
HAL Id: hal-03275232
https://hal.science/hal-03275232

Submitted on 30 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human arm impedance estimation in dynamic
human-robot interaction, a preliminary study

Vincent Fortineau, Isabelle Anne A Siegler, Maria Makarov, Pedro
Rodriguez-Ayerbe

To cite this version:
Vincent Fortineau, Isabelle Anne A Siegler, Maria Makarov, Pedro Rodriguez-Ayerbe. Hu-
man arm impedance estimation in dynamic human-robot interaction, a preliminary study.
46ème Congrès Société Biomécanique, Oct 2021, Saint-Etienne, France. pp.S256-S258,
�10.1080/10255842.2021.1978758�. �hal-03275232�

https://hal.science/hal-03275232
https://hal.archives-ouvertes.fr


Human arm impedance estimation in dynamic human-robot interaction,  

a preliminary study 
 

V. Fortineau*a,b, M. Makarov a, I. A. Siegler b, P. Rodriguez-Ayerbe a  

a Université Paris-Saclay, CNRS, CentraleSupélec,  Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France; 

 b CIAMS, Université Paris-Saclay, 91405, Orsay, France, & Université d'Orléans, 45067, Orléans, France 

 

Keywords: physical human-robot interaction; impedance identification; stiffness; diagnostic 

 

1. Introduction  

The estimation of the human impedance interacting 

with a physical environment provides modelling in-

sights both for the field of human movement science 

(Palazzolo et al. 2007) and for the design of innovative 

controllers for collaborative robotics based on physical 

human-robot interactions (Tsuji and Tanaka 2008).  

The mechanical impedance relates restitution forces 

to kinematics. Elementary models, such as spring-

damper-mass (KBM), have been used as linearisation 

for small deviations because they could approach 

human behaviour (Tsuji and Tanaka 2008). 

To achieve mechanical impedance estimations, one 

must perturb a movement while measuring both force 

and kinematics. The virtual trajectory, that is the 

unperturbed trajectory, must be either known or 

estimated. The estimation can either be done at the 

joint or at the endpoint level to observe a global 

behaviour (Erden and Billard 2015). 

In most of the literature, the estimations are 

conducted in well-mastered conditions (Burdet et al. 

2000; Erden and Billard 2015), which might be 

complicated to replicate outside laboratories.  

Indeed, in contexts outside of labs, the virtual 

trajectory is often unknown or might not be 

approximated using previous trajectories because the 

repeatability is not sufficient to reach a decent 

precision. Indeed, the perturbations must remain small 

on the one hand not to modify the task, and on the other 

hand, because the linear impedance model stands for 

slight deviations.  

In previous work, Avrin et al. (2018) studied a 

benchmark task, the ball-bouncing task. Fortineau et 

al. (2020, 2021) proposed an experimental testbed and 

identification methodology. This work tackled 

impedance estimation in a task where average 

trajectories could not be used, and virtual trajectories 

were unknown. 

Here, a preliminary experimental case study 

conducted on ten different users tends to demonstrate 

the ability to observe stiffness variations in a dynamic 

task using the described methodology, with several 

users, extending the validity of the method. 

  

2. Methods  

2.1 Experimental protocol 

Here we briefly present the testbed designed for 

human arm impedance estimation; for further details, 

please refer to Fortineau et al. (2020). 

A user manipulates an admittance-controlled poly-

articulated robot, manoeuvring its endpoint as a 

physical interface, to control a paddle simulated in a 

digital environment. The motion is limited to the 

vertical plane since the ball-bouncing task is 

unidimensional. The user has to move the paddle to 

bounce the ball to a target height that settles the task’s 

frequency. 

The robot introduces short (<60ms) force 

perturbations (~5N) at the joint-torque level to 

generate dynamic deviations. The perturbations have a 

random direction and stochastic timing pre-

programmed for three different phases of the cyclic 

pattern (𝑐1, 𝑐2, 𝑐3), as presented on Fig.1. 

Ten healthy participants volunteered to participate in 

the trial. They are all from the academic world. Among 

the participants, four had previously manipulated the 

robot in other preliminary experiments and three were 

women. The mean age (± standard deviation) was 28.3 

(± 8.0), with an average body mass index of 

22.7 (± 2.9). 

They were aware of haptic feedback and were asked 

to bounce the ball to a given target height while trying 

to maintain a cyclic behaviour.  

The ethical committee of Université Paris-Saclay, 

Polethis, approved the study protocol. 

 

2.2 Methodology 

For the sake of brevity, the impedance identification 

method is not reminded here; please refer to Fortineau 

et al. (2021) for details. 

The impedance estimation is sensitive to errors in the 

estimated trajectories of both virtual force and 

position; outliers must be discarded. We used the 

coefficient of determination 𝑅2 of the reconstructed 

position from identified parameters, compared to 

measurements, to discard data with 𝑅2 < 0.5. 

Stiffnesses outside five scaled absolute median 

deviation were also considered to be outliers. 



3. Results and discussion 

The ten participants, were each recorded during three 

trials of 645𝑠 (±15𝑠) in total. They were split into 

three categories according to their expertise in the task, 

using k-means clustering (2 novices 𝑒1, 5 intermediates 

𝑒2, 3 advanced 𝑒3). The expertise was evaluated using 

the bouncing error quartiles. After clearing the outliers, 

214 (60, 93, 61), 488 (175, 148, 165) and 287 (89, 83, 

115) stiffness estimations were analysed for 

respectively 𝑒1, 𝑒2, and 𝑒3 among the three phases (in 

parentheses), as shown on Fig. 1, with dots.   

 
Fig. 1: Average and standard, position and force cycles 

for a participant of each expertise 
 

Fig. 2 shows the distribution of the estimated 

stiffness against the cycle frequency according to both 

phases and users. The highest median stiffnesses are 

observed at the phase before the ball impact for all 

users (𝑐3), while the lowest median stiffnesses are 

observed at phase 𝑐1 for advanced and intermediate 

participants. 

 
Fig. 2: Estimated stiffness against cycle frequency, colours 

are respectively blue, orange and yellow according to the 

expertise, and the marker shape indicates phase. The bars 

and bigger markers indicate the quartiles. 

 

Results from Fig. 2 must be compared using Table 1, 

which unveils the significance differences, using 18 

Student t-tests with a significance level 𝑝 = 0.05/

18 = 0.003 (due to Bonferroni correction). It can be 

observed that no significant differences were observed 

between the advanced and intermediate participants. 
 

Table 1: Significance of paired Student t-tests 

 

4. Conclusions 

The results presented here comfort the findings of 

previous work. This preliminary experiment tends to 

show that the impedance behaviour might explain a 

portion of the expertise for this task, novice users 

having a significantly stiffer behaviour after the ball 

impact. However, these encouraging results need to be 

tested on a more significant number of users to limit 

the influence of the variance in stiffness estimation; in 

order to be able to draw meaningful conclusions for the 

human-robot physical interactions. 
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