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Abstract

For a continuous state branching process with two types of individuals which are subject to selec-
tion and density dependent competition, we characterize the joint evolution of population size, type
configurations and genealogies as the unique strong solution of a system of SDE’s. Our construc-
tion is achieved in the lookdown framework and provides a synthesis as well as a generalization of
cases considered separately in two seminal papers by Donnelly and Kurtz (1999), namely fluctuating
population sizes under neutrality, and selection with constant population size. As a conceptual core
in our approach, we introduce the selective lookdown space which is obtained from its neutral coun-
terpart through a state-dependent thinning of “potential” selection/competition events whose rates
interact with the evolution of the type densities. The updates of the genealogical distance matrix at
the “active” selection/competition events are obtained through an appropriate sampling from the se-
lective lookdown space. The solution of the above mentioned system of SDE’s is then mapped into the
joint evolution of population size and symmetrized type configurations and genealogies, i.e. marked
distance matrix distributions. By means of Kurtz’s Markov mapping theorem, we characterize the
latter process as the unique solution of a martingale problem. For the sake of transparency we restrict
the main part of our presentation to a prototypical example with two types, which contains the essen-
tial features. In the final section we outline an extension to processes with multiple types including
mutation.

Keywords. Birth-death particle system, lookdown process, tree-valued processes, selection, density-
dependent competition, selective lookdown space, fluctuating population size, genealogy.
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1 Introduction

The aim of our paper is to give a pathwise construction for the joint evolution of population size,
type frequencies and genealogies in a continuous state branching process with interactions due to type
dependent selective advantage in reproduction and type density dependent competition. Such processes
model large populations whose individuals are distinguished by their types. The sizes of the populations
and their type structures are fluctuating due to individual births and deaths, where certain types may
have a selective advantage in the fecundity, and others may have a disadvantage against some other
types, say in the competition for resources. We are interested here in these dynamics but also in that
of the genealogies of the individuals composing these populations, which consist of the collection of their
ancestral paths, i.e. the succession of their ancestors with their types. We demonstrate the strength of
the approach in a prototypical example with two types, one of them having a selective advantage, the
other one having a competitive disadvantage. This restriction is mainly for presentational reasons; in
Section 6 we will outline an extension to more general processes with multiple types, including mutations.

We take the so-called lookdown approach that has been developed by Donnelly and Kurtz in order
to construct and study the evolution of continuum populations with a general type space in terms of a
countably infinite particle system. In two seminal papers, these authors treated two distinct cases: that of
populations with constant sizes under selection (and recombination) [12] and that of neutral populations
with fluctuating population sizes [13]. In the present work we consider selection and competition combined
with fluctuating sizes. One of our key results, Theorem 2.2, extends ideas in the proof of [12, Theorem
4.1] to a situation where the total mass is a stochastic process whose dynamics depends on the type
frequencies, and thus opens the way for a synthesis of the settings of [12] and [13]. In both of these
papers the evolution of the (relative) type frequencies and the genealogies are encoded in an infinite
particle system that describes the reproductive events. In [12] the population size (or total mass of the
continuum population) is assumed to be constant, while in [13] it is is accounted for in a separate process,
which is autonomous due to the neutral setting considered in that paper. This is no longer the case in
our setting where additional births and deaths occur in the infinite particle system due to selection and
competition which depend on and also impact the evolution of the population size.
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While many considerations pertaining to genealogies and ancestral lineages are already present in and
between the lines of [12] and [13], the power of the lookdown approach for studying evolving genealogies
has unfolded only more recently, several years after Evans [18] characterized Kingman’s coalescent as a
random metric space. The lookdown representation of the evolving populations in terms of exchangeable
particle systems comes with a graphical representation that provides a genealogy in a natural way. A
central tool for proving Theorem 2.2 are the sampling measures on the neutral lookdown space, which is
the completion of R × N with respect to the (random) semi-metric given by the (neutral) genealogical
distances. The concept of the (neutral) lookdown space has recently been introduced in [21] to obtain (in
the neutral case and for constant population size) a pathwise construction of tree-valued Fleming-Viot
processes. In Section 5 we will construct what we call the selective lookdown space with fluctuating popu-
lation size. This space will carry the sampling measures which will serve to update the type configuration
as well as the genalogical distances at selective events, see Sec. 2.3.4.

Theorem 2.5 then establishes a system of SDE’s (with unique strong solution) for the joint process
of total mass, genealogical distance matrix, and type configuration. Exploiting the exchangeability that
comes with the concept of sampling, we then turn to the symmetrization or “unlabelling” of the lookdown
genealogies. As states that describe the type distributions and genealogies, we use here the isomorphy
classes of marked ultrametric measure spaces introduced in [19, 9, 10] which can be thought of as marked
distance matrix distributions. Our Theorem 2.7 then characterizes the joint evolution of genealogies
and population size in terms of a well-posed martingale problem. This result is proved by a two-fold
application of Kurtz’s Markov mapping theorem, see Sections 5.2 and 5.3.

While we provide a (and in a weak sense the) solution of this martingale problem from specified
sources of randomness (the Brownian motion W and Poisson point processes L and K defined in Section
2), a more common approach for showing the existence of a solution is to deal with tightness of finite
approximations. This may sometimes be tedious, and cause serious technical problems. One of the few
papers in which a martingale problem for continuum tree-valued processes including pairwise (compet-
itive) individual interactions (and fluctuating total mass) has been treated in this vein is [27]. Note
however that there the distances between individuals are measured in terms of numbers of mutations,
whereas we measure distances in terms of times back to the most recent common ancestor of the two
individuals. In [10] tree-valued Fleming-Viot processes with mutation and type-frequency dependent
selection are constructed, but there constant population size is assumed. Our contribution here is to also
bring a lookdown representation of the genealogies that completes the picture: the genealogies “locally”
look like the neutral genealogies in absence of selection and competition with modifications related to
the selective and competitive events.

While we are using the Poisson process L of lookdown events (see Section 2) to encode the elements of
neutral genealogies, there exist also alternative routes for doing this. One of them is along the continuum
random tree and Brownian excursions ([1, 2, 31] or [20, Ch. 4]), with certain deformations of these objects
to model competition ([3, 30, 34]) although the introduction of types is not straightforward in these models
and in the cited references the competition depends on the individuals’ left-right order encoded in the
excursion. Another one is Kurtz and Rodrigues’ lookdown representation with a continuum of levels [29],
which has recently been extended by Etheridge and Kurtz [15] to a variety of models including selection
and competition, but with less emphasis on evolving genealogies.

Recent work on evolving genealogies in the neutral case, with a focus on heavy-tailed offspring distri-
butions, has been reviewed in [24]. Evolving ancestral path configurations under competition are studied
in [33, 25] or [7], building on the framework of historical processes which in the non-interactive case was
pioneered in [8, 14]. Inference methods in the presence of selection, varying population size and evolving
population structure are described in [32], extending results of [5]; in the latter models, a time-scale
separation allows to treat separately the type structure and population size on the one hand, and the
genealogies on the other hand. In the present paper, however, we deal simultaneously with interactions,
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demography and genealogies.

2 Model and main results

2.1 Population size and type frequencies

In order to make the conceptual novelties and essentials as transparent as possible, we will restrict
ourselves in the main part of this work to a population with only two types, A and B. An extension of
the results to more general type spaces and including mutations is outlined in Section 6. We will denote
by I = {A,B} the type space, and by ξA and ξB the processes in continuous time corresponding to the
sizes of the type A- and type B-populations. Intuitively, these populations consist of a continuum of
individuals with infinitesimal masses; the concept of sampling measures, which we will recover also in the
selective lookdown space, makes this intuition rigorous.

The population size or total population mass at a time t > 0 is ξt = ξAt + ξBt , and for ξt > 0 we define
the type frequencies or proportions of types A and B as

µAt = ξAt /ξt; µBt = ξBt /ξt = 1− µAt .

The system we are going to consider as a prototypical case is a two-type Feller branching diffusion with
interactions

dξAt = bξAt dt− cξAt ξ
B
t dt+

√
ξAt dW

A
t

dξBt = −cξBt ξAt dt+
√
ξBt dW

B
t ,

(1)

where WA and WB are independent standard Brownian motions. The processes WA and WB drive
the fluctuations due to natural births and deaths in the diffusion limit of branching populations. The
nonnegative constant b is the coefficient of the intensity of additional births of type A-individuals due
to their enhanced fecundity, whereas c ≥ 0 is the intensity of additional deaths of individuals due to
their competition against all individuals of the opposite type. Such a system of equations can be seen as
arising from the limit of finite particle systems. In [17, Chap. 9, Section 2 p. 392] this is proved in the
case c = 0; then both ξA and ξB are independent Feller diffusions.

Existence and uniqueness of a strong solution of (1) is guaranteed by the following

Proposition 2.1. Given initial conditions (ξA0 , ξ
B
0 ) such that E

(
(ξA0 )

2+ǫ + (ξB0 )
2+ǫ
)
< +∞ for some

ǫ > 0, and given independent standard Brownian motions WA and WB , there exists a unique strong
solution (ξA, ξB) to (1).

For the sake of self-containedness we will include a proof of this proposition at the end of Section 5.
This will also reveal the long time behavior of the process (ξA, ξB) using comparisons with (possibly
drifted) Feller diffusions: the process ξB gets extinct in finite time almost surely, while ξA is either
trapped in 0 or diverges to +∞.

As announced in the Introduction, our main goal is the characterization of evolving marked genealogies
that underlie the system (1). It turns out that an accessible way to this goal leads via the total mass
process ξ = ξA + ξB . A stochastic differential equation (SDE) for ξ and the type proportions µAt , µ

B
t is

obtained by adding the two equations in (1):

dξt = (bµAt ξt − 2cµAt µ
B
t ξ

2
t )dt+

√
ξt dWt, (2)

whereW is a standard Brownian motion. Clearly, equation (2) is not autonomous. In addition toW which
takes care of the fluctuations of the population size in the interplay with the current type proportions, the
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other drivers of the evolving marked genealogy that will trigger the (neutral and selective) reproductive
events will be Poisson point processes that come up in the lookdown framework described in Section 2.3.
Closing the circle, Proposition 2.10 will then guarantee that the pair (ξA, ξB) can be restored from the
total mass process ξ together with the evolving marked genealogy Y , thus rendering a weak solution of
(1).

The following time change will be instrumental (see also [13]):

t 7→ s = s(t) :=

∫ t

0

1

ξv
dv, ζs = ξt . (3)

For reasons explained in Section 2.3, the timescale s will be called the lookdown timescale. In Section 2.3,
we will provide a system of stochastic differential equations that describes, in this lookdown timescale, a
population size process (ζs) together with an evolving type configuration (Gs) to which we will be able
to associate a process of type frequencies (µGs) (see Theorem 2.2). As a corollary, transforming back to
the timescale t via (3), the resulting process (ζs(t)µ

Gs(t){A}, ζs(t)µGs(t){B}) will provide a weak solution
of (1), see Proposition 2.10.

In the neutral case (b = c = 0), (ξt) is a standard Feller diffusion, and the process (µAt ) after the time
change (3) turns into a standard Wright-Fisher diffusion (e.g. [23, Chapter IV.8]). The correspondence
(ξAt , ξ

B
t ) ↔ ((ξt), (µ

A
t , µ

B
t )) is thus an interactive counterpart of Perkins’ desintegration of super-Brownian

motion into a Feller branching diffusion and a time-changed Fleming-Viot process (see [16] p. 83, [35]).

2.2 Genealogies

The marked genealogy of the continuum population at some fixed time is described by the joint dis-
tribution of pairwise genealogical distances and types of a sequence of individuals that is drawn i.i.d.
according to a prescribed sampling measure. In order to formalize this, and to define the space of marked
genealogies, we recall a couple of concepts. In our context, genealogical distances of contemporaneous
individuals are described by a semi-ultrametric, i.e. a semi-metric d that satisfies the strong triangle
inequality max{d(x, y), d(y, z)} ≥ d(x, z). The prefix semi means that d(x, y) = 0 does not imply x = y,
corresponding to the fact that at the time of a reproduction event, the “mother” and her “daughter”
have genealogical distance 0, while being considered as different individuals.

Marked metric measure spaces have been introduced by Depperschmidt, Greven, and Pfaffelhuber [9].
An I-marked ultrametric measure space is a triple (τ, d,m) where (τ, d) is a complete, separable ultra-
metric space and m is a probability measure on the Borel sigma algebra on the product space τ × I. In
our context, such spaces (τ, d) will arise as completions of semi-ultrametric spaces, after first identifying
elements of distance zero, see Definition 2.3 a) in Sec. 2.3.3.

The marked distance matrix distribution of an I-marked ultrametric measure space (τ, d,m) is defined
as the distribution of ((d(Vi, Vj))i,j∈N, (Hi)i∈N) where (Vi,Hi)i∈N is a sequence in τ × I, i.i.d. with
distribution m. (Here and below, N = {1, 2, . . .} denotes the set of natural numbers.) Marked ultrametric
measure spaces with the same marked distance matrix distribution are called isomorphic.

The space of isomorphy classes of I-marked ultrametric measure spaces will be denoted by M, and
will be called the space of marked genealogies. This space M, equipped with the marked Gromov-
weak topology in which elements of M converge if and only if the associated marked distance matrix
distributions converge, is Polish by [9]. In Theorem 2.7 we will characterize an (0,∞)×M-valued process
(ξ, Y ) by a stopped martingale problem (in the sense of [17, Ch. 4.6]). The first component of this
process will describe the population size, and will give a weak solution of (2). The second component
will describe the marked genealogy, with the type frequencies being a measurable function of the latter.
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2.3 Lookdown representation of the joint process of population size, type frequen-

cies, and genealogies

We are going to provide a representation of the just mentioned process (ξ, Y ) in terms of a process
(ζ,R,G), where (ζs, Gs)s≥0 will be the unique strong solution of a system of SDE’s in the time scale (3),
see Theorem 2.2. The process R will take its values in the semi-ultrametrics on N (which we will address as
distance matrices for short). The underlying graphical representation includes, in addition to a Brownian
motion W, a pair (L,K) of a family of Poisson point processes (defined in Sec. 2.3.2). The triple (W,L,K)
does not only drive the process (ζ,G) in terms of an SDE (see Theorem 2.2), but also the process R, see
(24).

We will deduce that (ζ,R,G) solves of a well-posed martingale problem. This will be an essential
ingredient for the proof of Theorem 2.7, which provides the characterization of (ξ, Y ) in terms of a
well-posed martingale problem.

Individuals living in the lookdown system at time s are coded by (s, i), i = 1, 2, . . .. (As we will
see from the constructions explained in Subsection 2.3.3, this is only a subset of the uncountably many
individuals living at time s, namely the subset consisting of those individuals who have an offspring that
survives for some positive amount of time.) The second component is called level ; it labels the individuals
alive at time s and having an offspring at some time strictly larger than s. The graphical construction
will allow to reconstitute the ancestral paths of the individuals (s, i). The evolution of the genealogical
distances and the types of these individuals will be described by the process

X = (R,G) = ((Rs, Gs)s≥0).

The second component Gs = (Gs(i))i∈N ∈ I
N of this process is the type configuration at time s. The

first component Rs = (Rs(i, j))i,j∈N is a random semi-ultrametric on N that describes the genealogical
distances between the individuals at time s in the time scale of the interactive branching system (1). That
is, if the most recent common ancestor of (s, i) and (s, j) lived at time s′ < s, then Rs(i, j) = 2(t(s)−t(s′)),
with

t(s) :=

∫ s

0
ζu du (4)

being the inverse of the time change (3).
We think of our initial value (R0, G0) as the genealogical distances and the types of a sequence of

individuals that are drawn independently at random from an infinite population at time 0. More precisely,
we always assume that (R0, G0) is distributed according to the marked distance matrix distribution of
some I-marked ultrametric measure space (as defined in Sec. 2.2).

Obviously this implies that the pair (R0, G0) is exchangeable in the sense that for all n ∈ N and all
permutations π of [n] = {1, . . . , n} one has

(
(R0(i, j))1≤i,j≤n , (G0(i))1≤i≤n

) d
=
(
(R0(π(i), π(j))1≤i,j≤n , (G0(π(i))1≤i≤n

)
. (5)

Conversely, a version of the Gromov-Vershik representation theorem ([22, Corollary 3.12]) ensures that
each (R0, G0) obeying (5) can be realized as the second step in a two-stage experiment, whose first step
is the random choice of (an isomorphy class of) a marked ultrametric measure space (or equivalently of
a marked distance matrix distribution), and whose second step is the marked distance matrix that arises
by an i.i.d. drawing from that marked ultrametric measure space.

2.3.1 Type configuration and type frequencies

The process X provides “microscopic” information on the type configuration and genealogies of the in-
dividuals in the lookdown system. The fluctuations of the population mass obtained from (2) and the
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time change (3) deal with “macroscopic” quantities and are not seen directly in the lookdown represen-
tation. However both scales are coupled: we will see that the type frequencies arise from the microscopic
(i.e. individual-based) type configurations and appear in the coefficients of the SDE (2) whose solution
in turn will impact the local dynamics of the lookdown levels.

For a type configuration g ∈ I
N we will say that g admits type frequencies if the limiting measure

µg := lim
n→∞

1

n

n∑

i=1

δg(i) (6)

exists in the weak topology on M1(I), the space of probability measures on I (which in our case with
two traits simply means that µg{A} := limn→∞

1
n

∑n
i=1 1{g(i)=A} exists). We will then call µg the type

distribution belonging to g.
We will construct the type process G in such a way that it a.s. admits type frequencies at every time s,
hence allowing to read off the proportion µGs{A} of type A at time s from the configuration (Gs(i))i∈N.

These proportions will play a role in the dynamics of genealogies and type configurations (see (9),
(10) and (11) below), and also in the SDE (2) for the total mass process, which in view of the time
change (3), becomes:

dζs =
(
bµGs{A}ζ2s − 2cµGs{A}µGs{B} ζ3s

)
ds+ ζsdWs, (7)

where W is a standard Brownian motion. Similarly, (1) becomes

dζAs = bµGs{A}ζ2s ds− cµGs{A}µGs{B}ζ3s ds+
√
ζAs ζs dWA

s

dζBs = −cµGs{B}µGs{A}ζ3s ds +
√
ζBs ζs dWB

s ,
(8)

where WA and WB are independent standard Brownian motions. Possible explosion or extinction events
are treated at the beginning of Section 2.3.5.

2.3.2 Pathwise construction of the lookdown process

The construction of the process (ζs, Gs)s≥0 is achieved via the so called ‘lookdown’ graphical construction.
The ingredients are

(I1) a standard Brownian motion W = (Ws)s≥0,

(I2) a family (Lij)i,j∈N,i<j of independent rate 1 Poisson point processes on R+,

(I3) a family (Ki)i∈N of independent Poisson point processes on R+×R+× [0, 1]×{β, δ} whose intensity
measure is the product of the Lebesgue measure on R+ × R+ × [0, 1] and of the counting measure
on {β, δ},

where the random elements in (I1), (I2) an (I3) are independent. The familiy (Lij) can be superposed
to a single Poisson point process L on R+ × {(i, j) ∈ N

2 : 1 ≤ i < j < ∞}, and the family (Ki) can be
superposed to a single Poisson point process K on R+ × ⋃

i∈N

{i} × R+ × [0, 1] × {β, δ}. In this way Lij
corresponds to the restriction of L to R+ × {(i, j)} and (Ki) to the restriction of K to R+ × {i} × R+ ×
[0, 1] × {β, δ}. The Brownian motion W drives the fluctuations of the population size, L encodes the
neutral birth events, and K encodes the potential selective birth and death events affecting the levels in
the graphical construction.
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To each atom of Lij (for i < j), say at time s, we associate an arrow starting from (s, i) ∈ R+×N and
directed to (s, j). This arrow corresponds to a natural birth for the individual at level i at time s, placing
an offspring of the same type at level j. Levels that were above j at time s− (i.e. levels k ∈ N such that
k > j) are shifted up by 1. See Figure 1 and cf. also [36]. This lookdown process can be seen as the
limit of a finite particle system as described in Donnelly and Kurtz [11] (see also [6]) where individuals
with highest levels are removed at natural death events. That is why, heuristically, the natural death
events are not seen any more on finite levels in the limit of infinitely many particles of small masses, as
the highest level tends to infinity. It is now the varying population mass (ζs) that tracks the changing
mass due to demographic events.

s s AA

AAA

BBBB

BBB

(a) (b)

Figure 1: Neutral genealogy in the lookdown representation: individuals correspond to levels (abscissa) and time

is represented here along the ordinate axis. The neutral genealogy uses only atoms of the Poisson point process Lij

(for i < j). (a) The atoms of Lij can be associated with arrows from level i to level j. (b) Using the preceding

arrows, we can define a ‘neutral’ genealogy: an arrow from i to j at time s corresponds to a natural birth for i at

s, who places an offspring of same type at level j. Levels that were above j at time s
−

are shifted up by 1. Given

the arrows and the type of the ancestral individuals (at the bottom of the picture), it is possible to reconstruct the

types in the population at every time for the neutral genealogy by following the lineages back in time (travel along

the arrows in opposite direction).

To obtain the selective births and the competitive deaths, we will use a state dependent thinning of
the Poisson point processes Ki, to take into account the dependencies with respect to the rest of the
population. The marks β and δ specify whether an atom of Ki corresponds to a potential selective
birth or a potential competitive death. The variable s is the time at which the atom is encountered.
The probabilities with which the potential selective births and the competitive selective deaths become
effective involve interactions and thus depend on the state of the process. Consequently, our pathwise
construction works with an acceptance-rejection rule that uses the marks (z, w) ∈ R+×[0, 1]. See Figure 2
for an illustration.
These rules are in accordance with (8): To an atom (s, z, w) of Ki(. × {β}) with z ≤ bµGs−{A}ζs−
corresponds a selective birth: the individual sitting previously at level i is replaced by the offspring of a
‘uniformly’ chosen individual of type A.
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To an atom of Ki(. × {δ}) corresponds a competitive death if Gs−(i) = B and z ≤ cµGs−{A}ζ2s−, or if
Gs−(i) = A and z ≤ cµGs−{B}ζ2s−. Then the individual at level i dies from the competition pressure
exerted by the other type and is replaced by an individual chosen ‘uniformly’ among all living individuals.
The way to sample an individual ‘uniformly’ among the infinite number of levels will be described in
Sec. 2.3.3, and will be formally specified in Sec. 3. Indeed we will show that it is possible to define
(random) sampling measures ms(dθ, dh) on T × I where T will be the completion of the set of levels N

with respect to the ultrametric Rs that will be described in Sec. 2.3.3 and constructed in Sec. 5.

s

◦
◦

×

0

◦ potential

selective birth

× potential

competitive death

Figure 2: The Poisson point measures Ki, i ∈ N appear on top of the neutral lookdown representation. Their

atoms correspond to potential selective births (marked as ◦) or potential competitive deaths (marked as ×). Each

time such an event happens, the individual at the existing level may be replaced by another individual, sampled at

random among the A individuals (selective births) or among the whole population (competitive death). The picture

suggests (and indeed we will prove) that these events define a partition of the set N× R+ (levels×time) where the

tree corresponding to the descent of each of these events is ruled by the neutral dynamics.

To implement the acceptance-rejection rule mentioned in the previous paragraph, we will make use of
a measurable mapping κ :M1(I)× [0, 1] → I which is such that for a random variable Υ that is uniformly
distributed on the interval [0, 1], and all ν ∈M1(I), the random variable κ(ν,Υ) has distribution ν. This
will allow us to construct random variables with a prescribed distribution ν, using the third component
of an atom of the Poisson point measures Ki as input for κ(ν, .). Recall that this third component is
uniformly distributed on [0, 1].
Our update rule for the process of type configurations G works by means of a mapping

q : I× I
N × R+ × R+ × [0, 1] × {β, δ} → I

which prescribes how to change the type g(i) given Gs−(i) = h, Gs− = g and ζs− = v, and given there is
an atom of Ki at (s, (z, w, β)) or (s, (z, w, δ)). Specifically, we put for a g that admits type frequencies

q(h, g, v, z, w, β) :=

{
A if z ≤ b µg{A} v,
h otherwise,

(9)

q(h, g, v, z, w, δ) :=





κ(µg, w) if z ≤ c µg{B} v2 and h = A,

or z ≤ c µg{A} v2 and h = B,

h otherwise.

(10)
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As in [12, Section 4] we identify the type space I = {A,B} with the additive group {0, 1}. This
corresponds to considering 1Gs(i)=B instead of the type Gs(i) itself and allows to formulate more easily
our SDE for the process of type configurations (Gs). With an initial condition G0 admitting type
frequencies according to (6), this is

Gs(j) = G0(j) +

j−1∑

i=1

∫

[0,s]
(Gu−(i)−Gu−(j))dLij(u)

+
∑

1≤i<k<j

∫

[0,s]
(Gu−(j − 1)−Gu−(j))dLik(u)

+

∫

[0,s]×R+×[0,1]×{β,δ}
(q(Gu−(j), Gu−, ζu−, z, w, ω) −Gu−(j))Kj(du, d(z, w, ω))

(11)

for j ∈ N.
The following theorem characterizes the mass and type configuration process (ζ,G) with the triple

(W,L,K) as the source of randomness, and also asserts the fact that a.s. G admits type frequencies at
any time.

Theorem 2.2. Let G0 be exchangeable and admit type frequencies. Then the system (7), (11) for the
total mass process (ζs) and the type configurations (Gs) has a unique strong solution, up to the possibly
infinite time σ := inf{s ≥ 0 : ζs = 0 or ζs− = ∞} at which ζ goes to extinction or explodes. For this
unique solution, a. s. the type frequencies µGs (as defined in (6)) exist for all s ≥ 0, i. e.

µGs{A} = lim
n→∞

1

n

n∑

i=1

1{Gs(i)=A}. (12)

The proof of this result will be given in Section 4, based on the preparations in Sections 3.1 and 3.2.
In Section 5.1, we will build the genealogy with selection and competition on top of the neutral genealogy.
The next two subsections will explain the main ideas and tools of this construction.

2.3.3 Filling in the ancestry: from the neutral to the selective lookdown space

With the total mass process ζ and the type configuration process G being provided by Theorem 2.2, we
can construct the ancestral lineages and “fill in” the process R. In this and the next subsection we will
explain the graphical construction of the process R on top of (ζ,G,L,K).

A crucial role will be played by a family of sampling measures. These arise as follows. As illustrated
by Figure 1 (see Section 3 for a formal definition), the Poisson point process L together with the initial
random semi-ultrametric R0 define a random semi-metric ρ(0) on R+ ×N, where ρ(0)((s, i), (s′, i′)) is the
genealogical distance of (s, i) and (s′, i′) in the neutral case (i.e. without considering the atoms of the
Poisson point measures K associated with selective births and competitive deaths). The completion of
(R+ × N, ρ(0)) is denoted by (Z, ρ(0)), and called the neutral lookdown space. The random metric ρ(0)

on R+ × N is measurable with respect to (L, R0) and the completion is done realization-wise; in this
sense one should think of (Z, ρ(0)) as a random metric space. In slight abuse of notation, we refer by
(s, i) ∈ R+ × N also to the element of the metric space after the identification of elements with distance
zero and the completion, that is we also assume R+ ×N ⊂ Z in this sense. The space (Z, ρ(0)) describes
the continuum of all individuals ever alive, together with their distances in the neutral genealogy.
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It is known ([21], Thm 3.1) that there exists, on an event of probability 1 that does not depend on s,
a family (ms)s>0 of probability measures on Z such that

ms = w- lim
n→∞

1

n

n∑

i=1

δ(s,i), ms− = w- lim
n→∞

1

n

n∑

i=1

δ(s−,i), (13)

where the w-lim in (13) refers to the weak topology on the set of probability measures on Z with respect
to the metric ρ0, and (s−, i) := lims′↑s(s

′, i) in (Z, ρ0). The measures ms allow to “sample uniformly”
from the population at time s, and will be called the (family of) neutral sampling measures.

Definition 2.3. a) For a semi-ultrametric r ∈ R
N2
, we define T

r as the completion of (the set of levels)
N with respect to r. For r ∈ R

N2
that is not a semi-ultrametric, we define T

r in an arbitrary way, for
definiteness as Tr = {1}.

b) Given a marked distance matrix (r, g) ∈ R
N2 × I

N, we say that (r, g) is proper if r is a semi-
ultrametric on N and

mr,g := w- lim
n→∞

1

n

n∑

i=1

δ(i,g(i)) (14)

exists on T
r× I. We will then refer to mr,g as the marked sampling measure obtained from (r, g). If (r, g)

is not proper, we define mr,g in an arbitrary manner, for definiteness as mr,g := δ(1,A).

c) Let mr = w- limn→∞
1
n

∑n
i=1 δi denote the projection of mr,g to T

r. If, for a proper marked distance
matrix (r, g), there exists a measurable function ḡ : Tr → I such that

mr,g(d(θ, h)) = mr(dθ)δḡ(θ)(dh), θ ∈ T
r, h ∈ I, (15)

we will speak of ḡ(θ) as the type carried by the individual θ. Note also that in this case, the type
frequencies µg{A}, µg{B} correspond to the projection of mr,g on the type component h ∈ I.

Let

R(0)
s (i, j) := ρ(0)((s, i), (s, j)), 1 ≤ i ≤ j ∈ N, (16)

be the random distance matrix in the neutral genealogy. In the sequel, we will prove:

Proposition 2.4. The random marked distance matrices (R
(0)
s , Gs), (R

(0)
s−, Gs−) s > 0, are proper on an

event of probability 1 that does not depend on s.

The proof of Proposition 2.4 is given in Section 5 (see Corollary 5.2). According to Definition 2.3,

this provides a.s. the sampling measures mR
(0)
s ,Gs for all times s. At any time point s which is charged

by K and which is active according to the update rules (9) or (10), the individual which puts its offspring

on (s, i) will be chosen by means of the sampling measure mR
(0)
s− ,Gs− .

In Section 5, we will extend the concept of the neutral lookdown space to our present setting by
constructing a selective lookdown space. Here is a short preview. On each level i, selective births and
competitive deaths can occur only at the discrete time points given by Ki. This discreteness allows to
dissect the neutral lookdown space into countably many fragments, rooted in those points (s, j) that carry
atoms of K or belong to {0}×N. Each fragment consists of the completion of all the lineages descending
from the ancestor (s, j) until a selective birth or a competitive death affects them. Hence, each fragment
is monotypic, inheriting the type of its root, whose type, in turn, is determined by G from Theorem 2.2
(see Figure 2 for an illustration).
To describe all individuals ever alive by a connected metric space, we continue the ancestral lineages
backwards in time until they hit a root, that is an atom of K), say at time s. We say that a root is
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active if the first conditions of (9) and (10) are fulfilled (otherwise, the selective fecundity event or the
competition event proposed by K do not happen). If a competition event occurs at time s, then choose the
parent individual, i.e. the individual that continues the ancestral lineage backwards in time, according
to ms. If a fecundity event occurs at time s, the individual which reproduces is drawn according to ms

conditioned on the fragments being of type A. This yields a random metric space (Ẑ, ρ), which is our
selective lookdown space. For each (s, i), (s, j) whose ancestral lineages meet between times 0 and s we
will consider the geodesic from (s, i) to (s, j) in (Ẑ, ρ) which we traverse with speed 1/ζs−u when passing
through an ancestor that is time u back from s. The duration one needs to pass through this geodesic
will be set equal to Rs(i, j). If the two ancestral lineages lead back to two different levels ai, aj at time 0,
then, in order to obtain Rs(i, j), we add the distance R0(ai, aj) to the sum of the durations to reach
(0, ai) from (s, i) and (0, aj) from (s, j).

2.3.4 Updating the distance matrix at neutral and selective reproduction events

In this subsection we describe the updating rule of R at the time of a reproductive event. First we
consider the neutral events. When an atom of Lij (i < j) is encountered at time s, the individual at
level i puts a clonal offspring at level j, pushing the levels previously above and including j up by 1. The
corresponding update ϑi,j(r, g) = (ϑi,j(r), ϑi,j(g)) of a marked distance matrix (r, g) ∈ R

N2 × I
N is done

by putting

(ϑi,j(g))(ℓ) =





g(ℓ), ℓ < j,

g(ℓ), ℓ = j,

g(ℓ− 1), ℓ > j,

(17)

(ϑi,j(r))(ℓ,m) =





r(ℓ,m), 1 ≤ ℓ < m < j,

r(ℓ, i), 1 ≤ ℓ < j = m,

r(ℓ,m− 1), 1 ≤ ℓ < j < m,

r(i,m− 1), ℓ = j < m,

r(ℓ− 1,m− 1), j < ℓ < m.

(18)

Recall that ϑi,j(r) is symmetric with (ϑi,j(r))(ℓ, ℓ) = 0.

In a selective birth or a competitive death, the individual at some level j ∈ N is replaced by another
individual from the closure of the present population. Specifically, for a marked distance matrix (r, g) ∈
R
N2×I

N, let T be the completion of (N, r) with respect to r, and let θ ∈ T, h′ ∈ I. Then the corresponding
update ϑ̃j,θ,h′(r, g) = (ϑ̃j,θ(r), ϑ̃j,h′(g)) is done by putting

(ϑ̃j,h′(g))(ℓ) =

{
g(ℓ), ℓ 6= j,

h′, ℓ = j,
(19)

(ϑ̃j,θ(r))(ℓ,m) =

{
r(ℓ,m), ℓ,m 6= j

r(ℓ, θ), ℓ 6= j,m = j.
(20)

With the rule just described, we can read off the jumps of the marked distance matrix process (R,G)
at those times s which are charged by the Poisson point process K. Let us explain how the changes are
parameterized by the variables attached to the atom of K at time s.
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If Kj has an atom in (s, z, w, δ), then we need to pick an individual from mR
(0)
s−,Gs− .

Given (r, g) ∈ R
N2×I

N, the pick of an individual from mr,g can be obtained from the measurable mapping
w 7→ (θ′(w), h′(w)) from [0, 1] to T

r × I (see Def. 2.3) which transports the uniform distribution on [0, 1]
into mr,g. We can now specify the κ(µg, w) appearing in (10) as

κ(µg, w) = h′(w). (21)

Then:

(Rs, Gs) =





ϑ̃j,θ′(w),h′(w)(Rs−, Gs−) if z ≤ c ζ2s− µ
Gs−{A} and Gs−(j) = B

or z ≤ c ζ2s− µ
Gs−{B} and Gs−(j) = A,

(Rs−, Gs−) otherwise

(22)

If Kj has an atom in (s, z, w, β), we need to sample an individual from mr,g(dθ, dh | h = A). Let w 7→
(θ′′(w), h′′(w)) be a measurable mapping from [0, 1] to T

r × I which transports the uniform distribution
on [0, 1] into mr,g(dθ, dh | h = A). Notice that here, we necessarily have h′′(w) = A. Then,

(Rs, Gs) =

{
ϑ̃j,θ′′(w),A(Rs−, Gs−) if z ≤ b ζs−µ

Gs−{A}
(Rs−, Gs−) otherwise.

(23)

In a nutshell, we can embed all the preceding updating rules into a single SDE:

Rs(i, j) = R0(i, j) + 2

∫

[0,s]
ζudRu(i, j) +

∑

1≤k<ℓ≤j

∫

[0,s]

(
ϑk,ℓ(Ru−)(i, j) −Ru−(i, j)

)
dLkℓ(u)

+
∑

k∈{i,j}

∫

[0,s]
1{Gu−(k)=B,z≤cζ2u−µ

Gu−{A},ω=δ}

(
ϑ̃k,θ′(w),h′(w)(Ru−, Gu−)(i, j) −Ru−(i, j)

)
dKk(u, (z, w, ω))

+
∑

k∈{i,j}

∫

[0,s]
1{Gu−(k)=A,z≤cζ2u−µ

Gu−{B},ω=δ}

(
ϑ̃k,θ′(w),h′(w)(Ru−, Gu−)(i, j) −Ru−(i, j)

)
dKk(u, (z, w, ω))

+
∑

k∈{i,j}

∫

[0,s]
1{z≤bζu−µGu−{A},ω=β}

(
ϑ̃k,θ(w),h′′(w)(Ru−, Gu−)(i, j) −Ru−(i, j)

)
dKk(u, (z, w, ω)),

(24)

where we write (r′, g′)(i, j) := r′(i, j). In the light of the above constructions, the following result is now
an immediate consequence of Theorem 2.2.

Theorem 2.5. Let G0 be exchangeable and admit type frequencies. Then the system (7), (11), (24) of
SDE’s has a unique strong solution (ζs, Rs, Gs)s<σ up to the stopping time σ defined in Theorem 2.2,
and this process (ζ,R,G) is Markovian.

2.3.5 A well-posed martingale problem for the evolving lookdown genealogy

Let (W,L,K) be as in Sec. 2.3.2, and let (ζ,R,G) be the process provided by Theorem (2.5). The
process ζ can touch zero or explode in finite time; this happens on the event σ <∞ with σ being defined
in Theorem 2.2. The time σ is announced by the following sequence of stopping times σM , M ∈ N:

σM := inf
{
s ≥ 0, ζs /∈ [1/M,M ]

}
. (25)

Wih b and c being the parameters that appear in (1), we set

CM := (b ∨ c)M2. (26)
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Let us now introduce the state space for the process (ζ,R,G) stopped at σM . We define:

EM :=
((

1
M ,M

)
× R

N2 × I
N

)
∪ {∆M} (27)

where
(

1
M ,M

)
× RN2 × IN is equipped with the product topology and where ∆M is a cemetery point

such that a sequence (vn, rn, gn) of EM is said to converge to ∆M if either vn → 1
M or vn →M as n→ ∞.

Next we display the generator of (ζ,R,G) restricted to appropriate test functions F = F (v, r, g),
where v ∈ R+, r ∈ R

N2
and g ∈ I

N.
For n ∈ N, let ρn : RN2 × I

N → R
n2
, (r, g) 7→ (r(i, j))1≤i,j≤n, be the restriction map. We define

D1,M as the set of those functions f : ( 1
M ,M) × R

N2 → R for which there exists an n ∈ N, a compact

set C ⊂ ( 1
M ,M) and an infinitely differentiable, bounded function ψ : ( 1

M ,M) × R
N2 → R such that

ψ(v, r) = 0 unless v ∈ C, and f = ψ ◦ ρn.
Let D2 be the set of those functions γ : IN → R for which there exists an n ∈ N such that γ(g)

depends only on the first n coordinates of g.
We now consider functions of the form

F (v, r, g) = f(v, r)γ(g) (28)

where f ∈ D1,M and γ ∈ D2. The smallest possible n ∈ N which fits to the required representations of f
and γ will be called the degree of F . We write Fr(i,j) for the partial derivative of F with respect to the
variable r(i, j), and Fv for partial derivatives of F with respect to v.

Let ϑi,j and ϑ̃j,θ,h′ be as in (17), (18), (19) and (20). Let F be as in (28) with degree n. For a proper
pair (r, g), let mr,g be the sampling measure as in (14), and µg be the second marginal of mr,g, which is
equal to the type distribution belonging to g. For functions F that are of the form (28) we define AF as
follows:

AF (v, r, g) =
v2

2
Fvv(v, r, g) +

(
bv2µg{A} − 2cv3µg{A}µg{B}

)
Fv(v, r, g)

+ 2v
∑

1≤i 6=j≤n

Fr(i,j)(v, r, g)

+
∑

1≤i<j≤n

(F (v, ϑi,j(r, g)) − F (v, r, g))

+ cv2µg{A}
n∑

j=1

∫
mr,g(dθ, dh′)1{g(j)=B}(F (v, ϑ̃j,θ,h′(r, g)) − F (v, r, g))

+ cv2µg{B}
n∑

j=1

∫
mr,g(dθ, dh′)1{g(j)=A}(F (v, ϑ̃j,θ,h′(r, g)) − F (v, r, g))

+ bv
n∑

j=1

∫
mr,g(dθ, dh′)1{h′=A}(F (v, ϑ̃j,θ,h′(r, g)) − F (v, r, g)).

(29)

Let DM be the linear span of the constant real-valued functions on EM (defined in (27)) and all functions
of the form (28). The linear extension of (29) to DM will again be denoted by A.

Proposition 2.6. For all M > 0, the process (ζs∧σM , Rs∧σM , Gs∧σM )s≥0 solves the martingale problem
(A,DM ), and this martingale problem is well-posed.

The proof will be given in Section 5.2. There, our first step (Proposition 5.4) will be to establish a well-
posed martingale problem for a refinement (ζ,R,G,Λ), where Λ counts the points of L and K and thus
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keeps track of all the essential graphical ingredients that are needed to specify the jump distribution of R
at these points. The second step will complete the proof of Proposition 2.6 by applying Kurtz’s Markov
Mapping Theorem, thus projecting to a well-posed martingale problem for the first three components
(ζ,R,G). Let us also mention that a similar strategy has been applied in Lemma 4.2 in [12] in a
situation without the components ζ and R, i.e. for a dynamics with constant population size and without
consideration of the genealogies.

2.4 A well-posed martingale problem for the evolving symmetrized genealogy

Let (ζs, Rs, Gs), s < σ, be the process provided by Theorem 2.5. In Corollary 5.2 we will prove that a.s.
(Rs, Gs) is proper in the sense of Definition 2.3. Hence we can define a process of marked genealogies
(see Sec. 2.2) whose state at each time s is the isomorphy class of the marked ultrametric measure
space (TRs , Rs,m

Rs,Gs) (again see Definition 2.3). Recalling the notation Xs = (Rs, Gs), we denote this
isomorphy class by ψ(Xs).
For χ ∈ M, the space of marked genealogies (see Sec. 2.2), we will write νχ for the marked distance matrix
distribution obtained from χ, i.e. the distribution of (Rχ, Gχ) where Rχ is the distance matrix and Gχ is
the type configuration of a sequence drawn i.i.d. from the sampling measure belonging to (an arbitrary
representative of) χ. For a prescribed initial condition (v0, χ0) ∈ (0,∞)×M, we define X0 := (Rχ0 , Gχ0)
and take (v0,X0) as initial condition for the process (ζ,X). Let the time change t → s(t) be as in (3).
For t such that s(t) < σ we define

(ξt, Yt) := (ζs(t), ψ(Xs(t))). (30)

We now set out to describe the process (ξ, Y ) by a stopped martingale problem. That ξ can reach zero or
converge to infinity may be problematic for the change of time (3). That is why it is natural to introduce,
for a fixed positive integer M > 0, the stopping time

τM = inf{t ∈ R+, ξt /∈ [1/M,M ]} (31)

and the stopped processes ξτM = ξ·∧τM and Y τM = Y·∧τM . Let us also define τ0 = inf{t ≥ 0, ξt = 0}.
Without restriction, we can choose M so that the initial condition v0 of the mass process satisfies
v0 ∈

(
1
M ,M

)
. We then have that 0 < τM ≤ τ0 a.s., and limM→+∞ τM ≤ τ0 by the continuity of ξ.

For F ∈ DM (defined just after (29)), v > 0 and χ ∈ M we put

ΦF (v, χ) :=

∫
F (v, r, g)νχ(dr, dg), AΦF (v, χ) :=

∫
1

v
AF (v, r, g)νχ(dr, dg). (32)

In analogy to (27) we now consider the state space

SM :=
((

1
M ,M

)
×M

)
∪ {∆M} , (33)

where
(

1
M ,M

)
× M is equipped with the product topology and a sequence (vn, χn) is said to converge

to ∆M if either vn → 1
M or vn → M as n → ∞. In other words, this corresponds to a “lumping” of all

states ( 1
M , χ) and (M,χ) with χ ∈ M into one state ∆M .

Theorem 2.7. For (v0, χ0) ∈ (0,∞)×M and M > 1/v0, the process (ξτM , Y τM ) is Markovian and gives
the unique solution of the martingale problem

(ξ0, Y0) = (v0, χ0), ΦF (ξ
τM
t , Y τM

t )−
∫ t∧τM

0
AΦF (ξu, Yu) du = martingale, F ∈ DM . (34)

Theorem 2.7 will be proven in Section 5.3.
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Remark 2.8. Since τM ↑ τ0 a.s. as M → ∞, the process (ξt, Yt)t<τ0 is characterized in distribution by
the requirement that, when stopped at τM , it solves the martingale problem (34) for all M ∈ N.

In contrast to (Xs)s<σ, which has jumps, the process (Yt)t<τ0 is continuous. This is contained in the
next result, which will be proved in Section 5.3.

Proposition 2.9. For (v0, χ0) ∈ (0,∞)×M andM ∈ N, the process (ξt∧τM , Yt∧τM )t≥0 has a.s. continuous
paths in R+ ×M.

If (ξ, Y ) is the solution of (34), then ξ is a weak solution of (2), as can be seen immediately by
projecting (34) to its first component. We can also recover the equations for ξA and ξB given in (1). For
this, we first recall that the type frequencies µt{A} and µt{B} can be recovered from the projection of
mYt(d(θ, h)) on its second component. Consequently, (ξAt , ξ

B
t ) is defined in terms of (ξ, Y ) as (ξtµ

A
t , ξtµ

B
t ).

Proposition 2.10. Let (ξ, Y ) be the solution of (34). Then (ξAt , ξ
B
t )t≥0 is a weak solution of solution of

the SDE (1).

The proof will be given in Section 5.4.

3 Building blocks from neutrality

3.1 Neutral lookdown space and marked sampling measures

The neutral setting will provide the building blocks for the analysis of the genealogy also in the presence
of selection and competition, and we study it specifically in this section. Its only ingredients are the
initial condition (R0, G0) (being distributed according to the marked distance matrix distribution of a
marked ultrametric measure space), and the neutral birth events given by the Poisson point measures
{Li,j, 1 ≤ i < j} (see (I2) in Section 2). As illustrated by Figure 1, each of the points of Li,j can be seen
as a merger of two ancestral lineages: if Li,j has an atom at time s, then the ancestral lineage of (s, j)
starts, back into the past, from (s−, i), from there on being identical with the ancestral lineage of (s, i).
In this case, the (neutral) genealogical distance of (s, i) and (s, j) equals zero; more generally, the neutral
genealogical distance of (s1, i) and (s2, j) is determined as follows: trace the neutral ancestral lineages
back from (s1, i) and (s2, j). If they merge at time u ≥ 0, then the distance is (s1−u)+(s2−u). Otherwise,
if a1 and a2 are the labels of the two neutral ancestors at time 0, the distance is s1 + s2 + R0(a1, a2).
For given R0, this gives rise to an L-measurable random semi-ultrametric ρ(0) on R+ × N. The neutral
lookdown space is the metric completion of (R+ × N, ρ(0)), denoted by (Z, ρ(0)). It carries the family of
sampling measures ms, s > 0, defined by (13).

By the Glivenko-Cantelli lemma, the assumption that (R0, G0) has the marked distance matrix dis-
tribution of a marked ultrametric measure space ensures that a.s.

w- lim
n→∞

1

n

n∑

i=1

δ(i,G0(i)) exists on T0 × I, (35)

where T0 is the metric completion of (N, R0). This clearly implies that

m0 := w- lim
n→∞

1

n

n∑

i=1

δ(0,i) (36)

exists on Z, including the case s = 0 into (13). Likewise, (35) implies that

m0 := w- lim
n→∞

1

n

n∑

i=1

δ((0,i),G0(i)) (37)
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exists on Z × I a. s. With the notation introduced in Definition 2.3, and since R0 is a random semi-
ultrametric, (37) says that (R0, G0) is a.s. proper.

In the next lemma we show, based on the existence of the neutral sampling measure (13), that the
corresponding statement also holds true for s > 0.

Lemma 3.1. For the neutral genealogy, and for a time s ≥ 0, denote by G
(0)
s (i) the type of (s, i) given

by
G(0)
s (i) := G0(a), (38)

where a is the level of the neutral ancestor of (s, i) at time 0, and recall the notation R
(0)
s (i, j) given in

(16) for the random distance matrix. Almost surely, (R
(0)
s , G

(0)
s ) and the left limit (R

(0)
s− , G

(0)
s−) are proper

for all s > 0. In particular, the weak limit

m(0)
s := w- lim

n→∞

1

n

n∑

i=1

δ
((s,i),G

(0)
s (i))

(39)

exists on Z × I on an event of probability 1 that does not depend on s.

Proof. Fix s > 0. The map f̂ : {s} × N → I, (s, i) 7→ G
(0)
s (i), is uniformly continuous with respect

to ρ(0). To see this, let δ < 2s arbitrary and suppose ρ(0)((s, i1), (s, i2)) < δ. Then (s, i1) and (s, i2) have
a common ancestor at time s− δ/2; consequently their types coincide.

Thus the map f̂ can be extended to a (uniformly) continuous function f̂ : {s} × N → I, where {s} × N

denotes the closure of {s}×N with respect to ρ(0). Then the map f : {s} × N → {s} × N×I, θ 7→ (θ, f̂(θ))
is also continuous. It satisfies

1

n

n∑

i=1

δ
((s,i),G

(0)
s (i))

=

(
1

n

n∑

i=1

δ(s,i)

)
◦ f−1,

where the right hand side denotes the image measure under f . The continuous mapping theorem and

(13) imply that 1
n

∑n
i=1 δ((s,i),G(0)

s (i))
converges weakly to m

(0)
s = ms ◦ f−1 on an event of probability 1

that does not depend on s. This shows (R
(0)
s , G

(0)
s ) is proper. The assertion on (R

(0)
s−, G

(0)
s−) follows using

the left limit in (13).

Remark 3.2. The function f̂ is called mark function in the sense of e.g. [26]. The Z-component of

m
(0)
s is ms given by (13) , and the I-component of m

(0)
s is the type distribution µ

(0)
s under the neutral

transport, which in view of (39) and (6) obeys a.s.

µ(0)s = m(0)
s (Z × ·) = w- lim

n→∞

1

n

n∑

i=1

δ
G

(0)
s (i)

. (40)

3.2 Partitioning the lookdown space: roots and fragments

Throughout the article, we assume that our intital state (R0, G0) has the marked distance matrix distri-
bution of a marked ultrametric measure space, so that in particular we have the neutral sampling measure
(39) at hand. Recall the families of independent Poisson point measures {Ki : i ∈ N} from ingredient
(I3). We now partition (up to a set that is not charged by any of the sampling measures ms) the entire
space Z into (what we call) fragments Γγ ⊂ Z with roots γ ∈ R+ × N as follows. On top of the neutral
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lookdown construction, we think of a competition respectively a fecundity “cross” added at (s, i) when
Ki places an atom at (s, i). To be more precise, fix C <∞ and put

R̃ :=
⋃

i∈N

({
s ∈ R+ : Ki({s} × [0, C]× [0, 1] × {β, δ}) ≥ 1

}
× {i}

)
⊂ R+ × N (41)

Note that the restriction to [0, C] guarantees that the overall rate of potential events on a fixed level is
bounded on any finite time-interval. As a consequence the points in R̃ ∩ (R+ × {i}) do not accumulate
for fixed i ∈ N almost surely.

Now let
R := R̃ ∪ ({0} × N) ⊂ R+ × N

be the set of roots. The types and lineages in the subtree above a root evolve according to the dynamics
of the neutral model until they hit another root.

Remark 3.3. Note that the (neutral) ancestral lineage of each element θ ∈ Z\(R+ ×N) is well-defined.
Indeed, take a sequence (sn, ℓn) ∈ R+ × N, n ∈ N, such that (sn, ℓn) → θ for n → ∞. Then we have in
particular sn → s ∈ R+. Without loss of generality, assume (sn)n∈N is monotonically increasing. How
to determine the ancestor of θ at time s − ǫ for 0 < ǫ < s arbitrary? There exists n0 ∈ N such that
ρ(0)((sn, ℓn), θ) < ǫ for all n ≥ n0, that is, (sn, ℓn) and θ have a common ancestor at time s − ǫ for all
n ≥ n0. Thus, take the ancestor of θ at time s− ǫ to be the one of (sn0 , ℓn0).

For each γ ∈ R let

Γγ := {θ ∈ Z : θ descends from γ and there are no points in R on the

lineage connecting θ with γ} ⊂ Z.

Remark 3.4. We make the following observations.

1) Interpret Γγ as descendants of γ in a neutral infinite alleles model with mutation. Here, the
frequencies exist and Z can be broken into a countable number of fragments, rooted in R. This
construction yields ms(Γγ) for all times s ≥ 0. It can be shown that a. s.,

ms

( ⋃

γ∈R

Γγ
)
= 1

for all s > 0. Further details are given in the proof of Lemma 3.5 below.

2) By restricting to {s} ×N, a partition of N is inherited. This partition depends on s, where i ∼ j if
(s, i) and (s, j) have a common ancestor living between times 0 and s and there is no root on their
geodesics.

3) In contrast to a tree-valued process whose states describe genealogical trees at fixed times, the
lookdown space describes all individuals which live at any time. From this object, we can read
off the state of the tree-valued processes at time s using a restriction of the lookdown space. The
lookdown space itself however is universal for all s.

The sets Γγ , γ ∈ R, form a partition of the set that is obtained from Z by removing the accumulation
points of R in Z. Almost surely, the set of these accumulation points has zero mass under all ms, s > 0.
This is the contents of the following lemma.

Lemma 3.5. Almost surely, ms(Z \⋃γ∈R Γγ) = 0 for all s > 0.
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Proof. The points of R can be thought of as mutation events in an infinite alleles model that come
with rate C along the lineages in a lookdown model, say with type space [0, 1] and parent independent
mutation where the type in each mutation event is drawn uniformly and independently. To obtain a
contradiction, assume that there exists an s such that the set of accumulation points of R has nonzero
mass under ms. As all such accumulation points have different types in the infinite alleles model, this
results in a type distribution of mass smaller than 1. The lookdown construction for the infinite alleles
model [13, Theorem 3.2] shows, however, that there are a. s. no exceptional time points with defective
type distribution.

Corollary 3.6. Almost surely,

ms(Γγ) = lim
n→∞

1

n

n∑

i=1

1(s,i)∈Γγ

for all γ ∈ R and s > 0.

Proof. Almost surely, for each s > 0 and γ ∈ R, the boundary of Γγ as a subset of {s} × N ⊂ Z is not
charged by ms. Hence, the Portmanteau theorem and (13) yield the result.

Lemma 3.7. Almost surely,

(i) the fragment masses ms(Γγ) are continuous in s for each γ,

(ii) for each fragment Γγ , the restriction ms(·∩Γγ) is continuous in s with respect to the weak topology
on (Γγ , ρ

(0)).

Proof. The statement (i) follows by relating the assertion to an infinite alleles model, similar as in the
proof of Lemma 3.5.

To prove (ii), note that a discontinuity at a time s implies the existence of a closed subset A of
(Γγ , ρ

(0)) with lim sups′→sms′(A) > ms(A). Since ms(Γγ \ Γγ) = 0 by Lemma 3.5, the inequality holds
also for the closure of A in (Z, ρ(0)). Thus, a discontinuity at time s results in a discontinuity of ms on
the neutral lookdown space in contradiction to [21, Theorem 3.1].

Lemma 3.8. For all ǫ, T > 0 there exists almost surely a random ℓ ∈ N such that

∑

γ=(u,i)∈R, with u∈R+, i≤ℓ

ms(Γγ) ≥ 1− ǫ for all s ∈ [0, T ].

Proof. For fixed s ∈ [0, T ], this follows from Lemma 3.5. Let

ϑk = inf
{
s ∈ [0, 2T ] :

∑

γ=(u,i) with u∈R+, i≤k

ms(Γγ) < 1− ǫ
}
,

where we set inf ∅ = 2T . Then ϑk is monotonically increasing in k. Set

ϑ = sup
k∈N

ϑk.

It suffices to show that ϑ = 2T almost surely.
On the event that ϑ < 2T , there exists by Lemma 3.5 a. s. k ∈ N with

∑

γ=(u,i) with u∈R+, i≤k

mϑ(Γγ) ≥ 1− ǫ/2.
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By Lemma 3.7(i), almost surely, the fragment masses ms(Γγ) are continuous in s for each γ. Hence, there
exists δ > 0 with ∑

γ=(u,i) with u∈R+, i≤k

ms(Γγ) ≥ 1− ǫ

for all s ∈ (ϑ − δ, ϑ + δ). This implies that for all ℓ ≥ k with ϑℓ > ϑ − δ, we have ϑℓ ≥ ϑ + δ, in
contradiction to the definition of ϑ. Thus {ϑ < 2T} must be a null event and the claim follows.

4 An SDE for type configuration and population size: proof of Theo-

rem 2.2

In this section we provide an iteration scheme which leads to the proof of Theorem 2.2. We will be
guided by the proof of Theorem 4.1 in [12]. The additional (and substantial) challenge that is overcome
in our proof is that the total mass, which in [12] was assumed constant, now is a stochastic process which
depends on the type configurations.

Recalling the ingredients from Section 2.3.2, we will work with the filtration F = (Fs), where Fs is
generated by Wu, u ≤ s and those points in L and K whose time component is less than s. Following the
steps described in Section 2.3, we will prove the existence and uniqueness of the type process G in (11).
A substantial difficulty is that the SDEs for G depend on the mass process ζ (in the lookdown time-scale)
that itself depends on the process µG.{A} of proportions of type A. Also, Theorem 2.2 asserts that Gs
admits type frequencies for all times s > 0, so that µGs{A} is well-defined.

Let us introduce the following function, describing the drift of the process ξ:

f(v, p) = bpv − 2cp(1 − p)v2, v ≥ 0, p ∈ [0, 1]. (42)

Fix a constant C ∈ (0,∞) in (41) that bounds the rate at which selective and competitive events occur.
For a modification of the system of SDEs (11) and (7), where we use C and M to control the dynamics
(see third term in the r.h.s. of (44) below), we prove existence and strong uniqueness by a Picard
iteration-like argument. For this we put

fM (v, p) = f((v ∨ 1
M ) ∧M,p). (43)

The following key proposition treats SDEs similar to the ones in Theorem 2.2, but with fM instead
of f , which simplifies the problem of controlling the population size. Replacement of fM by f will be
treated at the end of the section, in the completion of the proof of Theorem 2.2.

Proposition 4.1. Let G0 be an exchangeable initial type configuration in I
N that admits type frequencies

(see (6)). The following system (44), (45) of SDEs has a unique strong solution:

Gs(j) = G0(j) +

j−1∑

i=1

∫

[0,s]
(Gu−(i) −Gu−(j))dLij(u)

+
∑

1≤i<k<j

∫

[0,s]
(Gu−(j − 1)−Gu−(j))dLik(u) (44)

+

∫

[0,s]×[0,C]×[0,1]×{β,δ}
(q(Gu−(j), Gu−, (ζu− ∨ 1

M
) ∧M,z,w, ω) −Gu−(j))Kj(du, d(z, w, ω)),

ζ0 = v0, dζs = ζsfM(ζs, µ
Gs{A})ds + ζs dWs, j ∈ N, s ≥ 0. (45)

For this unique solution, a. s. the type frequencies for Gs exist for all s ≥ 0.
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In order to prepare the proof of this proposition, we first show a statement on the continuous depen-
dence of (45) on its input µGs{A}.
Lemma 4.2. Let W be an (Fs)-adapted Brownian motion and let ϕ, ϕ̃ be (Fs)-adapted, [0, 1]-valued
and continuous. Let α, α̃ obey

dαs = αsfM(αs, ϕs)ds + αs dWs,

dα̃s = α̃sfM(α̃s, ϕ̃s)ds + α̃s dWs,

with the same initial condition v0 in [ 1
M ,M ] at time 0. Then there exists a constant C̃ (depending on M

but not depending on s) such that for all s ≥ 0 we have

|(αs ∨ 1
M ) ∧M − (α̃s ∨ 1

M ) ∧M | ≤ C̃ses
∫ s

0
|ϕu − ϕ̃u|du a.s. (46)

Proof of Lemma 4.2. By Itô’s formula,

d lnα =
1

α
dα− 1

2α2
d[α] = fM(α,ϕ)ds + dW − 1

2
ds,

d ln α̃ =
1

α̃
dα̃− 1

2α̃2
d[α̃] = fM(α̃, ϕ̃)ds+ dW − 1

2
ds.

Subtracting one equation from the other and using the triangle inequality we get

| lnαs − ln α̃s| ≤
∫ s

0
|fM(αu, ϕu)− fM (α̃u, ϕ̃u)|du. (47)

There exists a constant c1 (depending on M but not depending on s) such that for all s ≥ 0

|(αs ∨ 1
M ) ∧M − (α̃s ∨ 1

M ) ∧M | ≤ c1| ln((αs ∨ 1
M ) ∧M)− ln((α̃s ∨ 1

M ) ∧M)|. (48)

From (47), (48) and the Lipschitz property of fM we obtain

|(αs ∨ 1
M ) ∧M − (α̃s ∨ 1

M ) ∧M | ≤ c2

∫ s

0
(|(αu ∨ 1

M ) ∧M − (α̃u ∨ 1
M ) ∧M |+ |ϕu − ϕ̃u|)du.

Using Gronwall’s inequality we arrive at

|(αs ∨ 1
M ) ∧M − (α̃s ∨ 1

M ) ∧M | ≤ c2

∫ s

0
|ϕu − ϕ̃u|du+ c22

∫ s

0

∫ u

0
|ϕw − ϕ̃w|dw eudu

≤ C̃ses
∫ s

0
|ϕu − ϕ̃u|du.

Most of the remainder of this section is devoted to the proof of Proposition 4.1 which uses an iteration

scheme. To get this scheme started, we take G
(0)
s as the neutral type transport defined by (38) and µ

(0)
s

as the neutral type distributions given by (40).

Step 1, Recursion hypothesis: Assume that for ℓ = 0, . . . , k−1 we have defined F -adapted I
N-valued

processes G(ℓ) and continuous R+-valued processes ζ(ℓ) such that:
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• almost surely, G
(ℓ)
s admits type frequencies µ

(ℓ)
s for all s > 0, with

µ(ℓ)s = w- lim
n→∞

1

n

n∑

i=1

δ
G

(ℓ)
s (i)

,

and s 7→ µ
(ℓ)
s is continuous,

• the process ζ(ℓ) is the unique strong solution of the SDE

ζ
(ℓ)
0 = v0, dζ(ℓ)s = ζ(ℓ)s fM (ζ(ℓ)s , µ(ℓ)s {A})ds + ζ(ℓ)s dWs. (49)

The fact that (49) indeed has a unique strong solution follows e.g. from [37, Theorem 5.3].
Step 2, Setting up the iteration step: In order to define G(k) in terms of G(k−1), ζ(k−1), L and K,
we consider the following system of SDE’s where the function q (cf. (9)–(10)) uses the type frequencies
µ(k−1) which are well-defined by our recursion hypothesis.

G(k)
s (j) = G0(j) +

j−1∑

i=1

∫

[0,s]
(G

(k)
u−(i)−G

(k)
u−(j))dLij(u)

+
∑

1≤i<l<j

∫

[0,s]
(G

(k)
u−(j − 1)−G

(k)
u−(j))dLil(u) (50)

+

∫

[0,s]×[0,C]×[0,1]×{β,δ}
(q(G

(k)
u−(j), G

(k−1)
u− , (ζ

(k−1)
u− ∨ 1

M
) ∧M,z,w, ω) −G

(k)
u−(j))Kj(du, d(z, w, ω)).

This has the following interpretation. While the type transport through the neutral lookdown events
(given by the points of L) happens as usual, the activation levels (appearing in the update rules (9) and
(10)) for the potential selective events (given by those points (u, (z, w, ω)) of K with z ≤ C) are controlled

by the mass process and the type frequencies from the previous iteration. Notice that G
(k)
u−(j), that is

the type in the current iteration, enters as the first argument in the update rule q, which is relevant at a
competitive death event. This amounts to having a frozen environment for the competition. Also, notice

that we use the mass process (ζ
(k−1)
u− ∨ 1

M ) ∧M truncated at M and 1/M . For the sequel, let us define

the first time at which the truncation is effective: σ
(ℓ)
M = inf

{
s ≥ 0, ζ

(ℓ)
s ∈

{
1
M ,M

}}
.

We now use (50) to successively update the types of γ ∈ R>0 := {γ = (s, i) ∈ R | s > 0} in the k-th
iteration. This we do by first recording all the roots (s0, i0), . . . , (sn, in) ∈ R that lie on the neutral
ancestral lineage of γ, with 0 = s0 < · · · < sn = s. The type of (s0, i0) remains to be G0(i0); the new

type G
(k)
s1 (i1) of (s1, i1) is determined by taking G0(i0) as the first argument in the update rule q, the

new type G
(k)
s2 (i2) of (s2, i2) is determined by taking G

(k)
s1 (i1) as the first argument of the update rule q,

etc.
Having thus re-colored all γ ∈ R>0 in the k-th iteration, we complete the recoloring by letting Γγ

inherit the type of its root, i.e. by setting, for each (s, j) ∈ R+ ×N, its type G
(k)
s (j) equal to the type of

that γ for which (s, j) ∈ Γγ .
For s > 0 and h ∈ I we now put

µ(k)s {h} :=
∑

γ=(u,i)∈R:G
(k)
u (i)=h

ms(Γγ). (51)

Recall (13): ms(Γγ) is the weight which the neutral sampling measure at time s assigns to that part of
the neutral offspring of γ whose ancestral lineages are not separated from γ by some other root.
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The next assertion, which will also be used in the uniqueness part (Step 4 of the proof of Proposition
4.1), and will therefore be singled out as a lemma, shows that G(k) a.s. admits type frequencies at all
times.

Lemma 4.3. In each iteration step k = 1, 2, . . . we have a.s.

µ(k)s = w- lim
n→∞

1

n

n∑

i=1

δ
G

(k)
s (i)

for all s > 0. (52)

Proof. Let s, ǫ > 0 be arbitrarily fixed, and take h ∈ I. On an a.s. event that does not depend on s,
there exists by Lemma 3.5 a finite set {γ1, . . . , γℓ} ⊂ R of roots such that

ℓ∑

j=1

ms(Γγj ) > 1− ǫ.

By (13) and Corollary 3.6, it follows that on an a.s. event that does not depend on s,

lim
n→∞

1

n

n∑

i=1

1(s,i)∈
⋃ℓ

j=1 Γ(γj)
> 1− ǫ.

For all iterations k, we have

lim sup
n→∞

1

n

n∑

i=1

1
G

(k)
s (i)=h

≤ lim sup
n→∞

1

n

n∑

i=1




ℓ∑

j=1

1
(s,i)∈Γγj

,G
(k)
s (γj)=h

+ 1(s,i)/∈
⋃ℓ

j=1 Γγj




≤
ℓ∑

j=1

1
G

(k)
s (γj)=h

lim
n→∞

1

n

n∑

i=1

1(s,i)∈Γγj
+ ǫ

≤ µ(k)s {h}+ ǫ,

where we used the definition (51) of µ
(k)
s . Similarly,

lim inf
n→∞

1

n

n∑

i=1

1
G

(k)
s (i)=h

≥
ℓ∑

j=1

1
G

(k)
s (γj)=h

lim
n→∞

1

n

n∑

i=1

1(s,i)∈Γγj

≥
∑

γ∈R

1
G

(k)
s (γ)=h

lim
n→∞

1

n

n∑

i=1

1(s,i)∈Γγ
− lim
n→∞

1

n

n∑

i=1

1(s,i)/∈
⋃ℓ

j=1 Γγj

≥ µ(k)s {h} − ǫ.

Summarizing the results so far, we are able to define the values G
(k)
s (j) and µ

(k)
s for j ∈ N and s > 0.

Using Equation (49) we can define ζ
(k)
s , s > 0.

Step 3, Convergence of the iteration scheme: For two type vectors g and g′ admitting type
frequencies we have (with ||µg − µg

′ || denoting the total variation distance of µg and µg
′
)

||µg − µg
′ || ≤ lim sup

n→∞

1

n

n∑

i=1

1{g(i)6=g′(i)}. (53)
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Denoting by λ the “Lebesgue times uniform” measure on BC := [0, C] × [0, 1] × {β, δ}, we see from
the definition of q in (9) and (10) that for all g, g′ admitting type frequencies, all v, v′ ≥ 0 and all h ∈ I

we have
∫

BC

1{q(h,g,v,a)6=q(h,g′,v′,a)}λ(da)

≤ C(b|µg{A}v − µg
′{A}v′|+ c|µg{A}v2 − µg

′{A}(v′)2|) + c|µg{B}v2 − µg
′{B}(v′)2|). (54)

Using (53), we infer that for all g, g′ admitting type frequencies, all v, v′ ≥ 0 and all h, h′ ∈ I,

∫

BC

1
{q(h,g,(v∨

1
M )∧M,a)6=q(h′,g′,(v′∨

1
M )∧M,a)}

λ(da)

≤ D

(
1{h 6=h′} + lim sup

n→∞

1

n

n∑

i=1

1{g(i)6=g′(i)} + |v − v′|
)
, (55)

where the constant D may depend on M and C. (Note that this is an analogue of [12, (4.14)].)
Fix T ∈ R+ and j ∈ N. For 0 ≤ s ≤ T and j ∈ N, let us define by AT

s (j) the level of the ancestor of
(T, j) at time s in the neutral genealogy. Note that AT (j) is L-measurable, obeying the SDE

AT
s (j) = j −

∑

1≤i<ℓ<j

∫

(s,T ]
1{AT

u (j)>ℓ}dLiℓ(u)

−
∑

1≤i<ℓ≤j

∫

(s,T ]
(ℓ− i)1{AT

u (k)=ℓ}dLiℓ(u). (56)

For s > 0, we abbreviate G̃T,ks (j) := G
(k)
s (AT

s (j)).
Let K̃j have an atom in (u, a) if and only if KAT

u (j) has an atom in (u, a), 0 ≤ u ≤ T , a ∈ BC . For
notational reasons we now consider the induction step from k to k + 1 instead of k − 1 to k. We get as
an analogue to the estimate starting at p. 1112 line -3 in [12], that for s > 0:

1
{G̃T,k+1

s− (j)6=G̃T,k
s− (j)}

≤
∫

[0,s]×BC

(1− 1
{G̃T,k+1

u− (j)6=G̃T,k
u− (j)}

)

× 1
{q(G̃T,k

u− (j),G
(k)
u−,(ζ

(k)
u−∨ 1

M
)∧M,a)6=q(G̃T,k

u− (j),G
(k−1)
u− ,(ζ

(k−1)
u− ∨ 1

M
)∧M,a)}

K̃j(du, da)

=

∫

[0,s]×BC

(1 − 1
{G̃T,k+1

u− (j)6=G̃T,k
u− (j)}

)

× 1
{q(G̃T,k

u− (j),G
(k)
u−,(ζ

(k)
u−∨ 1

M
)∧M,a)6=q(G̃T,k

u− (j),G
(k−1)
u− ,(ζ

(k−1)
u− ∨ 1

M
)∧M,a)}

(K̃j(du, da) − duλ(da))

+

∫

[0,s]×BC

(1− 1
{G̃T,k+1

u− (j)6=G̃T,k
u− (j)}

)

× 1
{q(G̃T,k

u− (j),G
(k)
u−,(ζ

(k)
u−∨ 1

M
)∧M,a)6=q(G̃T,k

u− (j),G
(k−1)
u− ,(ζ

(k−1)
u− ∨ 1

M
)∧M,a)}

duλ(da)

≤ martingale +D

∫ s

0
η(k)u du+D

∫ s

0
|(ζ(k)u ∨ 1

M
) ∧M − (ζ(k−1)

u ∨ 1

M
) ∧M |du (57)

where

η(k)u := lim
n→∞

1

n

n∑

i=1

1
{G

(k)
u−(i)6=G

(k−1)
u− (i)}

(58)
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and where we used (55) in the last estimate. To see that the limit exists we can argue as in the proof of
Lemma 4.3. Indeed, the limit equals the sum of the masses at time u of the fragments whose roots are
colored differently at iterations k and k − 1. Taking expectations of both sides in the above estimate,

putting s := T and noting that G̃T,kT (j) = G
(k)
T (j), we obtain the estimate

P(G
(k+1)
T (i) 6= G

(k)
T (i)) ≤ D

(
E(

∫ T

0
η(k)u du) +E(

∫ T

0
|(ζ(k)u ∨ 1

M
) ∧M − (ζ(k−1)

u ∨ 1

M
) ∧M |du)

)
(59)

which in turn implies

E(η
(k+1)
T ) ≤ D

(∫ T

0
E(η(k)u )du+

∫ T

0
E(|(ζ(k)s ∨ 1

M
) ∧M − (ζ(k−1)

s ∨ 1

M
) ∧M |)ds

)
(60)

by dominated convergence. Equation (60) and Lemma 4.2 give that

E(η
(k+1)
T ) ≤ D

(∫ T

0
E(η(k)u )du+ C̃T eT

∫ T

0

∫ s

0
E(|µ(k)u {A} − µ(k−1)

u {A}|)du ds
)
.

Using (53) we arrive at

E(η
(k+1)
T ) ≤ D

∫ T

0
(1 + C̃T 2eT )E(η(k)u )du (61)

for all T ≥ 0. By a direct reiteration, this gives:

E
(
η
(k+1)
T

)
≤D(1 + C̃T 2eT )

∫ T

0

[
D(1 + C̃s21e

s1)

∫ s1

0
E
(
η(k−1)
s2

)
ds2

]
ds1

≤(D(1 + C̃T 2eT ))2
∫ T

0

∫ s1

0
E
(
η(k−1)
s2

)
ds2 ds1

≤(D(1 + C̃T 2eT ))k
∫ T

0

∫ s1

0
· · ·
∫ sk−1

0
E
(
η(1)sk
)
dsk . . . ds1.

Because E
(
η
(1)
s

)
is uniformly bounded by 1, we obtain that:

E
(
η
(k+1)
T

)
≤ (D(1 + C̃T 2eT ))k

T k

k!
. (62)

Combining (53), (58) and (62) we infer that for all s ∈ [0, T ]

E[||µ(k+1)
s − µ(k)s ||] is summable over k. (63)

Moreover, from Lemma 4.2, (49) and (63) we conclude that

sup
s≤T

E[|(ζ(k)s ∨ 1

M
) ∧M − (ζ(k−1)

s ∨ 1

M
) ∧M |] is summable over k. (64)

From (59), Fubini, (62) and (64), we conclude that for all s ∈ [0, T ] and i ∈ N

P(G(k+1)
s (i) 6= G(k)

s (i)) is summable over k. (65)

Hence for ǫ > 0 arbitrary and each finite subset M ⊂ [0, T ] × N, we have by Borel-Cantelli that there
exists k0 ∈ N with

P
(
G(k)
s (i) = G(k0)

s (i) for all k ≥ k0 and (s, i) ∈ M
)
≥ 1− ǫ. (66)
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Now take ℓ as in Lemma 3.8 and choose the (nonrandom) finite set M ⊂ [0, T ]×N so large and “dense”
that with probability 1− ǫ every fragment Γγ whose root γ is an element of [0, T ) × {1, . . . , ℓ}, contains
an element of M. Lemma 3.8 together with (66) imply that

P(sup
s≤T

||µ(k)s − µ(k0)s || ≥ ǫ) ≤ 2ǫ for all k ≥ k0. (67)

From (64), (67), (65) and (46) and the choice of M we infer that ((G
(k)
s (i))i∈N, µ

(k)
s , (ζ

(k)
s ∨ 1

M ) ∧M)
converges uniformly in s ∈ [0, T ] as k → ∞. In order to see that the limit satisfies (44) we recall that
the Poisson point measures L and K do not change over the iterations, and note that the distribution of
the mark z which figures in (44) and (50) is continuous, which provides the adequate continuity in the
coefficient q that is given by the activation conditions (9) and (10). Theorem (6.4) of [37] shows that the
limit also satisfies (45).

Step 4, Uniqueness: The argument from Lemma 4.3 shows that for any solution of (44), (45), Gs
admits type frequencies for all s ≥ 0 a.s. Uniqueness of the strong solution of (44), (45) follows by the
same argument as in Step 3 where we now compare in (57) two solutions instead of two approximations
(Note that this strategy was also successful in the simpler setting of [13]). This concludes the proof of
Proposition 4.1. �

For the completion of the proof of Theorem 2.2 let us now relax the control of the total mass with
the constant M . Fix again the constant C ∈ (0,∞) and consider the following system of SDEs

Gs(j) = G0(j) +

j−1∑

i=1

∫

[0,s]
(Gu−(i)−Gu−(j))dLij(u)

+
∑

1≤i<k<j

∫

[0,s]
(Gu−(j − 1)−Gu−(j))dLik(u)

+

∫

[0,s]×[0,C]×[0,1]×{β,δ}
(q(Gu−(j), Gu−, ζu−, z, w, ω) −Gu−(j))Kj(du, d(z, w, ω)),

ζ0 = v0, dζs = ζsf(ζs, µ
Gs{A})ds + ζs dWs, s ≥ 0.

(68)

Proposition 4.1 tells us that this system has for each M a unique pathwise solution up to the stopping
time σM defined by (25). By projectivity, this shows that (68) has a unique pathwise solution up to the
time at which its mass process ζ goes to extinction or explodes. In view of (9) and (10), the solution of

(11), (7) coincides with that of (68) up to that time at which ζ exceeds
√

C
c or C

b . Again by projectivity,

this implies the assertion of Theorem 2.2. �

5 From the neutral to the selective genealogy

For an (exchangeable) initial type configuration G0 ∈ I
N and the independent stochastic input (W,L,K)

specified in (I1), (I2), (I3) in Section 2, Theorem 2.2 provides an a.s. unique solution (ζ,G) = (ζs, Gs)s≥0

of (7) and (11). From this lookdown representation we will construct in Sec. 5.1 the process (ζ,X) =
(ζs, Rs, Gs)s≥0 of type configurations and genealogical distance matrices, which will be turned in Sec. 5.3
into the process (ξt, Yt)t≥0 of isomorphy classes of marked metric measure spaces that describe type
distributions and sample genealogies. As will be proved in Sec. 5.2, the latter will provide the unique
solution to the martingale problem formulated in Prop. 2.7. We recall that we always assume that
(R0, G0) has the marked distance matrix distribution of a marked ultrametric measure space.

26



5.1 The selective lookdown genealogy

In this subsection we define the selective lookdown space for fixed M ≥ 1. As in (26) we set C := CM =
(b ∨ c)M2. With regard to (9), (10) and (11) we say that a point (s, i) ∈ R+ × N is active if

Ki has an atom in (s, (z, w, β)) for some z ∈ R+, w ∈ [0, 1] such that

z ≤ (bµGs{A}ζs) ∧ C

or if

Ki has an atom in (s, (z, w, δ)) for some z ∈ R+, w ∈ [0, 1] such that

z ≤ (cµGs{B}(ζs)2) ∧ C and Gs−(i) = A, or

z ≤ (cµGs{A}(ζs)2) ∧ C and Gs−(i) = B.

In the first case we say that a fecundity event takes place at (s, i), in the second case we say that a
competition event happens at (s, i). Note that because s 7→ ζs and s 7→ µGs are a.s. continuous (see
Prop. 2.9), we can as well replace s by s− in the three inequalities.

Next we define the selective ancestral lineage of an element θ ∈ ⋃γ Γγ ⊂ Z. For this we trace the
lineage of θ back into the past according to Remark 3.3, until it hits an active point (s, i) ∈ R+ ×N. If a
competition event occurs at that point, then we continue the lineage at an element of Z picked indepen-
dently according to the neutral sampling measure ms defined by (13). If a fecundity event happens at
(s, i), then we continue the lineage at an element of Z picked independently according to ms conditioned
on the fragments of type A. (For the definition of the fragments Γγ , we refer back to Sec 3.2). The
individuals on the selective ancestral lineage of θ will be called the selective ancestors of θ.

We now modify the metric ρ(0) from Section 3.1 as follows: Trace the selective ancestral lineages
back from (s1, i1) and (s2, i2). If they merge at time u ≥ 0, then put ρ((s1, i1), (s2, i2)) := (s1 − u) +
(s2 − u). Otherwise, if a1 and a2 are the labels of the two (selective) ancestors at time 0, then define
ρ((s1, i1), (s2, i2)) := s1 + s2 + R0(a1, a2), where R0 is the semi-ultrametric on N given by the initial
condition. We define Ẑ as the completion of

⋃
γ Γγ with respect to ρ and call (Ẑ, ρ) the selective lookdown

space. (Note that (Ẑ, ρ) depends on M but the projective limit of the restrictions to the completions of
[0, σM ]× N with σM defined in (25) exists.)

The selective lookdown space (Ẑ, ρ) inherits the family of sampling measures ms, s > 0 from (13),
which remain probability measures by Lemma 3.5. As each fragment Γγ is monotypic, we can also endow
Ẑ × I with the sampling measures ms, defined by

ms(E × E′) =
∑

γ=(u,i) with Gu(i)∈E′

ms(Γγ ∩ E), E′ ⊂ I, E ⊂ Ẑ measurable. (69)

Lemma 5.1. The measures ms defined in (69) obey

ms = w- lim
n→∞

1

n

n∑

i=1

δ((s,i),Gs(i)) (70)

for all s > 0 on an event of probability 1 that does not depend on s. Here, the weak limit in (70) can be
understood either with respect to the metric ρ0 or with respect to the metric ρ.

Proof. This follows directly from Lemma 3.8 and Corollary 3.6.
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With regard to (4), which defines the mapping s 7→ t(s), we define the time-changed distance ρ̃ as
follows: For (s1, i1) and (s2, i2) that lie on the same selective ancestral lineage in the lookdown graph,
we put

ρ̃((s1, i1), (s2, i2)) := |t(s1)− t(s2)| =
∣∣
∫ s2

s1

ζu du
∣∣ ;

this is the time it takes from one point to the other when traveling along the selective ancestral lineage
with speed 1/ζu (cf. (3)) at an intermediate point (u, j). More generally we put

ρ̃((s1, i1), (s2, i2)) := ρ̃((s1, i1), (s
′, j)) + ρ̃((s2, i2), (s

′, j))

if the two selective ancestral lineages merge at some point (s′, j) with s′ ∈ [0, s]; otherwise, if (s1, i1), (s2, i2)
have two distinct selective ancestors (0, a1) and (0, a2) at time 0, we put

ρ̃((s1, i1), (s2, i2)) := ρ̃((s1, i1), (0, a1)) + ρ̃((s2, i2), (0, a2)) +R0(a1, a2).

For s ≥ 0 and i1, i2 ∈ N we set
Rs(i1, i2) := ρ̃((s, i1), (s, i2)).

In other words,

Rs(i1, i2) :=

{
2(t(s)− t(s′)) if the two selective ancestral lineages merge at time s′ ∈ [0, s],

2t(s) +R0(a1, a2) if the selective ancestors (0, a1), (0, a2) at time 0 are different.

Corollary 5.2. (i) The weak limit in (70) can be understood also with respect to the metric ρ̃.

(ii) (R
(0)
s , Gs), (R

(0)
s−, Gs−) as well as (Rs, Gs), s > 0 are proper on an event of probability 1 that does

not depend on s.

Proof. This is a consequence of (69), (70) and Lemma 3.1.

Let us also prove that:

Proposition 5.3. For each s ≥ 0, the pair (Rs, Gs) is exchangeable conditionally given (ζu)u≤s.

Proof. It suffices to work along the sequence of jump times of the restriction of the process (Rs, Gs)s≥0

of marked distance matrices to the first n levels, where n ∈ N is arbitrarily fixed. Between these jump
times, the types of the individuals on the first n levels remain unchanged, and the genealogical distance
between each pair of such individuals grows deterministically with slope 2. The jump times of this
process are given by the Poisson processes (Lij)1≤i<j≤n and (Ki)1≤i≤n. Let us also recall that (R0, G0)
is exchangeable by the assumption that it has the marked distance matrix distribution of a marked
ultrametric measure space.

(i) We first consider the jumps given by the neutral events, i.e. by the processes (Lij)1≤i<j≤n. We
assume that the restriction of the process (Ru, Gu)u≥0 to the first n levels jumps at some time s due to
a neutral reproduction event.

Proceeding inductively we assume that the restriction of (Rs−, Gs−) to the first n levels is exchange-
able. Consequently, ((R(ℓ,m))1≤ℓ,m≤n, (G(ℓ))1≤ℓ≤n) := ((Rs−(ℓ,m)1≤ℓ,m≤n, (Gs−(ℓ))1≤ℓ≤n) has the same
distribution as

(R̃, G̃) := ((R(Π(ℓ),Π(m)))1≤ℓ,m≤n, (G(Π(ℓ)))1≤ℓ≤n), (71)

where Π is a uniformly distributed random pick from the permutations of [n]. Let (I, J) be uniformly
distributed on {(i, j) : 1 ≤ i < j ≤ n}, and let, given {(I, J) = (i, j)}, the random array (R̃′, G̃′) be
constructed from (R̃, G̃) according to (17) and (18).
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Putting

fj(m) :=

{
ℓ if ℓ < m

ℓ− 1 if j < m ≤ n

we can write R̃′ as

R̃′(ℓ,m) =





0 if ℓ,m ∈ {I, J},
R̃(I, fJ(ℓ)) if ℓ ∈ {I, J} and ∈ [n] \ {I, J},
R̃(fJ(ℓ), fJ (m)) if ℓ,m ∈ [n] \ {I, J}.

(72)

Using (71) one checks readily that, for each permutation σ of the numbers 1, . . . , n, the random array
((R̃′(σ(ℓ), σ(m)))1≤ℓ,m≤n, (G̃

′(σ(ℓ))1≤ℓ≤n) has the same distribution as (R̃′(ℓ,m))1≤ℓ,m≤n, G̃
′(ℓ)1≤ℓ≤n),

which gives the desired exchangeability of (Rs, Gs).
(ii) We now turn to the non-neutral events. Let u be a time point at which one of the counting measures

Ki(·× [0, C]× [0, 1]×{β, δ}), 1 ≤ i ≤ n, has an atom for which the corresponding activation condition on
the r.h.s. of (9) resp. (10) is satisfied for v = ζu, g = Gu− and h = Gu−(i). Making use of part (i) and

proceeding by induction, we assume that the random array (R
(0)
u−(ℓ,m), Gu−(ℓ))1≤ℓ,m≤n is exchangeable

given (ζ
(k−1)
w )w≤u. Let i be that element of {1, . . . n} for which Ki({u} × [0, C] × [0, 1] × {β, δ}) = 1;

because all the Poisson point measures Kι have the same intensity given ζ, the level i is uniformly chosen
from {1, . . . n}. According to the update rule (21), (23), conditionally given (ζw)w≤u, the exchangeability
of the restriction of (Ru−, Gu−) to the first n levels propagates to the exchangeability of the restriction
of (Ru, Gu) to the first n levels.

By letting M → ∞ we have thus constructed the process (ζ,X) := (ζ,R,G) up to the time σ defined
in Theorem 2.2.

We remark that by using the sampling measures ms for the independent picks needed to continue the
ancestral lineage at competitive and selective events, we avoid the formalism of genetic markers which is
used in Section 6 of [12] to trace ancestral lineages.

The above construction and Theorem 2.2 show that the process (ζ,X) is the pathwise unique solution
the system of SDEs given by (7), (11) and (24), which is driven by (Lij), (Ki), W and extends (7), (11)
to include also the genealogical distances.

5.2 Two well-posed martingale problems in the lookdown framework

The aim of this subsection is prove Proposition 2.6, and thus to establish a well-posed martingale problem
for the (suitably stopped) process (ζ,R,G). For this, we follow the strategy outlined at the end of Sec. 2.3
(right after the statement of Proposition 2.6). Let (W,L,K) be as in Sec. 2.3.2, choose some M > 0 and
let (ζ,R,G) be the unique strong solution of the system of SDE’s (7), (11), (24). With CM defined in
(26), we set

BM := [0, CM ]× [0, 1] × {β, δ} (73)

and BM := the σ-algebra of Borel-sets on BM . We are now going to define the family of counting
processes (ΛMs ) that will figure as a fourth component (in addition to (ζ,R,G)) in the first one of our
two martingale problems. The process (ΛMs ) takes its values in the set NM of finite counting measures

on {(i, j) : 1 ≤ i < j <∞} ∪
( ⋃

i∈N

{i} × BM

)
and is defined by

ΛMs ({(i, j)}) := Lij([0, s]), 1 ≤ i < j <∞, (74)

ΛMs ({i} ×H) := Ki([0, s] ×H), i ∈ N, H ∈ BM . (75)
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Thus the process ΛM jumps at time s if and only if either the process K (restricted to R+×
⋃
i∈N({i}×BM )

or the process L has an atom whose time component is s. To prepare for a martingale problem for
(ζ,R,G,ΛM ) stopped at σM , we define the state space

ÊM :=
((

1
M ,M

)
× R

N2 × I
N ×NM

)
∪ {∆M} (76)

where
(

1
M ,M

)
×R

N2 × I
N ×NM is equipped with the product topology and a sequence (vn, rn, gn, λn) is

said to converge to ∆M if either vn → 1
M or vn →M as n→ ∞. Note that the space (76) is an extension

of (27).
Next we display the generator of (ζ,R,G,ΛM ) restricted to appropriate test functions F = F (v, r, g, λ),

where v ∈ R+, r ∈ R
N2
, g ∈ I

N and λ ∈ NM . For λ ∈ NM we define

ϕij(λ) := (−1)λ({(i,j)}), 1 ≤ i < j <∞,

ϕHi (λ) := (−1)λ({i}×H), i ∈ N, H ∈ BM .
(77)

We note that ϕij(Λ
M
s ) jumps from +1 to −1 (or vice versa) whenever Lij has an atom whose time

component is s.
With D1,M and D2,M as in Section 2.3.5, let D3,M be the set of those functions ϕ : NM → R which

are of the form

ϕ =
∏

k∈L′

V ∈V

ϕVk
∏

(i,j)∈L

ϕij (78)

for some n ∈ N, L ⊂ {(i, j) : 1 ≤ i < j ≤ n}, L′ ⊂ {1, . . . , n}, V ∈ BM finite.
We now consider functions of the form

F (v, r, g, λ) = f(v, r)γ(g)ϕ(λ) (79)

where f ∈ D1,M , γ ∈ D2 and ϕ ∈ D3,M . The smallest possible n ∈ N which fits to the required
representations of f , γ and ϕ will be called the degree of F . We write Fr(i,j) for the partial derivative of
F with respect to the variable r(i, j), and Fv for partial derivative of F with respect to v.

Let ϑi,j and ϑ̃j,θ,h′ be as in (17), (18), (19) and (20). Let F be as in (79) with degree n. For
a proper pair (r, g), let κmr,g be a measurable mapping defined on [0, 1] that transports the uniform
distribution on [0, 1] into the sampling measure mr,g. Writing µg for the second marginal of mr,g and
putting (θ(w), h′(w)) := κmr,g (w), w ∈ [0, 1], we put for all v > 0, all λ ∈ NM , and all proper pairs (r, g)
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ÂF (v, r, g, λ) =
v2

2
Fvv(v, r, g, λ) +

(
bv2µg{A} − 2cv3µg{A}µg{B}

)
Fv(v, r, g, λ)

+ 2v
∑

1≤i 6=j≤n

Fr(i,j)(v, r, g, λ)

+
∑

1≤i<j≤n

((−1)1L((i,j))F (v, ϑi,j(r, g), λ) − F (v, r, g, λ))

+
n∑

j=1

1{g(j)=B}

∫ cv2µg{A}

0
dz

∫ 1

0
dw

(
(−1)1{k}×V ((j,z,w))F (v, ϑ̃j,θ(w),h′(w)(r, g), λ) − F (v, r, g, λ)

)

+

n∑

j=1

1{g(j)=B}

∫ CM

cv2µg{A}
dz

∫ 1

0
dw

(
(−1)1{k}×V ((j,z,w))F (v, r, g, λ) − F (v, r, g, λ)

)

+
n∑

j=1

1{g(j)=A}

∫ cv2µg{B}

0
dz

∫ 1

0
dw

(
(−1)1{k}×V ((j,z,w))F (v, ϑ̃j,θ(w),h′(w)(r, g), λ) − F (v, r, g, λ)

)

+

n∑

j=1

1{g(j)=A}

∫ CM

cv2µg{B}
dz

∫ 1

0
dw

(
(−1)1{k}×V ((j,z,w))F (v, r, g, λ) − F (v, r, g, λ)

)

+
n∑

j=1

∫ bvµg{A}

0
dz

∫ 1

0
dw

(
(−1)1{k}×V ((j,z,w))F (v, ϑ̃j,θ(w),h′′(w)(r, g), λ) − F (v, r, g, λ)

)

+

n∑

j=1

∫ CM

bvµg{A}
dz

∫ 1

0
dw

(
(−1)1{k}×V ((j,z,w))F (v, r, g, λ) − F (v, r, g, λ)

)

(80)

Let D̂M be the linear span of the constant real-valued functions on ÊM and all functions of the
form (79), and denote the extension of (80) to D̂M again by Â.

Proposition 5.4. The process (ζs∧σM , Rs∧σM , Gs∧σM ,Λ
M
s∧σM )s≥0 solves the martingale problem (Â, D̂M ),

and this martingale problem is well-posed.

Proof. a) For all F ∈ D̂M ,

F (ζs∧σM , Rs∧σM , Gs∧σM ,Λ
M
s∧σM

)−
∫ s∧σM

0
ÂF (ζu, Ru, Gu,Λ

M
u ) du, s ≥ 0, (81)

is a martingale by Itô’s formula, since (ζs∧σM , Rs∧σM , Gs∧σM ,Λ
M
s∧σM

)s≥0 obeys (7), (11), (24) and the
SDE for ΛM driven by (Ki).

b) Conversely, from any solution (ζ̂s∧σ̂M , R̂s∧σ̂M , Ĝs∧σ̂M , Λ̂
M
s∧σ̂M

)s≥0 to the martingale problem (Â, D̂M )

we can extract, up to the stopping time σ̂M (which is defined as in (25) but now for ζ̂ instead of
ζ) a Poisson point process L̂ on R+ × {(i, j) : 1 ≤ i < j < ∞} and a Poisson point process K̂ on

R+×N× [0,M ]× [0, 1]×{β, δ}, such that (
˜̂
L, K̂) is equal in distribution to the corresponding restriction

of (L,K). We can then extract from (ζ̂ , Ĝ, L̂, K̂) also a Brownian motion W̃ up to the stopping time σ̂M .

Taking (Ŵ , L̂, K̂) as the source of randomness in the system given by (7), (11), (24) and in the definition
of ΛM , we infer from the pathwise uniqueness of that system that

(ζ̂s∧σ̂M , R̂s∧σ̂M , Ĝs∧σ̂M , Λ̂
M
s∧σ̃M

)s≥0
d
= (ζs∧σM , Rs∧σM , Gs∧σM ,Λ

M
s∧σM

)s≥0, (82)

as asserted.
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Now we turn to the completion of the proof of Proposition 2.6, by establishing a well-posed martingale
problem for (ζ,R,G). Recall from Sec. 2.3.4 that the mapping w 7→ (θ(w), h′(w)) which appears in (80)
is chosen such that, given (Rs−, Gs−) = (r, g), it transports the uniform distribution on [0, 1] into the
sampling measure mr,g. Thus, for functions F that are of the form (79) with ϕ ≡ 1 (and hence do not
depend on λ) the operator Â defined in (80) turns into the operator A defined in (29). The proof of
Proposition 2.6 now follows from Proposition 5.4 together with Kurtz’s Markov mapping theorem, see
Theorem A.2 in [15] (which is an extension of Corollary 3.5 in [28]). The role of the processes X and Y
there is played by our processes (ζ,R,G,ΛM ) and (ζ,R,G), respectively. In the initial distribution, we
take the components of ΛM0 to be i.i.d. Unif{−1, 1} distributed, and also for the kernel α appearing in
Theorem A.2 in [15], we take α(v, r, g, ·) to be the iid Unif{−1, 1} distribution.

5.3 The symmetrized selective genealogy. Proof of Theorem 2.7

Proof of Theorem 2.7. The proof is divided into several steps.

Step 1. Recall the definition of DM just after (29), and that of ΦF in (32). Recalling the definition (30),
and with regard to the time change (3) between the processes (ζs, Rs, Gs) and (ξt, Yt), we first claim that
(ζs∧σM , ψ(Rs∧σM , Gs∧σM ))s≥0 solves the martingale problem (Ã,DM ), where the generator Ã is defined
by

ÃΦF (v, χ) :=

∫
AF (v, r, g)νχ(dr, dg), F ∈ DM ,

with the marked distance matrix distribution νχ defined at the beginning of Section 2.4, and where DM

is the domain of Ã containing the linear span of all the functions ΦF for F ∈ DM .

The process (ζs∧σM , ψ(Rs∧σM , Gs∧σM )s≥0) arises from the process (ζs∧σM , Rs∧σM , Gs∧σM )s≥0 through
a mapping (from one state space to the other). This mapping is given by (v, r, g) 7→ (v, ψ(r, g)), where
ψ(r, g) is the isomorphy class of the marked ultrametric measure space (Tr, r,mr,g).

Due to Theorem 2.5, the process (ζs∧σM , Rs∧σM , Gs∧σM )s≥0 is Markovian. Hence, in order to prove
our first claim it suffices to show that

E
(
ΦF (ζs∧σM , ψ(Rs∧σM , Gs∧σM ))−

∫ s∧σM

0
ÃΦF (ζu, ψ(Ru, Gu)) du

)
= 0

for all F ∈ DM . By definition of Ã and Fubini, this follows provided

E

(∫
AF (ζu∧σM , r, g)ν

ψ(Ru∧σM
,Gu∧σM

)(dr, dg)

)
= E (AF (ζu∧σM , Ru∧σM , Gu∧σM )) .

This in turn follows as in e. g. Proposition 10.3 of [22] as (Rs, Gs) is exchangeable conditionally given ζs
by Proposition 5.3, and (Rs, Gs) is a. s. proper by Corollary 5.2.

Step 2. Next we show the well-posedness of the martingale problem (Ã,DM ).
We know from Proposition 2.6 that the process (ζs∧σM , Rs∧σM , Gs∧σM )s≥0 solves the martingale prob-

lem (A,DM ), and that this martingale problem is well-posed. We are thus in a convenient setting of
Kurtz’ Markov mapping theorem, see Theorem A.2 in [15] (which is an extension of Corollary 3.5 in [28]).
Let us check the validity of the assumptions of Kurtz’ theorem using the notation from there. The state
space of the “coarse” process (ζs∧σM ), ψ(Rs∧σM , Gs∧σM ))s≥0 is S0 := R+ ×M, which we can endow with

d0((v, χ), (v
′, χ′)) = |v − v′|+ dMGP

(
χ, χ′

)
,
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where dMGP denotes the marked Gromov-Prohorov metric [9]. The state space of the “fine” process
(ζσM , RσM , GσM ) is S = R+ × R

N2 × I
N, which we can endow with the metric

d((v, r, g), (v′ , r′, g′)) = |v − v′|+ d′
(
(r, g), (r′, g′)

)
,

where d′ denotes the following refinement of the marked Gromov-Prohorov metric: For (r, g), (r′, g′) ∈
R
N2 × I

N, we define d′((r, g), (r′, g′)) as the infimum of those ǫ > 0 for which there exists a complete and
separable metric space (U, dU ) and isometries ι : (Tr, r) → (U, dU ), ι

′ : (Tr
′
, r′) → (U, dU ) such that for

ι̂ : Tr × I → U × I, (x, h) 7→ (ι(x), h) and ι̂′ : Tr
′ × I → U × I, (x, h) 7→ (ι′(x), h), we have

dProhorov
(
ι̂(mr,g), ι̂′(mr′,g′)

)
< ǫ and dU (ι(k), ι

′(k)) + 1g(k)6=g′(k) < ǫ for all k = 1, . . . , ⌊ǫ−1⌋.

Here ι̂(mr,g) denotes the image measure of mr,g under the mapping ι̂, and the metric on U × I that
underlies dProhorov is defined to be dU×I((u, h), (u

′, h′)) := dU (u, u
′) + 1h 6=h′ .

With respect to d, AF is continuous for all F ∈ DM . As the mapping γ from S to S0 and the
probability kernel α from S0 to S that figure in [15] Theorem A.2 we take

γ(v, r, g) := (v, ψ(r, g)) ∈ S0, α((v, χ), dv′ dr dg) = δv(dv
′)⊗ νχ(dr dg)

Then we have γ(α(χ, ·)) = δχ by a reconstruction argument as in Proposition 10.5 of [22]. We can rewrite

the above defined operator Ã as

ÃΦF (v, χ) =

∫
AF (v′, r, g)α((v, χ), dv′ dr dg), F ∈ DM ,

In view of Step 1 and the well-posedness of the martingale problem (A,DM ), we can now infer the
well-posedness of the martingale problem (Ã,DM ) as well as the Markov property of its solution from
[15] Theorem A.2.

3. Steps 1 and 2 together show that (ζs∧σM , ψ(Rs∧σM , Gs∧σM ))s≥0 is the unique solution of the

martingale problem (Ã,DM ) and is Markovian. The assertion of Theorem 2.7 now follows from the
time-change relation Ã = vA.

5.4 Proof of Propositions 2.9, 2.10 and 2.1

Proof of Proposition 2.9. The process Y takes its values in the space M of marked genealogies that is
equipped with the marked Gromov-weak topology, see Sec 2.2. According to [9], this topology is metrized
by the so-called Gromov-Prohorov metric, and [9] Definition 3.1 ensures that the Gromov-Prohorov
distance of two elements χ, χ′ ∈ M is bounded from above by the Prohorov distance of m and m′, where
the marked ultrametic measure spaces (τ, d,m) and (τ, d,m′) are representatives of the isomorphy classes
χ and χ′ in a common embedding. In our situation the common embedding of the representatives of Yt1
and Yt2 happens in the selective lookdown space (Ẑ, ρ), and the two measures in the embedding are the
sampling measures ms(t1) and ms(t2), with ms defined in (69). Since for each M ∈ N the time change
t 7→ s(t) given by (3) is bi-continuous up to the stopping time τM , it suffices to show that a.s. the map
s 7→ ms is continuous in the weak topology on (Ẑ, ρ). This latter continuity, however, is a consequence
of Lemmas 3.7 and 3.8 and the fact that the fragments Γγ are monotypic.

Proof of Proposition 2.10. We proceed in two steps. In the whole proof, let M > 0 be fixed and let us
consider all the processes stopped at τM . For the sake of notation, we omit here the stopping times τM .
First, we explain how to obtain the martingale problems for ξA and ξB and second, we compute the
brackets of the corresponding martingales.
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Step 1: For any f : R+ × I → R of class C∞ with respect to its first component and bounded, we can
associate a function F = f ◦ γ1 of degree 1 on R+ × R

N2 × I
N. Such a function F belongs to DM with

F (v, r, g) = f(v, g(1)) for all (v, r, g) ∈ R+ × R
N2 × I

N, and our purpose is to rewrite the martingale
problem (34) for such test function F .

For the first term in the left hand side of (34), we have that:

ΦF (ξt, Yt) =

∫
f
(
ξt, g(1)

)
νYt(dr, dg) = f

(
ξt, A

)
µAt + f

(
ξt, B

)
(1− µAt ), (83)

since under the marked distance matrix distribution νYt, the type configuration corresponds to an i.i.d.
sequence drawn from µAt δA(dh) + (1− µAt )δB(dh), which results from Theorem 2.2 and the explanations
in Section 2.3.3.

Now, let us compute the second term of the left hand side of (34). For our choice of function F , we
have from (29) that:

AΦF (v, Yt)

=

∫
νYt(dr, dg)

{ v
2
fvv(v, g(1)) +

(
bvµg{A} − 2cv2µg{A}µg{B}

)
fv(v, g(1))

+ cv

∫
mr,g(dθ, dh)

[
1{g(1)=B}µ

g{A}(f(v, h) − f(v,B)) + 1{g(1)=A}µ
g{B}(f(v, h) − f(v,A))

]

+ b

∫
mr,g(dθ, dh)1{h=A}(f(v,A)− f(v, g(1)))

}

=

∫
νYt(dr, dg)

{ v
2
fvv(v, g(1)) +

(
bvµg{A} − 2cv2µg{A}µg{B}

)
fv(v, g(1))

+ cv
(
1{g(1)=B}(µ

g{A})2 − 1{g(1)=A}(µ
g{B})2

)
(f(v,A)− f(v,B))

+bµg{A}(f(v,A) − f(v, g(1)))
}
,

by recalling that the projection of mr,g(dθ, dh) on its second component gives the type frequencies µg{A}
and µg{B}. Under νYt(dr, dg), µg{A} (resp. µg{B} = 1 − µAt ) is constant and equal to µAt (resp. µBt )
and g(1) is a random variable that takes the values A and B with probabilities µAt and 1− µAt . We then
deduce that:

AΦF (v, Yt) =µ
A
t

v

2
fvv(v,A) + (1− µAt )

v

2
fvv(v,B)

+
(
bvµAt − 2cv2µAt (1− µAt )

)(
µAt fv(v,A) + (1− µAt )fv(v,B)

)

+cvµAt (1− µAt )(2µ
A
t − 1)

(
f(v,A)− f(v,B)

)

+bµAt (1− µAt )(f(v,A) − f(v,B)). (84)

Choosing f in (83) and (84) such that f(v, h) = v1{h=A} and replacing v with ξt, we find that:

MA
t := ξAt − ξA0 −

∫ t

0

(
bξAu − cξAu ξ

B
u

)
du (85)

is a local martingale (when stopped at τM , MA
.∧τM

is a square integrable martingale) started at 0.
This martingale is also continuous by Proposition 2.9. We can proceed similarly to find that MB

t :=
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ξBt − ξB0 +
∫ t
0 cξ

A
u ξ

B
u du is also a continuous local martingale started at 0.

Step 2: Let us now compute the brackets 〈MA〉., 〈MB〉. and 〈MA,MB〉.. Proceed similarly as in Step 1
for functions f : R+ × I

2 → R of class C∞ with respect to its first component, and to which we associate
F = f ◦γ2 of degree 2 on R+×R

N2×I
N. Such a function F belongs toD∞ with F (v, r, g) = f(v, g(1), g(2))

for all (v, r, g) ∈ R+ × R
N2 × I

N.

For the choice of f(v, h1, h2) = v21{h1=A}1{h2=A}, we obtain that:

(ξAt )
2 −

∫ t

0

(
ξAu + 2b(ξAu )

2 − 2c(ξAu )
2ξBu

)
du (86)

is a continuous local martingale. Using Itô’s formula on (85), we also have that:

(ξAt )
2 −

∫ t

0

(
2b(ξAu )

2 − 2c(ξAu )
2ξBu

)
du− 〈MA〉t (87)

is a continuous local martingale. From the comparison of these two expressions, we deduce that:

〈MA〉t =
∫ t

0
ξAu du. (88)

In a similar way, the choices of f(v, h1, h2) = v21{h1=B}1{h2=B} and f(v, h1, h2) = v21{h1=A}1{h2=B}

allow us to compute 〈MB〉. and 〈MA,MB〉.. Using Levy’s representation theorem [38, Th. IV.3.6,
p.141], we deduce that there exists on an enlarged probability space two independent Brownian motions
WA and WB such that dMA

t =
√
ξAt dW

A
t and dMB

t =
√
ξBt dW

B
t .

Proof of Proposition 2.1. Let us consider the following stopping times, for any ε > 0:

τAε = inf{t ≥ 0, ξAt ≤ ε}, and τBε = inf{t ≥ 0, ξBt ≤ ε}, (89)

with the usual convention that inf ∅ = +∞. Before τAε ∧ τBε , the diffusion coefficients are Lipschitz
continuous (with a Lipschitz constant of order 1/

√
ε). Classical results (e.g. [23, Chap. IV]) ensure

strong uniqueness of the stopped processes (ξA
.∧τAε ∧τBε

, ξB
.∧τAε ∧τBε

) for all ε > 0. Let τ0 = inf{t ≥ 0, ξAt = 0

or ξBt = 0}. By the continuity of the processes, limǫ↓0 τ
A
ǫ ∧ τBǫ = τ0. Once one of the processes ξA or

ξB has touched zero, it remains trapped there and the other process coincides with a standard (possibly
drifted) Feller diffusion ξ̄A or ξ̄B :

dξ̄At = bξ̄At dt+
√
ξ̄At dW

A
t and ξ̄Bt = 0 (90)

or ξ̄At = 0 and dξ̄Bt =
√
ξ̄Bt dW

B
t .

The latter diffusions are well studied (see e.g. [23, Chap. IV.8]) and we have strong existence and
uniqueness for (90).

Note that the two (independent) Feller diffusions appearing in that proof (see eq. (90)) also pro-
vide dominating processes for (ξA, ξB) (see e.g. [23, Th. VI.1.1]). Let us define the process ξ̄A as the
Feller diffusion with nonnegative growth rate b ≥ 0; it remains nonnegative for all t ≥ 0, and 0 is a
trap. Denoting τ̄A0 = inf{t ≥ 0, ξ̄At = 0}, it is known that P(τ̄A0 < +∞) ∈ (0, 1) and that on the set
{τ̄A0 = +∞}, limt→+∞ ξ̄At = +∞ a.s. (see [4, Corollary 2, p.190]). Also, let us define the process ξ̄B

as a critical Feller diffusion without finite variational part and that gets extinct almost surely in finite
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time: P(τ̄B0 < +∞) = 1 with τ̄B0 = inf{t ≥ 0, ξ̄Bt = 0}. The process (ξ̄A, ξ̄B) dominates stochastically
(ξA, ξB). As a consequence, ξB gets extinct in finite time almost surely. Overall, either ξA touches zero
before ξB and the whole process then goes to extinction, or ξA

τB0
> 0 and there is a positive probability

that τA0 = +∞ and when this happens, limt→+∞ ξAt = +∞ a.s.

6 Outlook: An extension to multiple types and mutations

The previous sections were restricted to a prototype example with two types and without mutation.
Indeed, we believe that this example, which allowed for a trade-off between conciseness and elaboration,
is best suited for displaying our novel pathwise approach to the joint evolution of population size, type
configuration and genealogy.

In this concluding section we give a brief outlook to a more general situation, without going into
further details. Let now the type space I be a compact group. Again we write µt for the relative type
frequencies and ξt for the total mass of the population at time t, and we put Ξt := ξtµt. The state space
of (µt) is M

1(I), the set of probability measures on I, and that of (Ξt) is M(I), the set of finite measures
on I, equipped with the weak topology.

Let b = b(h) and c = c(h, h′) be bounded, measurable mappings from I to R+ and I × I to R+,
respectively. For ρ ∈ M1(I) and h ∈ I we put c(h, ρ) :=

∫
I
c(h, h′)ρ(dh′). Finally, let h 7→ ℓ(h, ·) be a

measurable map from I to M1(I).
We say that Ξ is an interactive Dawson-Watanabe process with fecundity function b, competition

kernel c and mutation kernel ℓ if for all f ∈ C(I), the continuous functions on I,

∫

I

f(h) Ξt(dh)−
∫ t

0

∫

I

(
f(h)(b(h) − c(h, µu)ξu) +

∫

I

(f(h′)− f(h))ℓ(h, dh′)

)
Ξu(dh) du

is a continuous martingale with quadratic variation

∫ t

0

∫

I

f2(h) Ξu(dh) du,

cf. [13], Example 4.6 for the non-interactive case. Putting f ≡ 1 we see that the total mass process
ξt := Ξt(I), t ≥ 0, is required to be a weak solution of the SDE

dξt =

(
ξt

∫

I

b(h)µt(dh) − ξ2t

∫

I

c(h, µt)µt(dh)

)
dt+

√
ξt dWt. (91)

Our prototype example fits into this framework with I = {A,B}, ℓ ≡ 0 and b(A) = b, b(B) = 0,
c(A,A) = c(B,B) = 0, c(A,B) = c(B,A) = c.

In order to arrive at an analogue of Theorem 2.2 in this more general framework one has to modify
the update rules (9) and (10). In addition to the symbols β and δ that indicate “birth” or “death” as
the 4th component of the Poisson point measures Ki, we now have a third symbol λ that figures for
“mutation”: the Ki are now a family of independent Poisson processes on R+ × R+ × [0, 1] × {β, δ, λ},
with Ki(· × {β}), Ki(· × {δ}) and Ki(· × {λ}) having Lebesgue intensity measure.
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With the abbreviation µg,b(dh′) := b(h′)µg(dh′)∫
b dµg

, the update rules (9) and (10) are modified to

q(h, g, v, z, w, β) :=

{
κ
(
µg,b, w) if z ≤

∫
b dµg v,

h otherwise,

q(h, g, v, z, w, δ) :=

{
κ(µg, w) if z ≤ c(h, µg) v2,

h otherwise.

q(h, g, v, z, w, λ) :=

{
κ(ℓ(h, ·), w) if z ≤ v,

h otherwise.

Likewise, the total mass process (ζs) in the lookdown timescale, which is another ingredient of Theo-
rem 2.2, will be a time change of (ξt) under (3), turning (91) into

dζs =

(
ζs

∫

I

b(h)µGs(dh)− ζ2s

∫

I

c(h, µGs)µGs(dh)

)
ζs ds + ζs dWs.
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