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Introduction

Reverse engineering models from software artefacts has emerged as a key enabler for model-based techniques [START_REF] Vaandrager | Model learning[END_REF]. Indeed, in many contexts, it is difficult to ensure that models come first, as the initial basis for software development. However, since models provide a sound basis for a number of analysis techniques, it is desirable to get models of existing systems. Since software is written in well-defined languages, and the execution is automated, it is possible to retrieve models either from code or from executions. Retrieving models from code or higher level documents may look simpler, but in many cases, this is not even an option. First, source code may not be available, and binary code analysis induces its own challenges. Secondly, it may also be the case that the binary code is not directly available, because the system is exercised only through external or remote interfaces. This is typically the case for systems that are accessed through a network, analogously to black box testing where only inputs and outputs of the system can be observed.

There are various approaches to derive models from execution traces of software systems. A basic distinction must be made between passive and active learning. Passive learning uses observations gathered on a software system, and tries to infer from a given set of observations a model that best fits the observations. Active learning may start from a set of observations, but will collect further evidence by testing the system, sending inputs and observing the corresponding outputs to derive a model of its behaviour. It has been known since the early work on automata learning [START_REF] Gold | Complexity of automaton identification from given data[END_REF] that finding a minimum automaton with passive learning (including both positive and negative data when learning language acceptors) is NP-hard. Therefore, a number of works resort to Leslie Valiant's PAC framework (Probably Approximately Correct, Valiant (1984)). On the contrary, active learning can learn models in the MAT (Minimally Adequate Teacher) framework introduced by [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF] with a number of queries that is just polynomial in the number of states of the state machine to be learnt.

From a software engineering viewpoint, there are more differences than just complexity issues. Passive learning, just as most machine learning techniques, can be used as soon as a sufficient amount of data is available, which can be collected from logs that are already there. However, in order to get accurate models, it may also be necessary to have more detailed logs, and that may entail making sure the level of detail has been set adequately, if the option to tune this before collecting traces is available. Active learning requires the ability to interact with the system, for instance a dedicated test harness. Apart from this, it does not require access to the code, not even the executable binary code, as the interaction can be done remotely.

Passive learning in the context of software engineering has mostly been used on logs collected from the software by recording internal events (such as function calls, tracing facilities, or internal communication events). Active learning is used from an external interface of the system. Therefore, active learning is in full black box mode, whereas passive learning would often use knowledge of internal events that may be related to software architecture at least. Since interacting with a system means sending inputs and observing outputs, active learning is adapted to learning reactive systems, who continuously interact with their environment and whose behaviour is characterized by their input/output traces (sequences of interleaved inputs and outputs). Conversely, passive learning is well suited to learn transformational systems (software that compute a result after processing some input, and may just terminate after providing the output), following the classical distinction popularized by [START_REF] Pnueli | Applications of temporal logic to the specification and verification of reactive systems: A survey of current trends[END_REF].

In this paper, we present an approach for active model learning from black box reactive systems that does not require the ability to reset the system.

Model learning from a black box has received growing interest in software engineering to retrieve models of legacy software systems or components for various purposes, such as documentation as in "specification mining" [START_REF] Ammons | Mining specifications[END_REF], verification with model checkers [START_REF] Peled | Black box checking[END_REF], security analysis [START_REF] Büchler | Model inference and security testing in the spacios project[END_REF] etc. For reactive systems, the resulting models are in general input/output transition systems, or, if inputs and outputs alternate synchronously, Mealy machines, often called Finite State Machines (FSMs).

Active learning based on queries has attracted interest in model-based software engineering with Angluin's L * algorithm [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF], which has been adapted to input/output models e.g. by [START_REF] Hungar | Test-based model generation for legacy systems[END_REF]; [START_REF] Shahbaz | Inferring mealy machines[END_REF]. Two types of queries are used: output queries, which send sequences of inputs and observe the corresponding sequence of outputs, and equivalence queries, whereby a so-called "oracle" will either confirm equivalence or provide a counterexample. Notice that, in a black box testing setting, the former are rather straightforward, whereas the latter have to be approximated, at best.

Most algorithms for active model learning have assumed that the SUL (system under learning) can be reliably reset, i.e., brought back to its initial state; thus, it is possible to root the observed traces to a fixed, known state. Each query is applied from the initial state. Yet, in many black box contexts, e.g., when a system is queried over a network, the SUL cannot be reset or, each reset is prohibitively costly. Consider, for example, interacting over a local network for querying a web system on a virtual machine; it takes milliseconds for a single input/output observation, whereas resetting a virtual machine may take up to a minute, so almost 10 5 longer for a reset than for a single input.

The problem of learning without reset was first addressed in [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF] using a variant of the L * algorithm. The proposed algorithm assumed that a homing sequence (i.e., a fixed input sequence such that the output observed completely determines the state reached at the end of the sequence (see [START_REF] Lee | Principles and methods of testing finite state machines -a survey[END_REF]) was given. A different approach was proposed by [START_REF] Groz | Inferring finite state machines without reset using state identification sequences[END_REF]. Instead of relying on a homing sequence and the classical learning algorithm L * , it uses two classical assumptions from FSM testing: i) it assumes that a bound on the number of states of the SUL is known; ii) a characterization set for the SUL is given.

In this paper, we propose a new approach that combines the ideas from [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF] with the approach inspired by conformance testing [START_REF] Groz | Inferring finite state machines without reset using state identification sequences[END_REF], for learning non-resettable systems. A very preliminary version of this work was published as a proposal paper (4 pages long) in [START_REF] Groz | Revisiting AI and testing methods to infer FSM models of black-box systems[END_REF]. Compared to that paper, we have included the following contributions:

• Heuristics that decrease the length of the global trace needed to learn a system

• Reducing the number of calls to an external oracle by making the most of the existing global trace

• Enhanced methods for finding counterexamples

• Experiments with various benchmarks to assess the algorithm

• Comparison with classic algorithms that use a reset when learning machines whose graph is not strongly connected.

The proposed approach, which we call the hW -inference method, scales up to state machines that have thousands of states and requires no prior knowledge of the number of states of the systems. Notice that the number of states is not directly related to the size of the system. The model learnt by the approach is usually an abstraction of the system, and thus the number of states is related to the level of abstraction. In general lines, it uses tentative homing sequence and characterization set. If they are indeed valid, the method infers the correct model. Otherwise either the homing sequence or the characterization set is refined (or learnt). It is a form of optimistic heuristic that infers from approximate h and W as if they were really homing and characterizing; if they are not, this implies that distinct states from the system can be confused and merged in the learnt model, leading to apparent non-determinism that provides information to refine h or W . Equivalence queries are still needed to confirm that a learnt model is appropriate. The remainder of the paper is organized as follows. Section 2 gives the necessary definitions and notations to present the algorithms and heuristics of the approach. Section 3 presents the problem solved and the associated assumptions. Previous related approaches are presented in Section 4, and quantitative comparisons will be given in Section 8 based on the publicly available tool SIMPA1 . The approach itself will be presented in sections 5 and 6. It is illustrated on a small example in sections 5.2 and 7. Section 9 concludes the paper and points to future work.

Definitions

In this section, we recall a few classical definitions for the type of automata we are considering here, namely Finite State Machines (FSM). A Finite State Machine is a complete deterministic Mealy machine. Formally, it is a tuple M = (Q, I, O, δ, λ) where

• Q is a finite set of states,
• I is a finite set of inputs (the input alphabet), and O a finite set of outputs,

• δ : Q × I → Q is the transition mapping, and λ : Q × I → O is the output mapping.

Notations δ and λ are lifted to sequences, including the empty sequence : δ(q, ) = q, λ(q, ) = and for q ∈ Q, for αx ∈ I * , δ(q, αx) = δ(δ(q, α), x) and λ(q, αx) = λ(q, α)λ(δ(q, α), x). We will call λ(q, α) and δ(q, α) the answer or response of the machine in state q to the sequence α and the tail state of the sequence, respectively. We will use α/β ∈ (IO) * to denote the interleaved sequence of inputs and corresponding outputs observed when the application of α to the machine yields the response β. Such a sequence of input/output pairs is called a trace. Given a trace ω = α/β, α = ω denotes its input projection, and β = ω its output projection. For any sequence α, |α| denotes its length. Notice that we slightly abuse the notation to represent as well the cardinality of a set: |I| is the number of elements in set I.

For learning without reset, we will assume that the FSM to be inferred is strongly connected, i.e., for all pairs of states (q, q ) there exists an input sequence α ∈ I * such that δ(q, α) = q .

A sequence of inputs h ∈ I * is homing if, and only if, ∀q, q ∈ Q, λ(q, h) = λ(q , h) ⇒ δ(q, h) = δ(q , h). In other words, the observed output sequence uniquely determines the state reached at the end of the sequence.

Two states q, q ∈ Q are distinguishable by γ ∈ I * if λ(q, γ) = λ(q , γ). Two states are distinguishable by a set Z ⊂ I * if there exists γ ∈ Z that distinguishes them. An FSM is minimal if all states are pairwise distinguishable. A set W of sequences of inputs (henceforth conventionally called a W -set, following [START_REF] Vasilievskii | Failure diagnosis of automata[END_REF]) is a characterization set for an FSM M if each pair of states is distinguishable by W .

A couple (h, W ) ∈ I * × 2 I * is said to be homing-characterizing if h is homing and W is a characterization set.

Given a machine M = (Q, I, O, δ, λ) and its current state q defined by the context, tr(α) will denote the trace from q such that tr(α) = α and tr(α) = λ(q, α). For a set of input sequences Z, T r(Z) = {tr(z) | z ∈ Z}. Finally, we overload the notation by defining T r(q) as the set of all traces of M from state q, i.e. T r(q) = {tr(α)} α∈I * .

Two states are equivalent if, and only if, they have the same set of traces T r(q) = T r(q ). Equivalence of states can be defined between states of different machines, although it makes sense mostly when the machines have common inputs and outputs. Two machines M and M are equivalent, denoted by M ≈ M , if, and only if, there exist state q of M and state q of M such that T r(q) = T r(q ). The traditional notion of machine equivalence for machines with initial states is that their initial states would be equivalent, hence all states would be equivalent (assuming they are deterministic and complete). In our case, where we do not consider initial states and we assume that the machines are strongly connected, having a pair of equivalent states comes to the same. Note that we can define equivalence between an FSM and a software system as long as the observable behaviour of this system can be defined by the set of traces it can exhibit.

Given a characterization set W , rather than naming or enumerating states, we may refer to a state by its state characterization. A state characterization φ is a mapping from W to O * , such that φ(w) = tr(w), where tr(w) is the output sequence observed when applying w to M in state q. Let Φ ⊂ O * W be the set of partial functions from

W to O * , such that ∀φ ∈ Φ, ∀w ∈ W, |φ(w)| = |w| if φ(w) is defined. The set of mappings Φ M = {φ 1 , . . . , φ m } ⊂ Φ corresponds to the set of states Q of the machine.
Namely, for φ ∈ Φ M and q ∈ Q, we write φ ↔ q if ∀w ∈ W, φ(w) = λ(q, w). Thus, while inferring an unknown FSM with characterization set W , we will consider the set of mappings Φ M as its set of states.

Assumptions and problem

In this paper, we address the problem of inferring (learning) an FSM model of a black box system with which we can interact only by sending inputs and observing outputs.

Core assumptions

The minimal assumptions, common to all active learning algorithms we consider here, are the following.

• The system behaves as a Mealy machine: it produces an output for every input that is sent to it. Actually, we can consider multiple outputs as a single output, empty outputs as a special output (assuming the system is quiescent [START_REF] Tretmans | Test generation with inputs, outputs, and quiescence[END_REF], i.e., stable after receiving the input, and we can observe the absence of output with a timer). The response of the system (the output) is determined by its internal state and the input received.

• The system is deterministic and has a finite number of states.

• The input alphabet is known.

• The system is input-complete: it cannot refuse an input.

• The system (or more precisely the graph of its FSM model) is strongly connected.

Note that we do not assume that a special input or input sequence can reset the system to a specific initial state. Thus, since the machine cannot be reset, after a number of input/output exchanges to learn, the system will stay in a strongly connected component, and it will not be possible to infer transitions from states that cannot be reached from this strongly connected component.

Problem statement

We can then state the problem as follows.

Problem. Given a system with the assumptions above, produce a minimal FSM model of it by sending a finite input sequence ω and observing the system's response to this sequence; the sequence can be sent in segments, thus adapting to previous observed outputs.

A model means that the traces (input/output sequences) that can be produced by the system are exactly those of the FSM.

hW-inference further assumptions

The only specific assumption used by hW -inference is the ability to get counterexamples. Actually, even this assumption will be used very sparingly, as will be seen later. Contrary to [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF], hW -inference is deterministic and does not require a bound on the number of states. In practice, if the oracle is approximated, it might use some bound somehow. From [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF], hW -inference reuses two ideas: that homing can be used as an ersatz for resetting, and that approximated homing can be refined when it leads to observed non-determinism. From LocW [START_REF] Groz | Inferring finite state machines without reset using state identification sequences[END_REF], it reuses the idea of characterizing sets with a W -set, as well as the general structure of the algorithm. Progressive refinement of W was taken from [START_REF] Petrenko | Inferring Approximated Models for Systems Engineering[END_REF].

Similarly to all algorithms that do not reset for learning, hW -inference learns by progressively extending a sequence of inputs and outputs with new inputs, observing the outputs they trigger to learn new transitions. The sequence of inputs and outputs that is built in this manner from the start of the algorithm is called the global trace, or simply the trace. We will denote it ω as in [START_REF] Groz | Inferring finite state machines without reset using state identification sequences[END_REF].

We note the assumptions required by the approach limit its application. The first one is that the system should exhibit a (non-trivial) input/output behaviour. It is not applicable to transformational software. Then, the very fact that it is assumed that the system can be described by a finite model is a limitation. Similarly, the assumptions about being deterministic and strongly connected limit its application, although we show that we can adapt to non-strongly connected models.

Related work

In the software engineering context, many approaches have been developed to learn models from various artefacts related to software. For black box software, reverse engineering based on source code (or binary code) analysis cannot be applied. There are two main approaches that can be applied to retrieve behavioural models from software executions: mining software logs (passive learning) or testing in black box mode (active learning) from the software interfaces.

Although passive inference follows a very different approach, there has been quite interesting progress in this direction since the seminal papers on software processes by [START_REF] Cook | Discovering models of software processes from event-based data[END_REF] and on specification mining by [START_REF] Ammons | Mining specifications[END_REF]. Specification mining has also been extended to address partial orders and concurrent systems [START_REF] Kleber Kumar | Specification mining in concurrent and distributed systems[END_REF][START_REF] Beschastnikh | Inferring models of concurrent systems from logs of their behavior with csight[END_REF]. Most of the work done in this direction is based on software logs that can be obtained from tracing or logging software used by developers, or by interprocedural calls or other sorts of events that can be captured by execution platform. Regarding the underlying algorithms for state minimization, many approaches are extensions of the basic kTail algorithm for passive inference designed by [START_REF] Biermann | On the synthesis of finite state machines from samples of their behavior[END_REF]. One of the recent developments by [START_REF] Mariani | Gk-tail+ an efficient approach to learn software models[END_REF] extends this to gFSMs, FSMs with guard extensions on transitions. Some researches also try to use more recent passive inference algorithms, such as the Blue-Fringe technique, combining them with queries as in [START_REF] Walkinshaw | Reverse engineering state machines by interactive grammar inference[END_REF]. [START_REF] Petrenko | Inferring Approximated Models for Systems Engineering[END_REF] is another example of combining passive state merging with active learning. Indeed, combining monitoring (passive) with testing (active) is an active field of research especially in the field of discovering so-called software protocols, business processes or service orchestration [START_REF] Bertolino | Automatic synthesis of behavior protocols for composable web-services[END_REF][START_REF] Dallmeier | Automatically generating test cases for specification mining[END_REF].

In order to be able to interact with a system as required by active learning, there are also related research works in (communication) protocol reverse engineering, to discover the format of messages exchanged, as done for instance by tools such as Netzob or Nemesys [START_REF] Kleber | NEMESYS: network message syntax reverse engineering by analysis of the intrinsic structure of individual messages[END_REF]. This is a preliminary step for inferring the state machine of undocumented (and sometimes obfuscated) protocols. Another trend in reverse engineering interfaces is known as GUI ripping [START_REF] Memon | GUI ripping: Reverse engineering of graphical user interfaces for testing[END_REF].

It makes sense to combine various approaches to reverse engineer models from software systems. At the heart of inference, the techniques are based on algorithms that often come from automata or computational theory.

For active learning of software systems, many algorithms have been proposed to actively learn either DFA (Deterministic Finite Automata, language acceptors with just inputs and final states) or FSM models of software system. Many have been based on Angluin's L * algorithm, for instance [START_REF] Niese | An integrated approach to testing complex systems[END_REF], [START_REF] Shahbaz | Inferring mealy machines[END_REF], or on tree structures, in particular [START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF], [START_REF] Petrenko | Inferring Approximated Models for Systems Engineering[END_REF]. They assume that the system can be reset at the start of each query.

However, there have been only few attempts to actively infer systems that cannot be reset.

The problem was initially raised by [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF]. They first present a deterministic solution where they assume that a homing sequence is given and that an oracle can answer equivalence queries. They propose a modified version of L * where resets (implicitly applied at the beginning of each query in L * ) are replaced by applications of the homing sequence. They use as many observation tables as there are different responses to the homing sequence. They also present a probabilistic algorithm which starts from a possibly non-homing sequence, and refines it, provided there is a bound on the number of states. The problem was somehow neglected until a new approach was presented in [START_REF] Groz | Inferring finite state machines without reset using state identification sequences[END_REF]. This approach no longer requires an oracle. It uses a characterization W -set and a bound on the number of states. It does not require a homing sequence, but uses a complicated nesting (called localizer) of elements from W to anchor into recognizable states. More recently, an alternative approach based on constraint solving was presented by [START_REF] Petrenko | From passive to active FSM inference via checking sequence construction[END_REF] and refined in [START_REF] Petrenko | FSM inference and checking sequence construction are two sides of the same coin[END_REF]. It just needs a bound on the number of states. It uses the current learning trace ω and encodes it as a satisfiability problem to see whether it is possible to find an FSM that is different from the current conjecture while still compatible with the trace. That approach looks currently as the best one for systems with a small number of states (up to 10), as it does not require any knowledge on the black box, and the length of the trace required to fully learn the system is the smallest among current algorithms for inferring without reset. However, it blows up (in computation time) when the system to be inferred has more than a dozen states.

hW -inference algorithm

The hW -inference algorithm combines several levels of refinement. In order to provide a better intuition of its elements, we present it progressively: first the main loop (which we call the backbone algorithm), then the handling of non-determinism implied by the fact that the algorithm works with approximate homing and characterization, then further heuristics that will enhance the convergence rate. We present counterexample finding and counterexample processing separately, as this is always a special concern with inference methods for black box software systems, and there can be several approaches that can be combined with the rest of the algorithm.

Backbone algorithm

The hW -inference algorithm is built on a repetitive loop of learning each state and each transition of the system, by applying sequences of the form hαxw, where h is the current tentative homing sequence, α a (possibly empty) transfer sequence to reach a transition not yet fully learnt, x an input and w an element from the current tentative characterization set.

The backbone algorithm assumes that h is a homing sequence and W a characterization set for the SUL. If that is the case, then no non-determinism will occur, and no counterexample is needed, as the algorithm will progressively build a conjecture M that is equivalent to the SUL. In order to recognize states reached at the end of homing sequences, it also progressively builds a function H that associates with each response r to h a function H(r) ∈ Φ. When this function is total from W to O * , a new tail state of h has been characterized and transitions can be learnt from it. Similarly, the tail state of a transition, appearing as δ(q , x) in the algorithm, is progressively learnt. It is a partial function, so its definition domain, denoted by dom(δ(q , x)) is included in W , and the inclusion is strict until it is defined on all elements of W , at which point the state is fully characterized and the tail state of the transition becomes known.

Under the assumption that the SUL is behaving as a complete stronglyconnected FSM for which (h, W ) is homing-characterizing, the backbone algorithm will explore all its transitions and yield a minimal model M equivalent to the SUL. Each time the loop is repeated, either we characterize better the state reached by the homing sequence with a given response r until that Algorithm 1 Backbone algorithm

1: Q, λ, δ ← ∅ 2: repeat 3: apply h and observe r ∈ O * 4: if H(r) is undefined then 5: H(r) ← ∅ 6: if H(r) is undefined for some w ∈ W then
Learn the state

7: apply w, observe y, H(r) ← H(r) ∪ {w → y} 8:
else

We know the state reached after h/r 9:

let q = H(r) be the state reached at end of h; 10:

Q ← Q ∪ {q} 11:
find shortest αx ∈ I * s.t. δ(q, α) = q and δ(q , x) is partial.

12:

apply α.x.w, for some w ∈ dom(δ(q , x)), observe β.o.y; Learn a transition 13: λ(q , x) = o and δ(q , x)(w) = y 14:

if dom(δ(q , x)) = W then 15: Q ← Q ∪ {δ(q , x)} 16: until M = (Q, I, O, δ, λ) is complete
state is fully characterized, or we learn a new transition, until all reachable transitions from the end of the last applied homing sequence are complete. Since we assume that the machine to learn is strongly connected, any transition can be reached from any state and, when the algorithm terminates, δ and λ make up a complete machine.

Let n be the number of non-equivalent states, |I| the size of the input set, |W | the cardinality of W and V = w∈W |w| the cumulated length of elements in W . The length of any transfer sequence α is bounded by n and there are exactly n|I| transitions to learn; but actually the worst case for the cumulated length of transfer sequences is not n 2 but n(n -1)/2 which we bound by n 2 /2. Indeed, the worst case for transfer would be a sort of "linear" automaton where the farthest state from any state would be n -1 states away from the current one, but the transfer to intermediate states would then be of length 1, 2 up to n -2. Learning H will require at most

w∈W n(|h| + |w|) = n(|W ||h| + V ) inputs since n is a bound on the different answers to h. Learning transitions will require at most w∈W n|I|(|h|+n/2+ |w|) = n|I||W |(|h| + n/2) + n|I|V .
Therefore the length of the trace required to get M will be bounded by

n(|W ||h| + V ) + n|I||W |(|h| + n/2) + n|I|V = n(|I| + 1)(V + |h||W |) + 0.5n 2 |I||W |.
The complexity may depend on the quality of the sequences provided for h and W . There are machines for which the shortest homing sequence is of length n(n -1)/2. And separating sequences in the worst case are of length n and there can be in the worst case n -1 sequences. Thus, a worst case bound is O(|I|n 4 ). However, the average complexity in practice is much lower. Even with hW -inference that progressively builds non optimal h and W , experiments presented in Section 8 show that on randomly generated machines, the average complexity is polynomial with a much lower degree O(|I|n 1.3 ).

We now discuss the correctness of the backbone algorithm. We first notice that it assumes that both h is a valid homing sequence and W is a valid characterization set. As such, they can be used to learn the next state and output functions that fully define an FSM. This is similar to what is done in FSM-based test generation (see, e.g., [START_REF] Simao | Generating checking sequences for partial reduced finite state machines[END_REF]). The homing sequence is used to return to some known state. Thus, in Line 3, the homing sequence is applied and the response r is observed. As h is a (tentative) valid homing, r should identify the reached state. However, it may be the case that this is the first time r is observed (Line 4); we record this information in H. If r was observed before but not all responses to the characterization set is known (Line 6), we expand H(r) with the missing information (Line 7). Notice that Lines 4 and 7 will be executed a finite number of times; actually, n|W | times. When the state reached by h is fully known, but the machine is not complete yet, there is a state q with a transition (q , x) for which the next state and/or the output is not identified. Thus, there is a shortest input sequence leading to one of such states (Line 11). Line 12 reaches that state, apply x observing that it responds with o and Line 13 updates both the output function and the next state function. The next state function is updated with the response to some sequence of the characterization set. These steps will be executed exactly |W | times for each transition, and the transition will be fully identified. As there is a finite number of transitions, these will be executed only a finite number of times. We conclude that the backbone algorithm will terminate with a correct model.

Illustration of the backbone algorithm

In order to illustrate the algorithm, we choose a very simple example that will provide a short trace. This will be used as a running example for the further development of the algorithm. We consider the 3-state example in Figure 1. For this FSM, aa is a homing sequence. aa is also a distinguishing sequence, so that we can take h = aa and W = {aa}. The backbone algorithm runs as follows. We suppose we start from state 3. Transitions are numbered with indices starting from 0. Each transition is shown by an arrow, going from one state to the next, and labeled with the input/output above the arrow.

First we apply h = aa which leads us in that case to state 2, and apply w = aa, the unique sequence in W , to recognize that the tail state reached after h/00 is the state {w → 10}.

3 a/0 -→ 0 1 a/0 -→ 1 h 2 a/1 -→ 2 3 a/0 -→ 3 w 1
We reapply h, and get this time a different answer 01, so again we reapply w and now record that the tail state reached after h/01 is {w → 00}.

1 a/0 -→ 4 2 a/1 -→ 5 3 a/0 -→ 6 1 a/0 -→ 7 2
Once again, we reapply h, and get a third response 10 leading to state {w → 01}.

2 a/1 -→ 8 3 a/0 -→ 9 1 a/0 -→ 10 2 a/1
-→ 11 3 At this point, we have identified three states in Q = {{w → 10}, {w → 00}, {w → 01}}, but not any transition so far (λ and δ are still empty). Note that this might not be the case for other examples. It might happen that we would recognize just one or a few states, and start learning transitions. For instance, if the homing sequence would just loop into the starting state, we would start learning transitions from that state before discovering new states.

We also have the mapping H = {00 → {w → 10}, 01 → {w → 00}, 10 → {w → 01}}. Now, we reapply h and get the answer 00. This time, we know that the tail state would be {w → 10}, so we do not need to check it, and we can learn a transition from that state. We choose to apply a, observe a/1 and check the tail state of that transition which happens to be {w → 00}.

3 a/0 -→ 12 1 a/0 -→ 13 h 2 a/1 -→ 14 x=a 3 a/0 -→ 15 1 a/0 -→ 16 w 2
At this point, the partial conjecture built from Q is illustrated in Figure 2. We reapply h, get the answer 10, so we are in state {w → 01}. Thus, we also learn a transition from it: in that case transition a/0 leading to state {w → 10}. 

2 a/1 -→ 17 3 a/0 -→ 18 1 a/0 -→ 19 2 a/1 -→ 20 3 a/0 -→ 21 1
Again we learn another transition on input a.

1 a/0 -→ 22 2 a/1 -→ 23 3 a/0 -→ 24 1 a/0 -→ 25 2 a/1 -→ 26 3
Now, when we reapply h, we come to a state for which we already know the transition by input a. So now we learn its transition by input b.

3 a/0 -→ 27 1 a/0 -→ 28 h 2 b/0 -→ 29 x=b 2 a/1 -→ 30 3 a/0 -→ 31 w 1
Now we learn again another transition by b, this time on the state reached after h/01.

1 a/0 -→ 32 2 a/1 -→ 33 3 b/0 -→ 34 1 a/0 -→ 35 2 a/1 -→ 36 3
For the next transition to learn, there is a twist: h gives again a response 00 leading to state {w → 10} for which we know both transitions (by a and by b). So we choose the shortest transfer sequence α leading to a state for which there is a transition that has not yet been learnt. In that case, α = ab, which we know leads to state {w → 01}, for which we can now learn transition b.

3 a/0 -→ 37 1 a/0 -→ 38 h 2 a/1 -→ 39 3 b/0 -→ 40 α=ab 1 b/0 -→ 41 x=b 1 aa/01 -→ 42-43 w 3
We now have a complete three state FSM M = (Q, {a, b}, {0, 1}, δ, λ) pictured in Figure 3 that is equivalent to the SUL in Figure 1. 

From backbone to hW-inference

hW -inference is supposed to be used when little is known about the SUL, apart from its input set. Therefore, we may not know h or W . Using the backbone loop with incorrect h or W may lead to inconsistencies during the course of the algorithm.

And even with (h, W ) not homing-characterizing, the inference could still end with a complete machine without detecting an inconsistency. It may also be the case that the inferred machine is not connected. hW -inference will need counterexample traces to progress. This will be discussed in section 6.

h-ND inconsistency

If we start with an h which is not homing, this implies that we will consider as a single state (as reached by a given response r to h) at least two states that are in fact different. Later on, when we apply some sequence of inputs γ after observing h/r, we may observe different output sequences for the same prefix hβ of hγ that was already applied as a prefix of another sequence. This we call an h-ND inconsistency, because it appears as nondeterministic behaviour from the state of the machine reached after observing h/r. Actually, hβ is a better attempt at a homing sequence because it will reduce the uncertainty (as in [START_REF] Lee | Principles and methods of testing finite state machines -a survey[END_REF] and [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF]). hW -inference will extend h with the smallest prefix of β that triggers a different output.

Formally, h-ND inconsistency occurs when the global trace contains a sequence h/r.β/v and another sequence h/r.β/v such that v = v . In this case we extend h to hβ.

W -ND inconsistency

A second type of inconsistency can occur when W is not characterizing. Even though h may be homing, different responses r and r can be associated with the same state q ∈ Q if they have the same response to all sequences of W . Similarly, the tail states of two transitions can be merged, viz. δ(q, x) = δ(q , x ) even if those states could be distinguished by a sequence that is not in W . State confusion again can lead to apparent non-determinism for sequences of inputs that are applied from q or δ(q, x). In that case, some suffix of those sequences can be added to W to enhance distinguishability of states.

Formally, W -ND inconsistency occurs when the global trace contains a sequence h/r.α/u.β/v and another sequence h/r .α /u .β/v such that r = r , δ(H(r), α) = δ(H(r ), α ) and v = v . This implies that δ(H(r), α) and δ(H(r ), α ) can be distinguished by β. Actually, all states traversed while applying β can be distinguished by some suffix of β. There can be several ways of choosing which subsequence of β should be added to W . Currently, we add the shortest suffix of β that is not yet in W and at the same time we clean W of all its prefixes: if a sequence w extends another sequence w ∈ W , then it is unnecessary to keep w since w will distinguish at least as many states.

Main hW-inference algorithm

We are now ready to present the complete algorithm that does not assume knowledge of homing and characterizing sequences. It will learn h and W from inconsistencies and automatically extend them for improved homing and characterizing.

The algorithm is based on the following structures:

• Q ⊂ Φ -s.t. ∀q ∈ Q, dom ( 
q) = W -is the set of all states built during inference.

• H ⊂ {r → Φ} registers the characterizations reached after applying the homing sequence. A characterization mapped by H is either a partial characterization or an element of Q if answers to all elements of W are known.

Inconsistency handling. In the hW -inference algorithm, each time an input is applied we check for h-ND or W -ND inconsistencies. In the backbone algorithm, the discovery of an inconsistency leads to restart the backbone algorithm with an improved h or W . This is similar to exception handling: it can be raised on any application of a single input, and diverts the normal flow of the algorithm. Outside of backbone algorithm (i.e. at Line 22), an h-ND inconsistency will be used to extend h but the search of counterexample will continue whereas a W -ND inconsistency is a counterexample and will be processed at the next line.

When an inconsistency of type ND is found, either h or W is refined, we abort current steps and restart from Line 3. So the global inference is a repetition of sub-inferences, each one with an updated h or W , until we come to a model for which there is no counterexample.

On Line 14, we might not be able to find a path to a partially defined transition, if we are in a complete subgraph of a non strongly-connected machine M . In order to be able to reach back a partially defined state out of the current subgraph, we need a counterexample.

We now discuss the correctness of the base algorithm. Note that the loop from Line 5 through Line 21 are analogous to the backbone algorithm; the exception is that inconsistencies can be observed and should be dealt with (as discussed later). Nonetheless, if the h and W are valid, no inconsistencies are found and the algorithm terminates, since there would not be a counterexample. Every time an inconsistency is found, either by an output that is not according to the machine learnt so far or by a failure to find a path to a partially defined state, we can update h or W . Thus, we have to prove that after a finite number of updates, both h and W will be valid.

The tentative homing sequence h is updated when it can be determined that h is not a homing sequence for the conjecture machine obtained so far. Suppose that the responses to h identifies k states, but an inconsistency was found. Thus, h is extended, so that one state is split into (at least) two states, identifying now more than k states. Therefore, after at most n updates h will identify all the states, and hence will be a valid homing sequence.

As for the updates of W , it is trickier. The main source of information for the update of the characterization set is the processing of the counterexamples. As a basic fact, we have that a set I n of all sequences of length n is Algorithm 2 Base hW -inference algorithm let q = H(r) be the state reached at end of h;

1: procedure Infer 2: initialize: h ← ; W ← ∅ 3: repeat 4: Q, λ, δ ← ∅ 5:
13: Q ← Q ∪ {q} 14:
find shortest αx s.t. δ(q, α) = q and w s.t. δ(q , x)(w) = ⊥ 15:

if such a path cannot be found then λ(q , x) ← o and δ(q , x)(w) = y 19:

if dom(δ(q , x)) = W then Full characterization reached 20:

Q ← Q ∪ {δ(q , x)} 21:
until M = (Q, I, O, δ, λ) contains a strongly connected complete component until no counterexample can be found M equivalent to SUL characterization set [START_REF] Lee | Testing finite-state machines: State identification and verification[END_REF]. Even being exponentially large, this set is surely finite. Surely, a much smaller subset of I n is a characterization set. So, with W being updated only with sequences no longer than n, eventually W will be valid. Therefore, under the assumption that the oracle does not provide counterexamples with suffixes longer than n, the algorithm will terminate. Experiments show that even for random walk, this is the case in all our experiments, and in fact the convergence is much faster (see Section 8).

Heuristics added to base algorithm

The hW -inference algorithm builds more and more precise models of the SUL, based on h and W , that are refined as soon as apparent nondeterminism shows that (h, W ) is not homing-characterizing. Moreover, when it does not yield a complete model, an oracle can be called to provide a counterexample.

Classically, the efficiency of a learning algorithm, apart from its internal computations, is determined by the number of queries it requires to learn a model: queries to the SUL by sending inputs to it and observing its outputs, and queries to the oracle. However, when the SUL cannot be reset, the criterion for the efficiency reduces to the length of the global trace needed to reach the final model and the number of calls to the oracle. In a context of learning applied to testing black box systems, concentrating on the length of the trace is particularly appropriate as the interaction with a black box takes often more time than the bookkeeping activities of the algorithm (e.g. network delay vs internal computation).

On top of the base algorithm, we add heuristics that are likely to reduce either the length of the trace or the number of calls to the oracle or both.

• Dictionary of queries: reusing queries and answers from previous subinferences.

• Adding h in W .

• Exploiting the past trace to spot other inconsistencies than non-determinism.

Those are heuristics, because the rationale for each of them does not guarantee that it will reduce the total number of queries: since the current inference is based on approximate h and W , using information based on "incorrect" data could be misleading and induce slower convergence. We introduced these heuristics into the hW -inference algorithm after assessing their efficiency, at least on large sets of randomly generated machines.

Figure 4a shows how many executions on the black box are saved with each heuristic. For this comparison, we used random automata with two inputs and two outputs, as this is somehow the toughest case because larger sets of inputs and outputs increase state distinguishability; effects of larger input sets is discussed in Section 8. Although we show only automata of 50 to 200 states here, we obtained similar results on automata up to 3000 states. Our testing framework will be described in section 8.

Adding h in W and using a dictionary are quite efficient in reducing trace length: each of them decreases the trace length by around one third, and combined together, the trace length is divided by two. Using the past trace to spot inconsistencies reduces the number of calls to the oracle. The same goes for adding h in W , but the dictionary has no influence w.r.t. the oracle.

Using a dictionary

In the base algorithm, we repeatedly apply input sequences h.w or h.α.x.w to discover states and transitions. When we add a new w in the W -set, we restart the backbone algorithm and we might apply again the same sequences h.α.x.w. To reduce the length of the trace, we can just reuse the observed output responses to these input sequences.

We add a so-called dictionary (see [START_REF] Niese | An integrated approach to testing complex systems[END_REF] to record those sequences. Each time we apply h.α.x.w and observe an answer r.β.o.y at Line 17 of the base algorithm, we record h/r.α/β.x/o.w/y in the dictionary.

Adding h to W

By construction, h is a sequence for which we observed several responses. Each refinement of h is done after observing two different behaviours after h and thus, each refinement of h gives a sequence which has at least one more answer than the previous one.

Each different output observed after a given sequence distinguishes a state in the black box and thus, h can also be used to distinguish states.

Based on this observation, we can choose to add h to W after each refinement of h. Of course, it is useless to add h if it is a prefix of a sequence already in W , and if we add h, W can be cleaned of any prefix of h.

Even though this means adding sequences to W and therefore implying more queries, the experiments showed that using this heuristic is quite efficient: on random machines, it reduces the length of the trace by around 30% to reach the final model.

Checking inconsistencies between h and conjecture

Apart from h-ND and W -ND, other inconsistencies can be detected, not just on the trace itself, but also between the trace and the conjecture.

One possible verification which can be done is that h is compatible with the conjecture. Actually, two checks can be done: 1) we can check if the mapping H is consistent with the conjecture, and 2) we can also check that h is really a homing sequence for the conjecture. Both checks are performed on the conjecture. However, the search is restricted to states q 1 that are reachable from the current state at the end of the trace. If that state is unknown, it is necessary to apply h on the SUL to ascertain the current corresponding state q 0 of the conjecture (as H(r 0 ) where r 0 is the observed response on the SUL). This is motivated by the fact that after checks are carried out on the conjecture, if an inconsistency is found, the heuristic will apply a new sequence on the SUL to solve this inconsistency.

H-inconsistency

If ∃w ∈ W, ∃r ∈ O * s.t. H(r)(w) = λ(δ(q 1 , h), w), then
apply on SUL a transfer sequence to q 1 , and then h.w. As we know there will be a discrepancy between a transition on the conjecture (whose output was observed previously in the trace) and the trace, either h-ND or W -ND will be detected.

h not homing If h is not homing we can identify two reachable states q and q in the conjecture such that λ(q, h) = λ(q , h) and ∃w ∈ W s.t. λ(δ(q, h), w) = λ(δ(q , h), w). In that case, we apply on SUL a transfer sequence to q, followed by h.w. Then a transfer to q followed by h.w. As soon as h-ND or W -ND is detected during these applications of sequences, the application is interrupted and the inconsistency is addressed.

Finding and Processing Counterexamples

In our setting, a counterexample is a trace observed on the SUL that is not accepted by the current conjecture.

Angluin's initial paradigm for learning assumed that a teacher could assess the adequacy of the model provided by a learner and answer an equivalence query either with a positive answer (the model is equivalent to the SUL) or with a counterexample, viz. a trace accepted by one and not the other. The ability to rely on such an oracle (the teacher) is the key that makes it possible with L * to learn a model in a polynomial number of queries.

In a black box testing context, such a knowledgeable oracle is not available. In order to ensure that a learning algorithm can progress towards an equivalent model, it is important to keep the ability to find counterexamples. Several approaches can be used, such as:

• Using the conjecture as a specification and checking the conformance of the SUL with the Vasilievskii-Chow algorithm [START_REF] Vasilievskii | Failure diagnosis of automata[END_REF][START_REF] Chow | Test software design modelled by finite state machines[END_REF]. This was considered by [START_REF] Peled | Black box checking[END_REF]. But it is exponential and not well-suited for non-resettable systems. However, when we allow the system to be reset (see 8.4), we can use this as if the SUL did not have more states than the conjecture, which avoids the exponential blow-up.

• Constraint solving as in [START_REF] Petrenko | From passive to active FSM inference via checking sequence construction[END_REF]. Given the trace from the learning algorithm and the conjecture, we find another conjecture (possibly with more states), and compute a sequence that distinguish them. For the hW -inference algorithm, we would have to define a logical encoding of the problem so as to submit it to a SAT-solver. However, based on the results from [START_REF] Petrenko | From passive to active FSM inference via checking sequence construction[END_REF], this approach most likely would not scale up.

• Random walk on the graph of the conjecture, or equivalently random sequence of inputs. This is the main technique that can be used to look for a counterexample on a black box system, as it can be performed without any specific knowledge. Note that it is not guaranteed to find a counterexample, so the absence of counterexample is just an approximation of equivalence between the conjecture and the SUL.

• Using the global trace as a source of counterexample. This is discussed in section 6.1 below.

Except for the last solution (counterexample from the global trace), it is necessary to bound the search for a counterexample, both for theoretical reasons (deciding equivalence between a black box and an FSM cannot be done in a finite number of steps) and for practical ones (allocating a limited time to get a counterexample). Equivalence queries are therefore approximated, and the absence of counterexample (found) will be considered as an approximated evidence for equivalence.

Using the trace to find counterexamples

In hW -inference, we first look for counterexamples from the trace as an "internal" source of counterexamples, and failing that, we will use random walk as an "external" oracle. Note that we cannot avoid two calls to an external oracle (at least when we start with empty h and W ): the first when the trace is only composed of one application of each input, and the last one when the conjecture is correct (to check equivalence). Interestingly, on random machines at least, the number of calls to an oracle can be kept almost to that minimum when we use the global trace as a source of counterexample. This appears on Figure 5b.

It is possible that the global trace, which of course is a trace of the SUL, may not be a trace of any state of the conjecture. In that case, it is a counterexample. It is also possible that a suffix of the global trace is also a counterexample (in which case the global trace is also a counterexample, as well as all the longer suffixes that include that suffix). This can occur in particular if the conjecture is not strongly connected. And also because the conjecture derived from the last sub-inference when (h, W ) is not The issue to check compatibility between trace and conjecture is that the initial state of the conjecture is unknown. Our solution is to look for the first sub-trace ω of ω s.t. for all state q in conjecture, λ(q, ω ) is defined and ω = λ(q, ω ). If such an ω exists, it is a counterexample and we can process it like a counterexample given by an oracle. If there is no ω or if ω is already in W , we cannot use the trace to provide a counterexample and in this case we ask one from the oracle.

Figure 5a shows that the length of the trace is reduced approximately by 10% when using the trace to find counterexamples instead of asking an oracle. Actually, the main impact comes from the fact that we reuse the same counterexample and we increase the length of elements in W instead of increasing the cardinality of W as will be seen when we process counterexamples.

To summarize, it appears that looking for counterexamples in the global trace before resorting to an oracle is extremely beneficial, at least on random machines.

• It reduces the length of the trace needed to infer a correct conjecture (10% reduction on random machines)

• It almost suppresses the need for an external oracle: the first call is almost trivial, any small random walk would suffice. Moreover, when the algorithm converges on a conjecture with no counterexample on the trace, in most cases, it means this conjecture is correct, the call to the external oracle will only confirm it.

Of course, if the SUL is a Moore lock or needs a special sequence to access certain parts of the graph, an external oracle would still be needed.

Processing counterexamples

Many options for processing counterexamples have been investigated for query-based learning algorithms. Angluin initially proposed to add all prefixes of a counterexample as rows in L * . Later approaches, triggered by [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF] have shown that it is better to add suffixes to columns. Tree-based algorithms [START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF][START_REF] Petrenko | Inferring Approximated Models for Systems Engineering[END_REF] use a similar approach of extending suffixes that distinguish states, i.e. the W -set.

Counterexample processing in hW-inference. In hW -inference, we currently use the "shortest suffix" approach: we add the shortest suffix of the counterexample that is not yet in W . If the whole counterexample is already in W , we need another counterexample.

Example

We now illustrate the full algorithm on the small example from Figure 1. We assume here that the SUL is in state 1 when the inference begins. Assuming we do not know anything about the black box, we start with h = and W = ∅ or, equivalently, W = { }.

1 h= w= h= a/0 -→ 0 x=a 2 w= h= b/0 -→ 1 x=b 2 w= a/1 -→ 2 counterexample 3
Before transition 0, we apply h = followed by an empty characterization. This identifies the state reached after the current homing sequence as the state H( ) = ∅. Then we reapply h to learn a transition: we end up in the same state, for which we will learn transition on input a (this is transition numbered 0). After transitions 0 and 1, we conjecture the "daisy" machine (single state with looping transitions) illustrated in Figure 6. Such a daisy machine will always be proposed as initial conjecture by the algorithm for any SUL inferred with h = and W = ∅. Since each input is tried only once, there cannot be any internal inconsistency in the trace, so we call an oracle, viz. a random walk, which here we assume starts with a, immediately triggering a counterexample a/1 whereas the conjecture only allows a/0. At the same time, we detect an h-ND inconsistency, from which we deduce that we must extend h with a. Both the heuristic of adding h in W and the counterexample processing will also extend W with w = a. We restart the outer loop of the base algorithm on Line 3 with the updated h = a and W = {a}.

3 a/0 -→ 3 h=a 1 a/0 -→ 4 w=a 2 a/1 -→ 5 h=a 3
With transitions 3 and 4, we get H(0) = {{w → 0}}. Then with transition 5 we home again (this is the beginning of another h.α.x.w application). Moreover, this time we find again h-ND: the two traces a/0.a/1 and a/0.a/0 have the same answer a/0 to the homing sequence a but differ after applying the same input a. So we extend to h = aa. We add it in W , while removing from W the previous a which is now a prefix of the new sequence we just added.

We now have found (h, W ) = (aa, {aa}) that is homing-characterizing. Therefore, the backbone algorithm in the inner "repeat" loop on Line 5 of the base algorithm will correctly identify the SUL. Since at this point the SUL is in state 3, the 44 transitions illustrated in Section 5.2 are repeated here, and the algorithm terminates with the correct model of Figure 3.

3 a/0 -→ 6 1 a/0 -→ 7 2 a/1 -→ 8 3 a/0 -→ 9 1 a/0 -→ 10 2 a/1 -→ 11 3 a/0 -→ 12 ... 3 b/0 -→ 46 1 b/0 -→ 47 1 a/0 -→ 48 2 a/1 -→ 49 3

Experiments

In this section, we provide some experimental evaluation of the proposed algorithm. First, we experiment with randomly generated automata, which allows us to estimate the expected complexity of the algorithm. Then, we assess the algorithm on a reference benchmark used for active learning methods [START_REF] Neider | Models, Mindsets, Meta: The What, the How, and the Why Not? -Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday[END_REF].

All these experiments can be reproduced with the replication package available from the following website : vasco.imag.fr/tools/SIMPA/references/publications.html#jss-2019 8.1. Assessment of hW-inference on randomly generated machines hW -inference combines algorithmic and heuristic features. It also depends on the counterexamples provided by the oracle. So it is difficult to analyze its expected average complexity. Therefore we perform experiments to assess this complexity, addressing the following research question.

RQ1 What is the expected (average) complexity of the algorithm?

As usual, the comparison is made on random automata. We chose to generate automata with two outputs to reduce the distinguishability of states and make the inference harder. After an initial assessment on the influence of the number of inputs, we will also concentrate on automata that have only two inputs. The automata are built from a set of states, firstly connected with (almost random) transitions to ensure the strong connectivity and then completed with missing transitions. The building process may create equivalent states, but, as the inference produces a minimal automaton, we check the minimal number of states after inference.

The hW -inference method was implemented in the SIMPA2 model inference framework [START_REF] Büchler | Model inference and security testing in the spacios project[END_REF], which already included implementations of the algorithms by Rivest & Schapire and LocW, as well as various other algorithms for resettable systems. All experiments with SIMPA have been performed on a desktop computer with an Intel R Xeon R E3-1246 v3 processor, 3.50 GHz and 32 GB of RAM.

Figure 7, made with random automata of 30 states, shows that the number of inputs does not have a big impact on the length of the trace, especially with the benefits from our heuristics. Actually, the number of inputs influences the length of trace by a factor a bit less than linear. Therefore, we will only do further comparisons regarding the number of states, with a fixed number of inputs (actually two inputs). For comparisons of hW -inference with other methods, we generated automata of various sizes, from 5 to 3000 states and for each point in the graphs we took the average of 100 inferences. All random automata have exactly two inputs, so the number of transitions is just twice the number of states. We compared the algorithms applicable to non-resettable systems: [START_REF] Rivest | Inference of finite automata using homing sequences[END_REF], LocW [START_REF] Groz | Inferring finite state machines without reset using state identification sequences[END_REF] and constraint solving [START_REF] Petrenko | From passive to active FSM inference via checking sequence construction[END_REF] algorithms. LocW algorithm is based on the knowledge of a W -set and the size of the set has a big impact on the length of the trace and the duration of learning. For those comparisons, we provided a W -set of at most two sequences for the LocW algorithm: this seems to be a typical size for an optimal W set of random automata3 , and a larger size would even give a greater advantage to hW -inference since LocW has an exponential complexity in the cardinality of W . We also provide the exact number of states for the bound required by LocW.

Because the algorithms do not have the same complexity, we inferred only automata of reasonable size regarding each algorithm in order to have an average inference duration under 40 seconds. The data for the constraint solving approach were directly taken from [START_REF] Petrenko | From passive to active FSM inference via checking sequence construction[END_REF] and thus, the duration might have a different factor; however the use of a logarithmic scale reduces the impact of constant factors.

Figure 8 shows the duration of learning each algorithm. The constraint solving approach does not scale beyond 11 states. Rivest&Schapire and LocW algorithms infer automata up to 75 and 220 states, respectively. In the same duration (40 seconds), our hW -inference approach can infer automata of 3000 states. The comparison of duration is needed because the complexity of some algorithms will make them unusable for medium or large automata. However, a more important thing to compare is the number of inputs applied on the SUL. When inferring a real system, the time needed to execute a request can be the limiting parameter; thus, we concentrate on comparing the length of the trace for each algorithm.

Figure 9 shows the number of inputs applied on the SUL by each algorithm on the same automata as in Figure 8. Therefore, answering RQ1, a regression on this graph (avoiding small values of |Q|) shows the following complexities:

• hW -inference: 146 × |Q| Therefore, hW-inference outperforms the other three algorithms: Constraint solving, Rivest&Schapire and LocW, regarding both the experimental complexity and the ability to scale up to machines with thousands of states.

For small machines with less than 12 states, constraint solving will require a shorter sequence to infer a model, at the expense of a longer computation time for the algorithm.

Benchmark description

Although random automata provide an easy way to assess and compare algorithms, it is known that real systems have characteristics that are not properly reflected by randomly generated machines. Typically, they could have more specific symmetries, specific sequences of inputs to access certain parts of the behaviour, internal variables that will lead to replicated states, etc.

A benchmark for model learning algorithms has been established by Radboud University4 , and is currently the best recognized benchmark for this task.

Writing an interface between the SIMPA learner (or any learning framework) and an external software system is similar to writing a test harness. To avoid this task, we rely on the models provided by the benchmark in GraphViz DOT format. A number of models available in the benchmark are not for software systems, but correspond to models used in model checking hardware circuits. We do not consider them in the tables below.

Since the benchmark has been intended for algorithms that can reset the system, many models are not strongly connected. This is why we separate applications in the benchmark into two tables: those that are strongly connected, for which hW -inference can be applied directly, and those that are not, for which we will apply an extension of the algorithm. Table 1 and Table 2 provide information about automata in each category defined by the benchmark.

Results on strongly connected applications from benchmark

In this section, we only consider the strongly connected models available in the benchmark. They correspond to the assumptions of applicability of hW -inference. We will investigate the following research questions.

RQ2 Does hW -inference scale to real applications from the benchmark with respect to the expected complexity? RQ3 How does it compare to previous algorithms that do no reset the system?

Additionally, we would like to compare hW -inference with classical active learning that use a reset, to see whether it competes when the cost (timewise) of reset is taken into account. In many systems, resetting the system can be very long compared to a single input interaction. So we will address the following research question: RQ4 How does hW -inference compare with standard algorithms that use reset when the cost of the reset is taken into account ?

As usual in the field of inference, we compare the algorithms w.r.t. the number of inputs (oracle included) that need to be sent to the system to learn a full model of it, viz. the trace length. We report in the table first the average trace length over 100 experiments, then the standard deviation (in italics), as the results depend on randomized values (esp. in the oracle).

First, we compare the LocW and hW -inference algorithms. As LocW requires the knowledge of a W -set that is characterizing for the SUL, we compare it with hW -inference when this knowledge is also available and provided to hW -inference. We restrict to the case where a W -set of size 2 can be found for the SUL (just as for random machines, a larger W -set would greatly increase the length of the trace for LocW, and would give an even greater advantage to hW -inference). We observe on Table 3 that the length of the trace is smaller for hW -inference than for LocW as soon as we deal with automata with more than 60 transitions. Note that we did not cases: "VerneMQ 2 client ret" and "Rhapsody-Dezyne 3 ", because we did not find a W -set of size 2.

We then compared hW -inference with the algorithm by Rivest&Schapire and the L * adaptation to Mealy called Lm from [START_REF] Shahbaz | Inferring mealy machines[END_REF]. We first used random walks to find counterexamples. Table 4 shows that hWinference can infer all automata with a shorter trace than Rivest&Schapire.

The Lm algorithm requires to reset the SUL, while hW -inference and Rivest&Schapire do not. Depending on the cost of a reset, Lm can be better or worse than hW -inference. For assessing this, we compute the minimal cost of a reset for hW -inference to outperform Lm. We can observe on Table 4 that the minimal cost of a reset is often 0, which means that whatever the cost of a reset is, hW -inference outperforms Lm. The worst case is for "emqtt 2 client ret.", with a minimal cost of 29 inputs for reset, which is a rather low value. We made a similar experiment with a more clever oracle than random walks, based on conformance testing following the Vasilievskii-Chow algorithm [START_REF] Vasilievskii | Failure diagnosis of automata[END_REF][START_REF] Chow | Test software design modelled by finite state machines[END_REF]. The results shown on Table 5 are similar to those of Table 4.

From these experiments, we can answer RQ3 by concluding that hWinference outperforms previous algorithms in most cases. The results on this benchmark show that hW -inference is still more efficient than previous algorithms for middle-sized systems, even though not as much as for random machines. It requires less knowledge on the system, and it is definitely scalable for medium-sized systems as present in the benchmark, which is not the case for other algorithms. RQ2, the complexity on real applications is more difficult to assess, there are more variations than with random machines. For strongly connected models with the random walk oracle, the average trace length can go from eight times less to eight times more than 75×|I|×|Q| 1.21 . This can be attributed to two main causes. Firstly, reported lengths on random machines are averaged over a large number of machines. Secondly random machines exhibit a better distribution of inputs and outputs, with a smaller diameter for the graph. Anyway, hW -inference scales to the applications of the benchmark that represent various types of domains (smart card applications, cyberphysical controllers, embedded systems, communication protocols), so we can answer positively to RQ2.

Interestingly, the results also show that regarding RQ4, hW-inference even outperforms Lm, the Mealy adaptation of the classical L * algorithm, by a wide margin.

Extending with reset

As can be seen in Table 2, many applications in the benchmark are not strongly connected, so they cannot be learnt without reset. At best, it would be possible to learn a strongly connected subcomponent of the system. But it turns out that for quite a number of applications, there are either sink states, or sink subgraphs (where the system oscillates between two or a few states) which only represent a degraded behaviour of the system. Only with a reset can the system be moved to escape from those traps.

In fact, hW -inference can be rather easily extended to infer such systems, while still attempting to use resets sparingly, just when it is necessary to escape from a subcomponent or to go back to the initial state to learn the initialization part of the machine. With this adaptation, hW -inference was able to address all applications of the benchmark.

hW-inference extended with reset

hW -inference will use resets only when no other way to get back to an incompletely learnt space can be found in the current conjecture. We describe the adaptation to the base algorithm.

• When looking in the current partial conjecture for a path α on Line 14, if no such path can be found, we first try to find a counterexample in the trace. Otherwise, if the current state is not a sink in the conjecture, we try to find a counterexample without using reset. If that fails also, we mark the state and its children as a sink, and reset the system.

• Whenever we have been forced to apply a reset, we improve learning the characterization of the reset state (initial state) by applying one sequence from W for which its answer is not known. If the initial state is fully characterized, then we resume looking for a transfer sequence α or completing the conjecture.

• The search for a counterexample is extended to allow a reset after some time if we fail to get a counterexample without it. Actually, resorting to reset can be decided based on the relative cost of a reset (timewise) w.r.t to the cost of applying an input.

Results on benchmark with reset

With this extension to hW -inference, we were able to extend our experiments to all other applications of the benchmark, except the ESM controller (from an Océ printer), which requires special adaptations for active learning as explained in [START_REF] Smeenk | Applying automata learning to embedded control software[END_REF].

We also need to know whether this algorithm performed inferences efficiently. Thus, we address the following research question: RQ5 Can hW -inference extended with reset challenge other inference algorithms that also use a reset?

We compared hW -inference extended with reset with Lm as the classical algorithm that uses reset. We first used random walks as oracle. Table 6 records, for each application and each algorithm, the length of the trace, the number of resets and the number of calls to the oracle. The last column of Table 6 gives the minimal cost of the reset operation in number of inputs for hW -inference to outperform Lm. We can see that Lm is better for 17 applications ('-' in the cell), and hW -inference is better for 25 applications 

Conclusion

We have shown a new approach for reverse engineering behavioural models of reactive systems that can be modelled by This approach only needs to know the set of inputs the system accepts, and a test harness to send inputs and observe outputs. It does not require any access to the code, and not even the ability to restart it. It is scalable and applicable to various types of systems as exemplified by the benchmark.

We think that this new approach, which combines heuristic with deterministic approaches, could be a key enabler for reverse engineering remote or embedded systems, and provide models that could feed other model-based activities, such as formal verification, model based testing, integration testing, etc.

However, it suffers from the limitations inherent to the type of model learning that we assume:

• it applies only to reactive systems, that can be modelled by a Mealy machine;

• it relies on an abstraction of the input and output domains so that they can be projected to finite sets, while preserving determinism;

• as any active learning approach, it requires a test harness that implements input concretization and output abstraction; in the SIMPA tool, this is achieved by writing a dedicated driver for each implementation, that specializes a generic driver; for specific domains (e.g. web applications, smart card applications) there can be automated derivation of such drivers (e.g. in SIMPA, implemented through a preliminary web crawling approach as in [START_REF] Hossen | Automatic generation of test drivers for model inference of web applications[END_REF]).

We have presented two case studies using this algorithm for testing embedded software systems in [START_REF] Bremond | Case studies in learning models and testing without reset[END_REF]. Further studies will be needed to assess its effectiveness on various types of (reactive) software, as well as the usefulness of the inferred models. As other model learning approaches, the writing an interface (similar to a test harness) between the learning framework and the SUL must be addressed and possibly automated, as in [START_REF] Aarts | Automata learning through counterexample-guided abstraction refinement[END_REF].

The core algorithms of hW -inference can also be improved.

• Instead of working with fixed h and W for each sub-inference, we can use adaptive sequences. When h-ND is detected on a given response r to the homing sequence, the extended h sequence would be applied only when a prefix response r is observed, and similarly for W . A recent paper shows how the base algorithm can be extended with adaptive sequences (Groz et al., 2018a).

• As with most learning algorithms, counterexample processing strategies can play an important role. We have taken a simple "shortest suffix" strategy. More strategies could be explored.

• We have shown that hW -inference can easily be adapted to deal with systems that are not strongly connected. The preliminary results presented in Section 8.4 should be consolidated. With better tuning of heuristics, it should be possible to win over traditional reset-based algorithms in more cases. We have proposed to try and minimize the use of resets, but it might be interesting to take into account the cost of a reset to try and minimize the total cost of the inference. The cost is simply associated with the duration of the interaction with the system, but other measures could be considered as well.

• Another move would be to extend the approach to infer not just FSM, but some sort of Extended FSM, such as register automata, or other sorts of automata with guards and variables.
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  1.21 , • Constraint solving: 3.53 × |Q| 1.55 , • Rivest and Schapire: 70.4 × |Q| 2.03 , • LocW: 4.72 × |Q| 2.48 .

Table 1 :

 1 Strongly connected automata in benchmark

	Category	model	st a te s	in p u ts	o u tp u ts	tr a n si ti o n s	project size
	Edentifier2	new device old device	3 4	5 5	4 4	15 20	not available
	RhapsodyToDezyne Rhapsody-Dezyne 3	58	22	16	1276	
		ActiveMQ invalid	5	11	8	55	3954 LoC
		ActiveMQ non clean	12	6	18	72	for MQTT
		ActiveMQ 2 client ret.	18	9	21	162	part (Java)
		VerneMQ invalid	3	11	7	33	
		VerneMQ non clean	12	6	18	72	
		VerneMQ simple	3	7	7	21	
		VerneMQ 2 client 1 id	7	11	13	77	
	MQTT	VerneMQ 2 client ret. emqtt invalid emqtt non clean	17 3 12	9 11 6	18 6 20	153 33 72	not available
		emqtt simple	3	7	7	21	
		emqtt 2 client 1 id	7	11	13	77	
		emqtt 2 client ret.	18	9	21	162	
		Mosquitto invalid	3	11	7	33	
		Mosquitto mosquitto Mosquitto non clean Mosquitto 2 client 1 id	3 12 7	7 6 11	7 18 13	21 72 77	13k (C)	LoC
		Mosquitto 2 client ret.	18	9	21	162	
		lee yannakakis distinguishable	6	2	2	12	
	ToyModels	lee yannakakis non distinguishable 3	2	2	6	
		cacm	3	2	3	6	
		34					

Table 2 :

 2 Non-strongly connected automata in benchmark

Table 3 :

 3 Comparison of algorithms using a given W -set of size 2 : Average length and standard deviation

Table 7 :

 7 Comparison of algorithms on non strongly connected models using an oracle based on conformance testing

	TCP TCP FreeBSD Client	120 27758 / 23250 (1275)	26678 / 20502 (1952)	≥ 1.6
		[12]	[2]			
	TCP TCP Windows8 Client	130 64762 / 42632 (2336)	42975 / 29718 (2473)	≥ 160
		[13]	[2]			
	TLS NSS 3.17.4 client full	132 55279 / 51367 (2079)	74808 / 75269 (3467)	0
		[12]	[2]			
	Bankcard	135 5812 / 521 (8) [7]	9015 / 0 (2040) [1]	0
	VerneMQ 2 client	144 5816 / 1129 (33) [6]	5841 / 0 (1305) [1]	0
	emqtt 2 client	144 5400 / 851 (23) [6]	5841 / 0 (1305) [1]	0
	TCP TCP Linux Client	150 28397 / 19789 (1641)	43732 / 29645 (2925)	0
		[35]	[2]			
	MQTT hbmqtt 2 client ret.	153 34503 / 2110 (536) [14]	41173 / 14230 (4173)	0
			[4]			
	Edentifier2 old 500 10-15	176 108480 / 52690 (3940)	435964	/	369061	0
		[31]	(16388) [8]		
	GnuTLS 3.3.8 server full	176 5473252 / 6637272	917192	/	680722	-
		(139082) [20]	(25889) [5]		
	SSH DropBear	221 1074125 / 1009214	972409	/	1001091	-
		(28085) [13]	(27236) [2]		

The SIMPA software can be downloaded from: http://vasco.imag.fr/tools/SIMPA or directly from https://gricad-gitlab.univ-grenoble-alpes.fr/SIMPA/SIMPA

The SIMPA software can be downloaded from: http://vasco.imag.fr/tools/SIMPA

https://ensiwiki.ensimag.fr/images/a/a5/JeanBouvattierRapport.pdf

http://automata.cs.ru.nl/Overview#Mealybenchmarks
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('0' in the cell). For 7 applications, as long as a reset costs less than a few inputs, hW -inference is better than Lm, and for just one application, the cost should be at least 92 for Lm to be outperformed. We can note however that the number of calls to the oracle is always higher for hW -inference than for Lm. Table 7 gives the same elements as Table 6, using the smarter oracle based on conformance testing. For 12 applications in the benchmark, Lm outperforms hW -inference, while for 17 applications, hW -inference outperforms Lm. For 12 applications, hW -inference outperforms Lm if the minimal cost of a reset is less than 3 inputs.

From these experiments, we can answer RQ5 by concluding that hWinference extended with reset outperforms Lm in more than half the cases of the benchmark.

Comparing the hW -inference columns in Tables 6 and7 , we can see that the inference using a conformance testing based oracle is better than the inference using random walks in 29 cases out of 50. We can also notice that random walks are often better when the trace is small.