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Abstract. Explaining black-box classification models is a hot topic in AI, it has
the overall goal of improving trust in decisions made by such models. Several
works have been done and diverse explanation functions have been proposed.
The most prominent ones, like Anchor and LIME, return abductive explanations
which highlight key factors that cause predictions. Despite their popularity, the
two functions may return inaccurate and sometimes incorrect explanations.
In this paper, we study abductive explanations and identify the origin of this short-
coming. We start by defining two kinds of explanations: absolute explanations
that are generated from the whole feature space, and plausible explanations (like
those provided by Anchors and LIME) that are constructed from a proper subset
of the feature space. We show that the former are coherent in that two compatible
sets of features cannot explain distinct classes while the latter may however be
incoherent, leading thus to incorrect explanations. Then, we show that explana-
tions are provided by non-monotonic functions. Indeed, an explanation may no
longer be valid if new instances are received. Finally, we provide a novel function
that is based on argumentation and that returns plausible explanations. We show
that the function is non monotonic and its explanations are coherent.

Keywords: Classification · Explainability · Argumentation.

1 Introduction

In the last few years, the discussion around artificial intelligence is gaining more and
more interest. This is mainly due to noteworthy advances made in data-driven AI in
general, and deep learning in particular. In this sub-field of AI, the idea is to learn a
targeted objective (like the class of an object) from a vast quantity of data. However,
the predictions of existing models can hardly be explained in a transparent way. This
opacity is seen as a great limitation, which impedes the relevance of those models in
practical applications like healthcare but also in embedded systems for mobility de-
spite their successes. Explanations are essential for increasing societal trust, and thus
acceptance of those models. They help users understand why a decision was reached.

Explaining the functionality of complex classification models and their rationale
becomes a vital need. Consequently, several works have been done in the literature
(see [1–3] for recent surveys on explaining machine learning models). They consider
as input a classifier, and provide explanations of its predictions. Those works can be di-
vided into two families: The first family opens somehow the classifier to provide insight
into the internal decision-making process (eg. [4, 5]), its explanations describe thus the
classifier’s algorithm. However, the use of increasingly complex algorithms (e.g. deep
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neural networks) has made them more difficult to explain and the inner workings of an
algorithm may be inexplicable even to the developers of those classifiers [6]. Further-
more, a predominant finding from research in philosophy of sciences and social sciences
is that a full causal explanation of a prediction is undesired for humans, as they do not
need to understand the algorithm followed by a model. In other words, an explanation
does not necessarily hinge on the general public understanding of how algorithmic sys-
tems function. Consequently, the second family provides explanations without opening
the black-box (eg. [5, 7–11]) and pays particular attention to what constitutes a good
explanation for human users. Several notions have been defined in this second fam-
ily including abductive explanations (eg. [12]), counterfactuals (eg. [5]), semifactuals
[13], contrastive explanations (eg. [8, 9]), explanations based on pertinent positives and
pertinent negatives (eg. [9]), adversarial examples (eg. [14]), examples (eg. [15]), and
counter-examples (eg. [12]).

In this paper, we focus on complex classifiers whose internal processes are inexpli-
cable, and we follow the second approach for explaining their predictions. We study the
abductive explanations, which highlight key factors that cause predictions. Such expla-
nations are provided by the two prominent explanation functions: Anchors and LIME
[16, 11]. Despite their popularity, the two functions may return inaccurate and some-
times incorrect explanations, and the reason behind this shortcoming remains unclear.

In this paper, we elucidate the origin of the shortcoming. For that purpose, we start
by defining two explanations functions. The first function generates absolute expla-
nations from the whole feature space. This approach is followed for instance in [17,
12]. We show that this function is coherent, i.e., its explanations are compatible and do
not justify distinct classes. However, in practice the whole feature space is not avail-
able. Consequently, functions like Anchors and LIME generate (abductive) explana-
tions from a proper subset of the feature space. Indeed, the explanations of a given
instance are constructed from some instances in its close neighbourhood.

Our second function generates thus what we call plausible explanations from a sub-
set of instances, which may be the neighbourhood of instances, or a set of instances
on which the classifier returns a good confidence, or simply a dataset on which it was
trained. Such explanations are only plausible (compared to absolute) since they are gen-
erated from incomplete information. We show that they are non monotonic in that an
explanation may no longer be valid if the subset of instances is extended with further
ones. We show also that this function is incoherent, leading to incorrect explanations
(as in Anchors and LIME).

To sum up, generating explanations is a non-monotonic reasoning problem, and
defining a non-monotonic function that is coherent remains a challenge in the XAI
literature. In this paper we provide such a function that is based on argumentation.

The paper is structured as follows: Section 2 presents the background on classifica-
tion. Section 3 defines the two first functions of explanation and Section 4 investigates
their properties and links. Section 5 defines the argument-based explanation function
and the last section concludes.
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2 Classification Problem

Throughout the paper, we assume a finite and non-empty set F = {f1, . . . , fn} of
features (called also attributes) that take respectively their values from finite domains
D1, . . . ,Dn. Let D = {D1, . . . ,Dn}. For every feature f and every possible value
v of f , the pair (f, v) is called literal feature, or literal for short. Let U denote the
universe of all possible literal features. The set X contains all possible n−tuples of
literal features or sets of the form {(f1, v1i), . . . , (fn, vnl)}, i.e., X contains all the
possible instantiations of the n features of F . X and its elements are called respectively
feature space and instances. Note that X is finite since F and the n domains in D are
finite. Let C = {c1, . . . , cm}, with m > 1, be a finite and non-empty set of possible
distinct classes.

Definition 1 A theory is a tuple T = 〈F , D, C〉 .

We denote by XT the feature space of theory T = 〈F , D, C〉 . When it is clear from
the context, we write X for short.

A classification model is a function that assigns to every instance x ∈ XT of a
theory T = 〈F , D, C〉 a single prediction, which is a class from the set C.

Definition 2 Let T = 〈F , D, C〉 be a theory. A classification model is a function f s.t.
f : XT → C.

Let us illustrate the above notions with a simple example.

Example 1. Assume a classification problem of deciding whether to hike or not. Hence,
C = {c0, c1} where c0 stands for not hiking and c1 for hiking. The decision is based on
four attributes: Being in vacation (V ), having a concert (C), having a meeting (M ) and
having an exhibition (E), thus F = {V,C,M,E}. Each attribute is binary, i.e., takes
two possible values from Di = {0, 1} (i = 1, . . . , 4). Assume a classification model f
that assigns classes to instances of Y ⊂ X as shown in the table below.

Y V C M E H
x1 0 0 1 0 c0
x2 1 0 0 0 c1
x3 0 0 1 1 c0
x4 1 0 0 1 c1
x5 0 1 1 0 c0
x6 0 1 1 1 c0
x7 1 1 0 1 c1

A set of literal features is consistent if it does not contain two literals having the
same feature but distinct values.

Definition 3 A set H ⊆ U is consistent iff @(f, v), (f ′, v′) ∈ H such that f = f ′ and
v 6= v′. Otherwise, H is said to be inconsistent.
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3 Abductive Explanation Functions

In the machine learning literature, there is a decent amount of work on explaining out-
comes of classifiers. Several types of explanations have then been identified, and the
most prominent one is the so-called abductive explanation. The latter amounts at an-
swering the following question:

Why does an outcome hold?

In other words, why a particular class is assigned to an instance? The answer consists
in highlighting factors (i.e., literal features) that caused the given class. Research in
cognitive science revealed that in practice, humans provide partial explanations instead
of full ones. Instead of a full account, they expect an explanation for the key factors that
caused the given output instead of another. Consequently, the two popular explanation
functions Anchors and LIME [16, 11] as well as the one that generates the so-called
pertinent positives [9] generate sets of literals that cause a prediction. Below are two
examples of such explanations:

(E1) I won’t hike (c0) because I am not on vacation (V, 0).
(E2) You were denied your loan because your annual income was £30K.

In the first example, the decision of not hiking is due to the attribute (Vacation)
which takes the value 0. The second example is on decision about credit worthiness,
hence there are again two possible classes (0 and 1). The explanation E2 means that
when the feature Salary has the value £30K, the outcome is 0.

In what follows, we define the notion of explanation function. The latter explains
the predictions of a classification model in the context of a fixed theory. In other words,
it takes as input a classification model f and a theory T , and returns for every instance
x ∈ XT , the set of reasons that cause f(x). The same function is thus applicable to
any model f and any theory. Generally, a function generates explanations from a subset
of instances which may be the dataset on which the classifier has been trained, or the
set of instances on which it returns a good confidence, or the neighbourhood of some
instances, etc.

Definition 4 An explanation function is a function g : XT → 22
U

that generates from
Y ⊆ XT the reasons behind the predictions of a classifier f in theory T = 〈F , D, C〉 .
For x ∈ XT , gY(x) denotes the set of explanations of x, or reasons of assigning the
class f(x) to x.

Abductive explanations have been studied in the AI literature a long time ago (eg.
[18]). More recently, they have been used for interpreting blackbox classification mod-
els (eg. [17, 4, 19]). The basic idea behind these works is to look for regular behavior of
a model in the whole feature space. More precisely, an abductive explanation is defined
as a minimal (for set inclusion) set of literals (or features in [4]) that is sufficient for
predicting a class. It is worth mentioning that a given prediction may have several ab-
ductive explanations. In what follows, we call such explanations “absolute” since they
are defined by exploring the whole feature space, thus under complete information, and
consequently they cannot be erroneous as we will see later.
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Definition 5 Let ga be an explanation function of a classification model f applied to
theory T = 〈F , D, C〉 s.t. for Y ⊆ XT , x ∈ Y , H ⊆ U , H ∈ gYa (x) iff:

– H ⊆ x
– ∀y ∈ XT s.t. H ⊆ y, f(y) = f(x)
– @H ′ ⊂ H such that H ′ satisfies the above conditions.

H is called absolute abductive explanation of (x, f(x)).

Example 2. Consider the theory T = 〈F , D, C〉 such that F = {f1, f2}, D1 = D2 =
{0, 1}, and C = {c1, c2, c3}. Assume a model f that assigns classes to instances as
shown in the table below.

Y f1 f2 c
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

The absolute explanations of x1, x2, x3, x4 are as follows:

– gYa (x1) = {H1} H1 = {(f1, 0), (f2, 0)}
– gYa (x2) = {H2} H2 = {(f1, 0), (f2, 1)}
– gYa (x3) = {H3} H3 = {(f1, 1)}
– gYa (x4) = {H3}

The definition of absolute explanations requires exploring the whole feature space
(see the second condition of Def. 5), which is quite difficult and maybe not feasible
in practice. Consequently, functions like Anchor and LIME [16, 11] generate explana-
tions from a proper subset of the feature space. They focus on the closest instances of
the instance to be explained. In what follows, we define an explanation function whose
outcomes are called plausible. It somehow generalises and improves Anchor and LIME
since it also provides abductive explanations, but those that are minimal (for set inclu-
sion). Minimality of an explanation is important since it discards irrelevant information
from being part of the explanation. This condition is violated by Anchors and LIME.

Definition 6 Let gp be an explanation function of a classification model f applied to
theory T = 〈F , D, C〉 s.t. for Y ⊆ X , and x ∈ Y , H ∈ gYp (x) iff:

– H ⊆ x
– ∀y ∈ Y s.t. H ⊆ y, f(y) = f(x)
– @H ′ ⊂ H such that H ′ satisfies the above conditions.

H is called plausible abductive explanation of x.

Note that the function gp can be applied to different subsets of X , and as we will
see later the results may not be the same.

Example 1 (Cont.) Consider the following sets:
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– U1 = {(V, 0)}
– U2 = {(M, 1)}
– U3 = {(C, 1), (E, 0)}
– U4 = {(V, 1)}
– U5 = {(M, 0)}

It can be checked that:

– gYp (x1) = {U1, U2}
– gYp (x5) = {U1, U2, U3}
– gYp (x2) = gYp (x4) = gYp (x7) = {U4, U5}

Every (absolute, plausible) abductive explanation is consistent. Furthermore, an in-
stance may have one or several (absolute, plausible) abductive explanations.

Proposition 1 Let T = 〈F , D, C〉 be a theory, Y ⊆ X and x ∈ Y .

– Every (absolute, plausible) abductive explanation of x is consistent.
– If Y = X , then gYa (x) = gYp (x)

– gYa (x) 6= ∅ and gYp (x) 6= ∅
– gYp (x) = {∅} iff ∀y ∈ Y \ {x}, f(y) = f(x).

Proof. An (absolute, plausible) explanation is a part of an instance. Every instance is
consistent, then its subparts are all consistent. The second property is straightforward.
Let us show the third property. Since x is consistent, then ∃H ⊆ x such that H is
minimal (for set inclusion) such that ∀y ∈ Y s.t. H ⊆ y, f(y) = f(x). The last
property is straightforward.

4 Properties of Explanation Functions

We discuss below two formal properties of explanation functions. Such properties are
important for assessing the quality of an explanation function and for comparing pairs
of functions. The first property ensures coherence of the set of explanations provided
by a function. More precisely, it states that a set of literals cannot cause two distinct
predictions. Let us illustrate the idea with Example 1.

Example 1 (Cont.) Recall that {(V, 0)} ∈ gYp (x1) and {(M, 0)} ∈ gYp (x2). Note that
the set {(V, 0), (M, 0)} is consistent, then there exists an instance y ∈ X \ Y such that
{(V, 0), (M, 0)} ⊆ y. By definition of an abductive explanation, f(y) = c0 (due to
{(V, 0)}) and f(y) = c1 (due to {(M, 0)}) which is impossible since every instance
has one class. This example shows that the function gp is not coherent even locally, i.e.
when working with Y ⊂ X .

Below is a formal definition of the notion of coherence of an explanation function.

Definition 7 (Coherence) An explanation function g is coherent iff for any model f,
any theory T = 〈F , D, C〉 , any Y ⊆ XT , the following holds:
∀x, x′ ∈ XT , ∀H ∈ gY(x), ∀H ′ ∈ gY(x′), if H ∪H ′ is consistent, then f(x) = f(x′).
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We show that the absolute abductive explanation function is coherent while this
property is violated by the plausible function as shown above.

Proposition 2 The function ga is coherent and gp is incoherent.

Proof. Example 1 shows a counter-example for the coherence of gp. Let us now show
that ga is coherent. Let x, x′ ∈ X , c, c′ ∈ C and H ∈ ga(x), H ′ ∈ ga(x

′). Assume that
H ∪H ′ is consistent. Then, ∃z ∈ X s.t. H ∪H ′ ⊆ z. By Def. 5, f(z) = c (due to H)
and f(z) = c′ (due to H ′). Since (z) is unique, then c = c′.

Remark: As said before, Anchors and LIME explanation functions are somehow in-
stances of gp as they generate abductive explanations from a proper subset of the feature
space. They even do not use a whole dataset but only instances that are in the neigh-
bourhood of the instance being explained. Hence, the two functions violate coherence.

Let us now investigate another property of explanation functions, that of monotony.
The idea is to check whether an instance generated from a dataset remains plausible
when the dataset is expanded with new instances.

Definition 8 (Monotony) An explanation function g is monotonic iff for any model f,
any theory T = 〈F , D, C〉 , any x ∈ XT , the following property holds:
gY(x) ⊆ gZ(x) whenever Y ⊆ Z ⊆ XT . It is non-monotonic otherwise.

The absolute function ga is clearly monotonic since it explores the whole feature
space, thus complete information. However, the plausible function is not monotonic.

Proposition 3 The function ga is monotonic and gp is non-monotonic.

Let us illustrate the non-monotonicity of gp with an example.

Example 1 (Cont.) Consider the instance x5. Recall that U3 = {(C, 1), (E, 0)} is a
plausible explanation of x5. Assume we receive the new instance x8 below:

Y V C M E H
x8 1 1 0 0 c1

Note that {(C, 1), (E, 0)} is no longer a plausible explanation of x5 that can generated
from the set Y ∪ {x5}. Indeed, the second condition of Def. 6 is not satisfied.

The above example shows that a plausible explanation of an instance is not neces-
sarily an absolute one, while, ideally gp should approximate ga.

Property 1. Let Y ⊂ XT and x ∈ Y . gYp (x) 6⊆ gYa (x).

To sum up, we have shown that in practice explanations are constructed from a
dataset, which is a subset of the feature space of a theory. However, due to incomplete-
ness of information in the dataset, some explanations may be incorrect, i.e., they are not
absolute. Furthermore, we have seen that the actual functions (like Anchors and LIME)
that generate plausible explanations suffer from another weakness which is incoher-
ence. The latter leads also to incorrect explanations. Thus, defining a nonmonotonic
explanation function that is coherent remains a challenge in the literature. In the next
section, we define such a function.
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5 Argument-based Explanation Function

Throughout this section we consider an arbitrary theory T = 〈F , D, C〉 and a subset
Y ⊆ XT of instances. We define a novel explanation function which is based on argu-
ments. The latter support classes, in the sense they provide the minimal sets of literals
that are causing a class. They are thus independent from instances. An advantage of not
considering instances is to reduce the number of arguments that can be built. Further-
more, explanations of an instance are in explanations of its predicted class.

Definition 9 Let c ∈ C. An argument in favor of c is a pair 〈H, c〉 s.t.

– H ⊆ U
– H is consistent
– ∀y ∈ Y s.t. H ⊆ y, f(y) = c
– @H ′ ⊂ H that verifies the above conditions.

H and c are called respectively support and conclusion of an argument. Let arg(Y)
denote the set of arguments built from Y .

Note that the set arg(Y) is finite since Y is finite. Furthermore, its elements are
closely related to the plausible explanations of the function gp.

Proposition 4 Let c ∈ C. 〈H, c〉 ∈ arg(Y) ⇐⇒ ∃x ∈ Y s.t. H ∈ gYp (x, c).

Consider the initial version of our running example, which contains seven instances.

Example 1 (Cont.) There are two classes in the theory: c0, c1. Their arguments are
given below:

– a1 = 〈U1, c0〉 U1 = {(V, 0)}
– a2 = 〈U2, c0〉 U2 = {(M, 1)}
– a3 = 〈U3, c0〉 U3 = {(C, 1), (E, 0)}
– a4 = 〈U4, c1〉 U4 = {(V, 1)}
– a5 = 〈U5, c1〉 U5 = {(M, 0)}

These arguments may be conflicting. This is particularly the case when they violate
the coherence property, namely when their supports are consistent but their conclusions
are different.

Definition 10 Let 〈H, c〉, 〈H ′, c′〉 ∈ arg(Y). We say that 〈H, c〉 attacks 〈H ′, c′〉 iff:

– H ∪H ′ is consistent, and
– c 6= c′.

Obviously, the above attack relation is symmetric.

Property 2. Let a, b ∈ arg(Y). If a attacks b, then b attacks a.

Example 1 (Cont.) The attacks between the arguments are depicted below:
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a2 a4 a3

a1 a5

Note that every argument in favor of a class attacks at least one argument in favor of the
other class. This shows that the plausible explanations generated by the function gp are
incoherent, and cannot all be correct.

Arguments and their attack relation form an argumentation system as follows.

Definition 11 An argumentation system built from Y ⊆ X is a pairAS = 〈arg(Y),R〉
whereR ⊆ arg(Y)× arg(Y) such that for a, b ∈ arg(Y), (a, b) ∈ R iff a attacks b (in
the sense of Def. 10).

Since arguments are conflicting, they should be evaluated using a semantics. There
are different types of semantics in the literature. In this paper, we consider extension-
based ones that have been introduced by Dung in [20]. They compute sets of arguments
that can be jointly accepted. Each set is called an extension and represents a coherent
position. Since the attack relation is symmetric, then it has been shown that stable and
preferred semantics coincide with the naive, which returns maximal (for set⊆) sets that
do not contain conflicting arguments. So, we focus here on naive semantics.

Definition 12 Let AS = 〈arg(Y),R〉 be an argumentation system and E ⊆ arg(Y).
The set E is a naive extension iff:

– @a, b ∈ E s.t. (a, b) ∈ R, and
– @E ′ ⊆ arg(Y) s.t. E ⊂ E ′ and E ′ satisfies the first condition.

Let σ(AS) denote the set of all naive extensions of AS.

Example 1 (Cont.) The argumentation system has four naive extensions:

– E1 = {a1, a2, a3}
– E2 = {a1, a4}
– E3 = {a2, a5}
– E4 = {a4, a5}

Each naive extension refers to a possible set of explanations. Note that E1 and E4 pro-
mote respectively the arguments in favor of c0 and those in favor of c1.

We are now ready to define the new explanation function. For a given instance x, it
returns the support of any argument in favour of f(x) that is in every naive extension and
the support should be part of x. The intuition is the following: when two explanations
cannot hold together (coherence being violated), both are discarded since at least one
of them is incorrect. Our approach is thus very cautious.
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Definition 13 Let g∗ be an explanation function of a classification model f applied to
theory a T = 〈F , D, C〉 s.t. for Y ⊆ XT , for x ∈ Y ,

gY∗ (x) = {H | ∃〈H, f(x)〉 ∈
⋂

Ei∈σ(AS)

Ei and H ⊆ x}

where AS = 〈arg(Y),R〉.

Example 1 (Cont.) In the example,
⋂

Ei∈σ(AS)
Ei = ∅. Hence, ∀x ∈ Y , g∗(x, f(x)) = ∅.

The above example shows that this function may return an emptyset of explana-
tions, meaning with the available information, it is not possible to generate reasonable
abductive explanations. Note that generation of argument is a nonmonotonic process.

Example 2 (Cont.) Assume a set Y = {x1, x2}. It can be checked that arg(Y) =
{b1, b2} where b1 = {(f2, 0)} and b2 = {(f2, 1)}. The two arguments are not conflict-
ing, thus R = ∅ and there is a single naive extension which contains the two. Hence,
g∗(x1, c1) = {{(f2, 0)}} and g∗(x2, c2) = {{(f2, 1)}}.

We show that the new function is non-monotonic and coherent.

Proposition 5 The function g∗ is non-monotonic and coherent.

Finally, when g∗ is applied on the whole feature space, the attack relation of the
corresponding argumentation system would be empty, and the generated explanations
coincide with the absolute ones.

Proposition 6 If Y = X , then g∗ = ga.

6 Related Work

Most work on finding explanations in the ML literature is experimental, focusing on
specific models, exposing their internal representations to find correlations post hoc
between these representations and the predictions. There haven’t been a lot of formal
characterizations of explanations in AI, with the exception of [12], which defines ab-
ductive explanations and adversarial examples in a fragment of first order logic, and
[17], who focused on semi-factuals, that they consider a specific form of counterfac-
tuals. Both works considered binary classifiers with binary features. Furthermore, they
generate explanations from the whole feature space, which in practice is not reasonable
since a classification model is trained on a dataset. In our work, we focused on abductive
explanations for general classifiers, and discussed two particular properties: monotony
and coherence.

Unlike our work, which explains existing Black-box models, [21, 22] proposed
novel classification models that are based on arguments. Their explanations are defined
in dialectical way as fictitious dialogues between a proponent (supporting an output)
and an opponent (attacking the output) following [20]. The authors in [23–26] followed
the same approach for defining explainable multiple decision systems, recommendation
systems, or scheduling systems. In the above papers an argument is simply an instance
and its label while our arguments pro/con are much richer. This shows that they are
proposed for different purposes.
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7 Conclusion

This paper presented a preliminary investigation on functions that would explain predic-
tions of black-box classifiers. It focused on one type of explanations, those that identify
the key features that caused predictions. Such explanations are popular in the XAI lit-
erature, however there are a few formal attempts at formalizing them and investigating
their properties. Existing definitions consider the whole feature space, and this is not
reasonable in practice.

In this paper, we argue that generating explanations consists of reasoning under in-
complete information, and reasonable functions are thus nonmonotonic. We have shown
that existing (nonmonotonic) functions like Anchors and LIME may return incoherent
results, which means incorrect explanations. Finally, we provided the first function that
satisfies coherence while generating explanations from datasets. The function is based
on a well-known nonmonotonic reasoning (NMR) approach, which is argumentation.
This makes thus a connection between XAI and NMR.

This work can be extended in different ways. First, we have seen that the novel
function g∗ may return an emptyset for an instance. While cautious reasoning is suitable
when dealing with conflicting information by NMR models, it may be a great weakness
in XAI since a user would always expect an explanation for the outcome provided by
a classifier. Hence, a future work consists of exploring other functions that guarantee
outputs. Another line of research consists of using weighted semantics for evaluating
arguments. Such semantics would then lead to weighted explanations.
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