k) and Lit(φ ρ(k)) ⊆ Lit(φ k).
Let Ref be a function that returns the set of all refinements of a given argument.

Compared to the definition in [START_REF] Amgoud | Similarity measures between arguments revisited[END_REF], we extended the second constraint so that literals of φ ρ(k) are also literals of φ k . The reason is that we would like the arguments {p ∧ (p ∨ q)}, p ∨ q and {(p ∨ ¬q) ∧ (p ∨ q)}, p ∨ q can be refined into {p ∨ q}, p ∨ q while this was not possible in the original definition.

It is worth mentioning that an argument may have several refinements as shown in the following example.

Example 2 (Continued). The following sets are subset of refinement of these arguments.

-{ {p ∧ q ∧ r}, p ∧ q , {p ∧ q ∧ (p ∨ q)}, p ∧ q , {p ∧ q}, p ∧ q } ⊆ Ref(A) -{ {p ∧ q}, p ∧ q , {p ∧ ¬¬q}, p ∧ q } ⊆ Ref(B) -{ {p, q}, p ∧ q , {(p ∨ p) ∧ q}, p ∧ q } ⊆ Ref(C)
Every argument is a refinement of itself.

Proposition 1. For any argument

A ∈ Arg(L), A ∈ Ref(A).

Similarity Measures

In [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF], various measures have been proposed for assessing similarity between pairs of logical arguments. They extended existing measures which compare sets of objects including Jaccard measure [START_REF] Jaccard | Nouvelles recherches sur la distributions florale[END_REF]. Due to space limitation, in this paper we will focus only on the latter. Definition 4 (Jaccard Measure). Let X, Y be arbitrary sets of objects. if

X = ∅ or Y = ∅, then s jac (X, Y) = |X ∩ Y | |X ∪ Y | 3 If X = Y = ∅, then s jac (X, Y) = 1.
We recall below how the above measure is used in [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF] for logical arguments.

Definition 5 (Jaccard Similarity Measure). Let 0 < σ < 1. We define sim σ jac as a function assigning to any pair

(A, B) ∈ Arg(L) × Arg(L) a value sim σ jac (A, B) = σ.s jac (Supp(A), Supp(B)) + (1 -σ)s jac ({Conc(A)}, {Conc(B)}). Example 2 (Continued). sim 0.5 jac (A, B) = sim 0.5 jac (A, C) = sim 0.5 jac (B, C) = 0.5 • 0 + 0.5 • 1 = 0.5.

Compilation of arguments

Recall that {p, q} ∼ = {p ∧ q} while the two sets contain the same information. For getting them equivalent, we transform every formula into a CNF, then we split it into a set containing its clauses. Note that it is well known (eg. [START_REF] Russell | Artificial intelligence: A modern appraoch[END_REF]) that any formula can be transformed into equivalent CNFs using the same literals. In our approach, we consider one CNF per formula. For that purpose, we will use a finite sub-language F that contains one formula per equivalent class and the formula should be in a CNF. Definition 6 (Finite CNF language F). Let F ⊂ f L such that ∀φ ∈ L, there exists a unique ψ ∈ F such that:

-φ ≡ ψ, -Lit(φ) = Lit(ψ), -ψ is in a CNF. Let CNF(φ) = ψ.
While we do not specify the elements of F, we use concrete formulas in the examples, and they are assumed to belong to F.

Notation: For Φ ⊆ f L, UC(Φ) = φ∈CNF(Φ) δ clause ∈φ δ.
Let us now introduce the notion of compiled argument.

Definition 7 (Compiled Argument). The compilation of A ∈ Arg(L) is A * = UC(Supp(A)), Conc(A) .
Example 2 (Continued). The compilations of the three arguments A, B, C are:

-A * = {p, q, r}, p ∧ q , -B * = {p, q}, p ∧ q , -C * = {p, q}, p ∧ q .
Note that the compilation of an argument is not necessarily an element of Arg(L) as it may violate the minimality condition. For instance, we can see that A * / ∈ Arg(L) since the set {p, q, r} is not minimal.

To solve this problem of non-minimal compiled arguments, we will extend the notion of concise argument (from [START_REF] Amgoud | Similarity measures between arguments revisited[END_REF]) while fixing the syntax-dependency issue. To define what a concise argument is, we first need to introduce what equivalent arguments are.

Thanks to the use of the language F in the compiled arguments, any equivalent formulas using the same literals have an identical syntax. Using this feature, we define that arguments are equivalent when they have identical compiled supports and conclusions. Note that arguments having the same compilation of their supports may not be equivalent. This is for instance the case of the two arguments D and E such that

D = {(p ∨ q) ∧ (p ∨ ¬q)}, (p ∨ q) ∧ (p ∨ ¬q) and E = {(p ∨ q) ∧ (p ∨ ¬q)}, p . Clearly, D ≈ E.
We show that trivial arguments are not equivalent. For instance ∅, p∨¬p ≈ ∅, q ∨ ¬q because {p ∨ ¬p} = {q ∨ ¬q}.

Proposition 2. Trivial arguments are pairwise non equivalent.

The objective of the notion of concise arguments is to produce the set of compiled arguments that satisfy the Definition 2. To do this, we observed that any non-equivalent refined argument A , of a compiled argument A * ∈ Arg(L), produces a new clause by inference between several clauses of the same formula.

Proposition 3. Let A ∈ Arg(L). If A ∈ Ref(A), A ≈ A and A * ∈ Arg(L) then ∃δ ∈ UC(Supp(A)) such that ∀δ ∈ UC(Supp(A)), δ = δ .
Let us define a concise argument. The first constraint ensures that argument A does not have unnecessary information (clause) to infer its conclusion. The second constraint prevents argument A from being compared with arguments that have created new information (clause) in their support.

Example 2 (Continued). The following sets are subset of concise refinements of the arguments A, B, C:

-{ {p ∧ q}, p ∧ q , {p ∧ p ∧ q}, p ∧ q } ⊂ CR(A) -{ {p ∧ q}, p ∧ q , {p ∧ q ∧ q}, p ∧ q } ⊂ CR(B) -{ {p, q}, p ∧ q , {p ∧ p, q ∧ q}, p ∧ q } ⊂ CR(C)
The non trivial argument have an infinite set of concise refinements. We show in the following theorem that the notion of a concise argument is equivalent to that of a compiled argument satisfying the conditions of the Definition 2.

Theorem 1. For any A ∈ Arg(L), A is concise iff A * ∈ Arg(L).

When two arguments are equivalent they have equivalent concise refinements. In the same way that we define a set of equivalent formulae (Definition 1), we may define a set of equivalent arguments.

Definition 10 (Equivalent sets of Arguments). Two sets of arguments Ω

A , Ω B ⊆ f Arg(L), are equivalent, denoted by Ω A ∼ =arg Ω B , iff there is a bijection f : Ω A → Ω B s.t. ∀A ∈ Ω A , A ≈ f (A).
Otherwise Ω A and Ω B are not equivalent, denoted by

Ω A ∼ =arg Ω B .
Equivalent arguments have equivalent concise refinements.

Proposition 6. Let A, B ∈ Arg(L), if A ≈ B then CR(A) ∼ =arg CR(B).

Example 2 (Continued). B ≈ C and CR(B) ∼ =arg CR(C).

We can also see in this example that there are non-equivalent arguments with equivalent concise refinements: A ≈ B and CR(A) ∼ =arg CR(B). This is because the equivalent arguments take into account irrelevant information.

Finally, note that when a compiled argument is not minimal, this may be due to the presence of unnecessary literals in the support which will be removed in the concise arguments; or because the argument is complex, i.e. it has different reasonings to conclude, which will produce different concise arguments.

Example 2 (Continued). Let A = {p ∧ q ∧ r}, p ∧ q , F = {p ∧ q, (p → r) ∧ (q → r)}, r ∈ Arg(L). The compiled argument of A and F are:

-A * = {p, q, r}, p ∧ q , and -F * = {p, q, p → r, q → r}, r .

Clearly, r is irrelevant in A * and F * may infer r according to p or q. We may see in the concise versions of the arguments A and F that unnecessary information is removed and complex information is separated to have minimal arguments:

-{ {p ∧ q}, p ∧ q } ⊂ CR(A), and -{ {p, p → r}, r , {q, q → r}, r } ⊂ CR(F).

Extended Similarity Measures

We are ready now to introduce the new extended similarity measures.

First, we propose to apply similarity measure between set of objects on compiled supports and conclusions. Example 2 (Continued).

-sim 0.5 jac * (A, B) = sim 0.5 jac * (A, C) = 0.5 • 2 3 + 0.5 • 1 = 5 6 = 0.833. -sim 0.5 jac * (B, C) = 0.5 • 1 + 0.5 • 1 = 1.
As we can see, working only with the compilation of arguments is not sufficient to assess degrees of similarity. It is also necessary to eliminate irrelevant information.

In the following we propose to extend the two family from [START_REF] Amgoud | Similarity measures between arguments revisited[END_REF] dealing with concise refinements of an argument.

Definition 12 (Finite Conciseness). Let A ∈ Arg(L). We define the set

CR(A) = {B ∈ CR(A) | Supp(B) ⊂ F}.
In this way, we obtain a finite set of non-equivalent concise refinements. Proposition 7. For every A ∈ Arg(L), the set CR(A) is finite.

We may now extend the two families of similarity measures (from [START_REF] Amgoud | Similarity measures between arguments revisited[END_REF]), to add a syntax independent treatment. The value of A-CR Jaccard Similarity Measure always belongs to the unit interval.

Proposition 8. Let A, B ∈ Arg(L), sim σ jac * and σ ∈]0, 1[. Then sim A CR (A, B, sim σ jac *) ∈ [0, 1].
Now we define our second family of similarity measures, which is based on comparison of sets obtained by merging supports of concise refinements of arguments. For an argument A ∈ Arg(L), we denote that set by

US(A) = A ∈CR(A)

UC(Supp(A)).

Definition 14 (U-CR Jaccard Similarity Measure). Let A, B ∈ Arg(L), 0 < σ < 1, and s jac . We define U-CR Jaccard Similarity Measure5 by sim

U CR (A, B, s jac , σ) = σ • s jac (US(A), US(B)) + (1 -σ) • s jac (UC(Conc(A)), UC(Conc(B))).
More generally, using the compilations allows to be more accurate even in the supports. Given that each clause are a formula the similarity degree can increase or decrease.

Example 3. Let

A = {p ∧ q, t}, p ∧ q ∧ t , B = {p ∧ q, r}, p ∧ q ∧ r , C = {p ∧ q, r}, p ∧ q ∧ r , D = {s ∧ t ∧ u ∧ v, r}, s ∧ t ∧ u ∧ v ∧ r ∈ Arg(L) and σ = 0.5. -sim 0.5 jac (A, B) = 0.5 • 1 3 + 0.5 • 0 = 1 6 = 0.167. -sim 0.5 jac * (A, B) = 0.5 • 2 4 + 0.5 • 2 4 = 1 2 = 0.5. -sim 0.5 jac (C, D) = 0.5 • 1 3 + 0.5 • 0 = 1 6 = 0.167. -sim 0.5 jac * (C, D) = 0.5 • 1 7 + 0.5 • 1 7 = 1 7 = 0.
143. Therefore sim 0.5 jac (A, B) ≤ sim 0.5 jac * (A, B) and sim 0.5 jac (C, D) ≥ sim 0.5 jac * (C, D). Returning to our running example (from the introduction), we see that the three arguments A, B, C are now identified as being completely similar. That is, we have dealt with both the irrelevant information problem and the syntax-dependency problem.

Example 2 (Continued). For any σ ∈]0, 1[:

-sim A CR (A, B, sim σ jac *) = sim A CR (A, C, sim σ jac *) = sim A CR (B, C, sim σ jac *) = 1. -sim U CR (A, B, s jac , σ) = sim U CR (A, C, s jac , σ) = sim U CR (B, C, s jac , σ) = 1.
The next Theorem ensure that the two family of similarity measures (A-CR and U-CR) give the maximal degree of similarity between arguments only on arguments having equivalent concise refinements.

Theorem 2. Let A, B ∈ Arg(L), for any σ ∈]0, 1[, sim A CR (A, B, sim σ jac *) = sim U CR (A, B, s jac , σ) = 1 iff CR(A) ∼ =arg CR(B).
From Proposition 6, we know that if A ≈ B then CR(A) ∼ =arg CR(B), then we can deduce the following corollary.

Corollary 1. Let A, B ∈ Arg(L), for any σ ∈]0, 1[, if A ≈ B then sim A CR (A, B, sim σ jac *) = sim U CR (A, B, s jac , σ) = 1.

Extended Principles

The issue of syntax-dependence also exists in some principles. We propose here new principles for similarity measure between pairs of logical arguments and we extend some principles from [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF].

The first new principle, called Minimality, ensures that similarity depends on the content of arguments. It states that if two arguments do not share any variables, then they are completely different. An example of such arguments are {p}, p ∨ q and {t}, t . The second new principle consider that when two concise arguments have common information in their supports or conclusions hence they own some similarity between them.

Principle 2 (Non-Zero) A similarity measure sim satisfies Non-Zero iff for all A, B, A * , B * ∈ Arg(L), if

-UC(Supp(A)) ∩ UC(Supp(B)) = ∅, or -UC(Conc(A)) ∩ UC(Conc(B)) = ∅, then sim(A, B) > 0.
Example 5. Let A = {p, q}, p ∧ q , B = {p}, p ∈ Arg(L). A similarity measure sim satisfying Non-Zero ensure that sim(A, B) > 0.

The Maximality, Symmetry, Substitution, Syntax Independence principles defined in [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF] do not need to be extend while (Strict) Monotony and (Strict) Dominance have to because they are dependent of the content.

Monotony states that similarity between two arguments is all the greater when the supports of the arguments share more formulas. This extended monotony principle works only on concise arguments (i.e. using only relevant clauses). Indeed, when an argument has irrelevant information (e.g. {p ∧ q ∧ r}, p ∧ q , r is irrelevant), this distorts the measurement. In addition, constraints 2 and 3 are more precise than the original one. By making this compilation of supports we can go deeper into the formulas for a better evaluation. Example 6. Let A = {p ∧ q, r}, p ∧ q ∧ r , B = {p, q, s}, p ∧ q ∧ s , C = {p, s, (p ∧ s) → t}, t ∈ Arg(L). Their compiled arguments are:

-A * = {p, q, r}, p ∧ q ∧ r , -B * = {p, q, s}, p ∧ q ∧ s , and -C * = {p, s, ¬p ∨ ¬s ∨ t}, t .

Thanks to the compilation of arguments, a similarity measure sim which satisfies the new principle of Strict Monotony, ensures that sim(A, B) > sim(A, C).

Let us present the last principle dealing with the conclusions.

∈ Arg(L), if 1. UC(Supp(B)) = UC(Supp(C)), 2. UC(Conc(A)) ∩ UC(Conc(C)) ⊆ UC(Conc(A)) ∩ UC(Conc(B)), 3. UC(Conc(B)) \ UC(Conc(A)) ⊆ UC(Conc(C)) \ UC(Conc(A)),
then the following hold:

-sim(A, B) ≥ sim(A, C). (Dominance) -If the inclusion in condition 2 is strict or, UC(Conc(A)) ∩ UC(Conc(C)) = ∅ and condition 3 is strict, then sim(A, B) > sim(A, C). (Strict Dominance) Example 7. Let A = {p ∧ q, r}, p ∧ q ∧ r , B = {p, p → q}, p ∧ q , C = {p ∧ p → q}, q ∈ Arg(L).
Their compiled arguments are:

-A * = {p, q, r}, p ∧ q ∧ r , -B * = {p, ¬p ∨ q}, p ∧ q , and -C * = {p, ¬p ∨ q}, q .

Thanks to the compilation of arguments, a similarity measure sim which satisfies the new principle of Strict Dominance, ensures that sim(A, B) > sim(A, C).

Theorem 3. The three novel extended jaccard similarity measures satisfy all the principles.

sim σ jac sim σ jac * sim A CR sim U CR Minimality • • • • Non-Zero • • • • Monotony • • • • Strict Monotony • • • • Dominance • • • • Strict Dominance • • • • .
. The symbol • (resp. •) means the measure satisfies (resp. violates) the principle.

Table 1: Satisfaction of the principles of similarity measures Note that the use of compilation in conclusions provides more accurate syntactic measures than in [START_REF] Amgoud | Measuring similarity between logical arguments[END_REF], as seen with the satisfaction of Strict Dominance.

Clearly, the original Jaccard measure is syntax-dependent and violates all the principles except Minimality (because without common literals, the syntax of the content does not matter).

Finally, we may also remark that the measure (Finally, we may also remark that the measure (sim σ j *) not taking into account concise arguments satisfies all the principles. This is due to the fact that the compiled arguments belong to the universe of possible arguments. We made this choice because a principle is a mandatory property. Thanks to this condition we keep the application of the principles general, by basing them on sim σ j *) not taking into account concise arguments satisfies all the principles. This is due to the fact that the compiled arguments belong to the universe of possible arguments. We made this choice because a principle is a mandatory property. Thanks to this condition we keep the application of the principles general, by basing them on simple cases.

Conclusion

The paper further investigates the similarity between logical arguments. Based on the observation that existing similarity measures are syntax-dependent, they may provide inaccurate evaluations. We propose to compile the arguments in order to make the existing principles and similarity measures syntax-independent. This work may be extended in several ways. The first is to identify a principle, or formal property, for distinguishing families of measures on concise arguments. The second is to use the new measures to refine argumentation systems that deal with inconsistent information. The third is to study the notion of similarity for other types of arguments, such as analogical arguments. The fourth is to study the usefulness of compiled arguments to produce simple and accurate explanations. Finally, we plan to study the notion of compiled arguments between other types of argument relations such as attacks and supports.

Definition 8 (

 8 Equivalent Arguments). Two arguments A, B ∈ Arg(L) are equivalent, denoted by A ≈ B, iff UC(Supp(A)) = UC(Supp(B)) and UC({Conc(A)}) = UC({Conc(B)}). We denote by A ≈ B when A and B are not equivalent. Example 2 (Continued). B ≈ C while A ≈ B and A ≈ C.

Definition 9 (

 9 Conciseness). An argument A ∈ Arg(L) is concise iff for all B ∈ Ref(A) such that: -B * ∈ Arg(L) and, -∀δ ∈ UC(B), ∃δ ∈ UC(A) s.t. δ = δ , we have A ≈ B.Let CR(A) denote the set of all A concise refinements of A such that UC(Supp(A)) ⊆ UC(Supp(A)).

Proposition 4 .Proposition 5 .

 45 Let A ∈ Arg(L), if A is not trivial then |CR(A)| = ∞.A trivial argument have only one concise refinement, itself. Let a trivial argument A ∈ Arg(L), CR(A) = {A}.

Definition 11 (

 11 Extended Jaccard Similarity Measure). Let 0 < σ < 1. We define sim σ jac * as a function assigning to any pair (A, B) ∈ Arg(L) × Arg(L) a value sim σ jac * (A, B) = σ.s jac (UC(Supp(A)), UC(Supp(B))) + (1 -σ)s jac (UC(Conc(A)), UC(Conc(B))).

Definition 13 (

 13 A-CR Jaccard Similarity Measure). Let A, B ∈ Arg(L), and let sim σ jac * and σ ∈]0, 1[. We define A-CR Jaccard Similarity Measure 4 by sim A CR (A, B, sim σ jac *) = Ai∈CR(A) Max(A i , CR(B), sim σ jac *) + Bj ∈CR(B) Max(B j , CR(A), sim σ jac *) |CR(A)| + |CR(B)| .

Principle 1 (

 1 Minimality) A similarity measure sim satisfies Minimality iff for all A, B ∈ Arg(L), if -φi∈Supp(A) Var(φ i) ∩ φj ∈Supp(B) Var(φ j) = ∅ and -Var(Conc(A)) ∩ Var(Conc(B)) = ∅, then sim(A, B) = 0. Example 4. Let A = {p, q}, p ∧ q , B = {r}, r ∈ Arg(L). A similarity measure sim satisfying Minimality ensure that sim(A, B) = 0.

Principle 3 (

 3 Monotony -Strict Monotony) A similarity measure sim satisfies Monotony iff for all A, B, C, A * , B * , C * ∈ Arg(L), if1. UC(Conc(A)) = UC(Conc(B)) or Var(UC(Conc(A))) ∩ Var(UC(Conc(C))) = ∅, 2. UC(Supp(A)) ∩ UC(Supp(C)) ⊆ UC(Supp(A)) ∩ UC(Supp(B)), 3. UC(Supp(B)) \ UC(Supp(A)) ⊆ UC(Supp(C)) \ UC(Supp(A)),then the following hold:sim(A, B) ≥ sim(A, C)(Monotony) -If the inclusion in condition 2 is strict or, UC(Supp(A)) ∩ UC(Supp(C)) = ∅ and condition 3 is strict, then sim(A, B) > sim(A, C). (Strict Monotony)

Principle 4 [

 4 Dominance -Strict Dominance] A similarity measure sim satisfies Dominance iff for all A, B, C, A * , B * , C *

|| stands for the cardinality of a set.

The letter A in A-CR stands for "average".

U in U-CR stands for "union".