
HAL Id: hal-03275239
https://hal.science/hal-03275239

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

hW-inference: A heuristic approach to retrieve models
through black box testing

Roland Groz, Nicolas Bremond, Adenilso Simao, Catherine Oriat

To cite this version:
Roland Groz, Nicolas Bremond, Adenilso Simao, Catherine Oriat. hW-inference: A heuristic approach
to retrieve models through black box testing. Journal of Systems and Software, 2020, 159, pp.110426.
�10.1016/j.jss.2019.110426�. �hal-03275239�

https://hal.science/hal-03275239
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

hW -inference: a Heuristic Approach to Retrieve Models

through Black Box Testing

Roland Groza,∗, Nicolas Bremonda,, Adenilso Simaob,∗∗, Catherine Oriata,∗∗

aUniv. Grenoble Alpes, CNRS, Grenoble INP, LIG
38000 Grenoble, France

bUniversidade de Sao Paulo, ICMC
Sao Carlos/Sao Paulo, Brasil

Abstract

We present an efficient approach to retrieve behavioural models from reactive
software systems in the form of Finite State Machines by testing them. The
system is accessed in black box mode; thus, no source or binary code is
needed. The novelty of the approach is that it does not require to reset the
system between tests (queries) and does not require any knowledge of the
system apart from its input domain. Experiments have shown that it can
scale up to systems that may have thousands of states.

Keywords: Reverse Engineering, FSM, Model Inference, Model Based
Testing

1. Introduction

Reverse engineering models from software artefacts has emerged as a key
enabler for model-based techniques (Vaandrager, 2017). Indeed, in many
contexts, it is difficult to ensure that models come first, as the initial basis
for software development. However, since models provide a sound basis for

∗Principal corresponding author
∗∗Corresponding author
Email addresses: Roland.Groz@univ-grenoble-alpes.fr (Roland Groz),

Nicolas.Bremond2@univ-grenoble-alpes.fr (Nicolas Bremond),
Adenilso@icmc.usp.br (Adenilso Simao), Catherine.Oriat@univ-grenoble-alpes.fr
(Catherine Oriat)

Preprint submitted to Journal of Systems and Software September 13, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0164121219302006
Manuscript_2caced291f79360be622fe1c7554a7a0

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0164121219302006
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0164121219302006

a number of analysis techniques, it is desirable to get models of existing sys-
tems. Since software is written in well-defined languages, and the execution
is automated, it is possible to retrieve models either from code or from ex-
ecutions. Retrieving models from code or higher level documents may look
simpler, but in many cases, this is not even an option. First, source code may
not be available, and binary code analysis induces its own challenges. Sec-
ondly, it may also be the case that the binary code is not directly available,
because the system is exercised only through external or remote interfaces.
This is typically the case for systems that are accessed through a network,
analogously to black box testing where only inputs and outputs of the system
can be observed.

There are various approaches to derive models from execution traces of
software systems. A basic distinction must be made between passive and
active learning. Passive learning uses observations gathered on a software
system, and tries to infer from a given set of observations a model that best
fits the observations. Active learning may start from a set of observations,
but will collect further evidence by testing the system, sending inputs and
observing the corresponding outputs to derive a model of its behaviour. It
has been known since the early work on automata learning (Gold, 1978) that
finding a minimum automaton with passive learning (including both positive
and negative data when learning language acceptors) is NP-hard. Therefore,
a number of works resort to Leslie Valiant’s PAC framework (Probably Ap-
proximately Correct, Valiant (1984)). On the contrary, active learning can
learn models in the MAT (Minimally Adequate Teacher) framework intro-
duced by Angluin (1987) with a number of queries that is just polynomial in
the number of states of the state machine to be learnt.

From a software engineering viewpoint, there are more differences than
just complexity issues. Passive learning, just as most machine learning tech-
niques, can be used as soon as a sufficient amount of data is available, which
can be collected from logs that are already there. However, in order to get
accurate models, it may also be necessary to have more detailed logs, and
that may entail making sure the level of detail has been set adequately, if
the option to tune this before collecting traces is available. Active learning
requires the ability to interact with the system, for instance a dedicated test
harness. Apart from this, it does not require access to the code, not even the
executable binary code, as the interaction can be done remotely.

Passive learning in the context of software engineering has mostly been
used on logs collected from the software by recording internal events (such as

2

function calls, tracing facilities, or internal communication events). Active
learning is used from an external interface of the system. Therefore, active
learning is in full black box mode, whereas passive learning would often use
knowledge of internal events that may be related to software architecture at
least. Since interacting with a system means sending inputs and observing
outputs, active learning is adapted to learning reactive systems, who contin-
uously interact with their environment and whose behaviour is characterized
by their input/output traces (sequences of interleaved inputs and outputs).
Conversely, passive learning is well suited to learn transformational systems
(software that compute a result after processing some input, and may just
terminate after providing the output), following the classical distinction pop-
ularized by Pnueli (1986).

In this paper, we present an approach for active model learning from black
box reactive systems that does not require the ability to reset the system.

Model learning from a black box has received growing interest in software
engineering to retrieve models of legacy software systems or components for
various purposes, such as documentation as in “specification mining” (Am-
mons et al., 2002), verification with model checkers (Peled et al., 1999),
security analysis (Büchler et al., 2014) etc. For reactive systems, the result-
ing models are in general input/output transition systems, or, if inputs and
outputs alternate synchronously, Mealy machines, often called Finite State
Machines (FSMs).

Active learning based on queries has attracted interest in model-based
software engineering with Angluin’s L∗ algorithm (Angluin, 1987), which
has been adapted to input/output models e.g. by Hungar et al. (2003);
Shahbaz and Groz (2009). Two types of queries are used: output queries,
which send sequences of inputs and observe the corresponding sequence of
outputs, and equivalence queries, whereby a so-called “oracle” will either
confirm equivalence or provide a counterexample. Notice that, in a black
box testing setting, the former are rather straightforward, whereas the latter
have to be approximated, at best.

Most algorithms for active model learning have assumed that the SUL
(system under learning) can be reliably reset, i.e., brought back to its initial
state; thus, it is possible to root the observed traces to a fixed, known state.
Each query is applied from the initial state. Yet, in many black box contexts,
e.g., when a system is queried over a network, the SUL cannot be reset or,
each reset is prohibitively costly. Consider, for example, interacting over
a local network for querying a web system on a virtual machine; it takes

3

milliseconds for a single input/output observation, whereas resetting a virtual
machine may take up to a minute, so almost 105 longer for a reset than for
a single input.

The problem of learning without reset was first addressed in Rivest and
Schapire (1993) using a variant of the L∗ algorithm. The proposed algorithm
assumed that a homing sequence (i.e., a fixed input sequence such that the
output observed completely determines the state reached at the end of the
sequence (see Lee and Yannakakis, 1996)) was given. A different approach
was proposed by Groz et al. (2015). Instead of relying on a homing sequence
and the classical learning algorithm L∗, it uses two classical assumptions from
FSM testing: i) it assumes that a bound on the number of states of the SUL
is known; ii) a characterization set for the SUL is given.

In this paper, we propose a new approach that combines the ideas from
Rivest and Schapire (1993) with the approach inspired by conformance test-
ing (Groz et al., 2015), for learning non-resettable systems. A very prelimi-
nary version of this work was published as a proposal paper (4 pages long) in
Groz et al. (2018b). Compared to that paper, we have included the following
contributions:

• Heuristics that decrease the length of the global trace needed to learn
a system

• Reducing the number of calls to an external oracle by making the most
of the existing global trace

• Enhanced methods for finding counterexamples

• Experiments with various benchmarks to assess the algorithm

• Comparison with classic algorithms that use a reset when learning ma-
chines whose graph is not strongly connected.

The proposed approach, which we call the hW -inference method, scales up to
state machines that have thousands of states and requires no prior knowledge
of the number of states of the systems. Notice that the number of states is not
directly related to the size of the system. The model learnt by the approach is
usually an abstraction of the system, and thus the number of states is related
to the level of abstraction. In general lines, it uses tentative homing sequence
and characterization set. If they are indeed valid, the method infers the
correct model. Otherwise either the homing sequence or the characterization

4

set is refined (or learnt). It is a form of optimistic heuristic that infers from
approximate h and W as if they were really homing and characterizing; if
they are not, this implies that distinct states from the system can be confused
and merged in the learnt model, leading to apparent non-determinism that
provides information to refine h or W . Equivalence queries are still needed
to confirm that a learnt model is appropriate.

The remainder of the paper is organized as follows. Section 2 gives the
necessary definitions and notations to present the algorithms and heuristics
of the approach. Section 3 presents the problem solved and the associated
assumptions. Previous related approaches are presented in Section 4, and
quantitative comparisons will be given in Section 8 based on the publicly
available tool SIMPA 1. The approach itself will be presented in sections 5
and 6. It is illustrated on a small example in sections 5.2 and 7. Section 9
concludes the paper and points to future work.

2. Definitions

In this section, we recall a few classical definitions for the type of automata
we are considering here, namely Finite State Machines (FSM). A Finite State
Machine is a complete deterministic Mealy machine. Formally, it is a tuple
M = (Q, I,O, δ, λ) where

• Q is a finite set of states,

• I is a finite set of inputs (the input alphabet), and O a finite set of
outputs,

• δ : Q × I → Q is the transition mapping, and λ : Q × I → O is the
output mapping.

Notations δ and λ are lifted to sequences, including the empty sequence ε:
δ(q, ε) = q, λ(q, ε) = ε and for q ∈ Q, for αx ∈ I∗, δ(q, αx) = δ(δ(q, α), x) and
λ(q, αx) = λ(q, α)λ(δ(q, α), x). We will call λ(q, α) and δ(q, α) the answer or
response of the machine in state q to the sequence α and the tail state of the
sequence, respectively. We will use α/β ∈ (IO)∗ to denote the interleaved

1The SIMPA software can be downloaded from:
http://vasco.imag.fr/tools/SIMPA or directly from
https://gricad-gitlab.univ-grenoble-alpes.fr/SIMPA/SIMPA

5

sequence of inputs and corresponding outputs observed when the application
of α to the machine yields the response β. Such a sequence of input/output
pairs is called a trace. Given a trace ω = α/β, α = ω denotes its input
projection, and β = ω its output projection. For any sequence α, |α| denotes
its length. Notice that we slightly abuse the notation to represent as well the
cardinality of a set: |I| is the number of elements in set I.

For learning without reset, we will assume that the FSM to be inferred
is strongly connected, i.e., for all pairs of states (q, q′) there exists an input
sequence α ∈ I∗ such that δ(q, α) = q′.

A sequence of inputs h ∈ I∗ is homing if, and only if, ∀q, q′ ∈ Q, λ(q, h) =
λ(q′, h) ⇒ δ(q, h) = δ(q′, h). In other words, the observed output sequence
uniquely determines the state reached at the end of the sequence.

Two states q, q′ ∈ Q are distinguishable by γ ∈ I∗ if λ(q, γ) 6= λ(q′, γ).
Two states are distinguishable by a set Z ⊂ I∗ if there exists γ ∈ Z that
distinguishes them. An FSM is minimal if all states are pairwise distinguish-
able. A set W of sequences of inputs (henceforth conventionally called a
W -set, following Vasilievskii (1973)) is a characterization set for an FSM M
if each pair of states is distinguishable by W .

A couple (h,W) ∈ I∗ × 2I
∗

is said to be homing-characterizing if h is
homing and W is a characterization set.

Given a machine M = (Q, I,O, δ, λ) and its current state q defined by
the context, tr(α) will denote the trace from q such that tr(α) = α and
tr(α) = λ(q, α). For a set of input sequences Z, Tr(Z) = {tr(z) | z ∈ Z}.
Finally, we overload the notation by defining Tr(q) as the set of all traces of
M from state q, i.e. Tr(q) = {tr(α)}α∈I∗ .

Two states are equivalent if, and only if, they have the same set of traces
Tr(q) = Tr(q′). Equivalence of states can be defined between states of dif-
ferent machines, although it makes sense mostly when the machines have
common inputs and outputs. Two machines M and M ′ are equivalent, de-
noted by M ≈ M ′, if, and only if, there exist state q of M and state q′ of
M ′ such that Tr(q) = Tr(q′). The traditional notion of machine equivalence
for machines with initial states is that their initial states would be equiva-
lent, hence all states would be equivalent (assuming they are deterministic
and complete). In our case, where we do not consider initial states and we
assume that the machines are strongly connected, having a pair of equiva-
lent states comes to the same. Note that we can define equivalence between
an FSM and a software system as long as the observable behaviour of this
system can be defined by the set of traces it can exhibit.

6

Given a characterization set W , rather than naming or enumerating
states, we may refer to a state by its state characterization. A state char-
acterization φ is a mapping from W to O∗, such that φ(w) = tr(w), where
tr(w) is the output sequence observed when applying w to M in state q.

Let Φ ⊂ O∗W be the set of partial functions from W to O∗, such that
∀φ ∈ Φ, ∀w ∈ W, |φ(w)| = |w| if φ(w) is defined. The set of mappings
ΦM = {φ1, . . . , φm} ⊂ Φ corresponds to the set of states Q of the machine.
Namely, for φ ∈ ΦM and q ∈ Q, we write φ ↔ q if ∀w ∈ W,φ(w) = λ(q, w).
Thus, while inferring an unknown FSM with characterization set W , we will
consider the set of mappings ΦM as its set of states.

3. Assumptions and problem

In this paper, we address the problem of inferring (learning) an FSM
model of a black box system with which we can interact only by sending
inputs and observing outputs.

3.1. Core assumptions

The minimal assumptions, common to all active learning algorithms we
consider here, are the following.

• The system behaves as a Mealy machine: it produces an output for
every input that is sent to it. Actually, we can consider multiple outputs
as a single output, empty outputs as a special output (assuming the
system is quiescent (Tretmans, 1996), i.e., stable after receiving the
input, and we can observe the absence of output with a timer). The
response of the system (the output) is determined by its internal state
and the input received.

• The system is deterministic and has a finite number of states.

• The input alphabet is known.

• The system is input-complete: it cannot refuse an input.

• The system (or more precisely the graph of its FSM model) is strongly
connected.

7

Note that we do not assume that a special input or input sequence can
reset the system to a specific initial state. Thus, since the machine cannot
be reset, after a number of input/output exchanges to learn, the system will
stay in a strongly connected component, and it will not be possible to infer
transitions from states that cannot be reached from this strongly connected
component.

3.2. Problem statement

We can then state the problem as follows.

Problem. Given a system with the assumptions above, produce a minimal
FSM model of it by sending a finite input sequence ω and observing the
system’s response to this sequence; the sequence can be sent in segments,
thus adapting to previous observed outputs.

A model means that the traces (input/output sequences) that can be
produced by the system are exactly those of the FSM.

3.3. hW-inference further assumptions

The only specific assumption used by hW -inference is the ability to get
counterexamples. Actually, even this assumption will be used very sparingly,
as will be seen later. Contrary to Rivest and Schapire (1993), hW -inference
is deterministic and does not require a bound on the number of states. In
practice, if the oracle is approximated, it might use some bound somehow.
From Rivest and Schapire (1993), hW -inference reuses two ideas: that hom-
ing can be used as an ersatz for resetting, and that approximated homing can
be refined when it leads to observed non-determinism. From LocW (Groz
et al., 2015), it reuses the idea of characterizing sets with a W -set, as well
as the general structure of the algorithm. Progressive refinement of W was
taken from Petrenko et al. (2014).

Similarly to all algorithms that do not reset for learning, hW -inference
learns by progressively extending a sequence of inputs and outputs with new
inputs, observing the outputs they trigger to learn new transitions. The
sequence of inputs and outputs that is built in this manner from the start of
the algorithm is called the global trace, or simply the trace. We will denote
it ω as in Groz et al. (2015).

We note the assumptions required by the approach limit its application.
The first one is that the system should exhibit a (non-trivial) input/output
behaviour. It is not applicable to transformational software. Then, the

8

very fact that it is assumed that the system can be described by a finite
model is a limitation. Similarly, the assumptions about being deterministic
and strongly connected limit its application, although we show that we can
adapt to non-strongly connected models.

4. Related work

In the software engineering context, many approaches have been devel-
oped to learn models from various artefacts related to software. For black box
software, reverse engineering based on source code (or binary code) analysis
cannot be applied. There are two main approaches that can be applied to
retrieve behavioural models from software executions: mining software logs
(passive learning) or testing in black box mode (active learning) from the
software interfaces.

Although passive inference follows a very different approach, there has
been quite interesting progress in this direction since the seminal papers on
software processes by Cook and Wolf (1998) and on specification mining
by Ammons et al. (2002). Specification mining has also been extended to
address partial orders and concurrent systems (Kumar, 2011; Beschastnikh
et al., 2014). Most of the work done in this direction is based on software
logs that can be obtained from tracing or logging software used by develop-
ers, or by interprocedural calls or other sorts of events that can be captured
by execution platform. Regarding the underlying algorithms for state min-
imization, many approaches are extensions of the basic kTail algorithm for
passive inference designed by Biermann and Feldman (1972). One of the
recent developments by Mariani et al. (2017) extends this to gFSMs, FSMs
with guard extensions on transitions. Some researches also try to use more
recent passive inference algorithms, such as the Blue-Fringe technique, com-
bining them with queries as in Walkinshaw et al. (2007). Petrenko et al.
(2014) is another example of combining passive state merging with active
learning. Indeed, combining monitoring (passive) with testing (active) is an
active field of research especially in the field of discovering so-called software
protocols, business processes or service orchestration (Bertolino et al., 2009;
Dallmeier et al., 2012).

In order to be able to interact with a system as required by active learn-
ing, there are also related research works in (communication) protocol reverse
engineering, to discover the format of messages exchanged, as done for in-
stance by tools such as Netzob or Nemesys (Kleber et al., 2018). This is a

9

preliminary step for inferring the state machine of undocumented (and some-
times obfuscated) protocols. Another trend in reverse engineering interfaces
is known as GUI ripping (Memon et al., 2003).

It makes sense to combine various approaches to reverse engineer models
from software systems. At the heart of inference, the techniques are based
on algorithms that often come from automata or computational theory.

For active learning of software systems, many algorithms have been pro-
posed to actively learn either DFA (Deterministic Finite Automata, language
acceptors with just inputs and final states) or FSM models of software sys-
tem. Many have been based on Angluin’s L∗ algorithm, for instance Niese
(2003), Shahbaz and Groz (2009), or on tree structures, in particular Isberner
et al. (2014), Petrenko et al. (2014). They assume that the system can be
reset at the start of each query.

However, there have been only few attempts to actively infer systems that
cannot be reset.

The problem was initially raised by Rivest and Schapire (1993). They first
present a deterministic solution where they assume that a homing sequence
is given and that an oracle can answer equivalence queries. They propose a
modified version of L∗ where resets (implicitly applied at the beginning of
each query in L∗) are replaced by applications of the homing sequence. They
use as many observation tables as there are different responses to the homing
sequence. They also present a probabilistic algorithm which starts from a
possibly non-homing sequence, and refines it, provided there is a bound on the
number of states. The problem was somehow neglected until a new approach
was presented in Groz et al. (2015). This approach no longer requires an
oracle. It uses a characterization W -set and a bound on the number of
states. It does not require a homing sequence, but uses a complicated nesting
(called localizer) of elements from W to anchor into recognizable states. More
recently, an alternative approach based on constraint solving was presented
by Petrenko et al. (2017) and refined in Petrenko et al. (2019). It just needs
a bound on the number of states. It uses the current learning trace ω and
encodes it as a satisfiability problem to see whether it is possible to find an
FSM that is different from the current conjecture while still compatible with
the trace. That approach looks currently as the best one for systems with a
small number of states (up to 10), as it does not require any knowledge on
the black box, and the length of the trace required to fully learn the system is
the smallest among current algorithms for inferring without reset. However,
it blows up (in computation time) when the system to be inferred has more

10

than a dozen states.

5. hW -inference algorithm

The hW -inference algorithm combines several levels of refinement. In or-
der to provide a better intuition of its elements, we present it progressively:
first the main loop (which we call the backbone algorithm), then the han-
dling of non-determinism implied by the fact that the algorithm works with
approximate homing and characterization, then further heuristics that will
enhance the convergence rate. We present counterexample finding and coun-
terexample processing separately, as this is always a special concern with
inference methods for black box software systems, and there can be several
approaches that can be combined with the rest of the algorithm.

5.1. Backbone algorithm

The hW -inference algorithm is built on a repetitive loop of learning each
state and each transition of the system, by applying sequences of the form
hαxw, where h is the current tentative homing sequence, α a (possibly empty)
transfer sequence to reach a transition not yet fully learnt, x an input and w
an element from the current tentative characterization set.

The backbone algorithm assumes that h is a homing sequence and W a
characterization set for the SUL. If that is the case, then no non-determinism
will occur, and no counterexample is needed, as the algorithm will progres-
sively build a conjecture M that is equivalent to the SUL. In order to rec-
ognize states reached at the end of homing sequences, it also progressively
builds a function H that associates with each response r to h a function
H(r) ∈ Φ. When this function is total from W to O∗, a new tail state of h
has been characterized and transitions can be learnt from it. Similarly, the
tail state of a transition, appearing as δ(q′, x) in the algorithm, is progres-
sively learnt. It is a partial function, so its definition domain, denoted by
dom(δ(q′, x)) is included in W , and the inclusion is strict until it is defined
on all elements of W , at which point the state is fully characterized and the
tail state of the transition becomes known.

Under the assumption that the SUL is behaving as a complete strongly-
connected FSM for which (h,W) is homing-characterizing, the backbone algo-
rithm will explore all its transitions and yield a minimal model M equivalent
to the SUL. Each time the loop is repeated, either we characterize better
the state reached by the homing sequence with a given response r until that

11

Algorithm 1 Backbone algorithm

1: Q, λ, δ ← ∅
2: repeat
3: apply h and observe r ∈ O∗
4: if H(r) is undefined then
5: H(r)← ∅
6: if H(r) is undefined for some w ∈ W then . Learn the state
7: apply w, observe y, H(r)← H(r) ∪ {w 7→ y}
8: else . We know the state reached after h/r
9: let q = H(r) be the state reached at end of h;

10: Q← Q ∪ {q}
11: find shortest αx ∈ I∗ s.t. δ(q, α) = q′ and δ(q′, x) is partial.
12: apply α.x.w, for some w 6∈ dom(δ(q′, x)), observe β.o.y; . Learn

a transition
13: λ(q′, x) = o and δ(q′, x)(w) = y
14: if dom(δ(q′, x)) = W then
15: Q← Q ∪ {δ(q′, x)}
16: until M = (Q, I,O, δ, λ) is complete

12

state is fully characterized, or we learn a new transition, until all reachable
transitions from the end of the last applied homing sequence are complete.
Since we assume that the machine to learn is strongly connected, any tran-
sition can be reached from any state and, when the algorithm terminates, δ
and λ make up a complete machine.

Let n be the number of non-equivalent states, |I| the size of the input
set, |W | the cardinality of W and V =

∑
w∈W |w| the cumulated length of

elements in W . The length of any transfer sequence α is bounded by n and
there are exactly n|I| transitions to learn; but actually the worst case for
the cumulated length of transfer sequences is not n2 but n(n − 1)/2 which
we bound by n2/2. Indeed, the worst case for transfer would be a sort of
“linear” automaton where the farthest state from any state would be n − 1
states away from the current one, but the transfer to intermediate states
would then be of length 1, 2 up to n − 2. Learning H will require at most∑

w∈W n(|h|+ |w|) = n(|W ||h|+V) inputs since n is a bound on the different
answers to h. Learning transitions will require at most

∑
w∈W n|I|(|h|+n/2+

|w|) = n|I||W |(|h|+ n/2) + n|I|V .
Therefore the length of the trace required to get M will be bounded by

n(|W ||h|+ V) + n|I||W |(|h|+ n/2) + n|I|V
= n(|I| + 1)(V + |h||W |) + 0.5n2|I||W |. The complexity may depend on
the quality of the sequences provided for h and W . There are machines for
which the shortest homing sequence is of length n(n− 1)/2. And separating
sequences in the worst case are of length n and there can be in the worst
case n − 1 sequences. Thus, a worst case bound is O(|I|n4). However, the
average complexity in practice is much lower. Even with hW -inference that
progressively builds non optimal h and W , experiments presented in Section
8 show that on randomly generated machines, the average complexity is
polynomial with a much lower degree O(|I|n1.3).

We now discuss the correctness of the backbone algorithm. We first notice
that it assumes that both h is a valid homing sequence and W is a valid
characterization set. As such, they can be used to learn the next state and
output functions that fully define an FSM. This is similar to what is done
in FSM-based test generation (see, e.g., Simao and Petrenko (2008)). The
homing sequence is used to return to some known state. Thus, in Line 3,
the homing sequence is applied and the response r is observed. As h is
a (tentative) valid homing, r should identify the reached state. However,
it may be the case that this is the first time r is observed (Line 4); we
record this information in H. If r was observed before but not all responses

13

to the characterization set is known (Line 6), we expand H(r) with the
missing information (Line 7). Notice that Lines 4 and 7 will be executed
a finite number of times; actually, n|W | times. When the state reached
by h is fully known, but the machine is not complete yet, there is a state
q′ with a transition (q′, x) for which the next state and/or the output is
not identified. Thus, there is a shortest input sequence leading to one of
such states (Line 11). Line 12 reaches that state, apply x observing that it
responds with o and Line 13 updates both the output function and the next
state function. The next state function is updated with the response to some
sequence of the characterization set. These steps will be executed exactly
|W | times for each transition, and the transition will be fully identified. As
there is a finite number of transitions, these will be executed only a finite
number of times. We conclude that the backbone algorithm will terminate
with a correct model.

5.2. Illustration of the backbone algorithm

In order to illustrate the algorithm, we choose a very simple example that
will provide a short trace. This will be used as a running example for the
further development of the algorithm. We consider the 3-state example in
Figure 1.

1 b/0

2

a/0

b/0

3

a/1

a/0 b/0

Figure 1: Simple automaton to infer

14

For this FSM, aa is a homing sequence. aa is also a distinguishing se-
quence, so that we can take h = aa and W = {aa}. The backbone algorithm
runs as follows. We suppose we start from state 3. Transitions are numbered
with indices starting from 0. Each transition is shown by an arrow, going
from one state to the next, and labeled with the input/output above the
arrow.

First we apply h = aa which leads us in that case to state 2, and apply
w = aa, the unique sequence in W , to recognize that the tail state reached
after h/00 is the state {w 7→ 10}.

3
a/0
−→ 0 1

a/0
−→ 1︸ ︷︷ ︸

h

2
a/1
−→ 2 3

a/0
−→ 3︸ ︷︷ ︸

w

1

We reapply h, and get this time a different answer 01, so again we reapply
w and now record that the tail state reached after h/01 is {w 7→ 00}.

1
a/0
−→ 4 2

a/1
−→ 5 3

a/0
−→ 6 1

a/0
−→ 7 2

Once again, we reapply h, and get a third response 10 leading to state
{w 7→ 01}.

2
a/1
−→ 8 3

a/0
−→ 9 1

a/0
−→ 10 2

a/1
−→ 11 3

At this point, we have identified three states in Q = {{w 7→ 10}, {w 7→
00}, {w 7→ 01}}, but not any transition so far (λ and δ are still empty). Note
that this might not be the case for other examples. It might happen that
we would recognize just one or a few states, and start learning transitions.
For instance, if the homing sequence would just loop into the starting state,
we would start learning transitions from that state before discovering new
states.

We also have the mapping H = {00 7→ {w 7→ 10}, 01 7→ {w 7→ 00}, 10 7→
{w 7→ 01}}. Now, we reapply h and get the answer 00. This time, we know
that the tail state would be {w 7→ 10}, so we do not need to check it, and
we can learn a transition from that state. We choose to apply a, observe a/1
and check the tail state of that transition which happens to be {w 7→ 00}.

3
a/0
−→ 12 1

a/0
−→ 13︸ ︷︷ ︸

h

2
a/1
−→ 14︸ ︷︷ ︸
x=a

3
a/0
−→ 15 1

a/0
−→ 16︸ ︷︷ ︸

w

2

At this point, the partial conjecture built from Q is illustrated in Figure 2.
We reapply h, get the answer 10, so we are in state {w 7→ 01}. Thus, we

also learn a transition from it: in that case transition a/0 leading to state
{w 7→ 10}.

15

01 10

00

a/1

Figure 2: Partial conjecture after learning 1 transition

2
a/1
−→ 17 3

a/0
−→ 18 1

a/0
−→ 19 2

a/1
−→ 20 3

a/0
−→ 21 1

Again we learn another transition on input a.

1
a/0
−→ 22 2

a/1
−→ 23 3

a/0
−→ 24 1

a/0
−→ 25 2

a/1
−→ 26 3

Now, when we reapply h, we come to a state for which we already know
the transition by input a. So now we learn its transition by input b.

3
a/0
−→ 27 1

a/0
−→ 28︸ ︷︷ ︸

h

2
b/0
−→ 29︸ ︷︷ ︸
x=b

2
a/1
−→ 30 3

a/0
−→ 31︸ ︷︷ ︸

w

1

Now we learn again another transition by b, this time on the state reached
after h/01.

1
a/0
−→ 32 2

a/1
−→ 33 3

b/0
−→ 34 1

a/0
−→ 35 2

a/1
−→ 36 3

For the next transition to learn, there is a twist: h gives again a response
00 leading to state {w 7→ 10} for which we know both transitions (by a and by
b). So we choose the shortest transfer sequence α leading to a state for which
there is a transition that has not yet been learnt. In that case, α = ab, which
we know leads to state {w 7→ 01}, for which we can now learn transition b.

3
a/0
−→ 37 1

a/0
−→ 38︸ ︷︷ ︸

h

2
a/1
−→ 39 3

b/0
−→ 40︸ ︷︷ ︸

α=ab

1
b/0
−→ 41︸ ︷︷ ︸
x=b

1
aa/01
−→ 42−43︸ ︷︷ ︸

w

3

We now have a complete three state FSM M = (Q, {a, b}, {0, 1}, δ, λ)
pictured in Figure 3 that is equivalent to the SUL in Figure 1.

16

01 b/0

10

a/0

b/0

00

a/1

a/0 b/0

Figure 3: Final conjecture M

5.3. From backbone to hW-inference

hW -inference is supposed to be used when little is known about the SUL,
apart from its input set. Therefore, we may not know h or W . Using the
backbone loop with incorrect h or W may lead to inconsistencies during the
course of the algorithm.

And even with (h,W) not homing-characterizing, the inference could still
end with a complete machine without detecting an inconsistency. It may also
be the case that the inferred machine is not connected. hW -inference will
need counterexample traces to progress. This will be discussed in section 6.

5.3.1. h-ND inconsistency

If we start with an h which is not homing, this implies that we will
consider as a single state (as reached by a given response r to h) at least
two states that are in fact different. Later on, when we apply some sequence
of inputs γ after observing h/r, we may observe different output sequences
for the same prefix hβ of hγ that was already applied as a prefix of another
sequence. This we call an h-ND inconsistency, because it appears as non-
deterministic behaviour from the state of the machine reached after observing
h/r. Actually, hβ is a better attempt at a homing sequence because it will
reduce the uncertainty (as in Lee and Yannakakis (1996) and Rivest and
Schapire (1993)). hW -inference will extend h with the smallest prefix of β

17

that triggers a different output.
Formally, h-ND inconsistency occurs when the global trace contains a

sequence h/r.β/v and another sequence h/r.β/v′ such that v 6= v′. In this
case we extend h to hβ.

5.3.2. W -ND inconsistency

A second type of inconsistency can occur when W is not characterizing.
Even though h may be homing, different responses r and r′ can be associated
with the same state q ∈ Q if they have the same response to all sequences of
W . Similarly, the tail states of two transitions can be merged, viz. δ(q, x) =
δ(q′, x′) even if those states could be distinguished by a sequence that is
not in W . State confusion again can lead to apparent non-determinism for
sequences of inputs that are applied from q or δ(q, x). In that case, some
suffix of those sequences can be added to W to enhance distinguishability of
states.

Formally, W -ND inconsistency occurs when the global trace contains a
sequence h/r.α/u.β/v and another sequence h/r′.α′/u′.β/v′ such that r 6= r′,
δ(H(r), α) = δ(H(r′), α′) and v 6= v′. This implies that δ(H(r), α) and
δ(H(r′), α′) can be distinguished by β. Actually, all states traversed while
applying β can be distinguished by some suffix of β. There can be several
ways of choosing which subsequence of β should be added to W . Currently,
we add the shortest suffix of β that is not yet in W and at the same time we
clean W of all its prefixes: if a sequence w′ extends another sequence w ∈ W ,
then it is unnecessary to keep w since w′ will distinguish at least as many
states.

5.4. Main hW-inference algorithm

We are now ready to present the complete algorithm that does not assume
knowledge of homing and characterizing sequences. It will learn h and W
from inconsistencies and automatically extend them for improved homing
and characterizing.

The algorithm is based on the following structures:

• Q ⊂ Φ - s.t. ∀q ∈ Q, dom(q) = W - is the set of all states built during
inference.

• H ⊂ {r 7→ Φ} registers the characterizations reached after applying the
homing sequence. A characterization mapped by H is either a partial

18

characterization or an element of Q if answers to all elements of W are
known.

Inconsistency handling. In the hW -inference algorithm, each time an input
is applied we check for h-ND or W -ND inconsistencies. In the backbone
algorithm, the discovery of an inconsistency leads to restart the backbone
algorithm with an improved h or W . This is similar to exception handling:
it can be raised on any application of a single input, and diverts the normal
flow of the algorithm. Outside of backbone algorithm (i.e. at Line 22), an h-
ND inconsistency will be used to extend h but the search of counterexample
will continue whereas a W -ND inconsistency is a counterexample and will be
processed at the next line.

When an inconsistency of type ND is found, either h or W is refined,
we abort current steps and restart from Line 3. So the global inference is
a repetition of sub-inferences, each one with an updated h or W , until we
come to a model for which there is no counterexample.

On Line 14, we might not be able to find a path to a partially defined
transition, if we are in a complete subgraph of a non strongly-connected
machine M . In order to be able to reach back a partially defined state out
of the current subgraph, we need a counterexample.

We now discuss the correctness of the base algorithm. Note that the loop
from Line 5 through Line 21 are analogous to the backbone algorithm; the
exception is that inconsistencies can be observed and should be dealt with
(as discussed later). Nonetheless, if the h and W are valid, no inconsistencies
are found and the algorithm terminates, since there would not be a coun-
terexample. Every time an inconsistency is found, either by an output that
is not according to the machine learnt so far or by a failure to find a path
to a partially defined state, we can update h or W . Thus, we have to prove
that after a finite number of updates, both h and W will be valid.

The tentative homing sequence h is updated when it can be determined
that h is not a homing sequence for the conjecture machine obtained so far.
Suppose that the responses to h identifies k states, but an inconsistency was
found. Thus, h is extended, so that one state is split into (at least) two states,
identifying now more than k states. Therefore, after at most n updates h
will identify all the states, and hence will be a valid homing sequence.

As for the updates of W , it is trickier. The main source of information
for the update of the characterization set is the processing of the counterex-
amples. As a basic fact, we have that a set In of all sequences of length n is

19

Algorithm 2 Base hW -inference algorithm

1: procedure Infer
2: initialize: h← ε; W ← ∅
3: repeat
4: Q, λ, δ ← ∅
5: repeat
6: apply h and observe r ∈ O∗
7: if H(r) is undefined then
8: H(r)← ∅
9: if H(r) is undefined for some w ∈ W then . Learn the state

10: apply w, observe y, H(r)← H(r) ∪ {w 7→ y}
11: else
12: let q = H(r) be the state reached at end of h;
13: Q← Q ∪ {q}
14: find shortest αx s.t. δ(q, α) = q′ and w s.t. δ(q′, x)(w) = ⊥
15: if such a path cannot be found then
16: go to line 22 . Graph is not strongly connected

17: apply α.x.w observe β.o.y; . Learn a transition
18: λ(q′, x)← o and δ(q′, x)(w) = y
19: if dom(δ(q′, x)) = W then . Full characterization reached
20: Q← Q ∪ {δ(q′, x)}
21: until M = (Q, I,O, δ, λ) contains a strongly connected complete

component
22: Get Counterexample
23: Process Counterexample
24: until no counterexample can be found . M equivalent to SUL

20

characterization set (Lee and Yannakakis, 1994). Even being exponentially
large, this set is surely finite. Surely, a much smaller subset of In is a char-
acterization set. So, with W being updated only with sequences no longer
than n, eventually W will be valid.

Therefore, under the assumption that the oracle does not provide coun-
terexamples with suffixes longer than n, the algorithm will terminate. Exper-
iments show that even for random walk, this is the case in all our experiments,
and in fact the convergence is much faster (see Section 8).

5.5. Heuristics added to base algorithm

The hW -inference algorithm builds more and more precise models of
the SUL, based on h and W , that are refined as soon as apparent non-
determinism shows that (h,W) is not homing-characterizing. Moreover,
when it does not yield a complete model, an oracle can be called to pro-
vide a counterexample.

Classically, the efficiency of a learning algorithm, apart from its internal
computations, is determined by the number of queries it requires to learn a
model: queries to the SUL by sending inputs to it and observing its outputs,
and queries to the oracle. However, when the SUL cannot be reset, the
criterion for the efficiency reduces to the length of the global trace needed
to reach the final model and the number of calls to the oracle. In a context
of learning applied to testing black box systems, concentrating on the length
of the trace is particularly appropriate as the interaction with a black box
takes often more time than the bookkeeping activities of the algorithm (e.g.
network delay vs internal computation).

On top of the base algorithm, we add heuristics that are likely to reduce
either the length of the trace or the number of calls to the oracle or both.

• Dictionary of queries: reusing queries and answers from previous sub-
inferences.

• Adding h in W .

• Exploiting the past trace to spot other inconsistencies than non-deter-
minism.

Those are heuristics, because the rationale for each of them does not
guarantee that it will reduce the total number of queries: since the current
inference is based on approximate h and W , using information based on

21

0

50000

100000

150000

200000

250000

300000

60 80 100120140160180200le
n

gt
h

of
tr

ac
e

(s
y
m

b
ol

s)

number of states

without heuristics
adding h in W

inconsistencies on h
use dictionary

the 3 heuristics together

(a) reduction of trace length

2.5
3

3.5
4

4.5
5

5.5
6

6.5

10 100 1000

n
u

m
b

er
of

co
u

n
te

r
ex

am
p

le
as

ke
d

number of states

without heuristics
adding h in W

inconsistencies on h
use dictionary

the 3 heuristics together

(b) reduction of oracle call

Figure 4: Improvements brought by heuristics

“incorrect” data could be misleading and induce slower convergence. We
introduced these heuristics into the hW -inference algorithm after assessing
their efficiency, at least on large sets of randomly generated machines.

Figure 4a shows how many executions on the black box are saved with
each heuristic. For this comparison, we used random automata with two
inputs and two outputs, as this is somehow the toughest case because larger
sets of inputs and outputs increase state distinguishability; effects of larger
input sets is discussed in Section 8. Although we show only automata of 50
to 200 states here, we obtained similar results on automata up to 3000 states.
Our testing framework will be described in section 8.

Adding h in W and using a dictionary are quite efficient in reducing
trace length: each of them decreases the trace length by around one third,
and combined together, the trace length is divided by two. Using the past
trace to spot inconsistencies reduces the number of calls to the oracle. The
same goes for adding h in W , but the dictionary has no influence w.r.t. the
oracle.

5.5.1. Using a dictionary

In the base algorithm, we repeatedly apply input sequences h.w or h.α.x.w
to discover states and transitions. When we add a new w in the W -set, we

22

restart the backbone algorithm and we might apply again the same sequences
h.α.x.w. To reduce the length of the trace, we can just reuse the observed
output responses to these input sequences.

We add a so-called dictionary (see Niese, 2003) to record those sequences.
Each time we apply h.α.x.w and observe an answer r.β.o.y at Line 17 of the
base algorithm, we record h/r.α/β.x/o.w/y in the dictionary.

5.5.2. Adding h to W

By construction, h is a sequence for which we observed several responses.
Each refinement of h is done after observing two different behaviours after h
and thus, each refinement of h gives a sequence which has at least one more
answer than the previous one.

Each different output observed after a given sequence distinguishes a state
in the black box and thus, h can also be used to distinguish states.

Based on this observation, we can choose to add h to W after each re-
finement of h. Of course, it is useless to add h if it is a prefix of a sequence
already in W , and if we add h, W can be cleaned of any prefix of h.

Even though this means adding sequences to W and therefore implying
more queries, the experiments showed that using this heuristic is quite effi-
cient: on random machines, it reduces the length of the trace by around 30%
to reach the final model.

5.5.3. Checking inconsistencies between h and conjecture

Apart from h-ND and W -ND, other inconsistencies can be detected, not
just on the trace itself, but also between the trace and the conjecture.

One possible verification which can be done is that h is compatible with
the conjecture. Actually, two checks can be done: 1) we can check if the
mapping H is consistent with the conjecture, and 2) we can also check that
h is really a homing sequence for the conjecture. Both checks are performed
on the conjecture. However, the search is restricted to states q1 that are
reachable from the current state at the end of the trace. If that state is
unknown, it is necessary to apply h on the SUL to ascertain the current
corresponding state q0 of the conjecture (as H(r0) where r0 is the observed
response on the SUL). This is motivated by the fact that after checks are
carried out on the conjecture, if an inconsistency is found, the heuristic will
apply a new sequence on the SUL to solve this inconsistency.

H-inconsistency If ∃w ∈ W,∃r ∈ O∗ s.t. H(r)(w) 6= λ(δ(q1, h), w), then
apply on SUL a transfer sequence to q1, and then h.w. As we know there

23

will be a discrepancy between a transition on the conjecture (whose
output was observed previously in the trace) and the trace, either h-
ND or W -ND will be detected.

h not homing If h is not homing we can identify two reachable states q
and q′ in the conjecture such that λ(q, h) = λ(q′, h) and ∃w ∈ W s.t.
λ(δ(q, h), w) 6= λ(δ(q′, h), w). In that case, we apply on SUL a transfer
sequence to q, followed by h.w. Then a transfer to q′ followed by
h.w. As soon as h-ND or W -ND is detected during these applications
of sequences, the application is interrupted and the inconsistency is
addressed.

6. Finding and Processing Counterexamples

In our setting, a counterexample is a trace observed on the SUL that is
not accepted by the current conjecture.

Angluin’s initial paradigm for learning assumed that a teacher could as-
sess the adequacy of the model provided by a learner and answer an equiva-
lence query either with a positive answer (the model is equivalent to the SUL)
or with a counterexample, viz. a trace accepted by one and not the other.
The ability to rely on such an oracle (the teacher) is the key that makes it
possible with L∗ to learn a model in a polynomial number of queries.

In a black box testing context, such a knowledgeable oracle is not avail-
able. In order to ensure that a learning algorithm can progress towards an
equivalent model, it is important to keep the ability to find counterexamples.
Several approaches can be used, such as:

• Using the conjecture as a specification and checking the conformance
of the SUL with the Vasilievskii-Chow algorithm (Vasilievskii, 1973;
Chow, 1978). This was considered by Peled et al. (1999). But it is
exponential and not well-suited for non-resettable systems. However,
when we allow the system to be reset (see 8.4), we can use this as if
the SUL did not have more states than the conjecture, which avoids
the exponential blow-up.

• Constraint solving as in Petrenko et al. (2017). Given the trace from
the learning algorithm and the conjecture, we find another conjecture
(possibly with more states), and compute a sequence that distinguish
them. For the hW -inference algorithm, we would have to define a

24

logical encoding of the problem so as to submit it to a SAT-solver.
However, based on the results from Petrenko et al. (2017), this approach
most likely would not scale up.

• Random walk on the graph of the conjecture, or equivalently random
sequence of inputs. This is the main technique that can be used to look
for a counterexample on a black box system, as it can be performed
without any specific knowledge. Note that it is not guaranteed to
find a counterexample, so the absence of counterexample is just an
approximation of equivalence between the conjecture and the SUL.

• Using the global trace as a source of counterexample. This is discussed
in section 6.1 below.

Except for the last solution (counterexample from the global trace), it
is necessary to bound the search for a counterexample, both for theoretical
reasons (deciding equivalence between a black box and an FSM cannot be
done in a finite number of steps) and for practical ones (allocating a limited
time to get a counterexample). Equivalence queries are therefore approxi-
mated, and the absence of counterexample (found) will be considered as an
approximated evidence for equivalence.

6.1. Using the trace to find counterexamples

In hW -inference, we first look for counterexamples from the trace as an
“internal” source of counterexamples, and failing that, we will use random
walk as an “external” oracle. Note that we cannot avoid two calls to an
external oracle (at least when we start with empty h and W): the first when
the trace is only composed of one application of each input, and the last
one when the conjecture is correct (to check equivalence). Interestingly, on
random machines at least, the number of calls to an oracle can be kept almost
to that minimum when we use the global trace as a source of counterexample.
This appears on Figure 5b.

It is possible that the global trace, which of course is a trace of the
SUL, may not be a trace of any state of the conjecture. In that case, it
is a counterexample. It is also possible that a suffix of the global trace is
also a counterexample (in which case the global trace is also a counterex-
ample, as well as all the longer suffixes that include that suffix). This can
occur in particular if the conjecture is not strongly connected. And also be-
cause the conjecture derived from the last sub-inference when (h,W) is not

25

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

60 80 100120140160180200

le
n

gt
h

of
tr

ac
e

(s
y
m

b
ol

s)

number of states

using only random walk
using trace to find CE

(a) reduction of trace length

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

10 100 1000n
u

m
b

er
of

co
u

n
te

r
ex

am
p

le
as

ke
d

number of states

using only random walk
using trace to find CE

(b) reduction of oracle call

Figure 5: Improvements brought by looking in trace for counter examples

homing-characterizing might have missed transitions that had been traversed
in previous sub-inferences.

The issue to check compatibility between trace and conjecture is that the
initial state of the conjecture is unknown. Our solution is to look for the
first sub-trace ω′ of ω s.t. for all state q in conjecture, λ(q, ω′) is defined and
ω′ 6= λ(q, ω′). If such an ω′ exists, it is a counterexample and we can process
it like a counterexample given by an oracle. If there is no ω′ or if ω′ is already
in W , we cannot use the trace to provide a counterexample and in this case
we ask one from the oracle.

Figure 5a shows that the length of the trace is reduced approximately by
10% when using the trace to find counterexamples instead of asking an oracle.
Actually, the main impact comes from the fact that we reuse the same coun-
terexample and we increase the length of elements in W instead of increasing
the cardinality of W as will be seen when we process counterexamples.

To summarize, it appears that looking for counterexamples in the global
trace before resorting to an oracle is extremely beneficial, at least on random
machines.

• It reduces the length of the trace needed to infer a correct conjecture
(10% reduction on random machines)

26

• It almost suppresses the need for an external oracle: the first call is
almost trivial, any small random walk would suffice. Moreover, when
the algorithm converges on a conjecture with no counterexample on the
trace, in most cases, it means this conjecture is correct, the call to the
external oracle will only confirm it.

Of course, if the SUL is a Moore lock or needs a special sequence to access
certain parts of the graph, an external oracle would still be needed.

6.2. Processing counterexamples

Many options for processing counterexamples have been investigated for
query-based learning algorithms. Angluin initially proposed to add all pre-
fixes of a counterexample as rows in L∗. Later approaches, triggered by
Rivest and Schapire (1993) have shown that it is better to add suffixes to
columns. Tree-based algorithms (Isberner et al., 2014; Petrenko et al., 2014)
use a similar approach of extending suffixes that distinguish states, i.e. the
W -set.

Counterexample processing in hW-inference. In hW -inference, we currently
use the “shortest suffix” approach: we add the shortest suffix of the coun-
terexample that is not yet in W . If the whole counterexample is already in
W , we need another counterexample.

7. Example

We now illustrate the full algorithm on the small example from Figure 1.
We assume here that the SUL is in state 1 when the inference begins. As-
suming we do not know anything about the black box, we start with h = ε
and W = ∅ or, equivalently, W = {ε}.

1 ︸︷︷︸
h=ε

︸︷︷︸
w=ε

︸︷︷︸
h=ε

a/0
−→ 0︸ ︷︷ ︸
x=a

2 ︸︷︷︸
w=ε

︸︷︷︸
h=ε

b/0
−→ 1︸ ︷︷ ︸
x=b

2 ︸︷︷︸
w=ε

a/1
−→ 2︸ ︷︷ ︸

counterexample

3

Before transition 0, we apply h = ε followed by an empty characteriza-
tion. This identifies the state reached after the current homing sequence as
the state H(ε) = ∅. Then we reapply h to learn a transition: we end up in
the same state, for which we will learn transition on input a (this is transition
numbered 0). After transitions 0 and 1, we conjecture the “daisy” machine
(single state with looping transitions) illustrated in Figure 6.

27

∅ a/0 b/0

Figure 6: Initial conjecture

Such a daisy machine will always be proposed as initial conjecture by the
algorithm for any SUL inferred with h = ε and W = ∅. Since each input
is tried only once, there cannot be any internal inconsistency in the trace,
so we call an oracle, viz. a random walk, which here we assume starts with
a, immediately triggering a counterexample a/1 whereas the conjecture only
allows a/0. At the same time, we detect an h-ND inconsistency, from which
we deduce that we must extend h with a. Both the heuristic of adding h
in W and the counterexample processing will also extend W with w = a.
We restart the outer loop of the base algorithm on Line 3 with the updated
h = a and W = {a}.

3
a/0
−→ 3︸ ︷︷ ︸
h=a

1
a/0
−→ 4︸ ︷︷ ︸
w=a

2
a/1
−→ 5︸ ︷︷ ︸
h=a

3

With transitions 3 and 4, we get H(0) = {{w 7→ 0}}. Then with transi-
tion 5 we home again (this is the beginning of another h.α.x.w application).
Moreover, this time we find again h-ND: the two traces a/0.a/1 and a/0.a/0
have the same answer a/0 to the homing sequence a but differ after applying
the same input a. So we extend to h = aa. We add it in W , while removing
from W the previous a which is now a prefix of the new sequence we just
added.

We now have found (h,W) = (aa, {aa}) that is homing-characterizing.
Therefore, the backbone algorithm in the inner “repeat” loop on Line 5 of
the base algorithm will correctly identify the SUL. Since at this point the
SUL is in state 3, the 44 transitions illustrated in Section 5.2 are repeated
here, and the algorithm terminates with the correct model of Figure 3.

3
a/0
−→ 6 1

a/0
−→ 7 2

a/1
−→ 8 3

a/0
−→ 9 1

a/0
−→ 10 2

a/1
−→ 11 3

a/0
−→ 12

...

28

3
b/0
−→ 46 1

b/0
−→ 47 1

a/0
−→ 48 2

a/1
−→ 49 3

8. Experiments

In this section, we provide some experimental evaluation of the proposed
algorithm. First, we experiment with randomly generated automata, which
allows us to estimate the expected complexity of the algorithm. Then, we as-
sess the algorithm on a reference benchmark used for active learning methods
(Neider et al., 2018).

All these experiments can be reproduced with the replication package
available from the following website :
vasco.imag.fr/tools/SIMPA/references/publications.html#jss-2019

8.1. Assessment of hW-inference on randomly generated machines

hW -inference combines algorithmic and heuristic features. It also de-
pends on the counterexamples provided by the oracle. So it is difficult to
analyze its expected average complexity. Therefore we perform experiments
to assess this complexity, addressing the following research question.

RQ1 What is the expected (average) complexity of the algorithm?

As usual, the comparison is made on random automata. We chose to gen-
erate automata with two outputs to reduce the distinguishability of states
and make the inference harder. After an initial assessment on the influence
of the number of inputs, we will also concentrate on automata that have only
two inputs. The automata are built from a set of states, firstly connected
with (almost random) transitions to ensure the strong connectivity and then
completed with missing transitions. The building process may create equiv-
alent states, but, as the inference produces a minimal automaton, we check
the minimal number of states after inference.

The hW -inference method was implemented in the SIMPA 2 model in-
ference framework (Büchler et al., 2014), which already included implemen-
tations of the algorithms by Rivest & Schapire and LocW, as well as various
other algorithms for resettable systems. All experiments with SIMPA have

2The SIMPA software can be downloaded from:
http://vasco.imag.fr/tools/SIMPA

29

been performed on a desktop computer with an Intel R© Xeon R© E3-1246 v3
processor, 3.50 GHz and 32 GB of RAM.

Figure 7, made with random automata of 30 states, shows that the num-
ber of inputs does not have a big impact on the length of the trace, especially
with the benefits from our heuristics. Actually, the number of inputs influ-
ences the length of trace by a factor a bit less than linear. Therefore, we
will only do further comparisons regarding the number of states, with a fixed
number of inputs (actually two inputs).

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60

le
n

gt
h

of
tr

ac
e

(s
y
m

b
ol

s)

number of input symbols

relationship between length of trace and number of input symbols

without heuristics
with heuristics

Figure 7: Influence of input set of the automata

For comparisons of hW -inference with other methods, we generated au-
tomata of various sizes, from 5 to 3000 states and for each point in the graphs
we took the average of 100 inferences. All random automata have exactly
two inputs, so the number of transitions is just twice the number of states.
We compared the algorithms applicable to non-resettable systems: Rivest
and Schapire (1993), LocW (Groz et al., 2015) and constraint solving (Pe-
trenko et al., 2017) algorithms. LocW algorithm is based on the knowledge
of a W -set and the size of the set has a big impact on the length of the trace
and the duration of learning. For those comparisons, we provided a W -set
of at most two sequences for the LocW algorithm: this seems to be a typical

30

size for an optimal W set of random automata3, and a larger size would even
give a greater advantage to hW -inference since LocW has an exponential
complexity in the cardinality of W . We also provide the exact number of
states for the bound required by LocW.

Because the algorithms do not have the same complexity, we inferred
only automata of reasonable size regarding each algorithm in order to have
an average inference duration under 40 seconds. The data for the constraint
solving approach were directly taken from Petrenko et al. (2017) and thus,
the duration might have a different factor; however the use of a logarithmic
scale reduces the impact of constant factors.

Figure 8 shows the duration of learning for each algorithm. The con-
straint solving approach does not scale beyond 11 states. Rivest&Schapire
and LocW algorithms infer automata up to 75 and 220 states, respectively.
In the same duration (40 seconds), our hW -inference approach can infer
automata of 3000 states.

0.01

0.1

1

10

100

10 100 1000

d
u

ra
ti

on
of

le
ar

n
in

g
(s

)

number of states

hW
Rivest and Schaphire

Constraints solver
LocW

Figure 8: Duration of learning for different algorithms

The comparison of duration is needed because the complexity of some

3https://ensiwiki.ensimag.fr/images/a/a5/JeanBouvattierRapport.pdf

31

algorithms will make them unusable for medium or large automata. However,
a more important thing to compare is the number of inputs applied on the
SUL. When inferring a real system, the time needed to execute a request can
be the limiting parameter; thus, we concentrate on comparing the length of
the trace for each algorithm.

Figure 9 shows the number of inputs applied on the SUL by each algo-
rithm on the same automata as in Figure 8. Therefore, answering RQ1, a
regression on this graph (avoiding small values of |Q|) shows the following
complexities:

• hW -inference: 146× |Q|1.21,

• Constraint solving: 3.53× |Q|1.55,

• Rivest and Schapire: 70.4× |Q|2.03,

• LocW: 4.72× |Q|2.48.

Therefore, hW-inference outperforms the other three algorithms: Constraint
solving, Rivest&Schapire and LocW, regarding both the experimental com-
plexity and the ability to scale up to machines with thousands of states.

For small machines with less than 12 states, constraint solving will require
a shorter sequence to infer a model, at the expense of a longer computation
time for the algorithm.

8.2. Benchmark description

Although random automata provide an easy way to assess and compare
algorithms, it is known that real systems have characteristics that are not
properly reflected by randomly generated machines. Typically, they could
have more specific symmetries, specific sequences of inputs to access certain
parts of the behaviour, internal variables that will lead to replicated states,
etc.

A benchmark for model learning algorithms has been established by Rad-
boud University4, and is currently the best recognized benchmark for this
task.

Writing an interface between the SIMPA learner (or any learning frame-
work) and an external software system is similar to writing a test harness.

4http://automata.cs.ru.nl/Overview#Mealybenchmarks

32

10

100

1000

10000

100000

1× 106

1× 107

10 100 1000

le
n

gt
h

of
tr

ac
e

(s
y
m

b
ol

s)

number of states

hW
Rivest and Schaphire

Constraints solver
LocW

Figure 9: Length of trace for different algorithms

To avoid this task, we rely on the models provided by the benchmark in
GraphViz DOT format. A number of models available in the benchmark are
not for software systems, but correspond to models used in model checking
hardware circuits. We do not consider them in the tables below.

Since the benchmark has been intended for algorithms that can reset the
system, many models are not strongly connected. This is why we separate
applications in the benchmark into two tables: those that are strongly con-
nected, for which hW -inference can be applied directly, and those that are
not, for which we will apply an extension of the algorithm. Table 1 and
Table 2 provide information about automata in each category defined by the
benchmark.

8.3. Results on strongly connected applications from benchmark

In this section, we only consider the strongly connected models available
in the benchmark. They correspond to the assumptions of applicability of
hW -inference. We will investigate the following research questions.

RQ2 Does hW -inference scale to real applications from the benchmark with
respect to the expected complexity?

33

Category model st
a
te

s

in
p
u
ts

o
u
tp

u
ts

tr
a
n
si

ti
o
n
s

project size

Edentifier2
new device 3 5 4 15

not available
old device 4 5 4 20

RhapsodyToDezyne Rhapsody-Dezyne 3 58 22 16 1276

MQTT

ActiveMQ invalid 5 11 8 55 3954 LoC
for MQTT
part (Java)

ActiveMQ non clean 12 6 18 72
ActiveMQ 2 client ret. 18 9 21 162
VerneMQ invalid 3 11 7 33

not available

VerneMQ non clean 12 6 18 72
VerneMQ simple 3 7 7 21
VerneMQ 2 client 1 id 7 11 13 77
VerneMQ 2 client ret. 17 9 18 153
emqtt invalid 3 11 6 33
emqtt non clean 12 6 20 72
emqtt simple 3 7 7 21
emqtt 2 client 1 id 7 11 13 77
emqtt 2 client ret. 18 9 21 162
Mosquitto invalid 3 11 7 33

13k LoC
(C)

Mosquitto mosquitto 3 7 7 21
Mosquitto non clean 12 6 18 72
Mosquitto 2 client 1 id 7 11 13 77
Mosquitto 2 client ret. 18 9 21 162

ToyModels
lee yannakakis distinguishable 6 2 2 12
lee yannakakis non distinguishable 3 2 2 6
cacm 3 2 3 6

Table 1: Strongly connected automata in benchmark

34

Category model states inputs outputs transitions

Bankcard

4 learnresult MAESTRO fix 6 14 10 84
4 learnresult SecureCode 20Aut fix 4 14 9 56
Rabo learnresult SecureCode Aut fix 6 15 12 90
ASN learnresult MAESTRO fix 6 14 10 84
ASN learnresult SecureCode 20Aut fix 4 14 9 56
Volksbank learnresult MAESTRO fix 7 14 11 98
Rabo learnresult MAESTRO fix 6 14 10 84
10 learnresult MasterCard fix 6 14 9 84
1 learnresult MasterCard fix 5 15 9 75
4 learnresult PIN fix 6 14 10 84
learnresult fix 9 15 11 135

Edentifier2
new Rand 500 10-15 MC fix 11 8 9 88
new W-method fix 8 8 8 64
old 500 10-15 fix 22 8 9 176

MQTT

ActiveMQ simple 4 7 7 28
ActiveMQ single client 8 11 11 88
VerneMQ single client 10 11 10 110
VerneMQ 2 client 16 9 42 144
emqtt single client 10 11 11 110
emqtt 2 client 16 9 48 144
hbmqtt invalid 3 11 6 33
hbmqtt non clean 10 6 17 60
hbmqtt simple 5 7 8 35
hbmqtt single client 10 11 13 110
hbmqtt 2 client 9 9 27 81
hbmqtt 2 client ret. 17 9 22 153
Mosquitto single client 10 11 11 110
Mosquitto 2 client 16 9 42 144

SSH DropBear 17 13 14 221

TCP
FreeBSD Client 12 10 12 120
Windows8 Client 13 10 12 130
Linux Client 15 10 11 150

TLS

Gnu3.3.12 client full 9 12 7 108
Gnu3.3.12 client regular 7 8 10 56
Gnu3.3.12 server full 9 12 12 108
Gnu3.3.12 server regular 7 8 10 56
Gnu3.3.8 client full 15 12 8 180
Gnu3.3.8 client regular 11 8 6 88
Gnu3.3.8 server full 16 11 12 176
Gnu3.3.8 server regular 12 8 10 96
mi0.1.3 server regular 6 8 8 48
NSS 3.17.4 client full 11 12 9 132
NSS 3.17.4 client regular 7 8 7 56
NSS 3.17.4 server regular 8 8 9 64
OpenSSL 1.0.1g client regular 10 7 7 70
OpenSSL 1.0.1g server regular 16 7 11 112
OpenSSL 1.0.1j client regular 6 7 5 42
OpenSSL 1.0.1j server regular 11 7 9 77
OpenSSL 1.0.1l client regular 6 7 5 42
OpenSSL 1.0.1l server regular 10 7 8 70
OpenSSL 1.0.2 client full 9 10 6 90
OpenSSL 1.0.2 client regular 6 7 5 42
OpenSSL 1.0.2 server regular 7 7 7 49
RSA BSAFE C 4.0.4 server regular 9 8 11 72
RSA BSAFE Java 6.1.1 server regular 6 8 7 48

Table 2: Non-strongly connected automata in benchmark

35

RQ3 How does it compare to previous algorithms that do no reset the sys-
tem?

Additionally, we would like to compare hW -inference with classical active
learning that use a reset, to see whether it competes when the cost (timewise)
of reset is taken into account. In many systems, resetting the system can be
very long compared to a single input interaction. So we will address the
following research question:

RQ4 How does hW -inference compare with standard algorithms that use
reset when the cost of the reset is taken into account ?

As usual in the field of inference, we compare the algorithms w.r.t. the
number of inputs (oracle included) that need to be sent to the system to
learn a full model of it, viz. the trace length. We report in the table first the
average trace length over 100 experiments, then the standard deviation (in
italics), as the results depend on randomized values (esp. in the oracle).

First, we compare the LocW and hW -inference algorithms. As LocW
requires the knowledge of a W -set that is characterizing for the SUL, we
compare it with hW -inference when this knowledge is also available and
provided to hW -inference. We restrict to the case where a W -set of size
2 can be found for the SUL (just as for random machines, a larger W -set
would greatly increase the length of the trace for LocW, and would give an
even greater advantage to hW -inference). We observe on Table 3 that the
length of the trace is smaller for hW -inference than for LocW as soon as we
deal with automata with more than 60 transitions. Note that we did not get
any result for two cases: “VerneMQ 2 client ret” and “Rhapsody-Dezyne 3 ”,
because we did not find a W -set of size 2.

We then compared hW -inference with the algorithm by Rivest&Schapire
and the L∗ adaptation to Mealy called Lm from Shahbaz and Groz (2009).
We first used random walks to find counterexamples. Table 4 shows that hW -
inference can infer all automata with a shorter trace than Rivest&Schapire.

The Lm algorithm requires to reset the SUL, while hW -inference and
Rivest&Schapire do not. Depending on the cost of a reset, Lm can be better
or worse than hW -inference. For assessing this, we compute the minimal cost
of a reset for hW -inference to outperform Lm. We can observe on Table 4
that the minimal cost of a reset is often 0, which means that whatever the
cost of a reset is, hW -inference outperforms Lm. The worst case is for “emqtt
2 client ret.”, with a minimal cost of 29 inputs for reset, which is a rather
low value.

36

automata |Q
| ×
|I
|

L
oc

W
:

A
vg

/
S

td
-d

ev

h
W

w
it

h
kn

ow
n

W
[#

or
ac

le
]

Edentifier2 new device 15 136 / 6 178 / 0 [1]
Edentifier2 old device 20 234 / 23 311 / 48 [1]
VerneMQ simple 21 48 / 0 167 / 0 [1]
emqtt simple 21 48 / 0 167 / 0 [1]
Mosquitto mosquitto 21 48 / 0 167 / 0 [1]
VerneMQ invalid 33 81 / 0 258 / 0 [1]
emqtt invalid 33 80 / 0 246 / 0 [1]
Mosquitto invalid 33 81 / 0 258 / 0 [1]
ActiveMQ invalid 55 788 / 0 877 / 55 [1]
ActiveMQ non clean 72 6271 / 1195 2808 / 488 [1]
VerneMQ non clean 72 6187 / 1247 2855 / 399 [1]
emqtt non clean 72 2602 / 221 1329 / 144 [1]
Mosquitto non clean 72 6173 / 1156 2889 / 503 [1]
VerneMQ 2 client 1 id 77 1710 / 155 1670 / 249 [1]
emqtt 2 client 1 id 77 1692 / 150 1662 / 234 [1]
Mosquitto 2 client 1 id 77 1867 / 19 1729 / 315 [1]
VerneMQ 2 client ret. 153 - -
ActiveMQ 2 client ret. 162 41842 / 3999 15438 / 2540 [1]
emqtt 2 client ret. 162 41769 / 4043 16382 / 4621 [1]
Mosquitto 2 client ret. 162 33029 / 3909 7458 / 1731 [1]
Rhapsody-Dezyne 3 1276 - -

Table 3: Comparison of algorithms using a given W -set of size 2 : Average length and
standard deviation

37

We made a similar experiment with a more clever oracle than random
walks, based on conformance testing following the Vasilievskii-Chow algo-
rithm (Vasilievskii, 1973; Chow, 1978). The results shown on Table 5 are
similar to those of Table 4.

From these experiments, we can answer RQ3 by concluding that hW-
inference outperforms previous algorithms in most cases. The results on this
benchmark show that hW -inference is still more efficient than previous al-
gorithms for middle-sized systems, even though not as much as for random
machines. It requires less knowledge on the system, and it is definitely scal-
able for medium-sized systems as present in the benchmark, which is not the
case for other algorithms. Regarding RQ2, the complexity on real applica-
tions is more difficult to assess, there are more variations than with random
machines. For strongly connected models with the random walk oracle, the
average trace length can go from eight times less to eight times more than
75×|I|×|Q|1.21. This can be attributed to two main causes. Firstly, reported
lengths on random machines are averaged over a large number of machines.
Secondly random machines exhibit a better distribution of inputs and out-
puts, with a smaller diameter for the graph. Anyway, hW -inference scales to
the applications of the benchmark that represent various types of domains
(smart card applications, cyberphysical controllers, embedded systems, com-
munication protocols), so we can answer positively to RQ2.

Interestingly, the results also show that regarding RQ4, hW-inference even
outperforms Lm, the Mealy adaptation of the classical L∗ algorithm, by a wide
margin.

8.4. Extending with reset

As can be seen in Table 2, many applications in the benchmark are not
strongly connected, so they cannot be learnt without reset. At best, it would
be possible to learn a strongly connected subcomponent of the system. But
it turns out that for quite a number of applications, there are either sink
states, or sink subgraphs (where the system oscillates between two or a few
states) which only represent a degraded behaviour of the system. Only with
a reset can the system be moved to escape from those traps.

In fact, hW -inference can be rather easily extended to infer such systems,
while still attempting to use resets sparingly, just when it is necessary to
escape from a subcomponent or to go back to the initial state to learn the
initialization part of the machine. With this adaptation, hW -inference was
able to address all applications of the benchmark.

38

8.4.1. hW-inference extended with reset

hW -inference will use resets only when no other way to get back to an
incompletely learnt space can be found in the current conjecture. We describe
the adaptation to the base algorithm.

• When looking in the current partial conjecture for a path α on Line 14,
if no such path can be found, we first try to find a counterexample in
the trace. Otherwise, if the current state is not a sink in the conjecture,
we try to find a counterexample without using reset. If that fails also,
we mark the state and its children as a sink, and reset the system.

• Whenever we have been forced to apply a reset, we improve learning
the characterization of the reset state (initial state) by applying one
sequence from W for which its answer is not known. If the initial state
is fully characterized, then we resume looking for a transfer sequence
α or completing the conjecture.

• The search for a counterexample is extended to allow a reset after some
time if we fail to get a counterexample without it. Actually, resorting
to reset can be decided based on the relative cost of a reset (timewise)
w.r.t to the cost of applying an input.

8.4.2. Results on benchmark with reset

With this extension to hW -inference, we were able to extend our experi-
ments to all other applications of the benchmark, except the ESM controller
(from an Océ printer), which requires special adaptations for active learning
as explained in Smeenk et al. (2015).

We also need to know whether this algorithm performed inferences effi-
ciently. Thus, we address the following research question:

RQ5 Can hW -inference extended with reset challenge other inference algo-
rithms that also use a reset?

We compared hW -inference extended with reset with Lm as the classical
algorithm that uses reset. We first used random walks as oracle. Table 6
records, for each application and each algorithm, the length of the trace, the
number of resets and the number of calls to the oracle. The last column of
Table 6 gives the minimal cost of the reset operation in number of inputs
for hW -inference to outperform Lm. We can see that Lm is better for 17
applications (’-’ in the cell), and hW -inference is better for 25 applications

39

automata |Q
| ×
|I
|

h
W

:
A

v
g

/
S
td
-d
ev

R
S
:

A
v
g

/
S
td
-d
ev

L
m

(#
re

se
ts

)
A

v
g

/
S
td
-d
ev

re
se

t
co

st
#

in
p
u
t

Edentifier2 new device 15 190 / 60 1240 / 0 230 / 0 (80) 0
Edentifier2 old device 20 292 / 96 1123 / 0 355 / 0 (105) 0
VerneMQ simple 21 391 / 189 759 / 0 448 / 0 (154) 0
emqtt simple 21 391 / 189 759 / 0 448 / 0 (154) 0
Mosquitto mosquitto 21 391 / 189 759 / 0 448 / 0 (154) 0
VerneMQ invalid 33 919 / 684 1645 / 0 1100 / 0

(374)
0

emqtt invalid 33 563 / 438 1783 / 0 1100 / 0
(374)

0

Mosquitto invalid 33 919 / 684 1645 / 0 1100 / 0
(374)

0

ActiveMQ invalid 55 1563 / 564 3232 / 0 2189 / 0
(616)

0

ActiveMQ non clean 72 11259 /
14456

61290 /
10315

7492 / 4372
(943)

≥ 4.0

VerneMQ non clean 72 11259 /
14456

61290 /
10315

7492 / 4372
(943)

≥ 4.0

emqtt non clean 72 2800 /
2088

44720 /
8678

5233 / 3117
(760)

0

Mosquitto non clean 72 11259 /
14456

61290 /
10315

7492 / 4372
(943)

≥ 4.0

VerneMQ 2 client 1 id 77 2768 /
1316

7804 /
2278

5187 / 1348
(1022)

0

emqtt 2 client 1 id 77 2630 /
1354

7804 /
2278

5187 / 1348
(1022)

0

Mosquitto 2 client 1 id 77 4271 /
2053

7896 /
2313

5417 / 1615
(1033)

0

VerneMQ 2 client ret. 153 43031 /
42233

258268 /
43224

28292 / 8810
(3720)

≥ 4.0

ActiveMQ 2 client ret. 162 177286 /
189428

389303 /
98074

41369 /
15114
(4747)

≥ 29

emqtt 2 client ret. 162 177286 /
189428

389303 /
98074

41369 /
15114
(4747)

≥ 29

Mosquitto 2 client ret. 162 40747 /
17902

244556 /
41214

29823 /
10836
(3818)

≥ 2.9

Rhapsody-Dezyne 3 1276 1371313 /
613103

17944478 /
3895976

1654784
/ 879017
(136199)

0

Table 4: Trace length for inference with a random walk oracle40

automata |Q
| ×
|I
|

h
W

:
A

v
g

/
S
td
-d
ev

R
S
:

A
v
g

/
S
td
-d
ev

L
m

(#
re

se
ts

)

re
se

t
co

st
#

in
p
u
t

Edentifier2 new device 15 232 / 0 1234 / 0 230 / 0 (80) ≥ 0,025
Edentifier2 old device 20 373 / 0 1233 / 0 355 / 0

(105)
≥ 0,17

VerneMQ simple 21 368 / 160 840 / 0 448 / 0
(154)

0

emqtt simple 21 368 / 160 840 / 0 448 / 0
(154)

0

Mosquitto mosquitto 21 368 / 160 840 / 0 448 / 0
(154)

0

VerneMQ invalid 33 1025 / 650 1757 / 0 1100 / 0
(374)

0

emqtt invalid 33 896 / 427 1898 / 0 1100 / 0
(374)

0

Mosquitto invalid 33 1025 / 650 1757 / 0 1100 / 0
(374)

0

ActiveMQ invalid 55 1382 / 291 3500 / 0 2189 / 0
(616)

0

ActiveMQ non clean 72 17369 /
12355

57962 /
1226

7425 / 0
(953)

≥ 10

VerneMQ non clean 72 17369 /
12355

57962 /
1226

7425 / 0
(953)

≥ 10

emqtt non clean 72 1507 / 0 42595 / 0 3375 / 0
(586)

0

Mosquitto non clean 72 17369 /
12355

57962 /
1226

7425 / 0
(953)

≥ 10

VerneMQ 2 client 1 id 77 2144 / 1572 8707 /
2278

5583 / 1348
(1023)

0

emqtt 2 client 1 id 77 1911 / 749 8707 /
2278

5583 / 1348
(1023)

0

Mosquitto 2 client 1 id 77 8286 / 3046 8803 /
2313

5815 / 1615
(1034)

≥ 2,4

VerneMQ 2 client ret. 153 93470 / 0 262461 /
30379

23255 / 0
(3089)

≥ 23

ActiveMQ 2 client ret. 162 119762 / 0 361031 /
15833

34300 /
7826 (4194)

≥ 20

emqtt 2 client ret. 162 119762 / 0 361031 /
15833

34300 /
7826 (4194)

≥ 20

Mosquitto 2 client ret. 162 51991 / 0 272159 /
25523

29148 /
7701 (3557)

≥ 6,4

Rhapsody-Dezyne 3 1276 695926 /
125860

7419002 / 6 439105 / 0
(58759)

≥ 4,4

Table 5: Trace length for inference with oracle based on conformance testing41

(’0’ in the cell). For 7 applications, as long as a reset costs less than a few
inputs, hW -inference is better than Lm, and for just one application, the
cost should be at least 92 for Lm to be outperformed. We can note however
that the number of calls to the oracle is always higher for hW -inference than
for Lm.

Table 7 gives the same elements as Table 6, using the smarter oracle
based on conformance testing. For 12 applications in the benchmark, Lm
outperforms hW -inference, while for 17 applications, hW -inference outper-
forms Lm. For 12 applications, hW -inference outperforms Lm if the minimal
cost of a reset is less than 3 inputs.

From these experiments, we can answer RQ5 by concluding that hW-
inference extended with reset outperforms Lm in more than half the cases of
the benchmark.

Comparing the hW -inference columns in Tables 6 and 7 , we can see that
the inference using a conformance testing based oracle is better than the
inference using random walks in 29 cases out of 50. We can also notice that
random walks are often better when the trace is small.

automata |Q
|×
|I
|

hW : Avg / Std-dev

(#resets) [#oracle]

Lm: Avg / Std-dev

(#resets) [#oracle] re
se

t
co

st
#

in
p

u
t

MQTT hbmqtt simple 35 1001 / 319 (30) [8] 742 / 0 (252) [1] ≥ 1,2
OpenSSL 1.0.1j client regular 42 123554 / 190126

(3207) [10]
1134 / 0 (301) [1] -

OpenSSL 1.0.1l client regular 42 123554 / 190126
(3207) [10]

1134 / 0 (301) [1] -

OpenSSL 1.0.2 client regular 42 123554 / 190126
(3207) [10]

1134 / 0 (301) [1] -

RSA BSAFE Java 48 85667 / 82224
(2273) [9]

1480 / 0 (392) [1] -

TLS miTLS 0.1.3 server regular 48 21826 / 26672 (645)
[7]

1480 / 0 (392) [1] -

OpenSSL 1.0.2 server regular 49 85918 / 106877
(2365) [12]

1281 / 0 (350) [1] -

Bankcard 4 SecureCode Aut 56 784 / 217 (6) [5] 2758 / 0 (798) [1] 0
Bankcard ASN SecureCode Aut 56 785 / 217 (6) [5] 2758 / 0 (798) [1] 0
GnuTLS 3.3.12 client regular 56 38111 / 38338

(1115) [10]
1736 / 0 (456) [1] -

GnuTLS 3.3.12 server regular 56 38111 / 38338
(1115) [10]

1736 / 0 (456) [1] -

TLS NSS 3.17.4 client regular 56 101990 / 155874
(2782) [9]

1928 / 0 (456) [1] -

MQTT hbmqtt non clean 60 4752 / 3152 (100)
[10]

6966 / 3419 (890) [3] 0

Edentifier2 new W-method 64 4108 / 1432 (76) [12] 4233 / 1259 (762) [3] 0
TLS NSS 3.17.4 server regular 64 389258 / 389277

(9881) [13]
2120 / 0 (520) [1] -

42

OpenSSL 1.0.1g client regular 70 50024 / 63160
(1468) [11]

2212 / 0 (497) [1] -

OpenSSL 1.0.1l server regular 70 322453 / 351805
(8329) [14]

386149 / 305971
(10176) [2]

0

RSA BSAFE C 72 3670 / 1845 (247) [7] 2248 / 0 (584) [1] ≥ 4,2
Bankcard 1 MasterCard 75 1552 / 554 (7) [5] 4290 / 0 (1140) [1] 0
OpenSSL 1.0.1j server regular 77 328137 / 350899

(8512) [14]
386562 / 305971
(10233) [2]

0

MQTT hbmqtt 2 client 81 2426 / 1135 (64) [6] 2925 / 0 (738) [1] 0
Bankcard 10 MasterCard 84 4696 / 3410 (89) [8] 4718 / 0 (1190) [1] 0
Bankcard 4 MAESTRO 84 4846 / 3660 (90) [7] 4718 / 0 (1190) [1] ≥ 0,12
Bankcard 4 PIN 84 4867 / 3660 (90) [7] 4718 / 0 (1190) [1] ≥ 0,14
Bankcard ASN MAESTRO 84 4839 / 3659 (90) [7] 4718 / 0 (1190) [1] ≥ 0,11
Bankcard Rabo MAESTRO 84 4905 / 3668 (91) [7] 4718 / 0 (1190) [1] ≥ 0,17
Edentifier2 new Rand 88 45495 / 40684

(1049) [19]
53761 / 40249
(2589) [4]

0

ActiveMQ single client 88 3402 / 1083 (343) [9] 3762 / 0 (979) [1] 0
GnuTLS 3.3.8 client regular 88 4228392 / 4193525

(106514) [19]
3603198 / 3339856
(91123) [3]

-

Bankcard Rabo SecureCode Aut 90 3005 / 1929 (44) [7] 5640 / 0 (1365) [1] 0
OpenSSL 1.0.2 client full 90 2135187 / 1994567

(53877) [14]
21622 / 17823
(1454) [2]

-

GnuTLS 3.3.8 server regular 96 265554 / 255061
(7263) [14]

383314 / 436943
(10472) [2]

0

Bankcard Volksbank MAESTRO 98 3036 / 1260 (20) [6] 6090 / 0 (1386) [1] 0
GnuTLS 3.3.12 client full 108 3553579 / 3865412

(89340) [12]
33234 / 30593
(2120) [2]

-

GnuTLS 3.3.12 server full 108 33113 / 38872
(1209) [9]

48895 / 45699
(2507) [2]

0

VerneMQ single client 110 4031 / 1053 (436) [9] 5093 / 0 (1221) [1] 0
emqtt single client 110 19190 / 13391 (919)

[11]
19254 / 11542
(1732) [2]

0

MQTT hbmqtt single client 110 3792 / 873 (92) [8] 5093 / 0 (1221) [1] 0
OpenSSL 1.0.1g server regular 112 341378 / 339183

(9064) [16]
388162 / 305968
(10520) [2]

0

TCP TCP FreeBSD Client 120 28082 / 22957
(1239) [12]

26262 / 20502
(1913) [2]

≥ 2,7

TCP TCP Windows8 Client 130 62408 / 42808
(2132) [14]

41953 / 29718
(2354) [2]

≥ 92

TLS NSS 3.17.4 client full 132 1022904 / 1162473
(26129) [11]

74596 / 75269
(3412) [2]

-

Bankcard 135 3474 / 837 (5) [6] 9015 / 0 (2040) [1] 0
VerneMQ 2 client 144 3342 / 1388 (81) [4] 5841 / 0 (1305) [1] 0
emqtt 2 client 144 2401 / 570 (45) [4] 5841 / 0 (1305) [1] 0
TCP TCP Linux Client 150 74925 / 44459

(2850) [33]
42976 / 29645
(2850) [2]

-

MQTT hbmqtt 2 client ret. 153 35991 / 19578 (696)
[16]

37564 / 14499
(4180) [4]

0

Edentifier2 old 500 10-15 176 305503 / 231146
(8801) [35]

438614 / 370326
(15623) [8]

0

GnuTLS 3.3.8 server full 176 2882753 / 3597666
(73679) [19]

3870314 / 5721317
(99260) [4]

0

SSH DropBear 221 8496322 / 11660458
(213624) [14]

970463 / 1001091
(26981) [2]

-

Table 6: Comparison of algorithms on non strongly connected models using only random
walk as oracle

43

automata |Q
|×
|I
|

hW : Avg / Std-dev

(#resets) [#oracle]

Lm: Avg / Std-dev

(#resets) [#oracle] re
se

t
co

st
#

in
p

u
t

MQTT hbmqtt simple 35 1077 / 376 (32) [8] 742 / 0 (252) [1] ≥ 1.5
OpenSSL 1.0.1j client regular 42 76070 / 124652 (2093)

[10]
1134 / 0 (301) [1] -

OpenSSL 1.0.1l client regular 42 76070 / 124652 (2093)
[10]

1134 / 0 (301) [1] -

OpenSSL 1.0.2 client regular 42 76070 / 124652 (2093)
[10]

1134 / 0 (301) [1] -

RSA BSAFE Java 48 20379 / 45698 (682) [9] 1480 / 0 (392) [1] -
TLS miTLS 0.1.3 server regular 48 9096 / 20168 (346) [7] 1480 / 0 (392) [1] ≥ 170
OpenSSL 1.0.2 server regular 49 8302 / 4465 (514) [12] 1281 / 0 (350) [1] -
Bankcard 4 SecureCode Aut 56 780 / 0 (4) [5] 2758 / 0 (798) [1] 0
Bankcard ASN SecureCode Aut 56 780 / 0 (4) [5] 2758 / 0 (798) [1] 0
GnuTLS 3.3.12 client regular 56 2001 / 0 (242) [10] 1736 / 0 (456) [1] ≥ 1.2
GnuTLS 3.3.12 server regular 56 2001 / 0 (242) [10] 1736 / 0 (456) [1] ≥ 1.2
TLS NSS 3.17.4 client regular 56 6843 / 9437 (445) [9] 1928 / 0 (456) [1] ≥ 470
MQTT hbmqtt non clean 60 19888 / 3809 (387) [18] 7265 / 3456 (917) [3] ≥ 24
Edentifier2 new W-method 64 6266 / 1914 (101) [12] 4851 / 1259 (774) [3] ≥ 2.1
TLS NSS 3.17.4 server regular 64 88076 / 78972 (2419)

[15]
2120 / 0 (520) [1] -

OpenSSL 1.0.1g client regular 70 32407 / 37970 (1134)
[11]

2212 / 0 (497) [1] -

OpenSSL 1.0.1l server regular 70 389903 / 315671
(10203) [14]

386553 / 305971
(10273) [2]

≥ 48

RSA BSAFE C 72 3880 / 1887 (310) [7] 2248 / 0 (584) [1] ≥ 6.0
Bankcard 1 MasterCard 75 2316 / 0 (6) [5] 4290 / 0 (1140) [1] 0
OpenSSL 1.0.1j server regular 77 390994 / 315729

(10291) [15]
387058 / 305971
(10343) [2]

≥ 76

MQTT hbmqtt 2 client 81 3163 / 979 (20) [6] 2925 / 0 (738) [1] ≥ 0.33
Bankcard 10 MasterCard 84 5583 / 3362 (92) [6] 4718 / 0 (1190) [1] ≥ 0.79
Bankcard 4 MAESTRO 84 5735 / 3344 (93) [6] 4718 / 0 (1190) [1] ≥ 0.93
Bankcard 4 PIN 84 5735 / 3344 (93) [6] 4718 / 0 (1190) [1] ≥ 0.93
Bankcard ASN MAESTRO 84 5735 / 3344 (93) [6] 4718 / 0 (1190) [1] ≥ 0.93
Bankcard Rabo MAESTRO 84 5735 / 3344 (93) [6] 4718 / 0 (1190) [1] ≥ 0.93
Edentifier2 new Rand 88 80073 / 52475 (1831)

[17]
62516 / 49194 (2725)
[4]

≥ 20

ActiveMQ single client 88 6147 / 778 (381) [8] 3762 / 0 (979) [1] ≥ 4.0
GnuTLS 3.3.8 client regular 88 3880448 / 3838098

(98242) [22]
3604204 / 3340104
(91338) [3]

-

Bankcard Rabo SecureCode Aut 90 1417 / 0 (4) [5] 5640 / 0 (1365) [1] 0
OpenSSL 1.0.2 client full 90 2428185 / 2194052

(61514) [15]
21842 / 17823 (1514)
[2]

-

GnuTLS 3.3.8 server regular 96 356200 / 318429
(9657) [15]

384043 / 437105
(10623) [2]

0

Bankcard Volksbank MAESTRO 98 3093 / 453 (6) [6] 6090 / 0 (1386) [1] 0
GnuTLS 3.3.12 client full 108 3870864 / 4527491

(97470) [13]
33390 / 30593 (2164)
[2]

-

GnuTLS 3.3.12 server full 108 3694 / 540 (521) [9] 5863 / 0 (1453) [2] 0
VerneMQ single client 110 6145 / 0 (391) [8] 5093 / 0 (1221) [1] ≥ 1.3
emqtt single client 110 13192 / 8792 (716) [10] 19872 / 11542 (1817)

[2]
0

MQTT hbmqtt single client 110 4412 / 0 (50) [5] 5093 / 0 (1221) [1] 0
OpenSSL 1.0.1g server regular 112 321260 / 341830

(8850) [15]
389161 / 305968
(10720) [2]

0

44

TCP TCP FreeBSD Client 120 27758 / 23250 (1275)
[12]

26678 / 20502 (1952)
[2]

≥ 1.6

TCP TCP Windows8 Client 130 64762 / 42632 (2336)
[13]

42975 / 29718 (2473)
[2]

≥ 160

TLS NSS 3.17.4 client full 132 55279 / 51367 (2079)
[12]

74808 / 75269 (3467)
[2]

0

Bankcard 135 5812 / 521 (8) [7] 9015 / 0 (2040) [1] 0
VerneMQ 2 client 144 5816 / 1129 (33) [6] 5841 / 0 (1305) [1] 0
emqtt 2 client 144 5400 / 851 (23) [6] 5841 / 0 (1305) [1] 0
TCP TCP Linux Client 150 28397 / 19789 (1641)

[35]
43732 / 29645 (2925)
[2]

0

MQTT hbmqtt 2 client ret. 153 34503 / 2110 (536) [14] 41173 / 14230 (4173)
[4]

0

Edentifier2 old 500 10-15 176 108480 / 52690 (3940)
[31]

435964 / 369061
(16388) [8]

0

GnuTLS 3.3.8 server full 176 5473252 / 6637272
(139082) [20]

917192 / 680722
(25889) [5]

-

SSH DropBear 221 1074125 / 1009214
(28085) [13]

972409 / 1001091
(27236) [2]

-

Table 7: Comparison of algorithms on non strongly connected models using an oracle
based on conformance testing

9. Conclusion

We have shown a new approach for reverse engineering behavioural mod-
els of reactive systems that can be modelled by an FSM. This approach only
needs to know the set of inputs the system accepts, and a test harness to
send inputs and observe outputs. It does not require any access to the code,
and not even the ability to restart it. It is scalable and applicable to various
types of systems as exemplified by the benchmark.

We think that this new approach, which combines heuristic with deter-
ministic approaches, could be a key enabler for reverse engineering remote or
embedded systems, and provide models that could feed other model-based
activities, such as formal verification, model based testing, integration test-
ing, etc.

However, it suffers from the limitations inherent to the type of model
learning that we assume:

• it applies only to reactive systems, that can be modelled by a Mealy
machine;

• it relies on an abstraction of the input and output domains so that they
can be projected to finite sets, while preserving determinism;

45

• as any active learning approach, it requires a test harness that imple-
ments input concretization and output abstraction; in the SIMPA tool,
this is achieved by writing a dedicated driver for each implementation,
that specializes a generic driver; for specific domains (e.g. web appli-
cations, smart card applications) there can be automated derivation of
such drivers (e.g. in SIMPA, implemented through a preliminary web
crawling approach as in Hossen et al. (2013)).

We have presented two case studies using this algorithm for testing em-
bedded software systems in Bremond and Groz (2019). Further studies will
be needed to assess its effectiveness on various types of (reactive) software,
as well as the usefulness of the inferred models. As other model learning
approaches, the task of writing an interface (similar to a test harness) be-
tween the learning framework and the SUL must be addressed and possibly
automated, as in Aarts et al. (2012).

The core algorithms of hW -inference can also be improved.

• Instead of working with fixed h and W for each sub-inference, we can
use adaptive sequences. When h-ND is detected on a given response r
to the homing sequence, the extended h sequence would be applied only
when a prefix response r is observed, and similarly for W . A recent
paper shows how the base algorithm can be extended with adaptive
sequences (Groz et al., 2018a).

• As with most learning algorithms, counterexample processing strategies
can play an important role. We have taken a simple “shortest suffix”
strategy. More strategies could be explored.

• We have shown that hW -inference can easily be adapted to deal with
systems that are not strongly connected. The preliminary results pre-
sented in Section 8.4 should be consolidated. With better tuning of
heuristics, it should be possible to win over traditional reset-based al-
gorithms in more cases. We have proposed to try and minimize the use
of resets, but it might be interesting to take into account the cost of a
reset to try and minimize the total cost of the inference. The cost is
simply associated with the duration of the interaction with the system,
but other measures could be considered as well.

• Another move would be to extend the approach to infer not just FSM,

46

but some sort of Extended FSM, such as register automata, or other
sorts of automata with guards and variables.

Acknowledgments

The research of N. Bremond, R. Groz and C. Oriat has been partially sup-
ported by ANR project PHILAE (grant ANR-18-CE25-0013). A. Simao has
been partially supported by FAPESP Project CEMEAI (grant 2013/07375-
0).

References

Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F., Aug
2012. Automata learning through counterexample-guided abstraction re-
finement. In: Proceedings FM 2012, LNCS 7436. pp. 10–27.

Ammons, G., Bod́ık, R., Larus, J. R., 2002. Mining specifications. In: POPL
2002. pp. 4–16.

Angluin, D., 1987. Learning regular sets from queries and counterexamples.
Information and Computation 2, 87–106.

Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M., 2009. Automatic syn-
thesis of behavior protocols for composable web-services. In: Proceedings
of the 7th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2009, Amsterdam, The Netherlands, August 24-28,
2009. pp. 141–150.
URL https://doi.org/10.1145/1595696.1595719

Beschastnikh, I., Brun, Y., Ernst, M. D., Krishnamurthy, A., 2014. Inferring
models of concurrent systems from logs of their behavior with csight. In:
36th International Conference on Software Engineering, ICSE ’14, Hyder-
abad, India - May 31 - June 07, 2014. pp. 468–479.
URL https://doi.org/10.1145/2568225.2568246

Biermann, A., Feldman, J., 1972. On the synthesis of finite state machines
from samples of their behavior. IEEE Transactions on Computers 21 (6),
592–597.

47

Bremond, N., Groz, R., 2019. Case studies in learning models and testing
without reset. In: 2019 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops, AMOST2019, ICST Work-
shops 2019, Xi’an, China, April 22, 2019. pp. 40–45.
URL https://doi.org/10.1109/ICSTW.2019.00030

Büchler, M., Hossen, K., Mihancea, P. F., Minea, M., Groz, R., Oriat,
C., 2014. Model inference and security testing in the spacios project. In:
CSMR-WCRE. pp. 411–414.

Chow, T., 1978. Test software design modelled by finite state machines. IEEE
Transactions on Software Engineering SE-4 (3), 178–187.

Cook, J. E., Wolf, A. L., 1998. Discovering models of software processes from
event-based data. ACM Trans. Softw. Eng. Methodol. 7 (3), 215–249.
URL https://doi.org/10.1145/287000.287001

Dallmeier, V., Knopp, N., Mallon, C., Fraser, G., Hack, S., Zeller, A., 2012.
Automatically generating test cases for specification mining. IEEE Trans.
Software Eng. 38 (2), 243–257.
URL https://doi.org/10.1109/TSE.2011.105

Gold, E. M., 1978. Complexity of automaton identification from given data.
Information and Control 37 (3), 302–320.
URL https://doi.org/10.1016/S0019-9958(78)90562-4

Groz, R., Bremond, N., Simao, A., September 2018a. Using adaptive se-
quences for learning non-resettable fsms. In: ICGI 2018. Wroclaw, pp.
30–43.

Groz, R., Simao, A., Bremond, N., Oriat, C., May 2018b. Revisiting AI and
testing methods to infer FSM models of black-box systems. In: AST 2018.
Göteborg, pp. 16–19.

Groz, R., Simao, A., Petrenko, A., Oriat, C., 2015. Inferring finite state
machines without reset using state identification sequences. In: ICTSS
2015, Sharjah and Dubai, UAE, Nov 23-25, 2015. pp. 161–177.

Hossen, K., Groz, R., Oriat, C., Richier, J., 2013. Automatic generation
of test drivers for model inference of web applications. In: Sixth IEEE
International Conference on Software Testing, Verification and Validation,

48

ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, March 18-
22, 2013. pp. 441–444.
URL https://doi.org/10.1109/ICSTW.2013.57

Hungar, H., Margaria, T., Steffen, B., 2003. Test-based model generation for
legacy systems. In: ITC. pp. 971–980.

Isberner, M., Howar, F., Steffen, B., 2014. The TTT algorithm: A
redundancy-free approach to active automata learning. In: Runtime Veri-
fication - RV 2014, Toronto, Canada, September 22-25, 2014. pp. 307–322.

Kleber, S., Kopp, H., Kargl, F., 2018. NEMESYS: network message syntax
reverse engineering by analysis of the intrinsic structure of individual
messages. In: 12th USENIX Workshop on Offensive Technologies, WOOT
2018, Baltimore, MD, USA, August 13-14, 2018.
URL https://www.usenix.org/conference/woot18/presentation/kleber

Kumar, S., 2011. Specification mining in concurrent and distributed sys-
tems. In: Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011.
pp. 1086–1089.
URL https://doi.org/10.1145/1985793.1986002

Lee, D., Yannakakis, M., 1994. Testing finite-state machines: State identifi-
cation and verification. IEEE Trans. Computers 43 (3), 306–320.

Lee, D., Yannakakis, M. M., 1996. Principles and methods of testing finite
state machines – a survey. Proceedings of the IEEE 84 (8), 1090–1123.

Mariani, L., Pezzè, M., Santoro, M., 2017. Gk-tail+ an efficient approach to
learn software models. IEEE Trans. Software Eng. 43 (8), 715–738.
URL https://doi.org/10.1109/TSE.2016.2623623

Memon, A. M., Banerjee, I., Nagarajan, A., Nov. 2003. GUI ripping: Reverse
engineering of graphical user interfaces for testing. In: Proceedings of The
10th Working Conference on Reverse Engineering. pp. 293–298.

Neider, D., Smetsers, R., Vaandrager, F. W., Kuppens, H., 2018. Benchmarks
for automata learning and conformance testing. In: Models, Mindsets,
Meta: The What, the How, and the Why Not? - Essays Dedicated to

49

Bernhard Steffen on the Occasion of His 60th Birthday. pp. 390–416.
URL https://doi.org/10.1007/978-3-030-22348-9 23

Niese, O., 2003. An integrated approach to testing complex systems. Ph.D.
thesis, University of Dortmund.

Peled, D. A., Vardi, M. Y., Yannakakis, M., 1999. Black box checking. In:
FORTE/PSTV’99, IFIP WG6.1, Oct 5-8, 1999, Beijing, China. pp. 225–
240.

Petrenko, A., Avellaneda, F., Groz, R., Oriat, C., 2017. From passive to
active FSM inference via checking sequence construction. In: ICTSS 2017.
LNCS 10533. pp. 126–141.

Petrenko, A., Avellaneda, F., Groz, R., Oriat, C., 2019. FSM inference and
checking sequence construction are two sides of the same coin. Software
Quality Journal 27 (2), 651–674.
URL https://doi.org/10.1007/S11219-018-9429-3

Petrenko, A., Li, K., Groz, R., Hossen, K., Oriat, C., 2014. Inferring Approx-
imated Models for Systems Engineering. In: HASE 2014. Miami, Florida,
USA, pp. 249–253.

Pnueli, A., 1986. Applications of temporal logic to the specification and ver-
ification of reactive systems: A survey of current trends. In: de Bakker,
J. W., de Roever, W. P., Rozenberg, G. (Eds.), Current Trends in Con-
currency, Overviews and Tutorials. Vol. 224 of Lecture Notes in Computer
Science. Springer, pp. 510–584.
URL https://doi.org/10.1007/BFb0027047

Rivest, R. L., Schapire, R. E., 1993. Inference of finite automata using homing
sequences. In: Machine Learning: From Theory to Applications. pp. 51–73.

Shahbaz, M., Groz, R., 2009. Inferring mealy machines. In: FM. LNCS 5850.
Eindhoven, The Netherlands, pp. 207–222.

Simao, A., Petrenko, A., 2008. Generating checking sequences for partial
reduced finite state machines. In: Testing of Software and Communicat-
ing Systems, 20th IFIP TC 6/WG 6.1 International Conference, TestCom
2008, 8th International Workshop, FATES 2008, Tokyo, Japan, June 10-13,
2008, Proceedings. pp. 153–168.

50

Smeenk, W., Moerman, J., Vaandrager, F. W., Jansen, D. N., 2015. Apply-
ing automata learning to embedded control software. In: Formal Meth-
ods and Software Engineering - 17th International Conference on Formal
Engineering Methods, ICFEM 2015, Paris, France, November 3-5, 2015,
Proceedings. pp. 67–83.
URL https://doi.org/10.1007/978-3-319-25423-4 5

Tretmans, J., 1996. Test generation with inputs, outputs, and quiescence.
In: Tools and Algorithms for Construction and Analysis of Systems, Sec-
ond International Workshop, TACAS ’96, Passau, Germany, March 27-29,
1996, Proceedings. pp. 127–146.
URL https://doi.org/10.1007/3-540-61042-1 42

Vaandrager, F. W., 2017. Model learning. Commun. ACM 60 (2), 86–95.
URL https://doi.org/10.1145/2967606

Valiant, L. G., 1984. A theory of the learnable. Commun. ACM 27 (11),
1134–1142.
URL https://doi.org/10.1145/1968.1972

Vasilievskii, M. P., 1973. Failure diagnosis of automata. Cybernetics 9, 653–
665.

Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S., 2007. Re-
verse engineering state machines by interactive grammar inference. In:
14th Working Conference on Reverse Engineering (WCRE 2007), 28-31
October 2007, Vancouver, BC, Canada. pp. 209–218.
URL https://doi.org/10.1109/WCRE.2007.45

Appendix A. Short Curricula vitae of authors

Roland Groz has been a professor at Grenoble INP, institute of engineer-
ing Univ. Grenoble Alpes since 2002. Prior to this he worked for 20 years
at France Telecom research labs in Lannion, Brittany, France, on protocol
engineering, software engineering and V&V methods. His research interests
are in formal methods applied to software engineering, reverse engineering,
distributed systems and cybersecurity.

51

Nicolas Bremond graduated with a Master of Engineering from Bordeaux
INP ENSEIRB-MATMECA, France, in 2017. He is now a research engineer
working on formal methods at Grenoble Informatics Lab (LIG).

Adenilso Simao received the BS degree in computer science from the State
University of Maringa (UEM), Brazil, in 1998, and the MS and PhD degrees
in computer science from the University of Sao Paulo (USP), Brazil, in 2000
and 2004, respectively. Since 2004, he has been a professor of computer
science at the Computer System Department of USP. From August 2008
to July 2010, he has been on a sabbatical leave at Centre de Recherche
Informatique de Montreal (CRIM), Canada. He has received best paper
awards in several important conferences. He has also received distinguishing
teacher awards in many occasions. His research interests include software
testing and formal methods.

Catherine Oriat obtained her PhD in Computer Science from INPG in
1996. She is assistant professor at Grenoble INP-Ensimag. Her research
interests include software engineering, testing and machine inference.

52

