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On the effect of perturbations, errors in first-order optimization
methods with inertia and Hessian driven damping

Hedy Attouch∗ Jalal Fadili† Vyacheslav Kungurtsev‡

Abstract

Second-order continuous-time dissipative dynamical systems with viscous and Hessian driven damp-
ing have inspired effective first-order algorithms for solving convex optimization problems. While pre-
serving the fast convergence properties of the Nesterov-type acceleration, the Hessian driven damping
makes it possible to significantly attenuate the oscillations. To study the stability of these algorithms
with respect to perturbations, errors, we analyze the behavior of the corresponding continuous systems
when the gradient computation is subject to errors. We provide a quantitative analysis of the asymptotic
behavior of two types of systems, those with implicit and explicit Hessian driven damping. We consider
convex, strongly convex, and non-smooth objective functions defined on a real Hilbert space and show
that, depending on the formulation, different integrability conditions on the perturbations are sufficient to
maintain the convergence rates of the systems. We highlight the differences between the implicit and ex-
plicit Hessian damping, and in particular point out that the assumptions on the objective and perturbations
needed in the implicit case are more stringent than in the explicit case.

Keywords: Hessian driven damping; damped inertial dynamics; accelerated convex optimization; conver-
gence rates; Lyapunov analysis, perturbation; errors.
AMS subject classification 37N40, 46N10, 49M30, 65B99, 65K05, 65K10, 90B50, 90C25

1 Introduction

The continuous-time dynamic perspective of optimization algorithms, which can be viewed as temporal
discretization schemes thereof, offers an insightful and powerful framework for the study of the behavior of
these algorithms. In this paper, we study inertial systems involving both viscous and Hessian-driven damping,
where the first-order gradient information is only accessible up to some exogenous additive error.

1.1 Problem statement

Throughout the paper, we make the following standing assumptions:

f is a convex function on a real Hilbert spaceH, and S := argminH f 6= ∅.
We will study perturbed versions of two second-order ordinary differential equations (ODE). They differ
from each other in that the Hessian driven damping appears explicitly in one and implicitly in the other.
∗IMAG, Univ. Montpellier, CNRS, Montpellier, France. hedy.attouch@umontpellier.fr
†ormandie Univ, ENSICAEN, CNRS, GREYC, Caen, France. Jalal.Fadili@greyc.ensicaen.fr
‡Department of Computer Science and Engineering, Czech Technical University, Prague. vyacheslav.kungurtsev@fel.

cvut.cz

1

hedy.attouch@umontpellier.fr
Jalal.Fadili@greyc.ensicaen.fr
vyacheslav.kungurtsev@fel.cvut.cz
vyacheslav.kungurtsev@fel.cvut.cz


1.1.1 Explicit Hessian

The first system we look at, which was proposed in [8] (see also [16]), takes the form

ẍ(t) + γ(t)ẋ(t) + β(t)
d

dt
(∇f(x(t))) + b(t)∇f(x(t)) = 0, (ISEHD)

where f ∈ C1, γ, β, b : [t0,+∞[→ R+ are continuous functions, and t0 > 0 is the initial time. The
coefficients (γ, β, b) have a physical interpretation corresponding to natural phenomena:

• γ(t) is the viscous damping coefficient,

• β(t) is the Hessian-driven damping coefficient (which will be made clear),

• b(t) is the time scaling coefficient (see [10]).

We term the above ODE an Inertial System with Explicit Hessian Damping (ISEHD for short), since
d

dt
(∇f(x(t))) = ∇2f(x(t))ẋ(t),

when f is of class C2. Throughout the paper, we consider (ISEHD) with the particular choice of parameters

γ(t) =
α

t
, α ≥ 0, β(t) ≡ β > 0 and b(t) ≡ 1.

This choice of the viscous damping parameter γ(t) = α
t is justified by its direct link with the accel-

erated gradient method of Nesterov [27, 28], as shown in [6], [9], [18], [23], [33]. Related systems have
been considered in [25] from the closed loop control perspective and in [33] by means of high-resolution of
differential equations.

1.1.2 Implicit Hessian

The second system we consider, inspired by [3] (see also [26] for a related autonomous system in the case of
a strongly convex function f ), is

ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
= 0, (ISIHD)

where α ≥ 3 and β(t) = γ + β
t , γ, β ≥ 0. We coin this ODE an Inertial System with Implicit Hessian

Damping (ISIHD for short). The rationale justifying our use of the term “implicit” comes from the observa-
tion that by a Taylor expansion (as t→ +∞ we have ẋ(t)→ 0 which justifies using Taylor expansion), one
has

∇f (x(t) + β(t)ẋ(t)) ≈ ∇f(x(t)) + β(t)∇2f(x(t))ẋ(t),

hence making the Hessian damping appear indirectly in (ISIHD). This ODE was found to have a smoothing
effect on the energy error and oscillations.

1.1.3 Exogenous additive error

We are interested in the situation where∇f(x(t)) is always evaluated with an exogenous additive error e(t).
With the choice of parameters made above, the perturbed dynamics (ISEHD) and (ISIHD) are written

ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
∇f(x(t)) + e(t)

)
+∇f(x(t)) + e(t) = 0, (ISEHD-Pert)

ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
+ e(t) = 0. (ISIHD-Pert)
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For system (ISEHD-Pert), the overall perturbation error affecting the system is βė(t) + e(t). Because the
Hessian appears explicitly, both the error on the gradient and its derivative appear. It can then be antici-
pated that assumptions regarding both e(t) and ė(t), in particular their integrability, will be instrumental in
deriving any convergence guarantees. On the other hand, in the system (ISIHD-Pert) with implicit Hes-
sian damping, the error perturbation e(t) appears without its time derivative. Naturally, we will see in this
case that convergence results will be derived without any assumptions on the time derivative of the error.
While this may be seen as an advantage at first glance, this comes at a price. Indeed, as we will also see, to
maintain fast convergence guarantees, the integrability requirements on the error e(t) will be more stringent
for (ISIHD-Pert) than for (ISEHD-Pert), i.e. , higher-order moments of e(t) will be required to be finite.
We anticipate that when it comes to discrete algorithms, the assumptions on the objective and perturbations
needed in the implicit case are more stringent than in the explicit case. We plan to study these questions in a
future work. Note that similar questions arise when the perturbation is attached to a Tikhonov regularization
term with an asymptotically vanishing coefficient [20].

1.2 Contributions

In [8] (resp. [3]), which studied the unperturbed system (ISEHD) (resp. (ISIHD)), fast convergence rates
were obtained for the objective, velocities and gradients. Our main contribution in this paper is to analyze
the robustness and stability of these systems, by quantifying their convergence properties in the presence of
errors. We do this both in the general convex case and in the strongly convex case. We also study the case
where the function f is non-smooth convex by proposing a first order formulation in time and space, with
existence results and Lyapunov analysis. The main motivation for our work is to pave the way for the design
and study of provably accelerated optimization algorithms that appropriately discretize the above dynamics
while handling inexact evaluations of the gradient with deterministic and/or stochastic errors. The extension
to the discrete setting of the results here will be the focus of a forthcoming paper.

1.3 Related Works

Due to the importance of the subject in optimization and control, several articles have been devoted to the
study of perturbations in dissipative inertial systems and in the corresponding accelerated first order algo-
rithms. The subject was first considered in the case of a fixed viscous damping, [11, 24]. Then it was studied
within the framework of the accelerated gradient method of Nesterov, and of the corresponding inertial dy-
namics with vanishing viscous damping, see [7, 9, 17, 31, 34]. In the presence of the additional Hessian
driven damping, first results have been obtained in [16] in the case of a smooth function. To the best of
our knowledge, our work is the first to consider these questions in full generality, in view of recent progress
concerning the associated algorithms [8, 32].

1.4 Contents

In Section 2, we prove that the two systems are well-posed both in the smooth and non-smooth cases. In
Section 3, we study the convex case, and establish convergence rates for both systems under appropriate
integrability assumptions on the error. In Section 4, we consider the strongly convex case. Section 5 is
devoted to studying non-smooth f . In Section 6, we present some numerical illustrations of the results. In
Section 7, we draw key conclusions and present some perspectives.
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1.5 Main notations

H is a real Hilbert space, 〈·, ·〉 is the scalar product on H and ‖·‖ is the corresponding norm. Γ0(H) is the
class of proper, lower semicontinuous (lsc) and convex functions fromH to R∪ {+∞}. For g ∈ Γ0(H), its
domain is dom(g) := {x ∈ H : g(x) < +∞}. ∂g denotes the (convex) subdifferential operator of g. When
g is differentiable at x ∈ H, then ∂g(x) = {∇g(x)}. We also denote dom(∂g) := {x ∈ H : ∂g(x) 6= ∅}.
We take t0 > 0 as the origin of time. This is justified by the singularity of the viscous damping coefficient
α
t at the origin. This is not restrictive since we are interested in asymptotic analysis.

2 Well-posedness

When β > 0, the presence of Hessian driven damping in the inertial dynamics makes it possible to reformu-
late the equations as first-order systems both in time and in space, without explicit evaluation of the Hessian.
This will allow us to extend the existence of trajectories and the convergence results to the case f ∈ Γ0(H),
by simply replacing the gradient of f with the subdifferential ∂f . This approach was initiated in [4] and used
in [16] for the unperturbed case.

2.1 Explicit Hessian Damping

2.1.1 First order in time and space formulation

Let us start by establishing this equivalence in the case of a smooth function f .
Theorem 2.1. Let f : H → R be a C2 function and e : [t0,+∞[→ H be C1. Suppose that α ≥ 0, β > 0.
Let (x0, ẋ0) ∈ H ×H. The following statements are equivalent:

1. x : [t0,+∞[→ H is a solution trajectory of (ISEHD-Pert) with the initial conditions x(t0) = x0,
ẋ(t0) = ẋ0.

2. (x, y) : [t0,+∞[→ H×H is a solution trajectory of the first-order systemẋ(t) + β(∇f(x(t)) + e(t))−
(

1
β −

α
t

)
x(t) + 1

β y(t) = 0

ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0,
(1)

with initial conditions x(t0) = x0, y(t0) = −β(ẋ0 + β∇f(x0)) + (1− βα/t0)x0 − β2e(t0).
Proof. 2. ⇒ 1. Differentiating the first equation of (1) gives

ẍ(t) + β
(
∇2f(x(t))ẋ(t) + ė(t)

)
− α

t2
x(t)−

(
1

β
− α

t

)
ẋ(t) +

1

β
ẏ(t) = 0. (2)

Replacing ẏ(t) by its expression as given by the second equation of (1) gives
ẍ(t) +β

(
∇2f(x(t))ẋ(t) + ė(t)

)
− α

t2
x(t)−

(
1

β
− α

t

)
ẋ(t) +

1

β

((
1

β
− α

t
+
αβ

t2

)
x(t)− 1

β
y(t)

)
= 0.

(3)
Then replace y(t) by its expression as given by the first equation of (1)

ẍ(t) + β
(
∇2f(x(t))ẋ(t) + ė(t)

)
− α

t2
x(t)−

(
1

β
− α

t

)
ẋ(t)

+
1

β

((
1

β
− α

t
+
αβ

t2

)
x(t) + ẋ(t) + β(∇f(x(t)) + e(t))−

(
1

β
− α

t

)
x(t)

)
= 0.

After simplification of the above expression, we obtain (ISEHD-Pert).
1. ⇒ 2. Define y(t) by the first equation of (1). Differentiating y(t) and using equation (ISEHD-Pert)

allows one to eliminate ẍ(t), which finally gives the second equation of (1).
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2.1.2 Existence and uniqueness of a solution

Capitalizing on the result of Theorem 2.1, the following first order formulation assists in providing a meaning
to our system when f ∈ Γ0(H). It is obtained by substituting the subdifferential ∂f for the gradient ∇f in
the first-order formulation (1).

Definition 2.2. Let α ≥ 0, β > 0 and f ∈ Γ0(H). Given (x0, y0) ∈ dom(f)×H, the Cauchy problem for
the perturbed inertial system with explicit generalized Hessian driven damping is defined by

ẋ(t) + β(∂f(x(t)) + e(t))−
(

1
β −

α
t

)
x(t) + 1

β y(t) 3 0

ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0

x(t0) = x0, y(t0) = y0.

(4)

Let us formulate (4) in a condensed form as an evolution equation in the product space H×H. Setting
Z(t) = (x(t), y(t)) ∈ H ×H, (4) can be equivalently written

Ż(t) + ∂G(Z(t)) +D(t, Z(t)) 3 0, Z(t0) = (x0, y0), (5)
where G ∈ Γ0(H × H) is the function defined by G(Z) = βf(x), and the time-dependent operator D :
[t0,+∞[×H×H → H×H is given by

D(t, Z) =

(
βe(t)−

(
1

β
− α

t

)
x+

1

β
y,−

(
1

β
− α

t
+
αβ

t2

)
x+

1

β
y

)
. (6)

The differential inclusion (5) is governed by the sum of the maximal monotone operator ∂G (a convex
subdifferential) and the time-dependent affine continuous operator D(t, ·). The existence and uniqueness of
a global solution for the corresponding Cauchy problem is a consequence of the general theory of evolution
equations governed by maximally monotone operators. In this setting, the notion of classical solution is
replaced by the the notion of strong solution (see [21, Definition 3.1]), that we make precise now.

Definition 2.3. Given g ∈ Γ0(H), and an operator D : [t0,+∞[×H → H, we say that z : [t0, T ] → H is
a strong solution trajectory on [t0, T ] of the differential inclusion

ż(t) + ∂g(z(t)) +D(t, z(t)) 3 0, (7)
if the following properties are satisfied:

1. z is continuous on [t0, T ] and absolutely continuous on any compact subset of ]t0, T ];

2. z(t) ∈ dom(∂g) for almost every t ∈]t0, T ], and (7) is verified for almost every t ∈]t0, T ].

z : [t0,+∞[→ H is a global strong solution of (7), if it is a strong solution on [t0, T ] for all T > t0.

The existence and uniqueness of a global strong solution of the Cauchy problem (4) is established in the
following theorem.

Theorem 2.4. Let f ∈ Γ0(H), α ≥ 0 and β > 0. Suppose that e ∈ L2(t0, T ;H) for every T > t0. Then, for
any Cauchy data (x0, y0) ∈ dom(f) ×H, there exists a unique global strong solution (x, y) : [t0,+∞[→
H ×H of (4) satisfying the initial condition x(t0) = x0, y(t0) = y0. Moreover, this solution exhibits the
following properties:

(i) y is of class C1 on [t0,+∞[, and ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0, for t ≥ t0;

(ii) x is absolutely continuous on [t0, T ] and ẋ ∈ L2(t0, T ;H) for all T > t0;
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(iii) x(t) ∈ dom(∂f) for all t > t0;

(iv) x is Lipschitz continuous on any compact subinterval of ]t0,+∞[;

(v) the function t 7→ f(x(t)) is absolutely continuous on [t0, T ] for all T > t0;

(vi) there exists a function ξ : [t0,+∞[→ H such that

(a) ξ(t) ∈ ∂f(x(t)) for all t > t0;

(b) ẋ(t) + βξ(t) + βe(t)−
(

1
β −

α
t

)
x(t) + 1

β y(t) = 0 for almost every t > t0;

(c) ξ ∈ L2(t0, T ;H) for all T > t0;

(d)
d

dt
f(x(t)) = 〈ξ(t), ẋ(t)〉 for almost every t > t0.

Proof. It is sufficient to prove that (x, y) is a strong solution of (4) on [t0, T ] and that the properties hold
on [t0, T ] for all T > t0. So let us fix T > t0. As we have already noticed, (4) can be written in the form
(5) which is a Lipschitz perturbation of the differential inclusion governed by the subdifferential of a proper
lsc convex function. A direct application of [21, Proposition 3.12] gives the existence and uniqueness of a
strong global solution Z = (x, y) : [t0, T ] → H × H to (5), or equivalently to (4), with initial condition
Z(t0) = (x(t0), y(t0)) = (x0, y0). Verification of items (iii) to (vi) follows the same lines as the proof
of [16, Theorem 4.4]. Of particular importance is the generalized derivation chain rule given in (vi)(d),
which follows from [21, Lemma 3.3] after checking that the corresponding assumptions are met thanks to
(ii), (vi)(a) and (vi)(c).

Combining Theorem 2.1 and Theorem 2.4 with y(t0) = −β(ẋ0 + β∇f(x0)) + (1− βα/t0)x0 − β2e(t0),
we obtain the existence and uniqueness result for (ISEHD-Pert).

Corollary 2.5. Assume that f is a convex C2 function and e is C1 and e ∈ L2(t0, T ;H) for every T > t0.
For any t0 > 0, and any Cauchy data (x0, ẋ0), the system (ISEHD-Pert) with α ≥ 0, β(t) ≡ β > 0 and
b(t) ≡ 1 admits a unique classical global solution x : [t0,+∞[→ H satisfying (x(t0), ẋ(t0)) = (x0, ẋ0).

2.2 Implicit Hessian Damping

2.2.1 First order in time and space formulation

Let us now turn to (ISIHD-Pert). We use the shorthand notation α(t) = α/t. Here and in the rest of the
paper, we assume that β(t) is C1 and inf

t∈[t0,+∞[
β(t) > 0.

Let us introduce the new function
y(t) := x(t) + β(t)ẋ(t), (8)

whose time derivation gives
ẏ(t) = ẋ(t) + β(t)ẍ(t) + β̇(t)ẋ(t). (9)

From (ISIHD-Pert) we know that
ẍ(t) = −α(t)ẋ(t)−∇f(y(t))− e(t). (10)

By combining (9) and (10) we obtain
ẏ(t) = ẋ(t) + β(t) (−α(t)ẋ(t)−∇f(y(t))− e(t)) + β̇(t)ẋ(t)

=
(

1− α(t)β(t) + β̇(t)
)
ẋ(t)− β(t) (∇f(y(t) + e(t)) . (11)
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From (8) and the fact that inf
t∈[t0,+∞[

β(t) > 0 we get ẋ(t) = 1
β(t)(y(t) − x(t)). Replacing ẋ(t) in (11) with

this expression gives
ẏ(t) =

(
1− α(t)β(t) + β̇(t)

) 1

β(t)
(y(t)− x(t))− β(t) (∇f(y(t)) + e(t))

= − 1

β(t)

(
1− α(t)β(t) + β̇(t)

)
x(t) +

1

β(t)

(
1− α(t)β(t) + β̇(t)

)
y(t)− β(t) (∇f(y(t)) + e(t)) .

The reverse implication is obtained in a similar way. Let us summarize the results.

Theorem 2.6. Let f ∈ C1. Suppose that α ≥ 0 and inf
t∈[t0,+∞[

β(t) > 0. The following statements are

equivalent:

1. x : [t0,+∞[→ H is a solution trajectory of (ISIHD-Pert) with initial conditions x(t0) = x0, ẋ(t0) =
ẋ0.

2. (x, y) : [t0,+∞[→ H×H is a solution trajectory of the first-order systemẋ(t) + 1
β(t)x(t)− 1

β(t)y(t) = 0.

ẏ(t) + β(t) (∇f(y(t)) + e(t)) + 1
β(t)

(
1− α(t)β(t) + β̇(t)

)
(x(t)− y(t)) = 0

with initial conditions x(t0) = x0, y(t0) = x0 + β(t0)ẋ0.

2.2.2 Existence and uniqueness of a solution

Existence and uniqueness of a global solution for the Cauchy problem associated with the unperturbed prob-
lem (ISIHD) was shown in [3] when ∇f is Lipschitz continuous using the Cauchy-Lipschitz theorem. This
result can be easily extended to (ISIHD-Pert) if ∇f is assumed to be Lipschitz continuous. We take a
different path here and proceed as in Section 2.1.2, so that we can extend the above formulation to the case
where f ∈ Γ0(H), by replacing the gradient∇f with the subdifferential ∂f .

Definition 2.7. Let α(t) ≥ 0, β(t) > 0, f ∈ Γ0(H). Given (x0, y0) ∈ H × dom(f), the Cauchy problem
associated with the perturbed inertial system with implicit generalized Hessian driven damping is defined by

ẋ(t) + 1
β(t)x(t)− 1

β(t)y(t) = 0

ẏ(t) + β(t) (∂f(y(t)) + e(t)) + 1
β(t)

(
1− α(t)β(t) + β̇(t)

)
(x(t)− y(t)) 3 0

x(t0) = x0, y(t0) = y0.

(12)

We reformulate (12) in the product spaceH×H by setting Z(t) = (x(t), y(t)) ∈ H×H, and thus (12)
can be equivalently written as

Ż(t) + β(t)∂G(Z(t)) +D(t, Z(t)) 3 0, (13)
where G ∈ Γ0(H × H) is the function defined as G(Z) = f(y), and the time dependent operator D :
[t0,+∞[×H×H → H×H is given by

D(t, Z) =

(
1

β(t)
(x− y), β(t)e(t) +

1

β(t)

(
1− α(t)β(t) + β̇(t)

)
(x− y)

)
. (14)

Constant β When β is independent of t, the differential inclusion (13) is governed by the sum of the con-
vex subdifferential operator β∂G and the time-dependent affine continuous operator D(t, ·). The existence
and uniqueness of a global strong solution for the Cauchy problem associated to (12) follows exactly from
the same arguments as those for Theorem 2.4. In turn, existence and uniqueness of a classical global solu-
tion to the Cauchy problem associated to (ISIHD-Pert) can be easily obtained thanks to the equivalence in
Theorem 2.6.
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Time-dependent β When β depends on time, one cannot invoke directly the results of [21]. Instead,
one can appeal to the theory of evolution equations governed by general time-dependent subdifferentials as
proposed in [12] for example. In fact, for a system in the simpler form (13), one can argue more easily, by
making the change of time variable t = τ(s) with β(τ(s))τ̇(s) = 1. Lemma A.4 then shows that (13) is
equivalent to

Ẇ (s) + ∂G(W (s)) + F(s,W (s)) 3 0, (15)

where W (s) = Z(τ(s)), and F(s,W (s)) = 1
β(τ(s))D(τ(s),W (s)) is affine continuous in its second ar-

gument. Provided that β 6∈ L1(t0,+∞;R), this defines a proper change of variable in time. With the
formulation (15), we are brought back to the appropriate form to argue as before and invoke the results of
[21]. We leave the details to the reader for the sake of brevity.

3 Smooth Convex Case

3.1 Explicit Hessian Damping

Consider first the explicit Hessian system (ISEHD-Pert), where we assume that f ∈ C2(H), and recall the
specific choices of γ(t) = α

t , α > 0, β(t) ≡ β and b(t) ≡ 1. We will develop a Lyapunov analysis to study
the dynamics of (ISEHD-Pert). Some of our arguments are inspired by the works of [9] and [8]. Throughout
this section we use the shorthand notation

g(t) := e(t) + βė(t) (16)

for the overall contribution of the errors terms. We will first establish the minimization property which is
valid by simply assuming the integrability of the error term and its derivative. Then, by reinforcing these
hypotheses, we will obtain rapid convergence results, and the convergence of trajectories.

3.1.1 Minimizing properties

Define u : [t0,+∞[→ H by

u(t) := x(t) + β

∫ t

t0

∇f(x(s))ds,

which will be instrumental in the proof of the following theorem. Note that, in the following statement, it is
simply assumed that f is bounded from below, the set argmin f may be empty.

Theorem 3.1. Let f : H → R be a C2 function which is bounded from below. Assume that e : [t0,+∞[→ H

is a C1 function which satisfies the integrability properties
∫ +∞

t0

‖e(t)‖ dt < +∞ and
∫ +∞

t0

‖ė(t)‖ dt < +∞.

Suppose that α, β > 0. Then, for any solution trajectory x : [t0,+∞[→ H of (ISEHD-Pert), we have

(i) sup
t≥t0
‖u̇(t)‖ < +∞;

(ii)
∫ +∞

t0

1

t
‖ẋ(t)‖2dt < +∞,

∫ +∞

t0

‖∇f(x(t))‖2 dt < +∞,
∫ +∞

t0

1

t
‖u̇(t)‖2dt < +∞;

(iii) lim
t→+∞

‖u̇(t)‖ = 0; lim
t→+∞

‖ẋ(t)‖ = 0; lim
t→+∞

‖∇f(x(t))‖ = 0;

(iv) lim
t→+∞

f(x(t)) = infH f .
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Proof. Denote f? := infH f . Since our analysis is asymptotic, there is no restriction in assuming that
t ≥ t1 := max(t0, 2αβ). We will then prove the statements in terms of t1 and passing to t0 is immediate
thanks to the properties of the solution x(t) in Theorem 2.4.

Claim (i) For T ≥ t ≥ t1, define the function

WT (t) :=
1

2
‖u̇(t)‖2 + (f(x(t))− f?)−

∫ T

t
〈u̇(τ), g(τ)〉 dτ.

Observe that WT is well-defined under our assumptions. Thus, taking the derivative in time and using
(ISEHD-Pert), we get,

ẆT (t) = 〈u̇(t), ü(t) + g(t)〉+ 〈ẋ(t), ∇f(x(t))〉
=

〈
ẋ(t) + β∇f(x(t)), ẍ(t) + β∇2f(x(t))ẋ(t) + g(t)

〉
+ 〈ẋ(t), ∇f(x(t))〉

=
〈
ẋ(t) + β∇f(x(t)), −α

t
ẋ(t)−∇f(x(t))

〉
+ 〈ẋ(t), ∇f(x(t))〉

= −α
t
‖ẋ(t)‖2 − β ‖∇f(x(t))‖2 − αβ

t
〈ẋ(t), ∇f(x(t))〉

≤ − α
2t
‖ẋ(t)‖2 − β

(
1− αβ

2t

)
‖∇f(x(t))‖2

≤ − α
2t
‖ẋ(t)‖2 − β

2
‖∇f(x(t))‖2 , (17)

where we used Young inequality and the fact that t ≥ t1 > αβ. This implies that WT is non-increasing and
in turn that WT (t) ≤WT (t1) for t ∈ [t1, T ], i.e.
1

2
‖u̇(t)‖2 +(f(x(t))− f?)−

∫ T

t
〈u̇(τ), g(τ)〉 dτ ≤ 1

2
‖u̇(t1)‖2 +(f(x(t1))− f?)−

∫ T

t1

〈u̇(τ), g(τ)〉 dτ.
Therefore,

1

2
‖u̇(t)‖2 ≤ 1

2
‖u̇(t1)‖2 + (f(x(t1))− f?) +

∫ t

t1

‖u̇(τ)‖‖g(τ)‖dτ.

Applying the Gronwall Lemma A.3, we get

sup
t≥t1
‖u̇(t)‖ ≤

(
‖u̇(t1)‖2 + 2(f(x(t1))− f?)

)1/2
+

∫ +∞

t1

‖e(τ)‖dτ + β

∫ +∞

t1

‖ė(τ)‖dτ < +∞,

hence proving the first claim.

Claim (ii) Now define for all t ≥ t1
W (t) :=

1

2
‖u̇(t)‖2 + (f(x(t))− f?)−

∫ +∞

t
〈u̇(τ), g(τ)〉 dτ.

This is again a well-defined function thanks to the first claim, and the integrability of g. Moreover, W (t) is
bounded from below,

inf
t≥t1

W (t) ≥ −
[
sup
t≥t1
‖u̇(t)‖

] [∫ +∞

t1

‖e(τ)‖dτ + β

∫ +∞

t1

‖ė(τ)‖dτ
]
> −∞.

Observe that Ẇ (t) = ẆT (t). This together with (17) yields
Ẇ (t) +

α

2t
‖ẋ(t)‖2 +

β

2
‖∇f(x(t))‖2 ≤ 0.

Integrating and using that W is bounded from below, we obtain the first two claims. From u̇(t) = ẋ(t) +
β∇f(x(t)), we deduce that ‖u̇(t)‖2 ≤ 2(‖ẋ(t)‖2+β2‖∇f(x(t))‖2). After integration, we get the last claim∫ +∞

t1

1

t
‖u̇(t)‖2dt ≤ 2

(∫ +∞

t1

1

t
‖ẋ(t)‖2dt+

∫ +∞

t1

β2

t
‖∇f(x(t))‖2dt

)
≤ 2

(∫ +∞

t1

1

t
‖ẋ(t)‖2dt+

β2

t1

∫ +∞

t1

‖∇f(x(t))‖2dt
)
< +∞.
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Claim (iii) and (iv) Define h : t ∈ [t1,+∞[ 7→ 1
2‖u(t)− z‖2 for arbitrary z ∈ H. We then have

ḧ(t) +
α

t
ḣ(t) = ‖u̇(t)‖2 +

〈
u(t)− z, ü(t) +

α

t
u̇(t)

〉
= ‖u̇(t)‖2 +

〈
u(t)− z, ẍ(t) + β∇2f(x(t))ẋ(t) +

α

t
ẋ(t) +

αβ

t
∇f(x(t))

〉
= ‖u̇(t)‖2 −

〈
u(t)− z, g(t) +

(
1− αβ

t

)
∇f(x(t))

〉
= ‖u̇(t)‖2 −

(
1− αβ

t

)
〈x(t)− z, ∇f(x(t))〉 − 〈u(t)− z, g(t)〉

− β
(

1− αβ

t

)〈∫ t

t1

∇f(x(s))ds, ∇f(x(t))

〉
= ‖u̇(t)‖2 −

(
1− αβ

t

)
〈x(t)− z, ∇f(x(t))〉 − 〈u(t)− z, g(t)〉 − β

(
1− αβ

t

)
İ(t),

where I(t) :=
1

2

∥∥∥∥∫ t

t1

∇f(x(s))ds

∥∥∥∥2. From the convexity of f and Cauchy-Schwarz inequality we get

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)
(f(x(t))− f(z)) + β

(
1− αβ

t

)
İ(t) ≤ ‖u̇(t)‖2 + ‖u(t)− z‖ ‖g(t)‖ .

Inserting W (t) into this expression, we get,

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)
(W (t) + f∗ − f(z)) + β

(
1− αβ

t

)
İ(t)

≤
(

3

2
− αβ

2t

)
‖u̇(t)‖2 + ‖u(t)− z‖ ‖g(t)‖ −

(
1− αβ

t

)∫ +∞

t
〈u̇(τ), g(τ)〉 dτ. (18)

Since W (t) is nonincreasing and bounded from below (see above), it converges to some W∞ ∈ R as t →
+∞. Since u̇ is bounded, and g is integrable, we have that τ → 〈u̇(τ), g(τ)〉 is integrable on [t0,+∞[.
Therefore

lim
t→+∞

∫ +∞

t
〈u̇(τ), g(τ)〉 dτ = 0.

Consequently, as t→ +∞
1

2
‖u̇(t)‖2 + (f(x(t))− f?)→W∞.

If W∞ = 0, since the two terms that enter the above expression (potential energy and kinetic energy) are
nonnegative, we obtain that each of them tends to zero as t→ +∞. This gives the claims (iii) and (iv). To
prove that W∞ = 0, we argue by contradiction, and show that assuming W∞ > 0 leads to a contradiction.
Since W (t) is nonincreasing, we then have W (t) ≥ W∞ > 0. Take z ∈ H such that f(z) < f? + 1

2W∞.
Then

W (t) + f∗ − f(z) > W∞ −
1

2
W∞ =

1

2
W∞.

Returning to (18) we deduce that, for t ≥ t1

ḧ(t) +
α

t
ḣ(t) +

1

2

(
1− αβ

t

)
W∞ + β

(
1− αβ

t

)
İ(t)

≤
(

3

2
− αβ

2t

)
‖u̇(t)‖2 + ‖u(t)− z‖ ‖g(t)‖ −

(
1− αβ

t

)∫ +∞

t
〈u̇(τ), g(τ)〉 dτ. (19)
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Since t < 2αβ, we have 1− αβ
t > 1

2 . Therefore, after rearranging the terms, we obtain
1

4
W∞ ≤

3

2
‖u̇(t)‖2+‖u(t)− z‖ ‖g(t)‖+

(
sup
t≥t1
‖u̇(t)‖

)∫ +∞

t
‖g(s)‖ds− 1

tα
d

dt
(tαḣ(t))−β

(
1− αβ

t

)
İ(t).

Multiplying both sides by 1
t , and integrating between t1 and τ > t1,

1

4
W∞ log

(
τ

t1

)
≤ 3

2

∫ τ

t1

1

t
‖u̇(t)‖2 dt+

∫ τ

t1

‖g(t)‖‖u(t)− z‖
t

dt+

(
sup
t≥t1
‖u̇(t)‖

)∫ τ

t1

(
1

t

∫ +∞

t
‖g(s)‖ds

)
dt

−
∫ τ

t1

1

tα+1

d

dt
(tαḣ(t))dt− β

∫ τ

t1

(
1

t
− αβ

t2

)
İ(t)dt. (20)

Throughout the rest of the proof, we will use the inequality

‖u(t)− z‖ ≤ ‖u(t1)− z‖+

∫ t

t1

‖u̇(s)‖ ds ≤ ‖u(t1)− z‖+ t sup
s≥t1
‖u̇(s)‖ .

Let us examine successively the different terms which enter the second member of (20). The first term is
bounded according to claim (ii). The second term is also bounded since∫ τ

t1

‖g(t)‖‖u(t)− z‖
t

dt ≤
(
‖u(t1)− z‖

t1
+ sup
t≥t1
‖u̇(t)‖

)∫ +∞

t1

(‖e(t)‖+ β‖ė(t)‖) dt < +∞.

The third term can be handled by integration by parts,∫ τ

t1

(
1

t

∫ +∞

t
‖g(s)‖ds

)
dt = log τ

∫ ∞
τ
‖g(s)‖ds − log t1

∫ +∞

t1

‖g(s)‖ds+

∫ τ

t1

‖g(t)‖ log t dt.

For the fourth term, set K(τ) = −
∫ τ

t1

1

tα+1

d

dt
(tαḣ(t))dt and integrate by parts twice to get,

K(τ) = −
[

1

t
ḣ(t)

]τ
t1

− (α+ 1)

∫ τ

t1

1

t2
ḣ(t)dt = −

[
1

t
ḣ(t)

]τ
t1

− (1 + α)

τ2
h(τ) +

(1 + α)

t21
h(t1)− 2(1 + α)

∫ τ

t1

h(t)

t3
dt

≤ −
[

1

t
ḣ(t)

]τ
t1

+
(1 + α)

t21
h(t1) ≤

1

t1
|〈u̇(t1), u(t1)− z〉|+

1

τ
|〈u̇(τ), u(τ)− z〉|+ (1 + α)

t21
h(t1)

≤ C + sup
t≥t1
‖u̇(t)‖

(
‖u(t1)− z‖

t1
+ sup
t≥t1
‖u̇(t)‖

)
< +∞.

For the last term, we infer from Lemma A.2 that

sup
τ>t1
−β
∫ τ

t1

(
1

t
− αβ

t2

)
İ(t)dt < +∞.

Overall, we have shown that there exists a constant C > 0 such that (20) reads
1

4
W∞ log

(
τ

t1

)
≤ C +

(
sup
t≥t1
‖u̇(t)‖

)(
log τ

∫ ∞
τ
‖g(s)‖ds+

∫ τ

t1

‖g(t)‖ log tdt

)
.

Observe that limτ→+∞
∫∞
τ ‖g(s)‖ds = 0 since g is integrable. Then, divide the last inequality by log

(
τ
t1

)
and let τ → ∞. According to Lemma A.5, we get that W∞ ≤ 0. Thus W∞ = 0, hence the contradiction.
The last statement, lim

t→+∞
‖ẋ(t)‖ = 0, is obtained by following an argument similar to the one above, see

also [16], which now uses the perturbed version of the classical energy function, namely

W0(t) :=
1

2
‖ẋ(t)‖2 + (f(x(t))− f?)−

∫ +∞

t
〈ẋ(τ), g(τ)〉 dτ.

We do not detail this proof for the sake of brevity. Then, according to ∇f(x(t)) = 1
β (u̇(t)− ẋ(t)), we

obtain the convergence of∇f(x(t)) to zero.
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3.1.2 Fast convergence rates

We now move on to showing fast convergence of the objective. For this, we will need to strengthen the
integrability assumption on the errors. We will denote in this section the two functions

w(t) := 1− β

t
and δ(t) := t2w(t).

Theorem 3.2. Let f ∈ C2(H). Assume that e is C1 with
∫ +∞

t0

t‖e(t)‖dt < +∞ and
∫ +∞

t0

t‖ė(t)‖dt < +∞.

Let x be a solution trajectory to (ISEHD-Pert) for α > 3 and β > 0 such that t0 >
β(α−2)
α−3 . Then the fol-

lowing holds:

(i) f(x(t))− inf
H
f = O

(
1

t2

)
as t→ +∞.

(ii)
∫ +∞

t0

t2‖∇f(x(t))‖2dt < +∞.

(iii)
∫ +∞

t0

t

(
f(x(t))− inf

H
f

)
dt < +∞.

(iv) If, moreover, t0 ≥ β(α−2−ε)
α−3−ε for some ε ∈]0, α− 3[, then

(a) for any x? ∈ S,
∫ +∞

t0

t 〈∇f(x(t)), x(t)− x?〉 dt < +∞.

(b)
∫ +∞

t0

t‖ẋ(t)‖2dt < +∞ and sup
t≥t0
‖x(t)‖ < +∞.

(c) f(x(t))− inf
H
f = o

(
t−2
)

and ‖ẋ(t)‖ = o
(
t−1
)

as t→ +∞.

Proof. Denote f? := infH f . By assumption on the parameters, we have w(t) ≥ 1
α−2 > 0 for all t ≥ t0.

Define,
v(t) = (α− 1)(x(t)− x?) + t(ẋ(t) + β∇f(x(t)))

and

E(t) := δ(t)(f(x(t))− f(x?)) +
1

2
‖v(t)‖2 −

∫ T

t
τ 〈v(τ), g(τ)〉 dτ.

This is a well-defined differentiable function. Taking its derivative in time yields
Ė(t) = δ̇(t)(f(x(t))− f(x?)) + δ(t) 〈∇f(x(t)), ẋ(t)〉+ 〈v(t), v̇(t) + tg(t)〉 .

From (ISEHD-Pert), we have,
v̇(t) = αẋ(t) + β∇f(x(t)) + t

(
ẍ(t) + β∇2f(x(t))ẋ(t)

)
= αẋ(t) + β∇f(x(t)) + t

(
−α
t
ẋ(t)−∇f(x(t))− g(t)

)
= −t

(
1− β

t

)
∇f(x(t))− tg(t).

Injecting this expression into the scalar product 〈v(t), v̇(t) + tg(t)〉, developing and rearranging, we obtain
Ė(t) = δ̇(t)(f(x(t))− f(x?))− (α− 1)tw(t) 〈∇f(x(t)), x(t)− x?〉 − βδ(t)‖∇f(x(t))‖2. (21)
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Convexity of f then yields

Ė(t) + βδ(t)‖∇f(x(t))‖2 +
(

(α− 1)tw(t)− δ̇(t)
)

(f(x(t))− f(x?)) ≤ 0. (22)

By assumption on the parameters, we have for any t ≥ t0 > β(α−2)
α−3 ,

(α− 1)tw(t)− δ̇(t) = t((α− 3)w(t)− tẇ(t)) ≥ ct
for some constant c > 0. Thus (22) implies that E is non-increasing. In turn,

δ(t)f(x(t))− f(x?) +
1

2
‖v(t)‖2 ≤ C −

∫ t

t0

τ 〈v(τ), g(τ)〉 dτ (23)

with C = δ(t0)(f(x0)− f(x?)) + 1
2‖v(t0)‖2, from which we conclude that

1

2
‖v(t)‖2 ≤ C +

∫ t

t0

‖v(τ)‖ (τ‖g(τ)‖) dτ.

Lemma A.3 then gives

‖v(t)‖ ≤ (2C)1/2 +

∫ t

t0

τ (‖e(τ)‖+ β‖ė(τ)‖) dτ, (24)

and thus
sup
t≥t0
‖v(t)‖ < +∞. (25)

Using this into (23) then shows that
t2

α− 2
(f(x(t))− f(x?)) ≤ δ(t) (f(x(t))− f(x?)) ≤ C+sup

t≥t0
‖v(t)‖

∫ t

t0

(τ‖e(τ)‖+ βτ‖ė(τ)‖) dτ < +∞

(26)
hence proving statement (i). Finally, integrating (22) and using the fact that E(t) is bounded from below by
(25) and the assumptions on the errors, we get

β

∫ +∞

t0

t2w(t)‖∇f(x(t))‖2dt ≤ C,

and
c

∫ +∞

t0

t(f(x(t))− f(x?)) ≤
∫ +∞

t0

(
(α− 1)tw(t) + δ̇(t)

)
(f(x(t))− f(x?)) ≤ C.

for some constant C > 0. This shows the integral estimates (ii) and (iii).
Let us turn to statement (iv)(a). We embark from (21) to write, for some ρ ∈]0, 1[ to be chosen shortly,

Ė(t) = δ̇(t)(f(x(t))− f(x?))− (1− ρ)(α− 1)tw(t) 〈∇f(x(t)), x(t)− x?〉
− ρ(α− 1)tw(t) 〈∇f(x(t)), x(t)− x?〉 − βδ(t)‖∇f(x(t))‖2

≤ −
(

(1− ρ)(α− 1)tw(t)− δ̇(t)
)

(f(x(t))− f(x?))− ρ(α− 1)tw(t) 〈∇f(x(t)), x(t)− x?〉 − βδ(t)‖∇f(x(t))‖2.

To conclude, it remains to check that
(

(1− ρ)(α− 1)tw(t)− δ̇(t)
)

is non-negative. Taking ρ = ε/(α −
1) ∈]0, 1[, in view of the assumption on the parameters, we have

(1− ρ)(α− 1)tw(t)− δ̇(t) = (α− 1− ε)tw(t)− δ̇(t) = t((α− 3− ε)w(t)− tẇ(t))

= t

(
(α− 3− ε)− (α− 2− ε)β

t

)
≥ t0

(
(α− 3− ε)− (α− 2− ε)β

t0

)
≥ 0.

For claim (iv)(b), we multiply (ISEHD-Pert) by t2ẋ(t) to get

t2 〈ẍ(t), ẋ(t)〉+αt ‖ẋ(t)‖2 + t2β
〈
ẋ(t), ∇2f(x(t))ẋ(t)

〉
+ t2 〈∇f(x(t)), ẋ(t)〉+ t2 〈g(t), ẋ(t)〉 = 0.
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With the chain rule, Cauchy-Schwarz inequality and convexity of f , we obtain
1

2
t2
d

dt
‖ẋ(t)‖2 + αt ‖ẋ(t)‖2 + t2

d

dt
(f(x(t))− f?) ≤ ‖tg(t)‖‖tẋ(t)‖. (27)

Integrating by parts on [t0, t] we get,
t2

2
‖ẋ(t)‖2 + (α − 1)

∫ t

t0

s‖ẋ(s)‖2ds ≤ C0 + 2

∫ t

t0

s(f(x(s)) − f?)ds +

∫ t

t0

‖sg(s)‖‖sẋ(s)‖ds (28)

for some non-negative constant C0, where we have used claim (i) of Theorem 3.2. Now by claim (iii) of
Theorem 3.2 and ignoring the non-negative terms since α > 1, we obtain

1

2
‖tẋ(t)‖2 ≤ C1 +

∫ t

t0

‖sg(s)‖‖sẋ(s)‖ds,

for another non-negative constant C1. Lemma A.3 then yields
sup
t≥t0

t‖ẋ(t)‖ < +∞. (29)

Using this in (28), we get also that ∫ +∞

t0

t‖ẋ(t)‖2dt < +∞. (30)

Moreover, (25), (29) and claim (ii) of Theorem 3.2 entail
sup
t≥t0
‖x(t)‖ < +∞.

We finally turn to statement (iv)(c). We embark from (27), use (29), and integrate on [s, t] to see that

t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f?)

)
− s2

(
1

2
‖ẋ(s)‖2 + (f(x(s))− f?)

)
+ (α− 1)

∫ t

s
τ‖ẋ(τ)‖2dτ − 2

∫ t

s
τ(f(x(τ))− f?)dτ − C

∫ t

s
‖τg(τ)‖dτ ≤ 0,

where C = supt≥t0 t‖ẋ(t)‖. This means that the function

G(t) = t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f?)

)
+(α−1)

∫ t

t0

τ‖ẋ(τ)‖2dτ−2

∫ t

t0

τ(f(x(τ))−f?)dτ−C
∫ t

t0

‖τg(τ)‖dτ

is non-increasing on [t0,+∞[. Since it is bounded from below by assumption on the errors and claim (iii),
limt→+∞ G(t) exists. This together with assertions (iii) and (iv)(b) shows that the limit

0 ≤ L := lim
t→+∞

t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f?)

)
exists. Suppose that L > 0. Then, there exists s ≥ t0 such that∫ +∞

t0

(
t

2
‖ẋ(t)‖2 + t(f(x(t))− f?)

)
dt ≥

∫ +∞

s
t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f?)

)
t−1dt ≥

∫ +∞

s

L

2t
dt = +∞,

leading to a contradiction with claims (iii) and (iv)(b).

3.1.3 Convergence of the trajectories

We complete our analysis by showing weak convergence of the trajectories.

Theorem 3.3. Assume that e is C1 with
∫ +∞

t0

t‖e(t)‖dt < +∞ and
∫ +∞

t0

t‖ė(t)‖dt < +∞. Let x(t) be

a solution trajectory to (ISEHD-Pert) for α > 3 and β > 0 from initial time t0 ≥ β(α−2−ε)
α−3−ε for some

ε ∈]0, α− 3[. Then x(t) converges weakly to a minimizer of f .
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Proof. Keeping in mind that the goal is to apply Opial’s Lemma (see Lemma A.1), we will now show that
limt→+∞ ‖x(t)− x?‖ exists. Recall the Lyapunov function E from the proof of Theorem 3.2, and define its
generalized version

Eε(t) := (δ(t) + εβt) (f(x(t))−f(x?))+
1

2
‖vε(t)‖2+

ε(α− 1− ε)
2

‖x(t)− x?‖2−
∫ T

t
τ 〈vε(τ), g(τ)〉 dτ,

(31)
where

vε(t) = (α− 1− ε)(x(t)− x?) + t(ẋ(t) + β∇f(x(t))).

One can check, arguing as for E , that
Ėε(t) =

(
δ̇(t) + εβ

)
(f(x(t))−f(x?))−(α−1−ε)tw(t) 〈∇f(x(t)), x(t)− x?〉−βδ(t)‖∇f(x(t))‖2−εt ‖ẋ(t)‖2 .

Convexity of f then entails
Ėε(t) +

(
(α− 1− ε)tw(t)− δ̇(t)

)
(f(x(t))− f(x?)) + βδ(t)‖∇f(x(t))‖2 + εt ‖ẋ(t)‖2 ≤ 0.

The assumption on the parameters gives

(α− 1− ε)tw(t)− δ̇(t) = t((α− 3− ε)w(t)− tẇ(t)) ≥ t0
(

(α− 3− ε)− (α− 2− ε)β
t0

)
≥ 0.

Thus, ignoring the non-negative terms in this inequality entails that Eε(t) is a decreasing function on [t0,∞[.
As a consequence, the energy functions E(t) and Eε(t) with T = +∞ are well-defined on [t0,+∞[, and are
then Lyapunov functions for the dynamical system (ISEHD-Pert). Both E(t) and Eε(t) thus have limits as
t→ +∞, and so does their difference

Eε(t)− E(t) = εβt(f(x(t))− f(x?))− ε(α− 1)

2
‖x(t)− x?‖2 − εt 〈ẋ(t), x(t)− x?〉

− εt 〈∇f(x(t)), x(t)− x?〉+ ε

∫ +∞

t
τ 〈x(τ)− x?, g(τ)〉 dτ.

By Theorem 3.2(i), the first term converges to 0 as t→ +∞. By the integrability assumptions on the errors
and boundedness of x(t) (see Theorem 3.2), the last term also converges to 0 as t → +∞. We have then
shown that the limit as t goes to infinity of

p(t) :=
α− 1

2
‖x(t)− x?‖2 + t 〈ẋ(t), x(t)− x?〉+ t 〈∇f(x(t)), x(t)− x?〉 .

exists. Set
q(t) :=

α− 1

2
‖x(t)− x?‖2 + (α− 1)

∫ t

t0

〈∇f(x(s)), x(s)− x?〉 ds.

We obviously have

p(t) = q(t) +
t

α− 1
q̇(t)− (α− 1)

∫ t

t0

〈∇f(x(s)), x(s)− x?〉 ds.

By Theorem 3.2(iv)(a), and since 〈∇f(x(s)), x(s)− x?〉 is non-negative, we have that

lim
t→+∞

∫ t

t0

〈∇f(x(s)), x(s)− x?〉 ds (32)

exists. Overall, we have shown that
lim

t→+∞

(
q(t) +

t

α− 1
q̇(t)

)
exists. Since α > 1, it follows from [16, Lemma 7.2] that limt→+∞ q(t) exists, and using again (32),
we deduce that limt→+∞ ‖x(t)− x?‖ exists for any x? ∈ S. From claim (i) of Theorem 3.2 (see also
Lemma 3.1(iv)), it follows that for any sequence (x(tn))n∈N which converges weakly, to say x̄, we have

f(x̄) ≤ lim inf
n→+∞

f(x(tn)) = lim
t→+∞

f(x(t)) = f?,

i.e. , x̄ ∈ S. Consequently, all the conditions of Lemma A.1 are satisfied, hence the weak convergence of
the trajectories.
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3.2 Implicit Hessian Damping

We now turn to the second-order ODE (ISIHD-Pert) where f ∈ C1(H) and β(t) = γ + β
t , γ, β ≥ 0. Let

us denote for brevity f? := infH f . Given x? ∈ S, we consider the function

E(t) = a(t) (f (x(t) + β(t)ẋ(t))− f?) +
1

2
‖b(t)(x(t)− x?) + c(t)ẋ(t)‖2 +

d(t)

2
‖x(t)− x?‖2

−
∫ +∞

t
c(τ) 〈b(τ)(x(τ)− x?) + c(τ)ẋ(τ), e(τ)〉 dτ−

∫ +∞

t
a(τ)β(τ) 〈∇f (x(τ) + β(τ)ẋ(τ)) , e(τ)〉 dτ

(33)
parametrized by some functions a(t), b(t), c(t) and d(t) to be specified later.

3.2.1 Lyapunov function

We first show that for proper choices of (a(t), b(t), c(t), d(t)) as a function of the problem parameters
(α, γ, β), E can serve as a Lyapunov function for (ISIHD-Pert). We will denote for short α(t) = α

t .

Lemma 3.4. Assume that,

ȧ(t)− b(t)c(t) ≤ 0,

−a(t)β(t) ≤ 0,

−a(t)α(t)β(t) + a(t)β̇(t) + a(t)− c(t)2 + b(t)c(t)β(t) = 0,

ḃ(t)b(t) + ḋ(t)
2 ≤ 0,

ḃ(t)c(t) + b(t)(b(t) + ċ(t)− c(t)α(t)) + d(t) = 0,

c(t)(b(t) + ċ(t)− c(t)α(t)) ≤ 0.

(34)

Then
Ė(t) ≤ (ȧ(t)− b(t)c(t))(f(x(t) + β(t)ẋ(t))− f?)− a(t)β(t)‖∇f(x(t) + β(t)ẋ(t))‖2

+

(
ḃ(t)b(t) +

ḋ(t)

2

)
‖x(t)− x?‖2 + c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2 ≤ 0. (35)

Proof. We proceed as in the proof of Theorems 3.1 and 3.2, and first consider the function ET where the
integrals involving the error terms are calculated on [t, T ], T < +∞. This shows that E is well-posed under
our assumptions. We can then compute the time derivative of E and use the chain rule to get
Ė(t) = ȧ(t) (f (x(t) + β(t)ẋ(t))− f?) + a(t)

〈
∇f (x(t) + β(t)ẋ(t)) , ẋ(t) + β̇(t)ẋ(t) + β(t)ẍ(t)

〉
+
〈

(b(t) + ċ(t))ẋ(t) + c(t)ẍ(t) + ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)
〉

+
ḋ(t)

2
‖x(t)− x?‖2 + d(t) 〈ẋ(t), x(t)− x?〉

+c(t) 〈b(t)(x(t)− x?) + c(t)ẋ(t), e(t)〉+ a(t)β(t) 〈∇f (x(t) + β(t)ẋ(t)) , e(t)〉 (36)
Using (ISIHD-Pert) in the second term of (36), we get

a(t)
〈
∇f (x(t) + β(t)ẋ(t)) , ẋ(t) + β̇(t)ẋ(t) + β(t)ẍ(t)

〉
= a(t)

〈
∇f (x(t) + β(t)ẋ(t)) ,

(
1 + β̇(t)− α(t)β(t)

)
ẋ(t)− β(t)∇f (x(t) + β(t)ẋ(t))− β(t)e(t)

〉
= −a(t)β(t) ‖∇f (x(t) + β(t)ẋ(t))‖2 +

(
1 + β̇(t)− α(t)β(t)

)
a(t) 〈∇f (x(t) + β(t)ẋ(t)) , ẋ(t)〉

− β(t)a(t) 〈∇f (x(t) + β(t)ẋ(t)) , e(t)〉 . (37)
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We expand the third term in (36) as〈
(b(t) + ċ(t))ẋ(t) + c(t)ẍ(t) + ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)

〉
= 〈(b(t) + ċ(t)− c(t)α(t))ẋ(t)− c(t)∇f (x(t) + β(t)ẋ(t)) , b(t)(x(t)− x?) + c(t)ẋ(t)〉

+
〈
−c(t)e(t) + ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)

〉
= −c(t) 〈∇f(x(t) + β(t)ẋ(t)), b(t)(x(t)− x?) + c(t)ẋ(t)〉

+
〈
ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)

〉
+c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2 − c(t) 〈e(t), b(t)(x(t)− x?) + c(t)ẋ(t)〉 . (38)

Plugging (37) and (38) into (36), we get,
Ė(t) = ȧ(t) (f (x(t) + β(t)ẋ(t))− f?)− a(t)β(t) ‖∇f (x(t) + β(t)ẋ(t))‖2

+ c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2 +

(
ḃ(t)b(t) +

ḋ(t)

2

)
‖x(t)− x?‖2

+
(
b(t)2 + b(t)ċ(t) + ḃ(t)c(t)− b(t)c(t)α(t) + d(t)

)
〈ẋ(t), x(t)− x?〉

+
(
−a(t)α(t)β(t) + a(t)β̇(t) + a(t)− c(t)2

)
〈∇f (x(t) + β(t)ẋ(t)) , ẋ(t)〉

− b(t)c(t) 〈∇f (x(t) + β(t)ẋ(t)) , x(t)− x?〉 . (39)
Since,
〈∇f(x(t) + β(t)ẋ(t)), x(t)− x?〉 = 〈∇f(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x?〉−〈∇f(x(t) + β(t)ẋ(t)), β(t)ẋ(t)〉
and using the convex (sub)differential inequality on f , we can write

− b(t)c(t) 〈∇f(x(t) + β(t)ẋ(t), x(t)− x?〉
≤ −b(t)c(t)(f(x(t) + β(t)ẋ(t))− f?) + b(t)c(t)β(t) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉

and we arrive at
Ė(t) ≤ (ȧ(t)− b(t)c(t))(f(x(t) + β(t)ẋ(t))− f?)− a(t)β(t)‖∇f(x(t) + β(t)ẋ(t))‖2

+(−a(t)α(t)β(t) + a(t)β̇(t) + a(t)− c(t)2 + b(t)c(t)β(t)) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉

+

(
ḃ(t)b(t) +

ḋ(t)

2

)
‖x(t)− x?‖2

+(b(t)2 + b(t)ċ(t) + ḃ(t)c(t)− b(t)c(t)α(t) + d(t)) 〈ẋ(t), x(t)− x?〉+ c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2 .
Thus, conditions (34) guarantee that Ė(t) ≤ 0, in particular they imply (35).

Following the discussion of [3, Remark 11], in the rest of the section, we take

β(t) = γ +
β

t
, γ, β ≥ 0,

b(t) ≡ b ∈]0, α− 1], α > 1, c(t) = t and d(t) ≡ b(α− 1− b).
(40)

Such a choice is reminescent of that in (31). The choices of d(t) and b(t) comply with the fourth, fifth and
sixth conditions of (34). To satisfy the third condition, one has to take

a(t) = t2
(

1 +
(α− b)γt− β(α+ 1− b)
t2 − αγt− β(α+ 1)

)
. (41)

Clearly, for t large enough, one has a(t) ≥ t2 and β(t) ≥ γ/2. Thus, the second condition is in force. One
can also verify that the first inequality is satisfied for t large enough provided that b > 2 (and thus α > 3)
when γ > 0, and b = 2 (with α = 3) when γ = 0.
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3.2.2 Fast convergence rates

We start with the following boundedness properties.

Lemma 3.5. Let
E(t) = a(t) (f (x(t) + β(t)ẋ(t))− f?) +

1

2
‖b(x(t)− x?) + tẋ(t)‖2 +

b(α− 1− b)
2

‖x(t)− x?‖2.
Choose the parameters according to (40)-(41) with α > 3, γ > 0. Define, for t ≥ t0,

m(t) := max
(
t, L|a(t)β(t)|, L|a(t)|β(t)2

)
. (42)

Assume that∇f is L-Lipschitz continuous and m(·)e(·) ∈ L1(t0,+∞;H). Then, we have

supt≥t0 E(t) < +∞, supt≥t0 t ‖ẋ(t)‖ < +∞ and supt≥t0 ‖x(t)− x?‖ < +∞.

Proof. Consider the function E(t) in (33) with the choices (40)-(41) for c(t), d(t), b(t) and a(t), with b ∈
]2, α − 1[. For such a choice, there exists t1 ≥ t0 such that a(t) > 0, β(t) > 0 (and in turn, m(t) > 0),
and all conditions of (34) are satisfied. Thus, E(t) is monotonically decreasing on [t1,+∞[ according to
Lemma 3.4. We then have that, for t > t1,

E(t) ≤ E(t1) +

∫ t

t1

〈τ (b(x(τ)− x?) + τ ẋ(τ)) + a(τ)β(τ)∇f (x(τ) + β(τ)ẋ(τ)) , e(τ)〉 dτ

= E(t1) +

∫ t

t1

〈τ (b(x(τ)− x?) + τ ẋ(τ)) + a(τ)β(τ) (∇f (x(τ) + β(τ)ẋ(τ))−∇f(x?)) , e(τ)〉 dτ

≤ E(t1) +

∫ t

t1

(
τ ‖b(x(τ)− x?) + τ ẋ(τ)‖+ a(τ)β(τ) ‖∇f (x(τ) + β(τ)ẋ(τ))−∇f(x?)‖

)
‖e(τ)‖ dτ

≤ E(t1) +

∫ t

t1

(
τ ‖b(x(τ)− x?) + τ ẋ(τ)‖+ a(τ)β(τ)L ‖x(τ)− x? + β(τ)ẋ(τ)‖

)
‖e(τ)‖ dτ

≤ E(t1) +

∫ t

t1

(
τ ‖b(x(τ)− x?) + τ ẋ(τ)‖+ La(τ)β(τ) ‖x(τ)− x?‖+ La(τ)β(τ)2 ‖ẋ(τ)‖

)
‖e(τ)‖ dτ.

(43)
Denote d = b(α − 1 − b). We have d > 0. Moreover, a(t) > 0 for t ≥ t1. One can then drop the first

term in E(t), and (43) becomes, for any t ≥ t1,
1

2
‖b(x(t)− x?) + tẋ(t)‖2 +

d

2
‖x(t)− x?‖2

≤ E(t1) +

∫ t

t1

(
τ ‖b(x(τ)− x?) + τ ẋ(τ)‖+

√
d
La(τ)β(τ)√

d
‖x(τ)− x?‖+ τ

La(τ)β(τ)2

t1
‖ẋ(τ)‖

)
‖e(τ)‖ dτ

≤ E(t1) +

∫ t

t1

(
‖b(x(τ)− x?) + τ ẋ(τ)‖+

√
d ‖x(τ)− x?‖+ τ ‖ẋ(τ)‖

)
max

(
1, d−1/2, t−11

)
m(τ) ‖e(τ)‖ dτ

≤ E(t1) +

∫ t

t1

(
2 ‖b(x(τ)− x?) + τ ẋ(τ)‖+ (b+

√
d) ‖x(τ)− x?‖

)
max

(
1, d−1/2, t−11

)
m(τ) ‖e(τ)‖ dτ

≤ E(t1) +

∫ t

t1

(
‖b(x(τ)− x?) + τ ẋ(τ)‖+

√
d ‖x(τ)− x?‖

)
Cm(τ) ‖e(τ)‖ dτ,

for some constant C ≥ max
(
1, d−1/2, t−11

)
max

(
2, 1 +

√
b

α−1−b

)
. Now, Jensen’s inequality yields

1

4

(
‖b(x(t)− x?) + tẋ(t)‖+

√
d‖x(t)− x?‖

)2
≤ 1

2
‖b(x(t)− x?) + tẋ(t)‖2 +

d

2
‖x(t)− x?‖2

≤ E(t1) +

∫ t

t1

(
‖b(x(τ)− x?) + τ ẋ(τ)‖+

√
d ‖x(τ)− x?‖

)
C|m(τ)| ‖e(τ)‖ dτ.
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Using the Gronwall Lemma A.3, we conclude that, for all t ≥ t1

‖b(x(t)− x?) + tẋ(t)‖+
√
d‖x(t)− x?‖ ≤ 2

√
|E(t0)|+ 2C

∫ +∞

t0

|m(τ)|‖e(τ)‖dτ < +∞, (44)

whence we get boundedness of ‖x(t)−x?‖ and ‖b(x(t)−x?)+tẋ(t)‖. The triangle inequality then shows that
t ‖ẋ(t)‖ is also bounded. Using this into (43) together with Cauchy-Schwarz inequality and our integrability
assumption, we deduce boundedness of E(t).

Remark 3.6. Recall our discussion on the parameters in (40)-(41). Notice that we have t2 ≤ a(t) ≤ t2 +κ1
and γ/2 ≤ β(t) ≤ β0 for t large enough, where β0 = γ + |β|/t0 and κ is a non-negative constant. In turn,
for t large enough, we have

max (1, γ/2)Lγ/2t2 ≤ m(t) ≤ max (1, β0)Lβ0(t+ κ1)
2.

Clearly the condition m(·)e(·) ∈ L1(t0,+∞;H) is equivalent to t2e(t) ∈ L1(t0,+∞;H).

From Lemma 3.5, we obtain the following convergence rates and integral estimates.

Theorem 3.7. Under the assumptions of Lemma 3.5, there exists t1 ≥ t0 such that the following holds:

(i) f(x(t))− inf
H
f = O

(
1

t2

)
for all t ≥ t1;

(ii) ‖ẋ(t)‖ = O
(

1

t

)
for all t ≥ t1;

(iii)
∫ +∞

t0

t

(
f(x(t))− inf

H
f

)
dt < +∞;

(iv)
∫ +∞

t0

t2 ‖∇f(x(t) + β(t)ẋ(t)‖2 dt < +∞;

(v)
∫ +∞

t0

t ‖ẋ(t)‖2 dt < +∞.

Proof. Claim (ii) follows from Lemma 3.5. Discarding the non-negative terms in E(t), Lemma 3.5 together
with the fact that a(t) ≥ t2 for t large enough, also gives

f(x(t) + β(t)ẋ(t))− inf
H
f = O

(
1

t2

)
for t large enough. Let β0 = γ + |β| /t0. By the descent lemma,

f(x(t))− f(x(t) + β(t)ẋ(t)) ≤ −β(t) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉+
L

2
β(t)2 ‖ẋ(t)‖2 (45)

≤ β0 ‖∇f(x(t) + β(t)ẋ(t))‖ ‖ẋ(t)‖+
L

2
β20 ‖ẋ(t)‖2

= O
(

1

t

)
‖∇f(x(t) + β(t)ẋ(t))‖+O

(
1

t2

)
,

where we used claim (ii) in the last inequality. According to (iv), to be shown shortly, we have that
‖∇f(x(t) + β(t)ẋ(t))‖ = o

(
t−1
)
, whence claim (i) follows.

To show the remaining integral estimates, consider the function E(·) in (33) with the choices (40)-(41) of
c(t), d(t), b(t) and a(t), where b ∈]2, α− 1[. We first argue similarly to [3] to show that for t large enough,
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we have ȧ(t)− bt ≤ − (α−3)t
2 , since α > 3 and b > 2. In addition, for (a possibly different) t large enough,

it is straightforward to see that a(t) (γ + β/t) ≥ t2γ/2. With these bounds, (35) reads, for t large enough,
Ė(t) ≤ −(α− 3)t

2
(f(x(t)+β(t)ẋ(t))−f?)−t2γ/2 ‖∇f(x(t) + β(t)ẋ(t))‖2 −t(α−1−b) ‖ẋ(t)‖2 . (46)

Integrating (46), and using that E is bounded thanks to Lemma 3.5, we get statements (iv)-(v) and∫ +∞

t0

t

(
f(x(t) + β(t)ẋ(t))− inf

H
f

)
dt < +∞. (47)

From the descent lemma and Cauchy-Schwarz inequality, we have∫ +∞

t0

t

(
f(x(t))− inf

H
f

)
dt ≤

∫ +∞

t0

t (f(x(t) + β(t)ẋ(t))−min f(H)) dt

+
β0√
t0

(∫ +∞

t0

t2 ‖∇f(x(t) + β(t)ẋ(t))‖2 dt
)1/2(∫ +∞

t0

t ‖ẋ(t)‖2 dt
)1/2

+
Lβ20

2

∫ +∞

t0

t ‖ẋ(t)‖2 dt.
In view of (47) and claims (iv)-(v), statement (iii) follows.

3.2.3 Convergence of the trajectories

We now turn to showing weak convergence of the trajectories to a minimizer.

Theorem 3.8. Suppose that the assumptions of Lemma 3.5 hold. Then x(t) converges weakly to a minimizer
of f .

Proof. As in the explicit case, we will invoke Opial’s Lemma A.1. Recall that the trajectory x(t) is bounded
by Lemma 3.5. Thus, for any sequence (x(tn))n∈N which converges weakly to, say, x̄, Theorem 3.7(i) entails
that

f(x̄) ≤ lim inf
n→+∞

f(x(tn)) = lim
t→+∞

f(x(t)) = f?,

i.e. , each weak accumulation point of x̄ belongs to S. To get weak convergence of the trajectory, it remains
to show that limt→+∞ ‖x(t)− x?‖ exists.

Let h : t ∈ [t0,+∞[ 7→ 1
2‖x(t)− x?‖2, and thus,

ḣ(t) = 〈ẋ(t), x(t)− x?〉 and ḧ(t) = 〈ẍ(t), x(t)− x?〉+ ‖ẋ(t)‖2 .
From (ISIHD-Pert), we obtain

ḧ(t) +
α

t
ḣ(t) =

〈
ẍ(t) +

α

t
ẋ(t), x(t)− x?

〉
+ ‖ẋ(t)‖2

= −〈∇f(x(t) + β(t)ẋ(t)) + e(t), x(t)− x?〉+ ‖ẋ(t)‖2

= −〈∇f(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x?〉 − 〈e(t), x(t)− x?〉+ ‖ẋ(t)‖2

+ β(t) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉 .
Convexity of f implies,

−〈∇f(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x?〉 ≤ f? − f(x(t) + β(t)ẋ(t)) ≤ 0,
and thus,

ḧ(t) +
α

t
ḣ(t) ≤ ‖x(t)− x?‖ ‖e(t)‖+ ‖ẋ(t)‖2 + β0 ‖∇f(x(t) + β(t)ẋ(t))‖ ‖ẋ(t)‖

≤ C ‖e(t)‖+ ‖ẋ(t)‖2 + β0 ‖∇f(x(t) + β(t)ẋ(t))‖ ‖ẋ(t)‖
whereC = supt≥t0 ‖x(t)− x?‖ < +∞ thanks to Lemma 3.5, and we denoted β0 = 1+|β|/t0. Multiplying
both sides by t, we arrive at

tḧ(t) + αḣ(t) ≤ Ct ‖e(t)‖+ t ‖ẋ(t)‖2 +
β0√
t0

(t ‖∇f(x(t) + β(t)ẋ(t))‖)(
√
t ‖ẋ(t)‖).

The right-hand side of this inequality belongs to L1(t0,+∞;R) by assumption on the error, and using the
Cauchy-Schwarz inequality and Theorem 3.7(iv)-(v) for the last two terms. It then follows from Lemma A.6
that limt→+∞ ‖x(t)−x?‖ exists. We have now shown that all conditions of Lemma A.1 are satisfied, hence
the weak convergence of the trajectories.
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3.3 Discussion

We now discuss the main differences between the two systems in terms of their stability to perturbations
and the corresponding assumptions. Recall from Remark 3.6, the integrability assumption m(·)e(·) ∈
L1(t0,+∞;H) required to ensure stability for system (ISIHD-Pert) is equivalent to ensuring that the second-
order moment of the error e(·) is finite. One may wonder whether this is more stringent than the integrability
assumptions for the explicit Hessian system (ISEHD-Pert) involving the control of the first-order moments
of the error and its derivative (see Section 3.1). The answer is clearly affirmative in the scalar case with a sim-
ple integration by parts argument. Indeed, supposing without loss of generaility that e(t) is non-increasing,
one has∫ +∞

t0

t|ė(t)|dt =

∣∣∣∣∫ +∞

t0

tė(t)dt

∣∣∣∣ =

∣∣∣∣−t0e(t0)− ∫ +∞

t0

e(t)dt

∣∣∣∣ ≤ t0 |e(t0)|+ t−20

∫ +∞

t0

t2|e(t)|dt.

Another intuitive way to understand this is to look at what happens if the system is discretized with finite
differences. In this case, the integrability assumptions on the errors for system (ISEHD-Pert) boil down to
controlling only the first-order moment of the (discretized) error. We conclude this discussion by noting that
Lipschitz continuity of the gradient is not needed for the estimates and convergence analysis of (ISEHD-Pert)
while it is used extensively to analyze (ISIHD-Pert). This is a distinctive avantage of (ISEHD-Pert) com-
pared to (ISIHD-Pert). This will be even more notable when extending to the non-smooth case; see Section 5.

4 Smooth Strongly Convex Case

4.1 Explicit Hessian Damping

In this section we consider the explicit Hessian system under the assumption of strong convexity of f .

Definition 4.1. A function f : H → R is µ-strongly convex (µ > 0) if f − µ
2‖ · ‖

2 is convex.

Following Polyak’s heavy ball system [30], consider the second-order perturbed system
ẍ(t) + 2

√
µẋ(t) + β∇2f(x(t))ẋ(t) + βė(t) +∇f(x(t)) + e(t) = 0, (48)

which has a fixed positive damping coefficient that is adjusted to the modulus of strong convexity of f . To
study (48), we define the function E : [t0,+∞[→ R+

t 7→ E(t) := f(x(t))− inf
H
f +

1

2
‖v(t)‖2, (49)

where
v(t) =

√
µ(x(t)− x?) + ẋ(t) + β∇f(x(t)). (50)

Theorem 4.2. Suppose that f : H → R is µ-strongly convex for some µ > 0, let x? be the unique minimizer
of f . Let x(·) : [t0,+∞[→ H be a solution trajectory of (48). Suppose that

a) 0 ≤ β ≤ 1

2
√
µ

.

b)
∫ +∞

t0

‖e(t)‖dt < +∞ and
∫ +∞

t0

‖ė(t)‖dt < +∞.

(i) Minimizing properties: for all t ≥ t0

E(t) ≤ E(t0)e
−
√
µ

2
(t−t0) +Me−

√
µ

2
t

∫ t

t0

e
√
µ

2
τ‖e(τ) + βė(τ)‖dτ,
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where M :=
√

2E(t0) +

∫ +∞

t0

‖e(τ) + βė(τ)‖dτ . As a consequence,

lim
t→+∞

E(t) = 0; lim
t→+∞

f(x(t)) = inf
H
f

lim
t→+∞

‖x(t)− x?‖ = lim
t→+∞

‖∇f(x(t))‖ = lim
t→+∞

‖ẋ(t)‖ = 0.

(ii) Convergence rates: suppose moreover that for some p > 0, ‖e(t) + βė(t)‖ = O
(

1

tp

)
, as t→ +∞.

Then E(t) = O
(
1
tp

)
, i.e. E(t) inherits the decay rate of the error terms. As a consequence, as t →

+∞

f(x(t))− inf
H
f = O

(
1

tp

)
;

‖x(t)− x?‖2 = O
(

1

tp

)
; ‖ẋ(t)‖2 = O

(
1

tp

)
.

In addition, when β > 0

e−
√
µt

∫ t

t0

e
√
µs‖∇f(x(s))‖2ds = O

(
1

tp

)
.

Proof. Denote f? = f(x?) = infH f . Define g(t) := e(t) + βė(t), so that the constitutive equation is
written in the compact form

ẍ(t) + 2
√
µẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) + g(t) = 0. (51)

Derivation of E(·) gives
Ė(t) = 〈∇f(x(t)), ẋ(t)〉+ 〈v(t), v̇(t)〉

= 〈∇f(x(t)), ẋ(t)〉+
〈
v(t),

√
µẋ(t) + ẍ(t) + β∇2f(x(t))ẋ(t)

〉
.

Using the definition of v(t) and (51), we get

Ė(t) = 〈∇f(x(t)), ẋ(t)〉+〈√µ(x(t)− x?) + ẋ(t) + β∇f(x(t)), −√µẋ(t)−∇f(x(t))〉−〈v(t), g(t)〉 .
After developing and simplifying, we obtain

Ė(t) +
√
µ 〈∇f(x(t)), x(t)− x?〉+ µ 〈x(t)− x?, ẋ(t)〉+

√
µ‖ẋ(t)‖2

+β
√
µ 〈∇f(x(t)), ẋ(t)〉+ β‖∇f(x(t))‖2 = −〈v(t), g(t)〉 .

According to strong convexity of f , we have

〈∇f(x(t)), x(t)− x?〉 ≥ f(x(t))− f? +
µ

2
‖x(t)− x?‖2.

Thus, by combining the last two relations, and by the Cauchy-Schwarz inequality, we obtain
Ė(t) +

√
µA(t) ≤ ‖v(t)‖‖g(t)‖,

where

A(t) := f(x(t))−f?+µ

2
‖x(t)−x?‖2+√µ 〈x(t)− x?, ẋ(t)〉+‖ẋ(t)‖2+β 〈∇f(x(t)), ẋ(t)〉+ β

√
µ
‖∇f(x(t))‖2.

Let us make appear E(t) in A(t),

A(t) = E(t)− 1

2
‖ẋ(t) + β∇f(x(t))‖2 −√µ 〈x(t)− x?, ẋ(t) + β∇f(x(t))〉+

√
µ 〈x(t)− x?, ẋ(t)〉

+ ‖ẋ(t)‖2 + β 〈∇f(x(t)), ẋ(t)〉+
β
√
µ
‖∇f(x(t))‖2.
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After developing and simplifying, we obtain

Ė(t)+
√
µ

(
E(t) +

1

2
‖ẋ(t)‖2 +

(
β
√
µ
− β2

2

)
‖∇f(x(t))‖2 − β√µ 〈x(t)− x?, ∇f(x(t))〉

)
≤ ‖v(t)‖‖g(t)‖.

Since 0 ≤ β ≤ 1√
µ , it holds that β√

µ −
β2

2 ≥
β

2
√
µ . Hence

Ė(t) +
√
µ

(
E(t) +

1

2
‖ẋ(t)‖2 +

β

2
√
µ
‖∇f(x(t))‖2 − β√µ 〈x(t)− x?, ∇f(x(t))〉

)
≤ ‖v(t)‖‖g(t)‖.

Let us use again the strong convexity of f to write

E(t) =
1

2
E(t) +

1

2
E(t) ≥ 1

2
E(t) +

1

2
(f(x(t))− f?) ≥ 1

2
E(t) +

µ

4
‖x(t)− x?‖2.

By combining the two inequalities above, we obtain

Ė(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 +

√
µB(t) ≤ ‖v(t)‖‖g(t)‖,

where B(t) = µ
4‖x(t) − x?‖2 + β

2
√
µ‖∇f(x(t))‖2 − β√µ‖x(t) − x?‖‖∇f(x(t))‖. Set X = ‖x − x?‖,

Y = ‖∇f(x)‖. Elementary algebraic computation gives that, under the condition 0 ≤ β ≤ 1
2
√
µ

µ

4
X2 +

β

2
√
µ
Y 2 − β√µXY ≥ 0.

Hence for 0 ≤ β ≤ 1
2
√
µ

Ė(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 ≤ ‖v(t)‖‖g(t)‖. (52)

(i) From (52), we first deduce that
Ė(t) ≤ ‖v(t)‖‖g(t)‖,

which by integration gives

E(t) ≤ E(t0) +

∫ t

t0

‖v(τ)‖‖g(τ)‖dτ.

By definition of E(t), we have E(t) ≥ 1
2‖v(t)‖2, which gives

1

2
‖v(t)‖2 ≤ E(t0) +

∫ t

t0

‖v(τ)‖‖g(τ)‖dτ.

According to Lemma A.3, we obtain

‖v(t)‖ ≤
√

2E(t0) +

∫ t

t0

‖g(τ)‖dτ.

SetM :=
√

2E(t0)+
∫ +∞
t0
‖g(τ)‖dτ . By assumption,

∫ +∞

t0

‖g(τ)‖dτ < +∞, and thus supt≥t0 ‖v(t)‖ ≤

M < +∞. Returning to (52) we deduce that

Ė(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 ≤M‖g(t)‖. (53)

Therefore
Ė(t) +

√
µ

2
E(t) ≤M‖g(t)‖. (54)

By integrating the differential inequality above, we obtain

E(t) ≤ E(t0)e
−
√
µ

2
(t−t0) +Me−

√
µ

2
t

∫ t

t0

e
√
µ

2
τ‖g(τ)‖dτ. (55)
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We now use Lemma A.5, which is the continuous version of Kronecker’s Theorem for series, with f(t) =

‖g(t)‖ and ϕ(t) = e
√
µ

2
t. By assumption we have

∫ +∞
t0
‖g(τ)‖dτ < +∞. We deduce that

lim
t→+∞

1

e
√
µ

2
t

∫ t

t0

e
√
µ

2
τ‖g(τ)‖dτ = 0.

Therefore, from (55) we obtain
lim

t→+∞
E(t) = 0.

By definition of E(t) this implies
lim

t→+∞
f(x(t))− inf

H
f = 0 (56)

lim
t→+∞

‖√µ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖ = 0. (57)

Acoording to (56) and the strong convexity of f we deduce that
lim

t→+∞
‖x(t)− x?‖ = 0

By continuity of∇f , and since ∇f(x?) = 0, we deduce that
lim

t→+∞
‖∇f(x(t))‖ = 0.

Combining the above results with (57), we deduce that
lim

t→+∞
‖ẋ(t)‖ = 0.

(ii) Let us make precise the argument developed above, and assume that, as t→ +∞

‖g(t)‖ = O
(

1

tp

)
,

where p > 0. Then, from (55) we get

E(t) ≤ E(t0)e
−
√
µ

2
(t−t0) +Me−

√
µ

2
t
(∫ t

2

t0

e
√
µ

2
τ‖g(τ)‖dτ +

∫ t

t
2

e
√
µ

2
τ‖g(τ)‖dτ

)
≤ E(t0)e

−
√
µ

2
(t−t0) +Me−

√
µ

2
t
(
C1e

√
µt

4 +

∫ t

t
2

e
√
µ

2
τ C2

τp
dτ
)

≤ E(t0)e
−
√
µ

2
(t−t0) +Me−

√
µ

2
t
(
C1e

√
µt

4 +
C2

tp
e
√
µ

2
t
)

≤ E(t0)e
−
√
µ

2
(t−t0) +M

(
C1e

−
√
µt

4 +
C2

tp

)
= O

(
1

tp

)
.

By definition of E(t) and strong convexity of f , we infer
µ

2
‖x(t)− x?‖2 ≤ f(x(t))−min f(H) = O

(
1

tp

)
and ‖√µ(x(t)−x?)+ẋ(t)+β∇f(x(t))‖2 = O

(
1

tp

)
.

Developing the left-hand side of the last expression, we obtain

µ‖x(t)− x?‖2 + ‖ẋ(t)‖2 + β2‖∇f(x(t))‖2 + 2β
√
µ 〈x(t)− x?, ∇f(x(t))〉

+ 〈ẋ(t), 2β∇f(x(t)) + 2
√
µ(x(t)− x?)〉 ≤ C

tp
.

By convexity of f , we have 〈x(t)− x?, ∇f(x(t))〉 ≥ f(x(t))− f?. Moreover,

〈ẋ(t), 2β∇f(x(t)) + 2
√
µ(x(t)− x?)〉 =

d

dt

(
2β(f(x(t))− f?) +

√
µ‖x(t)− x?‖2

)
.
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Combining the above results, we obtain
√
µ
(
2β(f(x(t))− f?) +

√
µ‖x(t)− x?‖2

)
+β2‖∇f(x(t))‖2+ d

dt

(
2β(f(x(t))− f?) +

√
µ‖x(t)− x?‖2

)
≤ C

tp
.

Set Z(t) := 2β(f(x(t))− f?) +
√
µ‖x(t)− x?‖2. We have

d

dt
Z(t) +

√
µZ(t) + β2‖∇f(x(t))‖2 ≤ C

tp
.

By integrating this differential inequality, elementary computation gives

e−
√
µt

∫ t

t0

e
√
µs‖∇f(x(s))‖2ds ≤ C

tp
.

This completes the proof.

4.2 Implicit Hessian Damping

We now turn to the implicit Hessian system, and take in the Polyak heavy ball system a fixed positive damping
coefficient which is adjusted to the modulus of strong convexity of f . This gives the system

ẍ(t) + 2
√
µẋ(t) +∇f (x(t) + βẋ(t)) + e(t) = 0. (58)

To analyze (58), we define the function E : [t0,+∞[→ R+

t 7→ E(t) := f (x(t) + βẋ(t)))− inf
H
f +

1

2
‖√µ(x(t)− x?) + ẋ(t)‖2. (59)

Theorem 4.3. Suppose that f : H → R is µ-strongly convex for some µ > 0, and let x? be the unique
minimizer of f . Let x(·) : [t0,+∞[→ H be a solution trajectory of (58). Suppose that

a) 0 ≤ β ≤ 1

2
√
µ

.

b)
∫ +∞

t0

‖e(t)‖dt < +∞.

(i) Minimizing properties: there exists a positive constant M such that for all t ≥ t0
E(t) ≤ E(t0)e

−
√
µ

2
(t−t0) +Me−

√
µ

2
t

∫ t

t0

e
√
µ

2
τ‖e(τ)‖dτ.

More precisely,

M :=

√
E(t0)

c
+

1

2c

∫ +∞

t0

‖e(τ)‖dτ with c =
min{µ, 1}

4 max{β2L2, 1}
and L is the Lipschitz constant of ∇f . Consequently,

lim
t→+∞

E(t) = 0; lim
t→+∞

f(x(t)) = inf
H
f

lim
t→+∞

‖x(t)− x?‖ = lim
t→+∞

‖∇f(x(t))‖ = lim
t→+∞

‖ẋ(t)‖ = 0.

(ii) Convergence rates: suppose moreover that for some p > 0, ‖e(t)‖ = O
(

1

tp

)
, as t → +∞. Then

E(t) = O
(
1
tp

)
, i.e. E(t) inherits the decay rate of the error terms. In turn, as t→ +∞

f (x(t))− inf
H
f = O

(
1

tp

)
;

‖x(t)− x?‖2 = O
(

1

tp

)
; ‖ẋ(t)‖2 = O

(
1

tp

)
; ‖∇f(x(t))‖2 = O

(
1

tp

)
.
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Proof. Let us define
v(t) =

√
µ(x(t)− x?) + ẋ(t). (60)

and thus, E equivalently reads

E(t) = f (x(t) + βẋ(t))− inf
H
f +

1

2
‖v(t)‖2. (61)

Taking the derivative in time of E(·) gives
Ė(t) = 〈∇f (x(t) + βẋ(t)) , ẋ(t) + βẍ(t)〉+ 〈v(t), v̇(t)〉

= 〈∇f (x(t) + βẋ(t)) , ẋ(t) + βẍ(t)〉+ 〈√µ(x(t)− x?) + ẋ(t),
√
µẋ(t) + ẍ(t)〉 .

Using the constitutive equation (51), we get

Ė(t) = 〈∇f (x(t) + βẋ(t)) , (1− 2β
√
µ)ẋ(t)− β∇f (x(t) + βẋ(t))− βe(t)〉

+ 〈√µ(x(t)− x?) + ẋ(t), −√µẋ(t)−∇f (x(t) + βẋ(t))− e(t)〉 .
After developing and simplifying, we obtain

Ė(t)+2β
√
µ 〈∇f (x(t) + βẋ(t)) , ẋ(t)〉+√µ 〈∇f (x(t) + βẋ(t)) , x(t)− x?〉+β‖∇f (x(t) + βẋ(t)) ‖2

+
√
µ‖ẋ(t)‖2 + µ 〈x(t)− x?, ẋ(t)〉 = −〈√µ(x(t)− x?) + ẋ(t) + β∇f (x(t) + βẋ(t)) , e(t)〉 .

In view of strong convexity of f , we have

〈∇f (x(t) + βẋ(t)) , x(t)− x?〉 = 〈∇f (x(t) + βẋ(t)) , x(t) + βẋ(t)− x?〉−〈∇f (x(t) + βẋ(t)) , βẋ(t)〉

≥ f (x(t) + βẋ(t))− f? +
µ

2
‖x(t)− x? + βẋ(t)‖2 − 〈∇f (x(t) + βẋ(t)) , βẋ(t)〉 .

Thus, by combining the last two relations, we obtain

Ė(t) + β
√
µ 〈∇f (x(t) + βẋ(t)) , ẋ(t)〉+

√
µ
(
f (x(t) + βẋ(t))− f? +

µ

2
‖x(t)− x? + βẋ(t)‖2

)
+ β‖∇f (x(t) + βẋ(t)) ‖2 +

√
µ‖ẋ(t)‖2 + µ 〈x(t)− x?, ẋ(t)〉 ≤ ‖w(t)‖‖e(t)‖, (62)

where we have used Cauchy-Schwarz inequality, and we set
w(t) :=

√
µ(x(t)− x?) + ẋ(t) + β∇f (x(t) + βẋ(t)) .

Let us make E(t) appear on the left-hand side of (62). We get
Ė(t) +

√
µE(t) +B(t) ≤ ‖w(t)‖‖e(t)‖

where

B(t) := β‖∇f (x(t) + βẋ(t)) ‖2+
√
µ

2
(β2µ+1)‖ẋ(t)‖2+β√µ 〈∇f (x(t) + βẋ(t)) , ẋ(t)〉+βµ√µ 〈x(t)− x?, ẋ(t)〉 .

Let us use again the strong convexity of f to write

E(t) =
1

2
E(t) +

1

2
E(t) ≥ 1

2
E(t) +

1

2
(f(x(t) + βẋ(t))− f?) ≥ 1

2
E(t) +

µ

4
‖x(t)− x? + βẋ(t)‖2.

By combining the inequalities above, we obtain

Ė(t) +

√
µ

2
E(t) + C(t) ≤ ‖w(t)‖‖e(t)‖,

where

C(t) := β‖∇f(y(t)‖2 + β
√
µ 〈∇f(y(t)), ẋ(t)〉+

√
µ

2
(β2µ+ 1)‖ẋ(t)‖2 + βµ

√
µ 〈x(t)− x?, ẋ(t)〉

+
µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2,
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and we set y(t) := x(t) + βẋ(t). Let us show that, for an adequate choice of the parameters, C(t) is non-
negative. Let us reformulate C(t) as follows: Young’s inequality gives the following minorization for the
two first terms of C(t)

β‖∇f(y(t))‖2 + β
√
µ〈∇f(y(t)), ẋ(t)〉 ≥ −1

4
βµ‖ẋ(t)‖2.

By using this inequality in C(t), and after simplification, we arrive at

C(t) ≥
(√

µ

2
(β2µ+ 1)− 1

4
βµ

)
‖ẋ(t)‖2 + βµ

√
µ 〈x(t)− x?, ẋ(t)〉+

µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2

=
µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2 +

(√
µ

2
(β2µ+ 1)− 1

4
βµ− β2µ√µ

)
‖ẋ(t)‖2 + βµ

√
µ 〈x(t)− x? + βẋ(t), ẋ(t)〉

=
µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2 +

√
µ

(
−β

2µ

2
− 1

4
β
√
µ+

1

2

)
‖ẋ(t)‖2 + βµ

√
µ 〈x(t)− x? + βẋ(t), ẋ(t)〉 .

Elementary algebra gives that −β2µ
2 −

1
4β
√
µ + 1

2 ≥ 0 if and only if β√µ ≤
√
17−1
4 . According to the

classical rule for the sign of a quadratic function of a real variable, we get that C(t) ≥ 0 under the condition

(βµ
√
µ)2 ≤ µ2

(
−β

2µ

2
− 1

4
β
√
µ+

1

2

)
.

Setting Z = β
√
µ, the latter inequality is equivalent to ensuring

3

2
Z2 +

1

4
Z − 1

2
≤ 0.

which is satisfied for 0 ≤ Z ≤ 1
2 , implying β ≤ 1

2
√
µ . Since 1

2 <
√
17−1
4 , we get as a final condition

β ≤ 1

2
√
µ
.

Thus under this condition we get

Ė(t) +

√
µ

2
E(t) ≤ ‖w(t)‖‖e(t)‖. (63)

From (63), we first deduce that
Ė(t) ≤ ‖w(t)‖‖e(t)‖,

which, after integration, gives

E(t) ≤ E(t0) +

∫ t

t0

‖w(τ)‖‖e(τ)‖dτ.

By definition of w we have
‖w(t)‖ ≤ ‖v(t)‖+ β‖∇f (x(t) + βẋ(t))−∇f(x?)‖

≤ ‖v(t)‖+ βL‖x(t)− x? + βẋ(t)‖,
where L is the Lipschitz constant of∇f . On the other hand, strong convexity of f entails

E(t) ≥ µ

2
‖x(t)− x? + βẋ(t)‖2 +

1

2
‖v(t)‖2.

Hence, there exists a positive constant c such that1

E(t) ≥ c‖w(t)‖2.
This in turn gives

c‖w(t)‖2 ≤ E(t0) +

∫ t

t0

‖w(τ)‖‖e(τ)‖dτ.

1One can take c = min{µ,1}
4max{β2L2,1} .
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According to Lemma A.3, and
∫ +∞
t0
‖e(τ)‖dτ < +∞, we deduce that

sup
t≥t0
‖w(t)‖ ≤M :=

√
E(t0)

c
+

1

2c

∫ +∞

t0

‖e(τ)‖dτ < +∞.

Returning to (63) we deduce that

Ė(t) +

√
µ

2
E(t) ≤M‖e(t)‖. (64)

By integrating the differential inequality above, we obtain

E(t) ≤ E(t0)e
−
√
µ

2
(t−t0) +Me−

√
µ

2
t

∫ t

t0

e
√
µ

2
τ‖e(τ)‖dτ. (65)

(i) We first deduce from (65) that E(t) tends to zero as t→ +∞. This implies that
lim

t→+∞
f(x(t) + βẋ(t))) = inf

H
f, (66)

lim
t→+∞

‖√µ(x(t)− x?) + ẋ(t)‖ = 0. (67)
From (66) and strong convexity of f we deduce that

lim
t→+∞

‖(x(t)− x?) + βẋ(t)‖ = 0. (68)

From (67) and (68), and β 6= 1√
µ (a consequence of the assumption β ≤ 1

2
√
µ ), elementary algebra gives

lim
t→+∞

‖x(t)− x?‖ = lim
t→+∞

‖ẋ(t)‖ = 0.

In turn, continuity of f and ∇f imply
lim

t→+∞
‖∇f(x(t))‖ = 0 and lim

t→+∞
f(x(t)) = inf

H
f.

(ii) Let us now assume that, as t→ +∞, we have ‖e(t)‖ = O
(
1
tp

)
, where p > 0. Based on (65), a similar

argument as in the implicit case (see the proof of Theorem 4.2) gives E(t) = O
(
1
tp

)
. By definition of

E(t), we infer that

f(x(t) + βẋ(t))− inf
H
f = O

(
1

tp

)
(69)

and
‖√µ(x(t)− x?) + ẋ(t)‖2 = O

(
1

tp

)
. (70)

From (69) and strong convexity of f we deduce that
‖(x(t)− x?) + βẋ(t)‖2 = O

(
1

tp

)
. (71)

Combining (70) and (71), and recalling that β√µ 6= 1 we immediately obtain

‖x(t)− x?‖2 ≤ C

tp
and ‖ẋ(t)‖2 = O

(
1

tp

)
. (72)

According to the Lipschitz continuity of∇f , and ∇f(x?) = 0 we deduce that
‖∇f(x(t))‖2 ≤ L2‖x(t)− x?‖2 = O

(
1

tp

)
.

Now, combining the descent lemma with (69), (71) and (72) shows that

f(x(t))−min f(H) ≤ f(x(t) + βẋ(t))− inf
H
f − β 〈∇f(x(t) + βẋ(t)), ẋ(t)〉+

Lβ2

2
‖ẋ(t)‖2

≤ f(x(t) + βẋ(t))− inf
H
f + Lβ ‖x(t)− x? + βẋ(t)‖ ‖ẋ(t)‖+

Lβ2

2
‖ẋ(t)‖2

= O
(

1

tp

)
,

which completes the proof.
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5 The Non-smooth Case

5.1 Explicit Hessian Damping

In the sequel, we will show that most properties obtained in the smooth case still hold for the global strong
solution of (4) (and in particular, all properties that do not require x(t) to be twice differentiable).

5.1.1 Minimizing properties

From now on, we assume that, for allT > t0, e(·) ∈ W1,1(t0, T ;H), which is the Sobolev space of functions
e(·) ∈ L1(t0, T ;H) with distributional derivative ė(·) ∈ L1(t0, T ;H) . Let (x, y) : [t0,+∞[→ H×H be
the global strong solution to (4) with Cauchy data (x(t0), y(t0)) = (x0, y0) ∈ dom(f) × H. For t ≥ t0
define

u(t) =

∫ t

t0

(
−βe(s) +

(
1

β
− α

s

)
x(s)− 1

β
y(s)

)
ds. (73)

Thus u is continuously differentiable, with derivative satisfying

u̇(t) = −βe(t) +

(
1

β
− α

t

)
x(t)− 1

β
y(t), ∀t ≥ t0, (74)

= ẋ(t) + βξ(t), for almost all t > t0, (75)
where ξ(t) ∈ ∂f(x(t)), and the last equality follows from Theorem 2.4(vi)-(b). Therefore, u can be also
written equivalently as

u(t) = x(t)− x0 + β

∫ t

t0

ξ(s)ds.

With parts (i) and (ii) of Theorem 2.4, equality (74) shows that u̇ is absolutely continuous on any compact
subinterval of [t0,+∞[, hence differentiable almost everywhere on [t0,+∞[. Therefore,

ü(t) = −βė(t) +
α

t2
x(t) +

(
1

β
− α

t

)
ẋ(t)− 1

β
ẏ(t).

The equality above, combined with ẏ(t) = αβ
t2
x(t) + ẋ(t) + β(ξ(t) + e(t)) (which is obtained by taking the

difference of the two equations in (4)), yields
ü(t) = −α

t
ẋ(t)− ξ(t)− (e(t) + βė(t)), (76)

for almost all t > t0. Using (75), we obtain

ü(t) =

(
1

β
− α

t

)
ẋ(t)− 1

β
u̇(t)− (e(t) + βė(t)) (77)

for almost all t > t0. We will need the following energy function of the system, defined for all T ≥ t ≥ t0
(recall (74) for the definition of u̇(t)):

WT (t) :=
1

2
‖u̇(t)‖2 + f(x(t))−

∫ T

t
〈u̇(τ), e(τ) + βė(τ)〉dτ, (78)

and when the following expression is well-defined (we will prove it later)

W (t) :=
1

2
‖u̇(t)‖2 + f(x(t))−

∫ +∞

t
〈u̇(τ), e(τ) + βė(τ)〉dτ. (79)

Theorem 5.1. Let α > 0. Suppose that infH f > −∞. Suppose that e(·) ∈ W1,1(t0, T ;H) for all

T > t0, with
∫ +∞

t0

‖e(t)‖ < +∞ and
∫ +∞

t0

‖ė(t)‖ < +∞. Then for any global strong solution of (4),

(x, y) : [t0,+∞[→ H×H
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(i) W is well-defined and non-increasing on [t1,+∞[ for some t1 ≥ t0.

(ii)
∫ +∞

t0

1

t
‖ẋ(t)‖2dt < +∞,

∫ +∞

t0

1

t
‖ξ(t)‖2dt < +∞.

(iii) limt→+∞W (t) = limt→+∞ f(x(t)) = infH f ∈ R ∪ {−∞}, limt→+∞ ‖ẋ(t) + βξ(t)‖ = 0.

(iv) As t→ +∞, every sequential weak cluster point of x(t) belongs to S.

(v) If, moreover, the solution set S 6= ∅ and
∫ +∞

t0

log t ‖e(t)‖ < +∞ and
∫ +∞

t0

log t ‖ė(t)‖ < +∞,

then

(a) f(x(t))− infH f = O
(

1

log t

)
and ‖u̇(t)‖ = O

(
1√
log t

)
as t→ +∞.

(b)
∫ +∞

t0

1

t
(f(x(t))− inf

H
f)dt < +∞.

Proof. Since we are interested in asymptotic analysis, we can assume t ≥ t1 = max (t0, 2αβ).

Claim (i) According to Theorem 2.4, WT is absolutely continuous. Taking the derivative and using the
chain rule we get

ẆT (t) = 〈u̇(t), ü(t)〉+ 〈ξ(t), ẋ(t)〉+ 〈u̇(t), e(t) + βė(t)〉,

for almost every T > t > t0. Now use (75) and (77) to obtain

ẆT (t) =

〈
u̇(t),

(
1

β
− α

t

)
ẋ(t)− 1

β
u̇(t)− (e(t) + βė(t))

〉
+ 〈ξ(t), ẋ(t)〉+ 〈u̇(t), e(t) + βė(t)〉

=

〈
u̇(t),

(
1

β
− α

t

)
ẋ(t)− 1

β
u̇(t)

〉
+ 〈ξ(t), ẋ(t)〉

= − 1

β
‖u̇(t)‖2 +

〈
ẋ(t),

(
1

β
− α

t

)
u̇(t) + ξ(t)

〉
= − 1

β
‖u̇(t)‖2 +

〈
ẋ(t),

(
1

β
− α

t

)
u̇(t) +

1

β
(u̇(t)− ẋ(t))

〉
= − 1

β
‖u̇(t)‖2 +

〈
ẋ(t),

(
2

β
− α

t

)
u̇(t)− 1

β
ẋ(t)

〉
= − 1

β
‖u̇(t)‖2 − 1

β
‖ẋ(t)‖2 +

(
2

β
− α

t

)
〈ẋ(t), u̇(t)〉

≤ − α
2t
‖ẋ(t)‖2 − α

2t
‖u̇(t)‖2,

for almost every t ≥ t1. So WT is non-increasing on [t1,+∞[, because it is absolutely continuous and its
derivative is non-positive therein. Therefore WT (t) ≤WT (t1) for all t ∈ [t1, T ]. Equivalently
1

2
‖u̇(t)‖2 + f(x(t))−

∫ T

t
〈u̇(τ), e(τ) +βė(τ)〉dτ ≤ 1

2
‖u̇(t1)‖2 + f(x(t1))−

∫ T

t1

〈u̇(τ), e(τ) +βė(τ)〉dτ.

After simplification, and setting C = 1
2‖u̇(t1)‖2 + f(x(t1))− inf f(H), we obtain

1

2
‖u̇(t)‖2 ≤ C −

∫ t

t1

〈u̇(τ), e(τ) + βė(τ)〉dτ.
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By Cauchy-Schwarz inequality we get
1

2
‖u̇(t)‖2 ≤ C +

∫ t

t0

‖u̇(τ)‖‖e(τ) + βė(τ)‖dτ.

According to Gronwall’s Lemma A.3

‖u̇(t)‖ ≤
√

2C +

∫ t

t0

‖e(τ) + βė(τ)‖dτ ≤M :=
√

2C +

∫ +∞

t0

‖e(τ) + βė(τ)‖dτ. (80)

So, ‖u̇(t)‖ is bounded on [t0,+∞[, which allows us to define

W (t) =
1

2
‖u̇(t)‖2 + f(x(t))−

∫ +∞

t
〈u̇(τ), e(τ) + βė(τ)〉 dτ. (81)

Noticing that W and WT have the same derivative we conclude that

Ẇ (t) +
α

2t
‖ẋ(t)‖2 +

α

2t
‖u̇(t)‖2 ≤ 0, (82)

and thus W is non-increasing on [t1,+∞[.

Claim (ii) Integrating (82), and using that f , and hence W , is bounded from below, we obtain,∫ +∞

t0

1

t
‖ẋ(t)‖2dt < +∞, and

∫ +∞

t0

1

t
‖u̇(t)‖2dt < +∞. (83)

Using Jensen’s inequality, we get the integrability claim on ξ(t).

Claim (iii) Given z ∈ H, let us define h : [t0,+∞[→ R+ by h(t) = 1
2‖u(t) − z‖2. The function h is

continuously differentiable with
ḣ(t) = 〈u(t)− z, u̇(t)〉 ,

and ḣ is absolutely continuous on compact subintervals of [t0,+∞[ (since u̇ is) and satisfies

ḧ(t) = 〈u(t)− z, ü(t)〉+ ‖u̇(t)‖2

for almost every t > t0. Using (75) and (76) we get

ü(t) +
α

t
u̇(t) = −

(
1− αβ

t

)
ξ(t)− (e(t) + βė(t)).

Therefore, for almost every t > t0

ḧ(t) +
α

t
ḣ(t) = ‖u̇(t)‖2 −

〈
u(t)− z,

(
1− αβ

t

)
ξ(t)

〉
− 〈u(t)− z, e(t) + βė(t)〉

= ‖u̇(t)‖2 −
(

1− αβ

t

)〈
x(t)− z − x0 + β

∫ t

t0

ξ(s)ds, ξ(t)

〉
− 〈u(t)− z, e(t) + βė(t)〉

≤ ‖u̇(t)‖2 −
(

1− αβ

t

)
〈x(t)− z, ξ(t)〉 −

(
1− αβ

t

)〈
−x0 + β

∫ t

t0

ξ(s)ds, ξ(t)

〉
+ ‖e(t) + βė(t)‖‖u(t)− z‖

To interpret
〈
−x0 + β

∫ t
t0
ξ(s)ds , ξ(t)

〉
as a temporal derivative, let us introduce

I(t) = 1
2β

∥∥∥−x0 + β
∫ t
t0
ξ(s)ds

∥∥∥2 .
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Then I(·) is locally absolutely continuous and İ(t) =

〈
−x0 +

∫ t

t0

ξ(s)ds, ξ(t)

〉
almost everywhere, be-

cause ξ ∈ L2(t0, T ;H) ⊆ L1(t0, T ;H) for all T > t0; see part (vi)-(c) of Theorem 2.4. So,

ḧ(t) +
α

t
ḣ(t) ≤ ‖u̇(t)‖2 −

(
1− αβ

t

)
〈x(t)− z, ξ(t)〉 −

(
1− αβ

t

)
İ(t) + ‖e(t) + βė(t)‖‖u(t)− z‖,

for almost every t > t0. On the other hand, by convexity of f and ξ(t) ∈ ∂f(x(t))

〈x(t)− z, ξ(t)〉 ≥ f(x(t)− f(z).

Therefore

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)
(f(x(t))− f(z)) +

(
1− αβ

t

)
İ(t) ≤ ‖u̇(t)‖2 + ‖e(t) + βė(t)‖‖u(t)− z‖.

Using the definition (81) of W , we get

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)
(W (t)− f(z)) +

(
1− αβ

t

)
İ(t) ≤

(
3

2
− αβ

2t

)
‖u̇(t)‖2

+ ‖e(t) + βė(t)‖‖u(t)− z‖ −
(

1− αβ

t

)∫ +∞

t
〈u̇(τ), e(τ) + βė(τ)〉 dτ.

According to (82), we have ‖u̇(t)‖2 ≤ −2t
α Ẇ (t). Therefore,

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)
(W (t)− f(z)) +

(
1− αβ

t

)
İ(t) ≤ −

(
3t

α
− β

)
Ẇ (t)

+ ‖e(t) + βė(t)‖‖u(t)− z‖ −
(

1− αβ

t

)∫ +∞

t
〈u̇(τ), e(τ) + βė(τ)〉 dτ.

Dividing by t and rearranging the terms, we have with g(t) := e(t) + βė(t)

1

t
ḧ(t) +

(
1

t
− αβ

t2

)
(W (t)− f(z)) ≤ −

(
3

α
− β

t

)
Ẇ (t)−

[
α

t2
ḣ(t) +

(
1

t
− αβ

t2

)
İ(t)

]
+

1

t
‖g(t)‖‖u(t)− z‖ −

(
1

t
− αβ

t2

)∫ +∞

t
〈u̇(τ), g(τ)〉 dτ.

After integration, and using Lemma A.2, we get
1

t
ḣ(t) +

∫ t

t1

(
1

s
− αβ

s2

)(
W (s)− f(z)

)
ds ≤ −

∫ t

t1

(
3

α
− β

s

)
Ẇ (s) ds+ C +K1(t) +K2(t), (84)

where

K1(t) =

∫ t

t1

1

s
‖g(s)‖‖u(s)− z‖ds and K2(t) =

∫ t

t1

(
1

s
− αθ

s2

)∫ ∞
s
‖u̇(τ)‖‖g(τ)‖dτds.

Let us majorize K1(t) and K2(t). The relation

‖u(s)− z‖ ≤ ‖u(t1)− z‖+

∫ s

t1

‖u̇(τ)‖ dτ,

and u̇(·) bounded (see (80)) give

K1(t) ≤
∫ t

t1

1

s
‖g(s)‖‖u(s)− z‖ds ≤

(
‖u(t1)− z‖

t1
+ sup
t≥t1
‖u̇(τ)‖

)∫ +∞

t1

‖g(s)‖ds ≤ C < +∞.

For K2(t), we use again u̇(·) bounded (see (80)) and integration by parts to obtain

K2(t) ≤ C
∫ t

t1

(
1

s

∫ ∞
s
‖g(τ)‖ dτ

)
ds ≤ C

(
log t

∫ ∞
t
‖g(τ)‖ dτ +

∫ t

t1

‖g(τ)‖ log τ dτ + 1

)
.
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Let us examine the integral terms that enter (84). Since W (·) is non-increasing∫ t

t1

(
1

s
− αβ

s2

)(
W (s)− f(z)

)
ds ≥ (W (t)− f(z))

∫ t

t1

(
1

s
− αβ

s2

)
ds

= (W (t)− f(z))

(
log t− log t1 +

αβ

t
− αβ

t1

)
. (85)

In turn, integration by parts gives
−
∫ t

t1

(
3

α
− β

s

)
Ẇ (s) ds =

(
3

α
− β

t1

)(
W (t1)− f(z)

)
−
(

3

α
− β

t

)
(W (t)− f(z)) + β

∫ t

t1

W (s)− f(z)

s2
ds

≤
(

3

α
− β

t1

)(
W (t1)− f(z)

)
−
(

3

α
− β

t

)
(W (t)− f(z)) + β

(
W (t1)− f(z)

)( 1

t1
− 1

t

)
,

≤ 3

α

∣∣W (t1)− f(z)
∣∣− ( 3

α
− β

t

)
(W (t)− f(z)) (86)

since t 7→W (t)− f(z) is non-increasing and t ≥ t1 ≥ αβ. Combining (84) with (85) and (86), we obtain
1

t
ḣ(t) + (W (t)− f(z))

(
log t+D +

E

t

)
≤ C

(
log t

∫ ∞
t
‖g(τ)‖ dτ +

∫ t

t1

‖g(τ)‖ log τ dτ + 1

)
.

for appropriate constants C,D,E ∈ R. Now, take t2 ≥ t1 such that log s + D + E
s ≥ 0 for all s ≥ t2.

Integrate from t2 to t and use again that W is non-increasing to obtain
h(t)

t
− h(t2)

t2
+

∫ t

t2

h(s)

s2
ds+ (W (t)− f(z))

∫ t

t2

(
log s+D +

E

s

)
ds

≤ C ′
∫ t

t2

(
log s

∫ ∞
s
‖g(τ)‖ dτ +

∫ s

t1

‖g(τ)‖ log τ dτ + 1

)
ds.

Since h is non-negative, this implies
(W (t)− f(z)) (t log t+ (D − 1)t+ E log t+ F )

≤ C ′
(
t+ t log t

∫ ∞
t
‖g(τ)‖ dτ +

∫ t

t2

‖g(τ)‖ τ log τ dτ + t

∫ t

t1

‖g(τ)‖ log τdτ

)
+G, (87)

for some appropriate constants D,E, F,G ∈ R. Divide by t log t, let t→ +∞, and use Lemma A.5, to ob-

tain limt→+∞W (t) ≤ f(z). The integrability of g and u̇(·) bounded (see (80)) yield lim
t→+∞

∫ +∞

t
〈u̇(τ), g(τ)〉 dτ = 0.

As a consequence,

lim
t→+∞

(
f(x(t)) +

1

2
‖ẋ(t) + βξ(t)‖2

)
≤ f(z)

for each z ∈ H. Thus
inf
H
f ≤ lim inf

t→+∞
f(x(t)) ≤ lim sup

t→+∞
f(x(t)) ≤ lim

t→+∞

(
f(x(t)) +

1

2
‖ẋ(t) + βξ(t)‖2

)
≤ inf
H
f,

whence we get limt→+∞ f(x(t)) = infH f , and thus limt→+∞ ‖ẋ(t) + βξ(t)‖ = 0.

Claim (iv) This follows from claim (iii) and lower semicontinuity of f .

Claim (v)-(a) Let x? ∈ S. We start from (87) with z = x? and divide by t. To conclude, we note that
log t

∫ ∞
t
‖g(τ)‖ dτ ≤

∫ ∞
t

log τ ‖g(τ)‖ dτ < +∞,∫ t

t2

‖g(τ)‖ τ
t

log τ dτ ≤
∫ t

t2

‖g(τ)‖ log τ dτ < +∞ and

log t

∫ +∞

t
〈u̇(τ), g(τ)〉 dτ ≤ C

∫ +∞

t
log τ ‖g(τ)‖ dτ,

where C = supt≥t0 ‖u̇(t)‖ < +∞ (see (80)).
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Claim (v)-(b) Putting together (84) and (86) with z = x? ∈ S, and using non-negativity of h, we infer that
for some positive constant C(

1− αβ

t1

)∫ t

t1

1

s
(W (s)− f(z)) ds ≤ C +K2(t).

Arguing similarly as for proving part (v)-(a), we can show that K2(·) is bounded. Thus∫ t

t1

1

s

(
f(x(s))− f(z) + ‖u̇(s)‖2

)
ds ≤

∫ t

t1

1

s
(W (s)− f(z)) ds+

1

t1

∫ t

t1

‖u̇(s)‖ ‖g(s)‖ ds < +∞,

which completes the proof.

5.1.2 Fast convergence rates

When α ≥ 3, under a reinforced integrability assumption on the perturbation term, we will show fast con-
vergence results. The following theorem is the non-smooth counterpart of Theorem 3.2.

Theorem 5.2. Suppose that α ≥ 3. Let f ∈ Γ0(H) such that S 6= ∅. Suppose that e(·) ∈ W1,1(t0, T ;H)

for all T > t0, with
∫ +∞

t0

t‖e(t) + βė(t)‖dt < +∞. Then, for any global strong solution (x, y) of (4)

(i) f(x(t))− infH f = O
(
t−2
)
.

(ii)
∫ +∞

t0

t(f(x(t))− inf
H
f)dt < +∞,

∫ +∞

t0

t2‖ξ(t)‖2dt < +∞,
∫ +∞

t0

t‖ẋ(t)‖2dt < +∞.

(iii) ‖ẋ(t) + βξ(t)‖ = O(t−1).

Proof. Let (x, y) : [t0,+∞[→ H × H be a global strong solution of (4). Take α ≥ 3 and x? ∈ S. Set
f? = infH f and g(t) = e(t) + βė(t). Our analysis relies on the non-smooth version of the Lyapunov
function in (31), which is defined for λ ∈ [2, α− 1], as Eλ,T : [t0, T ]→ R by

Eλ,T (t) = t(t−β(λ+2−α))(f(x(t))−f?)+1

2
‖vλ(t)‖2+λ(α−λ−1)

1

2
‖x(t)−x?‖2−

∫ T

t
τ 〈vλ(τ), g(τ)〉 dτ,

(88)
where vλ(t) := λ(x(τ)− x?) + τ u̇(t), and u is defined on [t0,+∞[ by (73) and u̇ is given by (74).
Eλ,T (·) is the sum of four terms, each of which is absolutely continuous on [t0, T ] for all T > t0. Hence Eλ,T
is differentiable almost everywhere. We first differentiate each term of Eλ,T :
d

dt
[t(t− β(λ+ 2− α))(f(x(t))− f?)] = (2t−β(λ+2−α))(f(x(t))−f?)+t(t−β(λ+2−α)) 〈ξ(t), ẋ(t)〉 .

Using (76), we have
d

dt

1

2
‖vλ(t)‖2 = 〈λ(x(t)− x?) + tu̇(t), λẋ(t) + u̇(t) + tü(t)〉

= 〈λ(x(t)− x?) + tu̇(t), (λ+ 1− α)ẋ(t)− (t− β)ξ(t)− tg(t)〉
= λ(λ+ 1− α) 〈x(t)− x?, ẋ(t)〉 − t(α− λ− 1)‖ẋ(t)‖2 − βt(t− β)‖ξ(t)‖2

− λ(t− β) 〈x(t)− x?, ξ(t)〉 − t(t− β(λ+ 2− α)) 〈ξ(t), ẋ(t)〉 − t 〈vλ(t), g(t)〉 ,
d

dt
λ(α− λ− 1)

1

2
‖x(t)− x?‖2 = λ(α− λ− 1) 〈x(t)− x?, ẋ(t)〉 , and

d

dt

(
−
∫ T

t
τ 〈vλ(τ), g(τ)〉 dτ

)
= t 〈vλ(t), g(t)〉 .
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By collecting these results, the perturbation terms cancel each other out. We get
d

dt
Eλ,T (t) = (2t− β(λ+ 2− α))(f(x(t))− f?)− λ(t− β) 〈x(t)− x?, ξ(t)〉

−t(α− λ− 1)‖ẋ(t)‖2 − βt(t− β)‖ξ(t)‖2, (89)
for almost all t > t0. Since ξ(t) ∈ ∂f(x(t)) for all t > t0, we have 〈ξ(t), x(t)− x?〉 ≥ f(x(t) − f(x?),
and we deduce from (89), that
d

dt
Eλ,T (t) ≤ −((λ− 2)t− β(α− 2))(f(x(t))− f?)− t(α− λ− 1)‖ẋ(t)‖2 − βt(t− β)‖ξ(t)‖2, (90)

for almost all t ≥ t1 = max (t0, β). It follows that Eλ,T is non-increasing on [t1, T ]. In particular, Eλ,T (t) ≤
Eλ,T (t1) for t1 ≤ t ≤ T . This gives the existence of a constant C such that

1

2
‖vλ(t)‖2 ≤ C +

∫ t

t0

‖vλ(t)‖‖τg(τ)‖dτ. (91)

Applying Lemma A.3 to (91), and using the integrability of t 7→ tg(t), it follows that

sup
t≥t0
‖vλ(t)‖ ≤

√
2C +

∫ ∞
t0

‖τg(τ)‖dτ < +∞. (92)

As a consequence, we can define the energy function

Eλ(t) := t(t−β(λ+2−α))(f(x(t))−f?)+1

2
‖vλ(t)‖2+λ(α−λ−1)

1

2
‖x(t)−x?‖2−

∫ ∞
t

τ 〈vλ(t), g(τ)〉 dτ,

which has the same derivative as Eλ,T . Hence Eλ(t) ≤ Eλ(t0). Combined with (92), this gives

t(t− β(λ+ 2− α))(f(x(t))− f?) ≤ C + sup
t≥t0
‖vλ(t)‖

∫ ∞
t0

‖τg(τ)‖dτ < +∞,

whence statement (i). Claim (iii) is obtained by letting λ = 0 in (92). Integration of (90) gives the integral
estimates of (ii), which completes the proof.

5.1.3 Convergence of the trajectories and faster asymptotic rates

Similar argument as in the smooth case (see Theorem 3.3), but now using the Lyapunov function (88), gives
weak convergence of the trajectories of (4). Moreover, in the same vein as Theorem 3.2, o(·) rates can also
be obtained. We leave the details to the readers for the sake of brevity.

Theorem 5.3. Let α > 3. Let f ∈ Γ0(H) and assume that S = argmin f 6= ∅. Suppose that e(·) ∈

W1,1(t0, T ;H) for all T > t0, with
∫ +∞

t0

t‖e(t) + βė(t)‖dt < +∞. Then, for any global strong solution

(x, y) of (4)

(i) x(t) converges weakly, as t→ +∞ to a point in S;

(ii) f(x(t))− infH f = o
(
t−2
)

and ‖ẋ(t) + βξ(t)‖ = o
(
t−1
)

as t→ +∞.

5.2 Implicit Hessian Damping

As we have already discussed in the smooth case (see Section 3.3), the analysis of the convergence properties
of the system with implicit Hessian driven damping heavily relies on Lipschitz continuity of the gradient. As
shown above, such a property was not needed to analyze system (4). Therefore, the study of the convergence
properties for the non-smooth system (12) (even without perturbations) is an open challenging topic.
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6 Numerical Experiments

To support our theoretical claims, we consider numerical examples in H = R2 with two real-valued func-
tions:

• The first one is given by f(x1, x2)) = (x1−1)4+(x2−5)2. This function is obviously convex (but not
strongly so) and smooth, and has a unique minimizer at (1, 5). For this function, we consider the con-
tinuous time dynamical system (ISEHD-Pert) with parameters (α, β) = (3.1, 1), and (ISIHD-Pert)
with parameters (α, γ, β) = (3.1, 1, 1).

• The second example we consider is with the convex non-smooth function f(x1, x2) = (x1 − 1)4 +
(x2 − 5)2 + 0.1(|x1| + |x2|). For this function, we use the continuous time non-smooth system (4)
with parameters (α, β) = (3.1, 1). Although we have no theoretical guarantee for system (12), we do
report the corresponding numerical results with parameters (α, γ, β) = (3.1, 1, 1).

For both examples, we take as an exogenous perturbation

e(t) =
cos(2πt)

tδ
with δ ∈ {0.1, 1.1, 3.1}.

All systems are solved numerically with a Runge-Kutta adaptive method in MATLAB on the time interval
[1, 50] with initial data (x0, ẋ0) = (−10, 20, 5,−5). The results are displayed in Figure 1 and Figure 2.

Let us first comment on the results for the smooth function. For δ = 3.1, all required moment as-
sumptions on the errors are fulfilled (for the explicit Hessian, the term ė is dominated by e and can then be
discarded). Hence the fast rates predicted by Theorem 3.2(i) and Theorem 3.7(i) as well as convergence of
the trajectories (see Theorem 3.3 and Theorem 3.8) hold true. For the value δ = 0.1, since the error is not
even integrable, neither the convergence of the objective value nor that of the trajectories is ensured, with
large oscillations appearing. The implicit Hessian damping seems also less stable as anticipated from our
discussion in Section 3.3. For δ = 1.1, though there is no convergence guarantee for the trajectory, the ob-
jective value for (ISEHD-Pert) decreases but at a rate which is dominated by the error decrease. This can
be explained in light of the proof of Theorem 3.2(i), where a close inspection of (24) and (26) shows that the
bound on the objective error decomposes as

f(x(t))− f? ≤ O
(
1
t2

)
+

C

∫ t

t0

τ ‖e(τ)‖dτ
2

t2
.

For δ ∈]1, 2], the second term indeed dominates the first one and decreases at the slower rate t−2(δ−1). This
confirms the known rule that there is a trade-off between fast convergence of the methods and their robustness
to perturbations.

Similar observations remain true for the non-smooth function with system (4) where we now invoke
Theorem 5.2 and Theorem 5.3. As for system (12), it seems that it has a behavior similar to what we observed
in the smooth case for system (ISIHD-Pert). As we argued in Section 5.2, supplementing the numerical
observations for system (12) with theoretical guarantees is an open problem that we leave to a future work.

7 Conclusion and Perspectives

The introduction of the correction term attached to the damping driven by the Hessian in first-order accel-
erated optimization algorithms makes it possible to considerably dampen the oscillations in the trajectory.

36



10
0

10
1

10
0

10 20 30 40 50

10
0

10
0

10
1

10
0

10 20 30 40 50

10
0

10
0

10
1

10
0

10 20 30 40 50

10
0

(a) Explicit Hessian damping: smooth function
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(b) Implicit Hessian damping: smooth function

Figure 1: Example on a smooth function: Evolution of the objective error and distance to the minimizer as
a function of t for different error decay exponents.
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(a) Explicit Hessian damping: non-smooth function
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(b) Implicit Hessian damping: non-smooth function

Figure 2: Example on a non-smooth function: Evolution of the objective error and distance to the minimizer
as a function of t for different error decay exponents.
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The study of the robustness of these algorithms with respect to error perturbations is crucial for their further
development in a stochastic framework. Our systematic study of these questions for the dynamics underlying
these algorithms is a fundamental first step in this direction. We paid particular attention to the explicit and
the implicit forms of the Hessian driven damping, showing several advantages of the explicit form. Our study
concerns the dynamics with damping driven by the Hessian within the framework of the Nesterov accelera-
tion gradient method. It shows that the convergence of the values still holds when the error terms satisfy an
appropriate integrability condition, and fast convergence is satisfied when the (first or second-order) moment
of the error is finite. Indeed, as a general rule, there is a balance between the rate of convergence of the
methods and their robustness with respect to error disturbances. An interesting technique studied in [1, 2] is
the introduction of a dry friction term. This makes it possible to have errors which do not necessarily go to
zero, they must not exceed a certain threshold, but on the other hand we only obtain an approximate solution.
Finding the right balance between the convergence rate and robustness is an important issue that should be
the subject of further study. Another important aspect of our study is the fact that several results are valid in
the case of a non-smooth function. This opens the door to the study of similar topics with respect to struc-
tured composite optimization problems involving a non-smooth term. These are some of the many facets of
these flexible dynamics and algorithms which, in the unperturbed case, have been applied in various fields
including PDE’s and mechanical shocks [15], deep learning [22], non-convex optimization [5], monotone
inclusions [13, 14] to mention a few important applications.

A Auxiliary results

Let us first recall the continuous form of the Opial’s Lemma [29], a key ingredient to establish convergence
of the trajectories.

Lemma A.1. Let S be a nonempty subset ofH and let x : [0,+∞[→ H. Assume that

(i) for every z ∈ S, limt→∞ ‖x(t)− z‖ exists;

(ii) every weak sequential cluster point of x(t), as t→∞, belongs to S.

Then x(t) converges weakly as t→∞ to a point in S.

Lemma A.2 ([16, Lemma 7.3]). Let τ, p > 0 and let ψ :]τ,+∞[→ R be C2 and bounded from below. Then,

inf
t>τ

∫ t

τ

ψ̇(s)

sp
ds > −∞ and inf

t>τ

∫ t

τ

ψ̈(s)

sp
ds− ψ̇(t)

tp
> −∞.

Lemma A.3 ([21, Lemma A.5]). Let m : [t0;T ] → [0,+∞[ be integrable. Suppose w : [t0, T ] → R is
continuous and

1

2
w(t)2 ≤ 1

2
c2 +

∫ t

t0

m(s)w(s)ds,

for some c ≥ 0 and for all t ∈ [t0, T ]. Then

|w(t)| ≤ c+

∫ t

t0

m(s)ds, t ∈ [t0, T ].

Lemma A.4. Let β : [t0,+∞[→ R+ such that inft∈[t0,+∞[ β(t) > 0 and β 6∈ L1(t0,+∞;R). Then, the
differential inclusion

ż(t) + β(t)∂Φ(z(t)) + F (t, z(t)) 3 0, (93)
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is equivalent to
ẇ(s) + ∂Φ(w(s)) +G(s, w(s)) 3 0, (94)

with
G(s, w(s)) =

1

β(τ(s))
F (τ(s), w(s)), t = τ(s), and β(τ(s))τ̇(s) = 1.

Proof. Make the change of time variable t = τ(s) and z(t) = z ◦ τ(s) = w(s). We then have
1

β(τ(s))τ̇(s)
ẇ(s) + ∂Φ(w(s)) +

1

β(τ(s))
F (τ(s), w(s)) 3 0,

Choose τ(·) such that
β(τ(s))τ̇(s) = 1. (95)

Introduce a primitive of β, p(t) =
∫ t
t0
β(r)dr Therefore, (95) can be equivalently written

d
dsp(τ(s)) = 1 ⇐⇒ p(τ(s)) =

∫ τ(s)
t0

β(r)dr = s+ C,

for any constant C. Thus, τ defines a change of variable if and only if
∫ +∞
t0

β(r)dr = +∞, hence our
assumption on β.

Lemma A.5. Take t0 > 0, and let f ∈ L1(t0,+∞;R) be non-negative and continuous. Consider a nonde-
creasing function ϕ : [t0,+∞[→ R+ such that lim

t→+∞
ϕ(t) = +∞. Then, limt→+∞

1
ϕ(t)

∫ t
t0
ϕ(s)f(s)ds =

0.

Proof. Given ε > 0, fix tε so that
∫∞
tε
f(s)ds ≤ ε. Then, for t ≥ tε, split the integral

∫ t

t0

ϕ(s)f(s)ds into

two parts to obtain
1

ϕ(t)

∫ t

t0

ϕ(s)f(s)ds =
1

ϕ(t)

∫ tε

t0

ϕ(s)f(s)ds+
1

ϕ(t)

∫ t

tε

ϕ(s)f(s)ds ≤ 1
ϕ(t)

∫ tε
t0
ϕ(s)f(s)ds+

∫ t
tε
f(s)ds.

Let t→ +∞ to deduce that 0 ≤ lim supt→+∞
1
ϕ(t)

∫ t
t0
ϕ(s)f(s)ds ≤ ε. Since this is true for any ε > 0, the

result follows.

Lemma A.6 ([9, Lemma A.4]). Let t0 > 0, and let w : [t0,+∞[→ R be a continuously differentiable
function which is bounded from below. Assume that

tẅ(t) + αẇ(t) ≤ g(t),

for some α > 1, almost every t > t0, and some non-negative function g ∈ L1(t0,+∞,R). Then, the positive
part [w]+ of w belongs to L1(t0,+∞;R) and limt→+∞w(t) exists.
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