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Abstract. Second-order continuous-time dissipative dynamical systems with

viscous and Hessian driven damping have inspired effective first-order algo-

rithms for solving convex optimization problems. While preserving the fast
convergence properties of the Nesterov-type acceleration, the Hessian driven

damping makes it possible to significantly attenuate the oscillations. To study

the stability of these algorithms with respect to perturbations, we analyze the
behaviour of the corresponding continuous systems when the gradient computa-

tion is subject to exogenous additive errors. We provide a quantitative analysis

of the asymptotic behaviour of two types of systems, those with implicit and
explicit Hessian driven damping. We consider convex, strongly convex, and

non-smooth objective functions defined on a real Hilbert space and show that,
depending on the formulation, different integrability conditions on the pertur-

bations are sufficient to maintain the convergence rates of the systems. We

highlight the differences between the implicit and explicit Hessian damping,
and in particular point out that the assumptions on the objective and per-

turbations needed in the implicit case are more stringent than in the explicit
case.

1. Introduction. The continuous-time dynamic perspective of optimization algo-
rithms, which can be viewed as temporal discretization schemes thereof, offers an
insightful and powerful framework for the study of the behaviour of these algorithms.
In this paper, we study inertial systems involving both viscous and Hessian-driven
damping, where the first-order gradient information is only accessible up to some
exogenous additive error .
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1.1. Problem statement. Throughout the paper, we make the following standing
assumptions:

f is a convex function on a real Hilbert space H, and S := argminH f 6= ∅.

We will study perturbed versions of two second-order ordinary differential equations
(ODE). They differ from each other in that the Hessian driven damping appears
explicitly in one and implicitly in the other.

1.1.1. Explicit Hessian. The first system we look at, which was proposed in [9] (see
also [19]), takes the form

ẍ(t) + γ(t)ẋ(t) + β(t)
d

dt
(∇f(x(t))) + b(t)∇f(x(t)) = 0, (ISEHD)

where f ∈ C1(H), γ, β, b : [t0,+∞[→ R+ are continuous functions, and t0 > 0 is the
initial time. The coefficients (γ, β, b) have a physical interpretation corresponding
to natural phenomena:

• γ(t) is the viscous damping coefficient,
• β(t) is the Hessian-driven damping coefficient (which will be made clear),
• b(t) is the time scaling coefficient (see [13]).

We term the above ODE an Inertial System with Explicit Hessian Damping (ISEHD
for short), since

d

dt
(∇f(x(t))) = ∇2f(x(t))ẋ(t),

when f is of class C2(H). Throughout the paper, we consider (ISEHD) with the
particular choice of parameters

γ(t) =
α

t
, α ≥ 0, β(t) ≡ β > 0 and b(t) ≡ 1.

This choice of the viscous damping parameter γ(t) = α
t is justified by its direct

link with the accelerated gradient method of Nesterov [30, 31], as shown in [7], [11],
[21], [26], [36]. Related systems have been considered in [28] from the closed loop
control perspective and in [35] by means of high-resolution of differential equations.

1.1.2. Implicit Hessian. The second system we consider, inspired by [3] (see also
[29] for a related autonomous system in the case of a strongly convex function f),
is

ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
= 0, (ISIHD)

where α ≥ 3 and β(t) = γ + β
t , γ, β ≥ 0. We coin this ODE an Inertial System

with Implicit Hessian Damping (ISIHD for short). The rationale justifying our use
of the term “implicit” comes from the observation that by a Taylor expansion (as
t→ +∞ we have ẋ(t)→ 0 which justifies using Taylor expansion), one has

∇f (x(t) + β(t)ẋ(t)) ≈ ∇f(x(t)) + β(t)∇2f(x(t))ẋ(t),

hence making the Hessian damping appear indirectly in (ISIHD). This ODE was
found to have a smoothing effect on the energy error and oscillations.
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1.1.3. Exogenous additive error. We are interested in the situation where ∇f(x(t))
is always evaluated with an exogenous additive error e(t). With the choice of pa-
rameters made above, the perturbed dynamics of (ISEHD) and (ISIHD) are written

ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
∇f(x(t)) + e(t)

)
+∇f(x(t)) + e(t) = 0, (ISEHD-Pert)

ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
+ e(t) = 0. (ISIHD-Pert)

For system (ISEHD-Pert), the overall perturbation error affecting the system is
βė(t) + e(t). Because the Hessian appears explicitly, both the error on the gradient
and its derivative appear. It can then be anticipated that assumptions regarding
both e(t) and ė(t), in particular their integrability, will be instrumental in deriving
any convergence guarantees. On the other hand, in the system (ISIHD-Pert)
with implicit Hessian damping, the error perturbation e(t) appears without its time
derivative. Naturally, we will see in this case that convergence results will be derived
without any assumptions on the time derivative of the error. While this may be
seen as an advantage at first glance, this comes at a price. Indeed, as we will also
see, to maintain fast convergence guarantees, the integrability requirements on the
error e(t) will be more stringent for (ISIHD-Pert) than for (ISEHD-Pert), i.e.,
higher-order moments of e(t) will be required to be finite. We anticipate that when
it comes to discrete algorithms, the assumptions on the objective and perturbations
needed in the implicit case are more stringent than in the explicit case. We plan to
study these questions in a future work. Note that similar questions arise when the
perturbation is attached to a Tikhonov regularization term with an asymptotically
vanishing coefficient [23].

One of our motivations for the above additive perturbation model originates from
optimization, where the gradient may be accessed only inaccurately, either because
of physical or computational reasons. The prototype example we think of is

f(x) = Eξ[F (x, ξ)],

where Eξ[·] is expectation with respect to the random variable ξ, and F (·, ξ) ∈
C1(H) for any ξ. This is a popular setting in numerous applications (imaging,
statistical learning, etc.), where computing∇f(x) (or even f(x)) is either impossible
or computationally very expensive. Rather, one draws m independent samples of
ξ, say (ξi)1≤i≤m, and compute the average estimate

∇̂f(x) =
1

m

m∑
i=1

∇F (x, ξi).

In our notation, the error is then e(t) = ∇f(x(t))− ∇̂f(x(t)). Under independence
and mild assumptions, one has by the law of iterated logarithm that ‖e(t)‖ =

O
(√

log(log(m))
m

)
almost surely. Thus, to make this error vanish or even integrable,

one has to take m(.) an increasing function of t at least at the rate O(t2(1+δ)) for
δ > 0. At this stage, some readers may have expected a smallness condition on
the perturbation rather than integrability conditions, i.e., of ‖e(t)‖ = O(r(t)) for
some r(t) such that lim

t→∞
r(t) = 0. Of course, integrability is stronger as it obviously

implies that the error function, whenever it converges, will vanish asymptotically.
However, one has to keep in mind that our goal is not only to establish convergence
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(and rate of convergence) of the objective values to a “perturbation dominated
region” around the optimal value, but to show additional convergence guarantees,
in particular the important matter of weak convergence of the trajectory. Deriving
convergence of trajectories is typically much more challenging than the objective
and cannot be proved under a mere smallness condition on the error.

1.2. Contributions. In [9] (resp. [3]), which studied the unperturbed system
(ISEHD) (resp. (ISIHD)), fast convergence rates were obtained for the objective,
velocities and gradients. Our main contribution in this paper is to analyze the ro-
bustness and stability of these systems, by quantifying their convergence properties
in the presence of errors. We do this both in the general convex case and in the
strongly convex case. We also study the case where the function f is non-smooth
convex by proposing a first order formulation in time and space, with existence re-
sults and Lyapunov analysis. The main motivation for our work is to pave the way
for the design and study of provably accelerated optimization algorithms that ap-
propriately discretize the above dynamics while handling inexact evaluations of the
gradient with deterministic and/or stochastic errors. The extension to the discrete
setting of the results here will be the focus of a forthcoming paper.

1.3. Related works. Due to the importance of the subject in optimization and
control, several articles have been devoted to the study of perturbations in dissi-
pative inertial systems and in the corresponding accelerated first order algorithms.
The subject was first considered in the case of a fixed viscous damping, [14, 27].
Then it was studied within the framework of the accelerated gradient method of
Nesterov, and of the corresponding inertial dynamics with vanishing viscous damp-
ing, see [35, 8, 11, 20, 34, 37]. In the presence of the additional Hessian driven
damping, first results have been obtained in [19, 9, 10] in the case of a smooth func-
tion. To the best of our knowledge, our work is the first to consider these questions
in full generality and in presence of perturbations.

1.4. Contents. In Section 2, we prove that the two systems are well-posed both
in the smooth and non-smooth cases. In Section 3, we study the convex case,
and establish convergence rates for both systems under appropriate integrability
assumptions on the error. In Section 4, we consider the strongly convex case.
Section 5 is devoted to studying non-smooth f . In Section 6, we present some
numerical illustrations of the results. In Section 7, we draw key conclusions and
present some perspectives.

1.5. Main notations. H is a real Hilbert space, 〈·, ·〉 is the scalar product on H
and ‖·‖ is the corresponding norm. Γ0(H) is the class of proper, lower semicontinu-
ous (lsc) and convex functions from H to R∪{+∞}. A function g : H → R∪{+∞}
is µ-strongly convex (µ > 0) if g − µ

2 ‖ · ‖
2 is convex. For g ∈ Γ0(H), its domain is

dom(g) := {x ∈ H : g(x) < +∞}. ∂g denotes the (convex) subdifferential operator
of g. When g is differentiable at x ∈ H, then ∂g(x) = {∇g(x)}. We also denote
dom(∂g) := {x ∈ H : ∂g(x) 6= ∅}.
Cs(D) is the class of s-continuously differentiable functions on D, D will be

specified in the context. For T > t0 and p ≥ 1, Lp(t0, T ;H) is the Lebesgue space

of measurable functions x : t ∈ [t0, T ] 7→ x(t) ∈ H such that
∫ T
t0
‖x(t)‖p dt <

+∞. W1,1(t0, T ;H) is the Sobolev space of functions x(.) ∈ L1(t0, T ;H) with
distributional derivative ẋ(·) ∈ L1(t0, T ;H). We will also invoke the notion of a
strong solution to a differential inclusion, see [24, Definition 3.1], that will be given
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precisely in Section 2.1.2. The reader interested mostly in quantitative convergence
estimates can skip the corresponding section.

We take t0 > 0 as the origin of time. This is justified by the singularity of the
viscous damping coefficient α

t at the origin. This is not restrictive since we are
interested in asymptotic analysis. We denote S to be the set of minimizers of f ,
i.e., S := argminx∈H f(x) which is assumed nonempty, and x? to be an arbitrary
element of S (unique in the case of strongly convex f). We denote f̄ := inf

x∈H
f(x).

2. Well-posedness. When β > 0, the presence of Hessian driven damping in
the inertial dynamics makes it possible to reformulate the equations as first-order
systems both in time and in space, without explicit evaluation of the Hessian. This
will allow us to extend the existence of trajectories and the convergence results to
the case f ∈ Γ0(H), by simply replacing the gradient of f with the subdifferential
∂f . This approach was initiated in [4] and used in [19] for the unperturbed case.

2.1. Explicit Hessian damping.

2.1.1. Formulation as a first-order system. Let us start by establishing this equiv-
alence in the case of a smooth function f .

Theorem 2.1. Let f : H → R be a C2(H) function and e : [t0,+∞[→ H be C1(H).
Suppose that α ≥ 0, β > 0. Let (x0, ẋ0) ∈ H × H. The following statements are
equivalent:

1. x : [t0,+∞[→ H is a solution trajectory of (ISEHD-Pert) with the initial
conditions x(t0) = x0, ẋ(t0) = ẋ0.

2. (x, y) : [t0,+∞[→ H×H is a solution trajectory of the first-order systemẋ(t) + β(∇f(x(t)) + e(t))−
(

1
β −

α
t

)
x(t) + 1

β y(t) = 0

ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0,
(1)

with initial conditions x(t0) = x0, y(t0) = −β(ẋ0 + β∇f(x0)) + (1 − βα/t0)x0 −
β2e(t0).

Proof. 2. ⇒ 1. Differentiating the first equation of (1) gives

ẍ(t) + β
(
∇2f(x(t))ẋ(t) + ė(t)

)
− α

t2
x(t)−

(
1

β
− α

t

)
ẋ(t) +

1

β
ẏ(t) = 0. (2)

Replacing ẏ(t) by its expression as given by the second equation of (1) gives

ẍ(t) + β
(
∇2f(x(t))ẋ(t) + ė(t)

)
− α

t2
x(t)−

(
1

β
− α

t

)
ẋ(t)

+
1

β

((
1

β
− α

t
+
αβ

t2

)
x(t)− 1

β
y(t)

)
= 0. (3)

Then replace y(t) by its expression as given by the first equation of (1)

ẍ(t) + β
(
∇2f(x(t))ẋ(t) + ė(t)

)
− α

t2
x(t)−

(
1

β
− α

t

)
ẋ(t)

+
1

β

((
1

β
− α

t
+
αβ

t2

)
x(t) + ẋ(t) + β(∇f(x(t)) + e(t))−

(
1

β
− α

t

)
x(t)

)
= 0.

After simplification of the above expression, we obtain (ISEHD-Pert).
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1. ⇒ 2. Define y(t) by the first equation of (1). Differentiating y(t) and using
equation (ISEHD-Pert) allows one to eliminate ẍ(t), which finally gives the second
equation of (1).

2.1.2. Existence and uniqueness of a solution. Capitalizing on the result of Theo-
rem 2.1, the following first order formulation assists in providing a meaning to our
system when f ∈ Γ0(H). It is obtained by substituting the subdifferential ∂f for
the gradient ∇f in the first-order formulation (1).

Definition 2.1. Let α ≥ 0, β > 0 and f ∈ Γ0(H). Given (x0, y0) ∈ dom(f)×H, the
Cauchy problem for the perturbed inertial system with explicit generalized Hessian
driven damping is defined by

ẋ(t) + β(∂f(x(t)) + e(t))−
(

1
β −

α
t

)
x(t) + 1

β y(t) 3 0

ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0

x(t0) = x0, y(t0) = y0.

(4)

Let us formulate (4) in a condensed form as an evolution equation in the product
space H×H. Setting Z(t) = (x(t), y(t)) ∈ H ×H, (4) can be equivalently written

Ż(t) + ∂G(Z(t)) +D(t, Z(t)) 3 0, Z(t0) = (x0, y0), (5)

where G ∈ Γ0(H × H) is the function defined by G(Z) = βf(x), and the time-
dependent operator D : [t0,+∞[×H×H → H×H is given by

D(t, Z) =

(
βe(t)−

(
1

β
− α

t

)
x+

1

β
y,−

(
1

β
− α

t
+
αβ

t2

)
x+

1

β
y

)
. (6)

The differential inclusion (5) is governed by the sum of the maximal monotone
operator ∂G (a convex subdifferential) and the time-dependent affine continuous
operator D(t, ·). The existence and uniqueness of a global solution for the cor-
responding Cauchy problem is a consequence of the general theory of evolution
equations governed by maximally monotone operators. In this setting, we need to
invoke the notion of strong solution that we make precise now.

Definition 2.2. Given g ∈ Γ0(H), and an operator D : [t0,+∞[×H → H, we
say that z : [t0, T ] → H is a strong solution trajectory on [t0, T ] of the differential
inclusion

ż(t) + ∂g(z(t)) +D(t, z(t)) 3 0, (7)

if the following properties are satisfied:

1. z is continuous on [t0, T ] and absolutely continuous on any compact subset of
]t0, T ];

2. z(t) ∈ dom(∂g) for almost every t ∈]t0, T ], and (7) is verified for almost every
t ∈]t0, T ].

z : [t0,+∞[→ H is a global strong solution of (7), if it is a strong solution on [t0, T ]
for all T > t0.

The existence and uniqueness of a global strong solution of the Cauchy problem
(4) is established in the following theorem.

Theorem 2.2. Let f ∈ Γ0(H), α ≥ 0 and β > 0. Suppose that e ∈ L2(t0, T ;H)
for every T > t0. Then, for any Cauchy data (x0, y0) ∈ dom(f)×H, there exists a
unique global strong solution (x, y) : [t0,+∞[→ H×H of (4) satisfying the initial
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condition x(t0) = x0, y(t0) = y0. Moreover, this solution exhibits the following
properties:

(i) y ∈ C1([t0,+∞[), and ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0, for t ≥ t0;

(ii) x is absolutely continuous on [t0, T ] and ẋ ∈ L2(t0, T ;H) for all T > t0;

(iii) x(t) ∈ dom(∂f) for all t > t0;

(iv) x is Lipschitz continuous on any compact subinterval of ]t0,+∞[;

(v) the function t 7→ f(x(t)) is absolutely continuous on [t0, T ] for all T > t0;

(vi) there exists a function ξ : [t0,+∞[→ H such that

(a) ξ(t) ∈ ∂f(x(t)) for all t > t0;

(b) ẋ(t) + βξ(t) + βe(t)−
(

1
β −

α
t

)
x(t) + 1

β y(t) = 0 for almost every t > t0;

(c) ξ ∈ L2(t0, T ;H) for all T > t0;

(d)
d

dt
f(x(t)) = 〈ξ(t), ẋ(t)〉 for almost every t > t0.

Proof. It is sufficient to prove that (x, y) is a strong solution of (4) on [t0, T ] and that
the properties hold on [t0, T ] for all T > t0. So let us fix T > t0. As we have already
noticed, (4) can be written in the form (5) which is a Lipschitz perturbation of the
differential inclusion governed by the subdifferential of a proper lsc convex function.
A direct application of [24, Proposition 3.12] gives the existence and uniqueness of
a strong global solution Z = (x, y) : [t0, T ] → H × H to (5), or equivalently to
(4), with initial condition Z(t0) = (x(t0), y(t0)) = (x0, y0). Verification of items
(iii) to (vi) follows the same lines as the proof of [19, Theorem 4.4]. Of particular
importance is the generalized derivation chain rule given in (vi)(d), which follows
from [24, Lemma 3.3] after checking that the corresponding assumptions are met
thanks to (ii), (vi)(a) and (vi)(c).

Under sufficient differentiability properties of the data, we recover a classical
solution, i.e., x(·) is a C2([t0,+∞[) function, all the derivatives involved in the
equation (ISEHD-Pert) are taken in the sense of classical differential calculus, and
the equation (ISEHD-Pert) is satisfied for all t ≥ t0. This is made precise in the
following statement.

Corollary 2.1. Assume that f is a convex C2(H) function and e belongs to C1([t0,
+∞[). Then, for any t0 > 0, and any Cauchy data (x0, ẋ0), the system
(ISEHD-Pert) with α, β ≥ 0 admits a unique classical global solution x : [t0,+∞[→
H satisfying (x(t0), ẋ(t0)) = (x0, ẋ0).

Proof. Under the above regularity assumptions, the first equation of the first order
system (4)

ẋ(t) + β(∇f(x(t)) + e(t))−
(

1

β
− α

t

)
x(t) +

1

β
y(t) = 0

implies that ẋ is a C1([t0,+∞[) function, and hence x ∈ C2([t0,+∞[). Then, com-
bining Theorem 2.1 with Theorem 2.2 with y(t0) = −β(ẋ0 + β∇f(x0)) + (1 −
βα/t0)x0 − β2e(t0), we obtain the existence and uniqueness of a classical solution
to the Cauchy problem associated with (ISEHD-Pert).
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2.2. Implicit Hessian damping.

2.2.1. Formulation as a first-order system. Let us now turn to (ISIHD-Pert). We
use the shorthand notation α(t) = α/t. Here and in the rest of the paper, we assume
that β(·) is C1([t0,+∞[,R+) and inf

t∈[t0,+∞[
β(t) > 0.

Let us introduce the new function

y(t) := x(t) + β(t)ẋ(t), (8)

whose time derivation gives

ẏ(t) = ẋ(t) + β(t)ẍ(t) + β̇(t)ẋ(t). (9)

From (ISIHD-Pert) we know that

ẍ(t) = −α(t)ẋ(t)−∇f(y(t))− e(t). (10)

By combining (9) and (10) we obtain

ẏ(t) = ẋ(t) + β(t) (−α(t)ẋ(t)−∇f(y(t))− e(t)) + β̇(t)ẋ(t)

=
(

1− α(t)β(t) + β̇(t)
)
ẋ(t)− β(t) (∇f(y(t) + e(t)) . (11)

From (8) and the fact that inf
t∈[t0,+∞[

β(t) > 0 we get ẋ(t) = 1
β(t) (y(t) − x(t)). Re-

placing ẋ(t) in (11) with this expression gives

ẏ(t) =
(

1− α(t)β(t) + β̇(t)
) 1

β(t)
(y(t)− x(t))− β(t) (∇f(y(t)) + e(t))

= − 1

β(t)

(
1− α(t)β(t) + β̇(t)

)
x(t) +

1

β(t)

(
1− α(t)β(t) + β̇(t)

)
y(t)

−β(t) (∇f(y(t)) + e(t)) .

The reverse implication is obtained in a similar way. Let us summarize the results.

Theorem 2.3. Let f ∈ C1(H). Suppose that α ≥ 0 and inf
t∈[t0,+∞[

β(t) > 0. The

following statements are equivalent:

1. x : [t0,+∞[→ H is a solution trajectory of (ISIHD-Pert) with initial condi-
tions x(t0) = x0, ẋ(t0) = ẋ0.

2. (x, y) : [t0,+∞[→ H×H is a solution trajectory of the first-order systemẋ(t) + 1
β(t)x(t)− 1

β(t)y(t) = 0.

ẏ(t) + β(t) (∇f(y(t)) + e(t)) + 1
β(t)

(
1− α(t)β(t) + β̇(t)

)
(x(t)− y(t)) = 0

(12)

with initial conditions x(t0) = x0, y(t0) = x0 + β(t0)ẋ0.

2.2.2. Existence and uniqueness of a solution. Existence and uniqueness of a global
strong solution for the Cauchy problem associated with the unperturbed problem
(ISIHD) was shown in [3] when ∇f is Lipschitz continuous using the Cauchy-
Lipschitz theorem. This result can be easily extended to (ISIHD-Pert). Rather,
we take a different path here and proceed as in Section 2.1.2, so that we can extend
the above formulation to the case where f ∈ Γ0(H), by replacing the gradient ∇f
with the subdifferential ∂f .
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Definition 2.3. Let α(t) ≥ 0, β(t) > 0, f ∈ Γ0(H). Given (x0, y0) ∈ H × dom(f),
the Cauchy problem associated with the perturbed inertial system with implicit
generalized Hessian driven damping is defined by

ẋ(t) + 1
β(t)x(t)− 1

β(t)y(t) = 0

ẏ(t) + β(t) (∂f(y(t)) + e(t)) + 1
β(t)

(
1− α(t)β(t) + β̇(t)

)
(x(t)− y(t)) 3 0

x(t0) = x0, y(t0) = y0.

(13)

We reformulate (13) in the product space H×H by setting Z(t) = (x(t), y(t)) ∈
H ×H, and thus (13) can be equivalently written as

Ż(t) + β(t)∂G(Z(t)) +D(t, Z(t)) 3 0, (14)

where G ∈ Γ0(H×H) is the function defined as G(Z) = f(y), and the time dependent
operator D : [t0,+∞[×H×H → H×H is given by

D(t, Z) =

(
1

β(t)
(x− y), β(t)e(t) +

1

β(t)

(
1− α(t)β(t) + β̇(t)

)
(x− y)

)
. (15)

Constant β. When β is independent of t, the differential inclusion (14) is governed
by the sum of the convex subdifferential operator β∂G and the time-dependent
affine continuous operator D(t, ·). The existence and uniqueness of a global strong
solution for the Cauchy problem associated to (13) follows exactly from the same
arguments as those for Theorem 2.2. In turn, if f ∈ C1(H), e ∈ C([t0,+∞[), and
β ∈ C1([t0,+∞[), then (12) admits a unique C1([t0,+∞[) global solution (ẋ, ẏ). It
then follows from the first equation in (12) that ẋ is a C1([t0,+∞[) function, and
hence x ∈ C2([t0,+∞[). Existence and uniqueness of a classical global solution to
the Cauchy problem associated to (ISIHD-Pert) is then obtained thanks to the
equivalence in Theorem 2.3.

Time-dependent β. When β depends on time, one cannot invoke directly the
results of [24]. Instead, one can appeal to the theory of evolution equations governed
by general time-dependent subdifferentials as proposed in [15] for example. In fact,
for a system in the simpler form (14), one can argue more easily, by making the
change of time variable t = τ(s) with β(τ(s))τ̇(s) = 1. Lemma A.4 then shows that
(14) is equivalent to

Ẇ (s) + ∂G(W (s)) + F(s,W (s)) 3 0, (16)

where W (s) = Z(τ(s)), and F(s,W (s)) = 1
β(τ(s))D(τ(s),W (s)) is affine continuous

in its second argument. Provided that β 6∈ L1(t0,+∞;R), this defines a proper
change of variable in time. With the formulation (16), we are brought back to the
appropriate form to argue as before and invoke the results of [24]. We leave the
details to the reader for the sake of brevity.

3. Smooth convex case.

3.1. Explicit Hessian damping. Consider first the explicit Hessian system
(ISEHD-Pert), where we assume that f ∈ C2(H), and recall the specific choices of
γ(t) = α

t , α > 0, β(t) ≡ β and b(t) ≡ 1. We will develop a Lyapunov analysis to
study the dynamics of (ISEHD-Pert). Some of our arguments are inspired by the
works of [11] and [9]. Throughout this section we use the shorthand notation

g(t) := e(t) + βė(t) (17)
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for the overall contribution of the errors terms. We will first establish the mini-
mization property which is valid by simply assuming the integrability of the error
term and its derivative. Then, by reinforcing these hypotheses, we will obtain rapid
convergence results, and the convergence of trajectories.

3.1.1. Minimizing properties. Define u : [t0,+∞[→ H by

u(t) := x(t) + β

∫ t

t0

∇f(x(s))ds,

which will be instrumental in the proof of the following theorem. Note that, in the
following statement, it is simply assumed that f is bounded from below, the set
S := argminH f may be empty.

Theorem 3.1. Let f : H → R be a C2(H) function which is bounded from below.
Assume that e : [t0,+∞[→ H is a C1(H) function which satisfies the integrability

properties

∫ +∞

t0

‖e(t)‖ dt < +∞ and

∫ +∞

t0

‖ė(t)‖ dt < +∞. Suppose that α, β > 0.

Then, for any solution trajectory x : [t0,+∞[→ H of (ISEHD-Pert), we have

(i) sup
t≥t0
‖u̇(t)‖ < +∞;

(ii)
∫ +∞

t0

1

t
‖ẋ(t)‖2dt < +∞,

∫ +∞

t0

‖∇f(x(t))‖2 dt < +∞,

∫ +∞

t0

1

t
‖u̇(t)‖2dt < +∞;

(iii) lim
t→+∞

‖u̇(t)‖ = 0; lim
t→+∞

‖ẋ(t)‖ = 0; lim
t→+∞

‖∇f(x(t))‖ = 0;

(iv) lim
t→+∞

f(x(t)) = infH f .

Proof. Recall f̄ := infH f . Since our analysis is asymptotic, there is no restriction
in assuming that t ≥ t1 := max(t0, 2αβ). We will then prove the statements in
terms of t1 and passing to t0 is immediate thanks to the properties of the solution
x(t) in Theorem 2.2.
Claim (i). For T ≥ t ≥ t1, define the function

WT (t) :=
1

2
‖u̇(t)‖2 +

(
f(x(t))− f̄

)
−
∫ T

t

〈u̇(τ), g(τ)〉 dτ.

Observe that WT is well-defined under our assumptions. Thus, taking the derivative
in time and using (ISEHD-Pert), we get,

ẆT (t) = 〈u̇(t), ü(t) + g(t)〉+ 〈ẋ(t), ∇f(x(t))〉
=

〈
ẋ(t) + β∇f(x(t)), ẍ(t) + β∇2f(x(t))ẋ(t) + g(t)

〉
+ 〈ẋ(t), ∇f(x(t))〉

=
〈
ẋ(t) + β∇f(x(t)), −α

t
ẋ(t)−∇f(x(t))

〉
+ 〈ẋ(t), ∇f(x(t))〉

= −α
t
‖ẋ(t)‖2 − β ‖∇f(x(t))‖2 − αβ

t
〈ẋ(t), ∇f(x(t))〉

≤ − α
2t
‖ẋ(t)‖2 − β

(
1− αβ

2t

)
‖∇f(x(t))‖2

≤ − α
2t
‖ẋ(t)‖2 − β

2
‖∇f(x(t))‖2 , (18)

where we used Young inequality and the fact that t ≥ t1 > αβ. This implies that
WT is non-increasing and in turn that WT (t) ≤WT (t1) for t ∈ [t1, T ], i.e.

1

2
‖u̇(t)‖2 +

(
f(x(t))− f̄

)
−
∫ T

t

〈u̇(τ), g(τ)〉 dτ
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≤1

2
‖u̇(t1)‖2 +

(
f(x(t1))− f̄

)
−
∫ T

t1

〈u̇(τ), g(τ)〉 dτ.

Therefore,

1

2
‖u̇(t)‖2 ≤ 1

2
‖u̇(t1)‖2 +

(
f(x(t1))− f̄

)
+

∫ t

t1

‖u̇(τ)‖‖g(τ)‖dτ.

Applying the Gronwall Lemma A.3, we get

sup
t≥t1
‖u̇(t)‖ ≤

(
‖u̇(t1)‖2 + 2(f(x(t1))− f̄)

)1/2
+

∫ +∞

t1

‖e(τ)‖dτ + β

∫ +∞

t1

‖ė(τ)‖dτ < +∞,

hence proving the first claim.
Claim (ii). Now define for all t ≥ t1

W (t) :=
1

2
‖u̇(t)‖2 + (f(x(t))− f̄)−

∫ +∞

t

〈u̇(τ), g(τ)〉 dτ.

This is again a well-defined function thanks to the first claim, and the integrability
of g. Moreover, W (·) is bounded from below,

inf
t≥t1

W (t) ≥ −
[

sup
t≥t1
‖u̇(t)‖

] [∫ +∞

t1

‖e(τ)‖dτ + β

∫ +∞

t1

‖ė(τ)‖dτ
]
> −∞. (19)

Observe that Ẇ (t) = ẆT (t). This together with (18) yields

Ẇ (t) +
α

2t
‖ẋ(t)‖2 +

β

2
‖∇f(x(t))‖2 ≤ 0. (20)

Integrating and using that W is bounded from below, we obtain the first two
claims. From u̇(t) = ẋ(t) + β∇f(x(t)), we deduce that ‖u̇(t)‖2 ≤ 2(‖ẋ(t)‖2 +
β2‖∇f(x(t))‖2). After integration, we get the last claim∫ +∞

t1

1

t
‖u̇(t)‖2dt ≤ 2

(∫ +∞

t1

1

t
‖ẋ(t)‖2dt+

∫ +∞

t1

β2

t
‖∇f(x(t))‖2dt

)
≤ 2

(∫ +∞

t1

1

t
‖ẋ(t)‖2dt+

β2

t1

∫ +∞

t1

‖∇f(x(t))‖2dt
)
< +∞.

Claim (iii) and (iv). Define h : t ∈ [t1,+∞[7→ 1
2‖u(t)− z‖2 for arbitrary z ∈ H. We

then have

ḧ(t) +
α

t
ḣ(t)

= ‖u̇(t)‖2 +
〈
u(t)− z, ü(t) +

α

t
u̇(t)

〉
= ‖u̇(t)‖2 +

〈
u(t)− z, ẍ(t) + β∇2f(x(t))ẋ(t) +

α

t
ẋ(t) +

αβ

t
∇f(x(t))

〉
= ‖u̇(t)‖2 −

〈
u(t)− z, g(t) +

(
1− αβ

t

)
∇f(x(t))

〉
= ‖u̇(t)‖2 −

(
1− αβ

t

)
〈x(t)− z, ∇f(x(t))〉 − 〈u(t)− z, g(t)〉

− β
(

1− αβ

t

)〈∫ t

t1

∇f(x(s))ds, ∇f(x(t))

〉
= ‖u̇(t)‖2 −

(
1− αβ

t

)
〈x(t)− z, ∇f(x(t))〉 − 〈u(t)− z, g(t)〉 − β

(
1− αβ

t

)
İ(t),
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where I(t) :=
1

2

∥∥∥∥∫ t

t1

∇f(x(s))ds

∥∥∥∥2. From the convexity of f and Cauchy-Schwarz

inequality we get

ḧ(t)+
α

t
ḣ(t)+

(
1− αβ

t

)
(f(x(t))− f(z))+β

(
1− αβ

t

)
İ(t) ≤ ‖u̇(t)‖2+‖u(t)− z‖ ‖g(t)‖ .

Inserting W (t) into this expression, we get,

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)(
W (t) + f̄ − f(z)

)
+ β

(
1− αβ

t

)
İ(t)

≤
(

3

2
− αβ

2t

)
‖u̇(t)‖2 + ‖u(t)− z‖ ‖g(t)‖ −

(
1− αβ

t

)∫ +∞

t

〈u̇(τ), g(τ)〉 dτ. (21)

According to (20) and (19) W (·) is nonincreasing and bounded from below. There-
fore, it converges to some W∞ ∈ R as t → +∞. Since u̇ is bounded, and g is
integrable, we have that τ → 〈u̇(τ), g(τ)〉 is integrable on [t0,+∞[. Therefore

lim
t→+∞

∫ +∞

t

〈u̇(τ), g(τ)〉 dτ = 0.

By definition of W (t), this implies that, as t→ +∞
1

2
‖u̇(t)‖2 + (f(x(t))− f̄)→W∞.

If W∞ = 0, since the two terms that enter the above expression (potential energy
and kinetic energy) are nonnegative, we obtain that each of them tends to zero as
t → +∞. This gives the claims (iii) and (iv). To prove that W∞ = 0, we argue
by contradiction, and show that assuming W∞ > 0 leads to a contradiction. Since
W (·) is nonincreasing, we then have W (t) ≥ W∞ > 0. Take z ∈ H such that
f(z) < f̄ + 1

2W∞. Then

W (t) + f̄ − f(z) > W∞ −
1

2
W∞ =

1

2
W∞.

Returning to (21) we deduce that, for t ≥ t1

ḧ(t) +
α

t
ḣ(t) +

1

2

(
1− αβ

t

)
W∞ + β

(
1− αβ

t

)
İ(t)

≤
(

3

2
− αβ

2t

)
‖u̇(t)‖2 + ‖u(t)− z‖ ‖g(t)‖ −

(
1− αβ

t

)∫ +∞

t

〈u̇(τ), g(τ)〉 dτ. (22)

Since t > 2αβ, we have 1− αβ
t > 1

2 . Therefore, after rearranging the terms in (22),
we obtain

1

4
W∞ ≤

3

2
‖u̇(t)‖2 + ‖u(t)− z‖ ‖g(t)‖+

(
sup
t≥t1
‖u̇(t)‖

)∫ +∞

t

‖g(s)‖ds− 1

tα
d

dt
(tαḣ(t))

− β
(

1− αβ

t

)
İ(t).

Multiplying both sides by 1
t , and integrating between t1 and τ > t1,

1

4
W∞ log

(
τ

t1

)
≤ 3

2

∫ τ

t1

1

t
‖u̇(t)‖2 dt+

∫ τ

t1

‖g(t)‖‖u(t)− z‖
t

dt

+

(
sup
t≥t1
‖u̇(t)‖

)∫ τ

t1

(
1

t

∫ +∞

t

‖g(s)‖ds
)
dt−

∫ τ

t1

1

tα+1

d

dt
(tαḣ(t))dt
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− β
∫ τ

t1

(
1

t
− αβ

t2

)
İ(t)dt. (23)

Throughout the rest of the proof, we will use the inequality

‖u(t)− z‖ ≤ ‖u(t1)− z‖+

∫ t

t1

‖u̇(s)‖ ds ≤ ‖u(t1)− z‖+ t sup
s≥t1
‖u̇(s)‖ .

Let us examine successively the different terms which enter the second member of
(23). The first term is bounded according to claim (ii). The second term is also
bounded since∫ τ

t1

‖g(t)‖‖u(t)− z‖
t

dt ≤
(
‖u(t1)− z‖

t1
+ sup
t≥t1
‖u̇(t)‖

)∫ +∞

t1

(‖e(t)‖+ β‖ė(t)‖) dt < +∞.

The third term can be handled by integration by parts,∫ τ

t1

(
1

t

∫ +∞

t

‖g(s)‖ds
)
dt = log τ

∫ ∞
τ

‖g(s)‖ds −log t1

∫ +∞

t1

‖g(s)‖ds+
∫ τ

t1

‖g(t)‖ log t dt.

For the fourth term, set K(τ) = −
∫ τ

t1

1

tα+1

d

dt
(tαḣ(t))dt and integrate by parts

twice to get,

K(τ) = −
[

1

t
ḣ(t)

]τ
t1

− (α+ 1)

∫ τ

t1

1

t2
ḣ(t)dt = −

[
1

t
ḣ(t)

]τ
t1

− (1 + α)

τ2
h(τ) +

(1 + α)

t21
h(t1)

− 2(1 + α)

∫ τ

t1

h(t)

t3
dt

≤ −
[

1

t
ḣ(t)

]τ
t1

+
(1 + α)

t21
h(t1) ≤ 1

t1
|〈u̇(t1), u(t1)− z〉|+ 1

τ
|〈u̇(τ), u(τ)− z〉|

+
(1 + α)

t21
h(t1)

≤ C + sup
t≥t1
‖u̇(t)‖

(
‖u(t1)− z‖

t1
+ sup
t≥t1
‖u̇(t)‖

)
< +∞.

For the last term, we infer from Lemma A.2 that

sup
τ>t1

−β
∫ τ

t1

(
1

t
− αβ

t2

)
İ(t)dt < +∞.

Overall, we have shown that there exists a constant C > 0 such that (23) reads

1

4
W∞ log

(
τ

t1

)
≤ C +

(
sup
t≥t1
‖u̇(t)‖

)(
log τ

∫ ∞
τ

‖g(s)‖ds+

∫ τ

t1

‖g(t)‖ log tdt

)
.

Observe that limτ→+∞
∫∞
τ
‖g(s)‖ds = 0 since g is integrable. Then, divide the last

inequality by log
(
τ
t1

)
and let τ →∞. According to Lemma A.5, we get that W∞ ≤

0. Thus W∞ = 0, hence the contradiction. The last statement, lim
t→+∞

‖ẋ(t)‖ = 0,

is obtained by following an argument similar to the one above, which now uses the
perturbed version of the classical energy function, namely

W0(t) :=
1

2
‖ẋ(t)‖2 + (f(x(t))− f̄)−

∫ +∞

t

〈ẋ(τ), g(τ)〉 dτ.

We do not detail this proof for the sake of brevity. Then, according to ∇f(x(t)) =
1
β (u̇(t)− ẋ(t)), we obtain the convergence of ∇f(x(t)) to zero.
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Remark 3.1. The result in [11, Lemma 4.1] is a particular case of Theorem 3.1
when β = 0. Theorem 3.1 is also a generalization of [19, Theorem 1.3 and Propo-
sition 1.5] to the perturbed case. Performing this generalization necessitates a
different Lyapunov function together with particular novel estimates in the course
of derivation.

3.1.2. Fast convergence rates. We now move on to showing fast convergence of the
objective. For this, we will need to strengthen the integrability assumption on the
errors. We will denote in this section the two functions

w(t) := 1− β

t
and δ(t) := t2w(t). (24)

Theorem 3.2. Let f ∈ C2(H), e ∈ C1([t0,+∞[,H). Suppose that the damp-

ing parameters satisfy α > 3, β > 0. Suppose that

∫ +∞

t0

t‖e(t)‖dt < +∞ and∫ +∞

t0

t‖ė(t)‖dt < +∞. Then, for any solution trajectory x of (ISEHD-Pert) the

following holds:

(i) f(x(t))− inf
H
f = o

(
1

t2

)
as t→ +∞.

(ii)

∫ +∞

t0

t2‖∇f(x(t))‖2dt < +∞.

(iii)

∫ +∞

t0

t
(
f(x(t))−min

H
f
)
dt < +∞.

(iv) for any x? ∈ S,

∫ +∞

t0

t 〈∇f(x(t)), x(t)− x?〉 dt < +∞.

(v)

∫ +∞

t0

t‖ẋ(t)‖2dt < +∞.

(vi) ‖ẋ(t)‖ = o
(
t−1
)

as t→ +∞.

Proof. Following an argument similar to that of Theorem 3.1, since our analysis

is asymptotic, there is no restriction in assuming that t0 > β(α−2)
α−3 . This gives

w(t) ≥ 1
α−2 > 0 for all t ≥ t0. Define,

v(t) := (α− 1)(x(t)− x?) + t(ẋ(t) + β∇f(x(t))).

Take T > t0, and define for all t0 ≤ t ≤ T

E(t) := δ(t)(f(x(t))− f(x?)) +
1

2
‖v(t)‖2 −

∫ T

t

τ 〈v(τ), g(τ)〉 dτ.

This is a well-defined differentiable function. Taking its derivative in time yields

Ė(t) = δ̇(t)(f(x(t))− f(x?)) + δ(t) 〈∇f(x(t)), ẋ(t)〉+ 〈v(t), v̇(t) + tg(t)〉 .

From (ISEHD-Pert), we have,

v̇(t) = αẋ(t) + β∇f(x(t)) + t
(
ẍ(t) + β∇2f(x(t))ẋ(t)

)
= αẋ(t) + β∇f(x(t)) + t

(
−α
t
ẋ(t)−∇f(x(t))− g(t)

)
= −t

(
1− β

t

)
∇f(x(t))− tg(t).



PERTURBATIONS OF INERTIAL SYSTEMS WITH HESSIAN DRIVEN DAMPING 15

Let us inject this expression into the scalar product 〈v(t), v̇(t) + tg(t)〉. After de-
veloping and rearranging, and taking into account the definition of w and δ (see
(24)), we obtain

Ė(t) = δ̇(t)(f(x(t))−f(x?))−(α−1)tw(t) 〈∇f(x(t)), x(t)− x?〉−βδ(t)‖∇f(x(t))‖2.
(25)

Convexity of f then yields

Ė(t) + βδ(t)‖∇f(x(t))‖2 +
(

(α− 1)tw(t)− δ̇(t)
)

(f(x(t))− f(x?)) ≤ 0. (26)

By assumption on the parameters, we have for any t ≥ t0 > β(α−2)
α−3 ,

(α− 1)tw(t)− δ̇(t) = t

(
(α− 3)− β

t
(α− 2)

)
≥ ct (27)

with c = (α− 3)− β
t0

(α− 2) > 0. Thefore, (26) implies that E is non-increasing. In
turn, by definition of E

δ(t) (f(x(t))− f(x?)) +
1

2
‖v(t)‖2 ≤ C −

∫ t

t0

τ 〈v(τ), g(τ)〉 dτ (28)

with C = δ(t0)(f(x0) − f(x?)) + 1
2‖v(t0)‖2. The above argument is valid for all

t0 ≤ t ≤ T and arbitrary T , therefore for all t ≥ t0. Neglecting the nonnegative
term δ(t) (f(x(t))− f(x?)), we infer from (28)

1

2
‖v(t)‖2 ≤ C +

∫ t

t0

‖v(τ)‖ (τ‖g(τ)‖) dτ.

Lemma A.3 (Gronwall lemma) then gives

‖v(t)‖ ≤ (2C)
1/2

+

∫ t

t0

τ (‖e(τ)‖+ β‖ė(τ)‖) dτ, (29)

and thus
sup
t≥t0
‖v(t)‖ < +∞. (30)

By reinjecting this inequality into (28) we obtain

t2

α− 2
(f(x(t))− f(x?)) ≤ δ(t) (f(x(t))− f(x?))

≤ C + sup
t≥t0
‖v(t)‖

∫ t

t0

(τ‖e(τ)‖+ βτ‖ė(τ)‖) dτ < +∞

(31)

hence proving

f(x(t))− inf
H
f = O

(
1

t2

)
as t→ +∞.

We will see a little later how to refine this estimate and go from a capital O to a
small o to prove the statement (i). Then, integrating (26), and using the fact that
E(t) is bounded from below by (30) and the assumptions on the errors, we get

β

∫ +∞

t0

t2w(t)‖∇f(x(t))‖2dt ≤ C,

and

c

∫ +∞

t0

t(f(x(t))− f(x?))dt ≤
∫ +∞

t0

(
(α− 1)tw(t) + δ̇(t)

)
(f(x(t))− f(x?))dt ≤ C,
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for some constant C > 0. This shows the integral estimates (ii) and (iii).
Let us turn to statement (iv). We embark from (25) to write, for some ρ ∈]0, 1[

to be chosen shortly,

Ė(t) = δ̇(t)(f(x(t))− f(x?))− (1− ρ)(α− 1)tw(t) 〈∇f(x(t)), x(t)− x?〉

− ρ(α− 1)tw(t) 〈∇f(x(t)), x(t)− x?〉 − βδ(t)‖∇f(x(t))‖2

≤ −
(

(1− ρ)(α− 1)tw(t)− δ̇(t)
)

(f(x(t))− f(x?))

− ρ(α− 1)tw(t) 〈∇f(x(t)), x(t)− x?〉 − βδ(t)‖∇f(x(t))‖2.

To conclude, it remains to check that
(

(1− ρ)(α− 1)tw(t)− δ̇(t)
)

is non-negative.

Since t0 >
β(α−2)
α−3 , we deduce by a continuity argument the existence of some ε > 0

such that t0 >
β(α−2−ε)
α−3−ε . Then, take ρ = ε/(α−1) ∈]0, 1[. In view of the assumption

on the parameters, we have

(1− ρ)(α− 1)tw(t)− δ̇(t) = (α− 1− ε)tw(t)− δ̇(t) = t((α− 3− ε)w(t)− tẇ(t))

= t

(
(α− 3− ε)− (α− 2− ε)β

t

)
≥ t0

(
(α− 3− ε)− (α− 2− ε)β

t0

)
≥ 0.

For claim (v), we multiply (ISEHD-Pert) by t2ẋ(t) to get

t2 〈ẍ(t), ẋ(t)〉+ αt ‖ẋ(t)‖2 + t2β
〈
ẋ(t), ∇2f(x(t))ẋ(t)

〉
+ t2 〈∇f(x(t)), ẋ(t)〉+ t2 〈g(t), ẋ(t)〉 = 0.

With the chain rule, Cauchy-Schwarz inequality and convexity of f , we obtain

1

2
t2
d

dt
‖ẋ(t)‖2 + αt ‖ẋ(t)‖2 + t2

d

dt
(f(x(t))− f̄) ≤ ‖tg(t)‖‖tẋ(t)‖. (32)

Integrating by parts on [t0, t] we get,

t2

2
‖ẋ(t)‖2 + (α− 1)

∫ t

t0

s‖ẋ(s)‖2ds ≤ C0 + 2

∫ t

t0

s(f(x(s))− f̄)ds+

∫ t

t0

‖sg(s)‖‖sẋ(s)‖ds

(33)

for some non-negative constant C0, where we have used claim (i) of Theorem 3.2.
Now by claim (iii) of Theorem 3.2 and ignoring the non-negative terms since α > 1,
we obtain

1

2
‖tẋ(t)‖2 ≤ C1 +

∫ t

t0

‖sg(s)‖‖sẋ(s)‖ds,

for another non-negative constant C1. Applying Lemma A.3 again then gives

sup
t≥t0

t‖ẋ(t)‖ < +∞. (34)

Using this in (33), we also get that∫ +∞

t0

t‖ẋ(t)‖2dt < +∞. (35)

We finally turn to statement (vi). We embark from (32), use (34), and integrate on
[s, t] to see that

t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f̄)

)
− s2

(
1

2
‖ẋ(s)‖2 + (f(x(s))− f̄)

)
+ (α− 1)

∫ t

s

τ‖ẋ(τ)‖2dτ − 2

∫ t

s

τ(f(x(τ))− f̄)dτ − C
∫ t

s

‖τg(τ)‖dτ ≤ 0,

where C = supt≥t0 t‖ẋ(t)‖. This means that the function



PERTURBATIONS OF INERTIAL SYSTEMS WITH HESSIAN DRIVEN DAMPING 17

G(t) = t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f̄)

)
+ (α− 1)

∫ t

t0

τ‖ẋ(τ)‖2dτ

− 2

∫ t

t0

τ(f(x(τ))− f̄)dτ − C
∫ t

t0

‖τg(τ)‖dτ

is non-increasing on [t0,+∞[. Since it is bounded from below by assumption on the
errors and claim (iii), limt→+∞ G(t) exists. This together with assertions (iii) and
(v) shows that the limit

0 ≤ L := lim
t→+∞

t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f̄)

)
exists. Suppose that L > 0. Then, there exists s ≥ t0 such that∫ +∞

t0

(
t

2
‖ẋ(t)‖2 + t(f(x(t))− f̄)

)
dt ≥

∫ +∞

s

t2
(

1

2
‖ẋ(t)‖2 + (f(x(t))− f̄)

)
t−1dt

≥
∫ +∞

s

L

2t
dt = +∞,

leading to a contradiction with claims (iii) and (v). This proves (vi) and completes
the proof of (i) with small o instead of capital O.

Remark 3.2. The first three claims (resp. fourth claim) of Theorem 3.2 are a non-
trivial generalization of [9, Theorem 3] (resp. [10, Theorem 2.1]) to the perturbed
case. The presence of perturbations necessitates a careful analysis of several bounds
and new estimates to handle the presence of errors and eventually preserve the
convergence rates.

Remark 3.3. The choice of the viscous damping parameter α is important for
optimality of the convergence rates obtained. For the subcritical case α ≤ 3, β = 0
and e ≡ 0, it has been shown by [5] and [12] that the convergence rate of the

objective values is O
(
t−

2α
3

)
, and these rates are optimal, that is, they can be

attained, or approached arbitrarily closely. For α ≥ 3, the optimal rate O
(
t−2
)

is
achieved for the function f(x) = ‖x‖r with r → +∞ [11], and for α < 3, the optimal

rate O
(
t−

2α
3

)
is achieved by taking f(x) = ‖x‖ [5]. Theorem 3.2 is consistent with

these optimality results. The condition α > 3 is important to get the asymptotic
rate o(1/t2).

3.1.3. Convergence of the trajectories. We complete our analysis by showing weak
convergence of the trajectories.

Theorem 3.3. Assume that e ∈ C1([t0,+∞[;H) with

∫ +∞

t0

t‖e(t)‖dt < +∞ and∫ +∞

t0

t‖ė(t)‖dt < +∞. Let x(t) be a solution trajectory to (ISEHD-Pert) for α > 3

and β > 0. Then x(t) converges weakly to a minimizer of f .

Proof. Keeping in mind that the goal is to apply Opial’s Lemma (see Lemma A.1),
we will now show that limt→+∞ ‖x(t)−x?‖ exists. Following an argument similar to
that of Theorem 3.1 and 3.2, since our analysis is asymptotic, there is no restriction

in assuming that t0 >
β(α−2)
α−3 . Hence the existence of ε > 0 such that t0 ≥ β(α−2−ε)

α−3−ε
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for some ε ∈]0, α−3[. Recall the Lyapunov function E from the proof of Theorem 3.2,
and define its generalized version

Eε(t) := (δ(t) + εβt) (f(x(t))− f(x?)) +
1

2
‖vε(t)‖2 +

ε(α− 1− ε)
2

‖x(t)− x?‖2

−
∫ T

t

τ 〈vε(τ), g(τ)〉 dτ, (36)

where

vε(t) = (α− 1− ε)(x(t)− x?) + t(ẋ(t) + β∇f(x(t))).

One can check, arguing as for E , that for t0 ≤ t ≤ T

Ėε(t) =
(
δ̇(t) + εβ

)
(f(x(t))− f(x?))− (α− 1− ε)tw(t) 〈∇f(x(t)), x(t)− x?〉

− βδ(t)‖∇f(x(t))‖2 − εt ‖ẋ(t)‖2 .

Convexity of f then entails

Ėε(t) +
(

(α− 1− ε)tw(t)− δ̇(t)
)

(f(x(t))− f(x?)) + βδ(t)‖∇f(x(t))‖2 + εt ‖ẋ(t)‖2 ≤ 0.

The assumption on the parameters gives

(α−1−ε)tw(t)− δ̇(t) = t((α−3−ε)w(t)− tẇ(t)) ≥ t0
(

(α− 3− ε)− (α− 2− ε)β
t0

)
≥ 0.

Thus, ignoring the non-negative terms in this inequality entails that Eε(·) is a de-
creasing function on [t0, T [. According to the boundedness of Eε(·), an argument
similar to that developed in Theorem 5 gives that

sup
t≥t0
‖vε(t)‖ < +∞, (37)

with a bound which is independent of ε and T . Comparing with (30) gives

sup
t≥t0
‖x(t)‖ < +∞, (38)

where we use that the previous argument is valid for arbitrary t ≤ T , hence for
all t ≥ t0. As a consequence, the energy functions E(·) and Eε(·) with T = +∞
are well-defined on [t0,+∞[, and are then Lyapunov functions for the dynamical
system (ISEHD-Pert). Both E(t) and Eε(t) thus have limits as t → +∞, and so
does their difference

Eε(t)− E(t) = εβt(f(x(t))− f(x?))− ε(α− 1)

2
‖x(t)− x?‖2 − εt 〈ẋ(t), x(t)− x?〉

− εt 〈∇f(x(t)), x(t)− x?〉+ ε

∫ +∞

t

τ 〈x(τ)− x?, g(τ)〉 dτ.

By Theorem 3.2(i), the first term converges to 0 as t → +∞. By the integrability
assumptions on the errors and boundedness of x(t) (see (38)), the last term also
converges to 0 as t→ +∞. We have then shown that the limit as t goes to infinity
of

p(t) :=
α− 1

2
‖x(t)− x?‖2 + t 〈ẋ(t), x(t)− x?〉+ t 〈∇f(x(t)), x(t)− x?〉

exists. Set

q(t) :=
α− 1

2
‖x(t)− x?‖2 + (α− 1)

∫ t

t0

〈∇f(x(s)), x(s)− x?〉 ds.
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We obviously have

p(t) = q(t) +
t

α− 1
q̇(t)− (α− 1)

∫ t

t0

〈∇f(x(s)), x(s)− x?〉 ds.

By Theorem 3.2(iv), and since 〈∇f(x(s)), x(s)− x?〉 is non-negative, we have that

lim
t→+∞

∫ t

t0

〈∇f(x(s)), x(s)− x?〉 ds (39)

exists. Overall, we have shown that

lim
t→+∞

(
q(t) +

t

α− 1
q̇(t)

)
exists. Since α > 1, it follows from [19, Lemma 7.2] that limt→+∞ q(t) exists.
Using again (39), we deduce that limt→+∞ ‖x(t)− x?‖ exists for any x? ∈ S. From
claim (i) of Theorem 3.2 (see also Lemma 3.1(iv)), it follows that for any sequence
(x(tn))n∈N which converges weakly to, say, x̄, we have

f(x̄) ≤ lim inf
n→+∞

f(x(tn)) = lim
t→+∞

f(x(t)) = f̄ ,

i.e., x̄ ∈ S. Consequently, all the conditions of Lemma A.1 are satisfied, hence the
weak convergence of the trajectories.

Remark 3.4. In [10, Theorem 2.2], the authors proved weak convergence of the
trajectory for the perturbation-free system (ISEHD). Theorem 3.3 shows that weak
convergence is preserved under perturbations provided that they verify reasonable
integrability results. Again, the proof necessitates new estimates and bounds to
cope with the presence of errors.

Remark 3.5. The condition α > 3 is known to play an important role to show
that each trajectory converges weakly to a minimizer. The case α = 3, which
corresponds to Nesterov’s historical algorithm when β = 0 and e ≡ 0, is critical.
In fact, even for those inertial systems with α = 3, convergence of the trajectories
remains an open problem (except in one dimension where it holds as shown in [12]).

3.2. Implicit Hessian damping. We now turn to the second-order ODE
(ISIHD-Pert) where f ∈ C1(H), e ∈ C([t0,+∞[) and β(t) = γ + β

t , γ, β ≥ 0.

Let us denote for brevity f̄ := infH f . Given x? ∈ S, we consider the function

E(t) = a(t)
(
f (x(t) + β(t)ẋ(t))− f̄

)
+

1

2
‖b(t)(x(t)− x?) + c(t)ẋ(t)‖2 +

d(t)

2
‖x(t)− x?‖2

−
∫ +∞

t

c(τ) 〈b(τ)(x(τ)− x?) + c(τ)ẋ(τ), e(τ)〉 dτ

−
∫ +∞

t

a(τ)β(τ) 〈∇f (x(τ) + β(τ)ẋ(τ)) , e(τ)〉 dτ (40)

parametrized by some functions a(t), b(t), c(t) and d(t) to be specified later.

3.2.1. Lyapunov function. We first show that for proper choices of (a(t), b(t), c(t),
d(t)) as a function of the problem parameters (α, γ, β), E can serve as a Lyapunov
function for (ISIHD-Pert). We will denote for short α(t) = α

t .
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Lemma 3.1. Assume that f ∈ C1(H), e ∈ C([t0,+∞[), and

ȧ(t)− b(t)c(t) ≤ 0,

−a(t)β(t) ≤ 0,

−a(t)α(t)β(t) + a(t)β̇(t) + a(t)− c(t)2 + b(t)c(t)β(t) = 0,

ḃ(t)b(t) + ḋ(t)
2 ≤ 0,

ḃ(t)c(t) + b(t)(b(t) + ċ(t)− c(t)α(t)) + d(t) = 0,

c(t)(b(t) + ċ(t)− c(t)α(t)) ≤ 0.

(41)

Then

Ė(t) ≤ (ȧ(t)− b(t)c(t))(f(x(t) + β(t)ẋ(t))− f̄)− a(t)β(t)‖∇f(x(t) + β(t)ẋ(t))‖2

+

(
ḃ(t)b(t) +

ḋ(t)

2

)
‖x(t)− x?‖2 + c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2

≤ 0. (42)

Proof. Recall that since f ∈ C1(H) and e ∈ C([t0,+∞[), (ISIHD-Pert) has a
unique classical global solution x; see paragraph after (15). We now proceed as
in the proof of Theorems 3.1 and 3.2, and first consider the function ET where
the integrals involving the error terms are calculated on [t, T ], T < +∞. This
shows that E is well-posed under our assumptions. We can then compute the time
derivative of E and use the chain rule to get

Ė(t) = ȧ(t)
(
f (x(t) + β(t)ẋ(t))− f̄

)
+ a(t)

〈
∇f (x(t) + β(t)ẋ(t)) , ẋ(t) + β̇(t)ẋ(t) + β(t)ẍ(t)

〉
+
〈

(b(t) + ċ(t))ẋ(t) + c(t)ẍ(t) + ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)
〉

+
ḋ(t)

2
‖x(t)− x?‖2 + d(t) 〈ẋ(t), x(t)− x?〉

+ c(t) 〈b(t)(x(t)− x?) + c(t)ẋ(t), e(t)〉+ a(t)β(t) 〈∇f (x(t) + β(t)ẋ(t)) , e(t)〉
(43)

Using (ISIHD-Pert) in the second term of (43), we get

a(t)
〈
∇f (x(t) + β(t)ẋ(t)) , ẋ(t) + β̇(t)ẋ(t) + β(t)ẍ(t)

〉
= a(t)

〈
∇f (x(t) + β(t)ẋ(t)) ,

(
1 + β̇(t)− α(t)β(t)

)
ẋ(t)− β(t)∇f (x(t) + β(t)ẋ(t))− β(t)e(t)

〉
= −a(t)β(t) ‖∇f (x(t) + β(t)ẋ(t))‖2 +

(
1 + β̇(t)− α(t)β(t)

)
a(t) 〈∇f (x(t) + β(t)ẋ(t)) , ẋ(t)〉

− β(t)a(t) 〈∇f (x(t) + β(t)ẋ(t)) , e(t)〉 . (44)

We expand the third term in (43) as〈
(b(t) + ċ(t))ẋ(t) + c(t)ẍ(t) + ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)

〉
= 〈(b(t) + ċ(t)− c(t)α(t))ẋ(t)− c(t)∇f (x(t) + β(t)ẋ(t)) , b(t)(x(t)− x?) + c(t)ẋ(t)〉

+
〈
−c(t)e(t) + ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)

〉
= −c(t) 〈∇f(x(t) + β(t)ẋ(t)), b(t)(x(t)− x?) + c(t)ẋ(t)〉

+
〈
ḃ(t)(x(t)− x?), b(t)(x(t)− x?) + c(t)ẋ(t)

〉
+c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2 − c(t) 〈e(t), b(t)(x(t)− x?) + c(t)ẋ(t)〉 . (45)
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Plugging (44) and (45) into (43), we get,

Ė(t) = ȧ(t)
(
f (x(t) + β(t)ẋ(t))− f̄

)
− a(t)β(t) ‖∇f (x(t) + β(t)ẋ(t))‖2

+ c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2 +

(
ḃ(t)b(t) +

ḋ(t)

2

)
‖x(t)− x?‖2

+
(
b(t)2 + b(t)ċ(t) + ḃ(t)c(t)− b(t)c(t)α(t) + d(t)

)
〈ẋ(t), x(t)− x?〉

+
(
−a(t)α(t)β(t) + a(t)β̇(t) + a(t)− c(t)2

)
〈∇f (x(t) + β(t)ẋ(t)) , ẋ(t)〉

− b(t)c(t) 〈∇f (x(t) + β(t)ẋ(t)) , x(t)− x?〉 . (46)

Since,

〈∇f(x(t) + β(t)ẋ(t)), x(t)− x?〉 = 〈∇f(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x?〉
− 〈∇f(x(t) + β(t)ẋ(t)), β(t)ẋ(t)〉

and using the convex (sub)differential inequality on f , we can write

− b(t)c(t) 〈∇f(x(t) + β(t)ẋ(t), x(t)− x?〉
≤ −b(t)c(t)(f(x(t) + β(t)ẋ(t))− f̄) + b(t)c(t)β(t) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉

and we arrive at

Ė(t) ≤ (ȧ(t)− b(t)c(t))(f(x(t) + β(t)ẋ(t))− f̄)− a(t)β(t)‖∇f(x(t) + β(t)ẋ(t))‖2

+ (−a(t)α(t)β(t) + a(t)β̇(t) + a(t)− c(t)2 + b(t)c(t)β(t)) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉

+

(
ḃ(t)b(t) +

ḋ(t)

2

)
‖x(t)− x?‖2

+ (b(t)2 + b(t)ċ(t) + ḃ(t)c(t)− b(t)c(t)α(t) + d(t)) 〈ẋ(t), x(t)− x?〉

+ c(t)(b(t) + ċ(t)− c(t)α(t)) ‖ẋ(t)‖2 .

Thus, conditions (41) guarantee that Ė(t) ≤ 0, in particular they imply (42).

Following the discussion of [3, Remark 11], in the rest of the section, we take

β(t) = γ +
β

t
, γ, β ≥ 0,

b(t) ≡ b ∈]0, α− 1], α > 1, c(t) = t and d(t) ≡ b(α− 1− b).
(47)

Such a choice is reminescent of that in (36). The choices of d(t) and b(t) comply
with the fourth, fifth and sixth conditions of (41). To satisfy the third condition,
one has to take

a(t) = t2
(

1 +
(α− b)γt− β(α+ 1− b)
t2 − αγt− β(α+ 1)

)
. (48)

Clearly, for t large enough, one has a(t) ≥ t2 and β(t) ≥ γ/2. Thus, the second
condition is in force. One can also verify that the first inequality is satisfied for t
large enough provided that b > 2 (and thus α > 3) when γ > 0, and b = 2 (with
α = 3) when γ = 0.



22 HEDY ATTOUCH, JALAL FADILI AND VYACHESLAV KUNGURTSEV

3.2.2. Fast convergence rates. We start with the following boundedness properties.

Lemma 3.2. Let

E(t) = a(t)
(
f (x(t) + β(t)ẋ(t))− f̄

)
+

1

2
‖b(x(t)−x?)+ tẋ(t)‖2 +

b(α− 1− b)
2

‖x(t)−x?‖2.

Choose the parameters according to (47)-(48) with α > 3, γ > 0. Define, for t ≥ t0,

m(t) := max
(
t, L|a(t)β(t)|, L|a(t)|β(t)2

)
. (49)

Assume that ∇f is L-Lipschitz continuous, e ∈ C([t0,+∞[) and
m(·)e(·) ∈ L1(t0,+∞;H). Then, we have

supt≥t0 E(t) < +∞, supt≥t0 t ‖ẋ(t)‖ < +∞ and supt≥t0 ‖x(t)− x?‖ < +∞.

Proof. Consider the function E(t) in (40) with the choices (47)-(48) for c(t), d(t),
b(t) and a(t), with b ∈]2, α − 1[. For such a choice, there exists t1 ≥ t0 such that
for all t ≥ t1, a(t) > 0, β(t) > 0 (and in turn, m(t) > 0), and all conditions of
(41) are satisfied. Thus, E(t) is monotonically decreasing on [t1,+∞[ according to
Lemma 3.1. Since the solution x(t) is continuous, it is bounded on [t0, t1] and so
without loss of generality we can assume that t1 = t0 and proceed to show,

E(t) ≤ E(t0) +

∫ t
t0

〈
τ
(
b(x(τ)− x?) + τẋ(τ)

)
+ a(τ)β(τ)∇f (x(τ) + β(τ)ẋ(τ)) , e(τ)

〉
dτ

= E(t0) +

∫ t
t0

〈
τ
(
b(x(τ)− x?) + τẋ(τ)

)
+ a(τ)β(τ)

(
∇f (x(τ) + β(τ)ẋ(τ))−∇f(x

?
)
)
, e(τ)

〉
dτ

≤ E(t0) +

∫ t
t0

(
τ
∥∥b(x(τ)− x?) + τẋ(τ)

∥∥ + a(τ)β(τ)
∥∥∇f (x(τ) + β(τ)ẋ(τ))−∇f(x

?
)
∥∥) ‖e(τ)‖ dτ

≤ E(t0) +

∫ t
t0

(
τ
∥∥b(x(τ)− x?) + τẋ(τ)

∥∥ + a(τ)β(τ)L
∥∥x(τ)− x? + β(τ)ẋ(τ)

∥∥) ‖e(τ)‖ dτ

≤ E(t0) +

∫ t
t0

(
τ
∥∥b(x(τ)− x?) + τẋ(τ)

∥∥ + La(τ)β(τ)
∥∥x(τ)− x?

∥∥ + La(τ)β(τ)
2 ‖ẋ(τ)‖

)
‖e(τ)‖ dτ.

(50)

Denote d = b(α − 1 − b). We have d > 0. Moreover, a(t) > 0 for t ≥ t0. One can
then drop the first term in E(t), and (50) becomes, for any t ≥ t0,

1

2
‖b(x(t)− x?) + tẋ(t)‖2 +

d

2
‖x(t)− x?‖2

≤ E(t0) +

∫ t
t0

(
τ
∥∥b(x(τ)− x?) + τẋ(τ)

∥∥ +
√
d
La(τ)β(τ)
√
d

∥∥x(τ)− x?
∥∥ + τ

La(τ)β(τ)2

t0
‖ẋ(τ)‖

)
‖e(τ)‖ dτ

≤ E(t0) +

∫ t
t0

(∥∥b(x(τ)− x?) + τẋ(τ)
∥∥ +
√
d
∥∥x(τ)− x?

∥∥ + τ ‖ẋ(τ)‖
)

max
(
1, d
−1/2

, t
−1
0

)
m(τ) ‖e(τ)‖ dτ

≤ E(t0) +

∫ t
t0

(
2
∥∥b(x(τ)− x?) + τẋ(τ)

∥∥ + (b +
√
d)
∥∥x(τ)− x?

∥∥)max
(
1, d
−1/2

, t
−1
0

)
m(τ) ‖e(τ)‖ dτ

≤ E(t0) +

∫ t
t0

(∥∥b(x(τ)− x?) + τẋ(τ)
∥∥ +
√
d
∥∥x(τ)− x?

∥∥)Cm(τ) ‖e(τ)‖ dτ,

for some constant C ≥ max
(
1, d−1/2, t−10

)
max

(
2, 1 +

√
b

α−1−b

)
. Now, Jensen’s

inequality yields

1

4

(
‖b(x(t)− x?) + tẋ(t)‖+

√
d‖x(t)− x?‖

)2
≤ 1

2
‖b(x(t)− x?) + tẋ(t)‖2 +

d

2
‖x(t)− x?‖2

≤ E(t0) +

∫ t

t0

(
‖b(x(τ)− x?) + τ ẋ(τ)‖+

√
d ‖x(τ)− x?‖

)
C|m(τ)| ‖e(τ)‖ dτ.

Using the Gronwall Lemma A.3, we conclude that, for all t ≥ t0

‖b(x(t)−x?)+tẋ(t)‖+
√
d‖x(t)−x?‖ ≤ 2

√
|E(t0)|+2C

∫ +∞

t0

|m(τ)|‖e(τ)‖dτ < +∞,

(51)
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whence we get boundedness of ‖x(t)−x?‖ and ‖b(x(t)−x?)+tẋ(t)‖. The triangle in-
equality then shows that t ‖ẋ(t)‖ is also bounded. Using this into (50) together with
Cauchy-Schwarz inequality and our integrability assumption, we deduce bounded-
ness of E(t).

Remark 3.6. Recall our discussion on the parameters in (47)-(48). Notice that
we have t2 ≤ a(t) ≤ t2 + κ1 and γ/2 ≤ β(t) ≤ β0 for t large enough, where
β0 = γ + |β|/t0 and κ is a non-negative constant. In turn, for t large enough, we
have

max (1, γ/2)Lγ/2t2 ≤ m(t) ≤ max (1, β0)Lβ0(t+ κ1)2.

Clearly the condition m(·)e(·) ∈ L1(t0,+∞;H) is equivalent to t2e(t) ∈ L1(t0,+∞;
H).

From Lemma 3.2, we obtain the following convergence rates and integral esti-
mates.

Theorem 3.4. Under the assumptions of Lemma 3.2, the following holds:

(i) f (x(t) + β(t)ẋ(t))−min
H

f = O
(

1

t2

)
as t→ +∞;

(ii) ‖ẋ(t)‖ = O
(

1

t

)
as t→ +∞;

(iii)

∫ +∞

t0

t
(
f(x(t))−min

H
f
)
dt < +∞;

(iv)

∫ +∞

t0

t2 ‖∇f (x(t) + β(t)ẋ(t))‖2 dt < +∞;

(v)

∫ +∞

t0

t ‖ẋ(t)‖2 dt < +∞.

Proof. Claim (ii) follows from Lemma 3.2. Discarding the non-negative terms in
E(t), Lemma 3.2 together with the fact that a(t) ≥ t2 for t large enough, also gives

f (x(t) + β(t)ẋ(t))−min
H

f = O
(

1

t2

)
.

To show the remaining integral estimates, consider the function E(·) in (40) with
the choices (47)-(48) of c(t), d(t), b(t) and a(t), where b ∈]2, α− 1[. We first argue

similarly to [3] to show that for t large enough, we have ȧ(t) − bt ≤ − (α−3)t
2 ,

since α > 3 and b > 2. In addition, for (a possibly different) t large enough, it is
straightforward to see that a(t) (γ + β/t) ≥ t2γ/2. With these bounds, (42) reads,
for t large enough,

Ė(t) ≤ −
(α− 3)t

2
(f(x(t)+β(t)ẋ(t))−f̄)−t2γ/2 ‖∇f(x(t) + β(t)ẋ(t))‖2 −t(α−1−b) ‖ẋ(t)‖2 . (52)

Integrating (52), and using that E is bounded thanks to Lemma 3.2, we get state-
ments (iv)-(v) and∫ +∞

t0

t
(
f(x(t) + β(t)ẋ(t))−min

H
f
)
dt < +∞. (53)

Let β0 = γ + |β| /t0. By the gradient descent lemma,

f(x(t))− f(x(t) + β(t)ẋ(t)) ≤ −β(t) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉+
L

2
β(t)2 ‖ẋ(t)‖2

(54)
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≤ β0 ‖∇f(x(t) + β(t)ẋ(t))‖ ‖ẋ(t)‖+
L

2
β2
0 ‖ẋ(t)‖2 .

By Cauchy-Schwarz inequality, we have∫ +∞

t0

t
(
f(x(t))−min

H
f
)
dt ≤

∫ +∞

t0

t
(
f(x(t) + β(t)ẋ(t))−min

H
f
)
dt

+ β0

(∫ +∞

t0

t ‖∇f(x(t) + β(t)ẋ(t))‖2 dt
)1/2(∫ +∞

t0

t ‖ẋ(t)‖2 dt
)1/2

+
Lβ2

0

2

∫ +∞

t0

t ‖ẋ(t)‖2 dt.

In view of (53) and claims (iv)-(v), statement (iii) follows.

3.2.3. Convergence of the trajectories. We now turn to showing weak convergence
of the trajectories to a minimizer.

Theorem 3.5. Suppose that the assumptions of Lemma 3.2 hold. Then x(t) con-
verges weakly to a minimizer of f .

Proof. As in the explicit case, we invoke Opial’s Lemma A.1. Recall that the
trajectory x(·) is bounded by Lemma 3.2. Therefore, for any sequence (x(tn))n∈N
which converges weakly to, say, x̄, as tn → +∞, Theorem 3.4(i)-(ii) entails that

f(x̄) ≤ lim inf
n→+∞

f(x(tn) + β(tn)ẋ(tn)) = lim
t→+∞

f (x(t) + β(t)ẋ(t)) = f̄ ,

i.e., each weak cluster point of x(tn) belongs to S. To get weak convergence of the
trajectory, it remains to show that limt→+∞ ‖x(t)− x?‖ exists.

Let h : t ∈ [t0,+∞[ 7→ 1
2‖x(t) − x?‖2. Under the assumptions on f and e, x is

the unique classical global solution to (ISIHD-Pert), i.e., x ∈ C2([t0,+∞[). Thus
so is h and

ḣ(t) = 〈ẋ(t), x(t)− x?〉 and ḧ(t) = 〈ẍ(t), x(t)− x?〉+ ‖ẋ(t)‖2 .
From (ISIHD-Pert), we obtain

ḧ(t) +
α

t
ḣ(t) =

〈
ẍ(t) +

α

t
ẋ(t), x(t)− x?

〉
+ ‖ẋ(t)‖2

= −〈∇f(x(t) + β(t)ẋ(t)) + e(t), x(t)− x?〉+ ‖ẋ(t)‖2

= −〈∇f(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x?〉 − 〈e(t), x(t)− x?〉+ ‖ẋ(t)‖2

+ β(t) 〈∇f(x(t) + β(t)ẋ(t)), ẋ(t)〉 .
Convexity of f implies,

−〈∇f(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x?〉 ≤ f̄ − f(x(t) + β(t)ẋ(t)) ≤ 0,

and thus,

ḧ(t) +
α

t
ḣ(t) ≤ ‖x(t)− x?‖ ‖e(t)‖+ ‖ẋ(t)‖2 + β0 ‖∇f(x(t) + β(t)ẋ(t))‖ ‖ẋ(t)‖

≤ C ‖e(t)‖+ ‖ẋ(t)‖2 + β0 ‖∇f(x(t) + β(t)ẋ(t))‖ ‖ẋ(t)‖

where C = supt≥t0 ‖x(t)− x?‖ < +∞ thanks to Lemma 3.2, and we denoted β0 =
1 + |β|/t0. Multiplying both sides by t, we arrive at

tḧ(t) + αḣ(t) ≤ Ct ‖e(t)‖+ t ‖ẋ(t)‖2 +
β0√
t0

(t ‖∇f(x(t) + β(t)ẋ(t))‖)(
√
t ‖ẋ(t)‖).



PERTURBATIONS OF INERTIAL SYSTEMS WITH HESSIAN DRIVEN DAMPING 25

The right-hand side of this inequality belongs to L1(t0,+∞;R) by assumption on
the error, and using the Cauchy-Schwarz inequality and Theorem 3.4(iv)-(v) for
the last two terms. Since h ∈ C2([t0,+∞[), it then follows from Lemma A.6 that
limt→+∞ ‖x(t)− x?‖ exists. We have now shown that all conditions of Lemma A.1
are satisfied, hence the weak convergence of the trajectories.

Remark 3.7. For the unperturbed case, similar rates to ours in Theorem 3.4
and weak convergence of the trajectory were proved in [3]. Again, handling errors
necessitates new estimates and bounds, for instance those established in Lemma 3.2.

3.3. Discussion. We now discuss the main differences between the two systems
in terms of their stability to perturbations and the corresponding assumptions.
Recall from Remark 3.6, the integrability assumption m(·)e(·) ∈ L1(t0,+∞;H)
required to ensure stability for system (ISIHD-Pert) is equivalent to ensuring that
the second-order moment of the error e(·) is finite. One may wonder whether this
is more stringent than the integrability assumptions for the explicit Hessian system
(ISEHD-Pert) involving the control of the first-order moments of the error and
its derivative (see Section 3.1). The answer is clearly affirmative in the scalar case
with a simple integration by parts argument. Indeed, supposing without loss of
generality that e(·) is a non-increasing and non-negative function, one has∫ +∞

t0

t|ė(t)|dt = −
∫ +∞

t0

tė(t)dt ≤ t0e(t0) +

∫ +∞

t0

e(t)dt ≤ t0e(t0) + t−2
0

∫ +∞

t0

t2|e(t)|dt.

Another intuitive way to understand this is to look at what happens if the system
is discretized with finite differences. In this case, the integrability assumptions on
the errors for system (ISEHD-Pert) boil down to controlling only the first-order
moment of the (discretized) error. Indeed, temporal discretization with fixed
step size of t‖ẋ(t)‖ gives k‖xk+1 − xk‖ whose summability is clearly implied by
the summability of k‖xk‖. We conclude this discussion by noting that Lipschitz
continuity of the gradient is not needed for the estimates and convergence analysis
of (ISEHD-Pert) while it is used extensively to analyze (ISIHD-Pert). This is
a distinctive avantage of (ISEHD-Pert) compared to (ISIHD-Pert). This will be
even more notable when extending to the non-smooth case; see Section 5.

4. Smooth strongly convex case. We will successively examine the Explicit
Hessian Damping, then the Implicit Hessian Damping.

4.1. Explicit Hessian damping. In this section we consider the explicit Hessian
system under the assumption of strong convexity of f . Following Polyak’s heavy
ball system [33], consider the second-order perturbed system

ẍ(t) + 2
√
µẋ(t) + β∇2f(x(t))ẋ(t) + βė(t) +∇f(x(t)) + e(t) = 0, (55)

which has a fixed positive damping coefficient that is adjusted to the modulus µ of
strong convexity of f . To study (55), we define the function E : [t0,+∞[→ R+

t 7→ E(t) := f(x(t))−min
H

f +
1

2
‖v(t)‖2, (56)

where

v(t) =
√
µ(x(t)− x?) + ẋ(t) + β∇f(x(t)). (57)

Theorem 4.1. Suppose that f : H → R is µ-strongly convex for some µ > 0, let
x? be the unique minimizer of f . Let x(·) : [t0,+∞[→ H be a solution trajectory of
(55). Suppose that
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a) 0 ≤ β ≤ 1

2
√
µ

.

b)

∫ +∞

t0

‖e(t)‖dt < +∞ and

∫ +∞

t0

‖ė(t)‖dt < +∞.

Then the following properties are satisfied:

(i) Minimizing properties: for all t ≥ t0

E(t) ≤ E(t0)e−
√
µ

2 (t−t0) +Me−
√
µ

2 t

∫ t

t0

e
√
µ

2 τ‖e(τ) + βė(τ)‖dτ,

where M :=
√

2E(t0) +

∫ +∞

t0

‖e(τ) + βė(τ)‖dτ . As a consequence,

lim
t→+∞

E(t) = 0; lim
t→+∞

f(x(t)) = min
H

f

lim
t→+∞

‖x(t)− x?‖ = lim
t→+∞

‖∇f(x(t))‖ = lim
t→+∞

‖ẋ(t)‖ = 0.

(ii) Convergence rates: suppose moreover that for some p > 0,

‖e(t) + βė(t)‖ = O
(

1

tp

)
, as t → +∞. Then E(t) = O

(
1
tp

)
, i.e., E(t) in-

herits the decay rate of the error terms. As a consequence, as t→ +∞

f(x(t))−min
H

f = O
(

1

tp

)
;

‖x(t)− x?‖2 = O
(

1

tp

)
; ‖ẋ(t)‖2 = O

(
1

tp

)
.

In addition, when β > 0

e−
√
µt

∫ t

t0

e
√
µs‖∇f(x(s))‖2ds = O

(
1

tp

)
.

Proof. Recall f̄ := minH f = f(x?). Define g(t) := e(t) + βė(t), so that the consti-
tutive equation is written in the compact form

ẍ(t) + 2
√
µẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) + g(t) = 0. (58)

Derivation of E(·) gives

Ė(t) = 〈∇f(x(t)), ẋ(t)〉+ 〈v(t), v̇(t)〉
= 〈∇f(x(t)), ẋ(t)〉+

〈
v(t),

√
µẋ(t) + ẍ(t) + β∇2f(x(t))ẋ(t)

〉
.

Using the definition of v(t) and (58), we get

Ė(t) = 〈∇f(x(t)), ẋ(t)〉+〈√µ(x(t)− x?) + ẋ(t) + β∇f(x(t)), −√µẋ(t)−∇f(x(t))〉−〈v(t), g(t)〉 .

After developing and simplifying, we obtain

Ė(t) +
√
µ 〈∇f(x(t)), x(t)− x?〉+ µ 〈x(t)− x?, ẋ(t)〉+

√
µ‖ẋ(t)‖2

+β
√
µ 〈∇f(x(t)), ẋ(t)〉+ β‖∇f(x(t))‖2 = −〈v(t), g(t)〉 .

According to strong convexity of f , we have

〈∇f(x(t)), x(t)− x?〉 ≥ f(x(t))− f̄ +
µ

2
‖x(t)− x?‖2.

Thus, by combining the last two relations, and by the Cauchy-Schwarz inequality,
we obtain

Ė(t) +
√
µA(t) ≤ ‖v(t)‖‖g(t)‖,
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where

A(t) := f(x(t))− f̄ +
µ

2
‖x(t)− x?‖2 +

√
µ
〈
x(t)− x?, ẋ(t)

〉
+ ‖ẋ(t)‖2 + β 〈∇f(x(t)), ẋ(t)〉+

β
√
µ
‖∇f(x(t))‖2.

Let us make appear E(t) in A(t),

A(t) = E(t)−
1

2
‖ẋ(t) + β∇f(x(t))‖2 −√µ 〈x(t)− x?, ẋ(t) + β∇f(x(t))〉+√µ 〈x(t)− x?, ẋ(t)〉

+ ‖ẋ(t)‖2 + β 〈∇f(x(t)), ẋ(t)〉+
β
√
µ
‖∇f(x(t))‖2.

After developing and simplifying, we obtain

Ė(t) +
√
µ

(
E(t) +

1

2
‖ẋ(t)‖2 +

(
β
√
µ
−
β2

2

)
‖∇f(x(t))‖2 − β√µ 〈x(t)− x?, ∇f(x(t))〉

)
≤‖v(t)‖‖g(t)‖.

Since 0 ≤ β ≤ 1√
µ , it holds that β√

µ −
β2

2 ≥
β

2
√
µ . Hence

Ė(t) +
√
µ

(
E(t) +

1

2
‖ẋ(t)‖2 +

β

2
√
µ
‖∇f(x(t))‖2 − β√µ 〈x(t)− x?, ∇f(x(t))〉

)
≤ ‖v(t)‖‖g(t)‖.

Let us use again the strong convexity of f to write

E(t) =
1

2
E(t) +

1

2
E(t) ≥ 1

2
E(t) +

1

2

(
f(x(t))− f̄

)
≥ 1

2
E(t) +

µ

4
‖x(t)− x?‖2.

By combining the two inequalities above, we obtain

Ė(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 +

√
µB(t) ≤ ‖v(t)‖‖g(t)‖,

where B(t) = µ
4 ‖x(t)− x?‖2 + β

2
√
µ‖∇f(x(t))‖2 − β√µ‖x(t)− x?‖‖∇f(x(t))‖. Set

X = ‖x− x?‖, Y = ‖∇f(x)‖. Elementary algebraic computation gives that, under
the condition 0 ≤ β ≤ 1

2
√
µ

µ

4
X2 +

β

2
√
µ
Y 2 − β√µXY ≥ 0.

Hence for 0 ≤ β ≤ 1
2
√
µ

Ė(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 ≤ ‖v(t)‖‖g(t)‖. (59)

(i) From (59), we first deduce that

Ė(t) ≤ ‖v(t)‖‖g(t)‖,

which by integration gives

E(t) ≤ E(t0) +

∫ t

t0

‖v(τ)‖‖g(τ)‖dτ.

By definition of E(t), we have E(t) ≥ 1
2‖v(t)‖2, which gives

1

2
‖v(t)‖2 ≤ E(t0) +

∫ t

t0

‖v(τ)‖‖g(τ)‖dτ.

According to Lemma A.3, we obtain

‖v(t)‖ ≤
√

2E(t0) +

∫ t

t0

‖g(τ)‖dτ.
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Set M :=
√

2E(t0)+
∫ +∞
t0
‖g(τ)‖dτ . By assumption,

∫ +∞

t0

‖g(τ)‖dτ < +∞, and

thus supt≥t0 ‖v(t)‖ ≤M < +∞. Returning to (59) we deduce that

Ė(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 ≤M‖g(t)‖. (60)

Therefore

Ė(t) +

√
µ

2
E(t) ≤M‖g(t)‖. (61)

By integrating the differential inequality above, we obtain

E(t) ≤ E(t0)e−
√
µ

2 (t−t0) +Me−
√
µ

2 t

∫ t

t0

e
√
µ

2 τ‖g(τ)‖dτ. (62)

We now use Lemma A.5, which is the continuous version of Kronecker’s The-

orem for series, with f(t) = ‖g(t)‖ and ϕ(t) = e
√
µ

2 t. By assumption we have∫ +∞
t0
‖g(τ)‖dτ < +∞. We deduce that

lim
t→+∞

1

e
√
µ

2 t

∫ t

t0

e
√
µ

2 τ‖g(τ)‖dτ = 0.

Therefore, from (62) we obtain

lim
t→+∞

E(t) = 0.

By definition of E(t) this implies

lim
t→+∞

f(x(t))−min
H

f = 0 (63)

lim
t→+∞

‖√µ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖ = 0. (64)

Acoording to (63) and the strong convexity of f we deduce that

lim
t→+∞

‖x(t)− x?‖ = 0

By continuity of ∇f , and since ∇f(x?) = 0, we deduce that

lim
t→+∞

‖∇f(x(t))‖ = 0.

Combining the above results with (64), we deduce that

lim
t→+∞

‖ẋ(t)‖ = 0.

(ii) Let us make precise the argument developed above, and assume that, as t→ +∞

‖g(t)‖ = O
(

1

tp

)
,

where p > 0. Then, from (62) we get

E(t) ≤ E(t0)e−
√
µ

2 (t−t0) +Me−
√
µ

2 t
(∫ t

2

t0

e
√
µ

2 τ‖g(τ)‖dτ +

∫ t

t
2

e
√
µ

2 τ‖g(τ)‖dτ
)

≤ E(t0)e−
√
µ

2 (t−t0) +Me−
√
µ

2 t
(
C1e

√
µt

4 +

∫ t

t
2

e
√
µ

2 τ C2

τp
dτ
)

≤ E(t0)e−
√
µ

2 (t−t0) +Me−
√
µ

2 t
(
C1e

√
µt

4 +
C2

tp
e
√
µ

2 t
)

≤ E(t0)e−
√
µ

2 (t−t0) +M
(
C1e

−
√
µt

4 +
C2

tp

)
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= O
(

1

tp

)
.

By definition of E(t) and strong convexity of f , we infer

µ

2

∥∥x(t)− x?
∥∥2 ≤ f(x(t))−min f(H) = O

(
1

tp

)
and ‖√µ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖2 = O

(
1

tp

)
.

Developing the left-hand side of the last expression, we obtain

µ‖x(t)− x?‖2 + ‖ẋ(t)‖2 + β2‖∇f(x(t))‖2 + 2β
√
µ 〈x(t)− x?, ∇f(x(t))〉

+ 〈ẋ(t), 2β∇f(x(t)) + 2
√
µ(x(t)− x?)〉 ≤ C

tp
.

By convexity of f , we have 〈x(t)− x?, ∇f(x(t))〉 ≥ f(x(t))− f̄ . Moreover,

〈ẋ(t), 2β∇f(x(t)) + 2
√
µ(x(t)− x?)〉 =

d

dt

(
2β(f(x(t))− f̄) +

√
µ‖x(t)− x?‖2

)
.

Combining the above results, we obtain

√
µ
(
2β(f(x(t))− f̄) +

√
µ‖x(t)− x?‖2

)
+ β

2‖∇f(x(t))‖2 +
d

dt

(
2β(f(x(t))− f̄) +

√
µ‖x(t)− x?‖2

)
≤
C

tp
.

Set Z(t) := 2β(f(x(t))− f̄) +
√
µ‖x(t)− x?‖2. We have

d

dt
Z(t) +

√
µZ(t) + β2‖∇f(x(t))‖2 ≤ C

tp
.

By integrating this differential inequality, elementary computation gives

e−
√
µt

∫ t

t0

e
√
µs‖∇f(x(s))‖2ds ≤ C

tp
.

This completes the proof.

4.2. Implicit Hessian damping. We now turn to the implicit Hessian system,
and take in the Polyak heavy ball system a fixed positive damping coefficient which
is adjusted to the modulus of strong convexity of f . This gives the system

ẍ(t) + 2
√
µẋ(t) +∇f (x(t) + βẋ(t)) + e(t) = 0. (65)

To analyze (65), we define the function E : [t0,+∞[→ R+

t 7→ E(t) := f (x(t) + βẋ(t)))−min
H

f +
1

2
‖√µ(x(t)− x?) + ẋ(t)‖2. (66)

Theorem 4.2. Suppose that f : H → R is µ-strongly convex for some µ > 0, and
let x? be the unique minimizer of f . Let x(·) : [t0,+∞[→ H be a solution trajectory
of (65). Suppose that

a) 0 ≤ β ≤ 1

2
√
µ

.

b)

∫ +∞

t0

‖e(t)‖dt < +∞.

Then the following properties are satisfied:

(i) Minimizing properties: there exists a positive constant M such that for all
t ≥ t0

E(t) ≤ E(t0)e−
√
µ

2 (t−t0) +Me−
√
µ

2 t

∫ t

t0

e
√
µ

2 τ‖e(τ)‖dτ.
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More precisely,

M :=

√
E(t0)

c
+

1

2c

∫ +∞

t0

‖e(τ)‖dτ with c =
min{µ, 1}

4 max{β2L2, 1}
and L is the Lipschitz constant of ∇f . Consequently,

lim
t→+∞

E(t) = 0; lim
t→+∞

f(x(t)) = min
H

f

lim
t→+∞

‖x(t)− x?‖ = lim
t→+∞

‖∇f(x(t))‖ = lim
t→+∞

‖ẋ(t)‖ = 0.

(ii) Convergence rates: suppose moreover that for some p > 0, ‖e(t)‖ = O
(

1

tp

)
,

as t→ +∞. Then E(t) = O
(

1
tp

)
, i.e., E(t) inherits the decay rate of the error

terms. In turn, as t→ +∞

f (x(t))−min
H

f = O
(

1

tp

)
;

‖x(t)− x?‖2 = O
(

1

tp

)
; ‖ẋ(t)‖2 = O

(
1

tp

)
; ‖∇f(x(t))‖2 = O

(
1

tp

)
.

Proof. Let us define
v(t) =

√
µ(x(t)− x?) + ẋ(t) (67)

and thus, E equivalently reads

E(t) = f (x(t) + βẋ(t))−min
H

f +
1

2
‖v(t)‖2. (68)

Taking the derivative in time of E(·) gives

Ė(t) = 〈∇f (x(t) + βẋ(t)) , ẋ(t) + βẍ(t)〉+ 〈v(t), v̇(t)〉
= 〈∇f (x(t) + βẋ(t)) , ẋ(t) + βẍ(t)〉+ 〈√µ(x(t)− x?) + ẋ(t),

√
µẋ(t) + ẍ(t)〉 .

Using the constitutive equation (58), we get

Ė(t) = 〈∇f (x(t) + βẋ(t)) , (1− 2β
√
µ)ẋ(t)− β∇f (x(t) + βẋ(t))− βe(t)〉

+ 〈√µ(x(t)− x?) + ẋ(t), −√µẋ(t)−∇f (x(t) + βẋ(t))− e(t)〉 .
After developing and simplifying, we obtain

Ė(t) + 2β
√
µ 〈∇f (x(t) + βẋ(t)) , ẋ(t)〉+

√
µ 〈∇f (x(t) + βẋ(t)) , x(t)− x?〉

+ β‖∇f (x(t) + βẋ(t)) ‖2 +
√
µ‖ẋ(t)‖2 + µ 〈x(t)− x?, ẋ(t)〉

= −〈√µ(x(t)− x?) + ẋ(t) + β∇f (x(t) + βẋ(t)) , e(t)〉 .
In view of strong convexity of f , we have

〈∇f (x(t) + βẋ(t)) , x(t)− x?〉
= 〈∇f (x(t) + βẋ(t)) , x(t) + βẋ(t)− x?〉 − 〈∇f (x(t) + βẋ(t)) , βẋ(t)〉

≥ f (x(t) + βẋ(t))− f̄ +
µ

2
‖x(t)− x? + βẋ(t)‖2 − 〈∇f (x(t) + βẋ(t)) , βẋ(t)〉 .

Thus, by combining the last two relations, we obtain

Ė(t) + β
√
µ 〈∇f (x(t) + βẋ(t)) , ẋ(t)〉

+
√
µ
(
f (x(t) + βẋ(t))− f̄ +

µ

2
‖x(t)− x? + βẋ(t)‖2

)
+ β‖∇f (x(t) + βẋ(t)) ‖2 +

√
µ‖ẋ(t)‖2 + µ 〈x(t)− x?, ẋ(t)〉 ≤ ‖w(t)‖‖e(t)‖, (69)
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where we have used Cauchy-Schwarz inequality, and we set

w(t) :=
√
µ(x(t)− x?) + ẋ(t) + β∇f (x(t) + βẋ(t)) .

Let us make E(t) appear on the left-hand side of (69). We get

Ė(t) +
√
µE(t) +B(t) ≤ ‖w(t)‖‖e(t)‖

where

B(t) := β‖∇f (x(t) + βẋ(t)) ‖2 +

√
µ

2
(β2µ+ 1)‖ẋ(t)‖2

+ β
√
µ 〈∇f (x(t) + βẋ(t)) , ẋ(t)〉+ βµ

√
µ 〈x(t)− x?, ẋ(t)〉 .

Let us use again the strong convexity of f to write

E(t) =
1

2
E(t) +

1

2
E(t) ≥ 1

2
E(t) +

1

2

(
f(x(t) + βẋ(t))− f̄

)
≥ 1

2
E(t) +

µ

4
‖x(t)−x?+βẋ(t)‖2.

By combining the inequalities above, we obtain

Ė(t) +

√
µ

2
E(t) + C(t) ≤ ‖w(t)‖‖e(t)‖,

where

C(t) := β‖∇f(y(t)‖2+β
√
µ 〈∇f(y(t)), ẋ(t)〉+

√
µ

2
(β2µ+1)‖ẋ(t)‖2+βµ

√
µ 〈x(t)− x?, ẋ(t)〉

+
µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2,

and we set y(t) := x(t) + βẋ(t). Let us show that, for an adequate choice of
the parameters, C(t) is non-negative. Let us reformulate C(t) as follows: Young’s
inequality gives the following minorization for the two first terms of C(t)

β‖∇f(y(t))‖2 + β
√
µ〈∇f(y(t)), ẋ(t)〉 ≥ −1

4
βµ‖ẋ(t)‖2.

By using this inequality in C(t), and after simplification, we arrive at

C(t) ≥
(√

µ

2
(β

2
µ + 1)−

1

4
βµ

)
‖ẋ(t)‖2 + βµ

√
µ
〈
x(t)− x?, ẋ(t)

〉
+
µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2

=
µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2 +

(√
µ

2
(β

2
µ + 1)−

1

4
βµ− β2

µ
√
µ

)
‖ẋ(t)‖2 + βµ

√
µ
〈
x(t)− x? + βẋ(t), ẋ(t)

〉
=
µ
√
µ

4
‖x(t)− x? + βẋ(t)‖2 +

√
µ

(
−
β2µ

2
−

1

4
β
√
µ +

1

2

)
‖ẋ(t)‖2 + βµ

√
µ
〈
x(t)− x? + βẋ(t), ẋ(t)

〉
.

Elementary algebra gives that −β
2µ
2 −

1
4β
√
µ+ 1

2 ≥ 0 if and only if β
√
µ ≤

√
17−1
4 .

According to the classical rule for the sign of a quadratic function of a real variable,
we get that C(t) ≥ 0 under the condition

(βµ
√
µ)2 ≤ µ2

(
−β

2µ

2
− 1

4
β
√
µ+

1

2

)
.

Setting Z = β
√
µ, the latter inequality is equivalent to ensuring

3

2
Z2 +

1

4
Z − 1

2
≤ 0.

which is satisfied for 0 ≤ Z ≤ 1
2 , implying β ≤ 1

2
√
µ . Since 1

2 <
√
17−1
4 , we get as a

final condition

β ≤ 1

2
√
µ
.
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Thus under this condition we get

Ė(t) +

√
µ

2
E(t) ≤ ‖w(t)‖‖e(t)‖. (70)

From (70), we first deduce that

Ė(t) ≤ ‖w(t)‖‖e(t)‖,
which, after integration, gives

E(t) ≤ E(t0) +

∫ t

t0

‖w(τ)‖‖e(τ)‖dτ.

By definition of w we have

‖w(t)‖ ≤ ‖v(t)‖+ β‖∇f (x(t) + βẋ(t))−∇f(x?)‖
≤ ‖v(t)‖+ βL‖x(t)− x? + βẋ(t)‖,

where L is the Lipschitz constant of ∇f . On the other hand, strong convexity of f
entails

E(t) ≥ µ

2
‖x(t)− x? + βẋ(t)‖2 +

1

2
‖v(t)‖2.

Hence, there exists a positive constant c such that1

E(t) ≥ c‖w(t)‖2.
This in turn gives

c‖w(t)‖2 ≤ E(t0) +

∫ t

t0

‖w(τ)‖‖e(τ)‖dτ.

According to Lemma A.3, and
∫ +∞
t0
‖e(τ)‖dτ < +∞, we deduce that

sup
t≥t0
‖w(t)‖ ≤M :=

√
E(t0)

c
+

1

2c

∫ +∞

t0

‖e(τ)‖dτ < +∞.

Returning to (70) we deduce that

Ė(t) +

√
µ

2
E(t) ≤M‖e(t)‖. (71)

By integrating the differential inequality above, we obtain

E(t) ≤ E(t0)e−
√
µ

2 (t−t0) +Me−
√
µ

2 t

∫ t

t0

e
√
µ

2 τ‖e(τ)‖dτ. (72)

(i) We first deduce from (72) that E(t) tends to zero as t→ +∞. This implies that

lim
t→+∞

f(x(t) + βẋ(t))) = min
H

f, (73)

lim
t→+∞

‖√µ(x(t)− x?) + ẋ(t)‖ = 0. (74)

From (73) and strong convexity of f we deduce that

lim
t→+∞

‖(x(t)− x?) + βẋ(t)‖ = 0. (75)

From (74) and (75), and β 6= 1√
µ (a consequence of the assumption β ≤ 1

2
√
µ ),

elementary algebra gives

lim
t→+∞

‖x(t)− x?‖ = lim
t→+∞

‖ẋ(t)‖ = 0.

1One can take c =
min{µ,1}

4 max{β2L2,1} .
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In turn, continuity of f and ∇f imply

lim
t→+∞

‖∇f(x(t))‖ = 0 and lim
t→+∞

f(x(t)) = min
H

f.

(ii) Let us now assume that, as t → +∞, we have ‖e(t)‖ = O
(

1
tp

)
, where p >

0. Based on (72), a similar argument as in the explicit case (see the proof of
Theorem 4.1) gives E(t) = O

(
1
tp

)
. By definition of E(t), we infer that

f(x(t) + βẋ(t))−min
H

f = O
(

1

tp

)
(76)

and

‖√µ(x(t)− x?) + ẋ(t)‖2 = O
(

1

tp

)
. (77)

From (76) and strong convexity of f we deduce that

‖(x(t)− x?) + βẋ(t)‖2 = O
(

1

tp

)
. (78)

Combining (77) and (78), and recalling that β
√
µ 6= 1 we immediately obtain

‖x(t)− x?‖2 ≤ C

tp
and ‖ẋ(t)‖2 = O

(
1

tp

)
. (79)

According to the Lipschitz continuity of ∇f , and ∇f(x?) = 0 we deduce that

‖∇f(x(t))‖2 ≤ L2‖x(t)− x?‖2 = O
(

1

tp

)
.

Now, combining the descent lemma with (76), (78) and (79) shows that

f(x(t))−min
H

f

≤ f(x(t) + βẋ(t))−min
H

f − β 〈∇f(x(t) + βẋ(t)), ẋ(t)〉+
Lβ2

2
‖ẋ(t)‖2

≤ f(x(t) + βẋ(t))− inf
H
f + Lβ ‖x(t)− x? + βẋ(t)‖ ‖ẋ(t)‖+

Lβ2

2
‖ẋ(t)‖2

= O
(

1

tp

)
,

which completes the proof.

Remark 4.1. The results of Theorem 4.2 appear new. Even for the unperturbed
case of system (65), where e ≡ 0, we are not aware of any guarantees for these
dynamics in the literature.

5. The non-smooth case.

5.1. Explicit Hessian damping. In the sequel, we will show that most properties
obtained in the smooth case still hold for the global strong solution of (4) (and in
particular, all properties that do not require x(t) to be twice differentiable).
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5.1.1. Minimizing properties. From now on, we assume that, for all T > t0, e(·) ∈
W1,1(t0, T ;H). Let (x, y) : [t0,+∞[→ H ×H be the global strong solution to (4)
with Cauchy data (x(t0), y(t0)) = (x0, y0) ∈ dom(f)×H. For t ≥ t0 define

u(t) =

∫ t

t0

(
−βe(s) +

(
1

β
− α

s

)
x(s)− 1

β
y(s)

)
ds. (80)

Thus u is continuously differentiable, with derivative satisfying

u̇(t) = −βe(t) +

(
1

β
− α

t

)
x(t)− 1

β
y(t), ∀t ≥ t0, (81)

= ẋ(t) + βξ(t), for almost all t > t0, (82)

where ξ(t) ∈ ∂f(x(t)), and the last equality follows from Theorem 2.2(vi)-(b).
Therefore, u can be also written equivalently as

u(t) = x(t)− x0 + β

∫ t

t0

ξ(s)ds.

With parts (i) and (ii) of Theorem 2.2, equality (81) shows that u̇ is absolutely
continuous on any compact subinterval of [t0,+∞[, hence differentiable almost ev-
erywhere on [t0,+∞[. Therefore,

ü(t) = −βė(t) +
α

t2
x(t) +

(
1

β
− α

t

)
ẋ(t)− 1

β
ẏ(t).

The equality above, combined with ẏ(t) = αβ
t2 x(t) + ẋ(t) + β(ξ(t) + e(t)) (which is

obtained by taking the difference of the two equations in (4)), yields

ü(t) = −α
t
ẋ(t)− ξ(t)− (e(t) + βė(t)), (83)

for almost all t > t0. Using (82), we obtain

ü(t) =

(
1

β
− α

t

)
ẋ(t)− 1

β
u̇(t)− (e(t) + βė(t)) (84)

for almost all t > t0. We will need the following energy function of the system,
defined for all T ≥ t ≥ t0 (recall (81) for the definition of u̇(t)):

WT (t) :=
1

2
‖u̇(t)‖2 + f(x(t))−

∫ T

t

〈u̇(τ), e(τ) + βė(τ)〉dτ, (85)

and when the following expression is well-defined (we will prove it later)

W (t) :=
1

2
‖u̇(t)‖2 + f(x(t))−

∫ +∞

t

〈u̇(τ), e(τ) + βė(τ)〉dτ. (86)

Theorem 5.1. Let α > 0. Suppose that infH f > −∞. Suppose that e(·) ∈

W1,1(t0, T ;H) for all T > t0, with

∫ +∞

t0

‖e(t)‖ < +∞ and

∫ +∞

t0

‖ė(t)‖ < +∞.

Then for any global strong solution of (4), (x, y) : [t0,+∞[→ H×H
(i) W is well-defined and non-increasing on [t1,+∞[ for some t1 ≥ t0.

(ii)

∫ +∞

t0

1

t
‖ẋ(t)‖2dt < +∞,

∫ +∞

t0

1

t
‖ξ(t)‖2dt < +∞.

(iii) limt→+∞W (t) = limt→+∞ f(x(t)) = infH f , limt→+∞ ‖ẋ(t) + βξ(t)‖ = 0.
(iv) As t→ +∞, every sequential weak cluster point of x(t) belongs to S.
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(v) If, moreover, the solution set S 6= ∅ and

∫ +∞

t0

log t ‖e(t)‖ < +∞ and∫ +∞

t0

log t ‖ė(t)‖ < +∞, then

(a) f(x(t))− infH f = O
(

1

log t

)
and ‖u̇(t)‖ = O

(
1√
log t

)
as t→ +∞.

(b)

∫ +∞

t0

1

t
(f(x(t))− inf

H
f)dt < +∞.

Proof. Since we are interested in asymptotic analysis, we can assume t ≥ t1 =
max (t0, 2αβ).
Claim (i). According to Theorem 2.2, WT is absolutely continuous. Taking the
derivative and using the chain rule we get

ẆT (t) = 〈u̇(t), ü(t)〉+ 〈ξ(t), ẋ(t)〉+ 〈u̇(t), e(t) + βė(t)〉,
for almost every T > t > t0. Now use (82) and (84) to obtain

ẆT (t) =

〈
u̇(t),

(
1

β
−
α

t

)
ẋ(t)−

1

β
u̇(t)− (e(t) + βė(t))

〉
+ 〈ξ(t), ẋ(t)〉+ 〈u̇(t), e(t) + βė(t)〉

=

〈
u̇(t),

(
1

β
−
α

t

)
ẋ(t)−

1

β
u̇(t)

〉
+ 〈ξ(t), ẋ(t)〉

= −
1

β
‖u̇(t)‖2 +

〈
ẋ(t),

(
1

β
−
α

t

)
u̇(t) + ξ(t)

〉
= −

1

β
‖u̇(t)‖2 +

〈
ẋ(t),

(
1

β
−
α

t

)
u̇(t) +

1

β
(u̇(t)− ẋ(t))

〉
= −

1

β
‖u̇(t)‖2 +

〈
ẋ(t),

(
2

β
−
α

t

)
u̇(t)−

1

β
ẋ(t)

〉
= −

1

β
‖u̇(t)‖2 −

1

β
‖ẋ(t)‖2 +

(
2

β
−
α

t

)
〈ẋ(t), u̇(t)〉

≤ −
α

2t
‖ẋ(t)‖2 −

α

2t
‖u̇(t)‖2,

for almost every t ≥ t1. So WT is non-increasing on [t1,+∞[, because it is absolutely
continuous and its derivative is non-positive therein. Therefore WT (t) ≤ WT (t1)
for all t ∈ [t1, T ]. Equivalently

1

2
‖u̇(t)‖2 + f(x(t))−

∫ T

t

〈u̇(τ), e(τ) + βė(τ)〉dτ

≤1

2
‖u̇(t1)‖2 + f(x(t1))−

∫ T

t1

〈u̇(τ), e(τ) + βė(τ)〉dτ.

After simplification, and setting C = 1
2‖u̇(t1)‖2 + f(x(t1))− inf f(H), we obtain

1

2
‖u̇(t)‖2 ≤ C −

∫ t

t1

〈u̇(τ), e(τ) + βė(τ)〉dτ.

By Cauchy-Schwarz inequality we get

1

2
‖u̇(t)‖2 ≤ C +

∫ t

t0

‖u̇(τ)‖‖e(τ) + βė(τ)‖dτ.

According to Gronwall’s Lemma A.3

‖u̇(t)‖ ≤
√

2C +

∫ t

t0

‖e(τ) + βė(τ)‖dτ ≤M :=
√

2C +

∫ +∞

t0

‖e(τ) + βė(τ)‖dτ. (87)
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So, ‖u̇(t)‖ is bounded on [t0,+∞[, which allows us to define

W (t) =
1

2
‖u̇(t)‖2 + f(x(t))−

∫ +∞

t

〈u̇(τ), e(τ) + βė(τ)〉 dτ. (88)

Noticing that W and WT have the same derivative we conclude that

Ẇ (t) +
α

2t
‖ẋ(t)‖2 +

α

2t
‖u̇(t)‖2 ≤ 0, (89)

and thus W is non-increasing on [t1,+∞[.
Claim (ii). Integrating (89), and using that f , and hence W , is bounded from below,
we obtain, ∫ +∞

t0

1

t
‖ẋ(t)‖2dt < +∞, and

∫ +∞

t0

1

t
‖u̇(t)‖2dt < +∞. (90)

Using Jensen’s inequality, we get the integrability claim on ξ(t).
Claim (iii). Given z ∈ H, let us define h : [t0,+∞[→ R+ by h(t) = 1

2‖u(t) − z‖2.
The function h is continuously differentiable with

ḣ(t) = 〈u(t)− z, u̇(t)〉 ,

and ḣ is absolutely continuous on compact subintervals of [t0,+∞[ (since u̇ is) and
satisfies

ḧ(t) = 〈u(t)− z, ü(t)〉+ ‖u̇(t)‖2

for almost every t > t0. Using (82) and (83) we get

ü(t) +
α

t
u̇(t) = −

(
1− αβ

t

)
ξ(t)− (e(t) + βė(t)).

Therefore, for almost every t > t0

ḧ(t) +
α

t
ḣ(t) = ‖u̇(t)‖2 −

〈
u(t)− z,

(
1− αβ

t

)
ξ(t)

〉
− 〈u(t)− z, e(t) + βė(t)〉

= ‖u̇(t)‖2 −
(

1− αβ

t

)〈
x(t)− z − x0 + β

∫ t

t0

ξ(s)ds, ξ(t)

〉
− 〈u(t)− z, e(t) + βė(t)〉

≤ ‖u̇(t)‖2 −
(

1− αβ

t

)
〈x(t)− z, ξ(t)〉 −

(
1− αβ

t

)〈
−x0 + β

∫ t

t0

ξ(s)ds, ξ(t)

〉
+‖e(t) + βė(t)‖‖u(t)− z‖.

To interpret
〈
−x0 + β

∫ t
t0
ξ(s)ds , ξ(t)

〉
as a temporal derivative, let us introduce

I(t) = 1
2β

∥∥∥−x0 + β
∫ t
t0
ξ(s)ds

∥∥∥2 .
Then I(·) is locally absolutely continuous and İ(t) =

〈
−x0 +

∫ t

t0

ξ(s)ds, ξ(t)

〉
al-

most everywhere, because ξ ∈ L2(t0, T ;H) ⊆ L1(t0, T ;H) for all T > t0; see part
(vi)-(c) of Theorem 2.2. So,

ḧ(t) +
α

t
ḣ(t) ≤ ‖u̇(t)‖2 −

(
1−

αβ

t

)
〈x(t)− z, ξ(t)〉 −

(
1−

αβ

t

)
İ(t) + ‖e(t) + βė(t)‖‖u(t)− z‖,

for almost every t > t0. On the other hand, by convexity of f and ξ(t) ∈ ∂f(x(t))

〈x(t)− z, ξ(t)〉 ≥ f(x(t)− f(z).

Therefore

ḧ(t) +
α

t
ḣ(t) +

(
1−

αβ

t

)
(f(x(t))− f(z)) +

(
1−

αβ

t

)
İ(t) ≤ ‖u̇(t)‖2 + ‖e(t) + βė(t)‖‖u(t)− z‖.



PERTURBATIONS OF INERTIAL SYSTEMS WITH HESSIAN DRIVEN DAMPING 37

Using the definition (88) of W , we get

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)
(W (t)− f(z)) +

(
1− αβ

t

)
İ(t) ≤

(
3

2
− αβ

2t

)
‖u̇(t)‖2

+ ‖e(t) + βė(t)‖‖u(t)− z‖ −
(

1− αβ

t

)∫ +∞

t

〈u̇(τ), e(τ) + βė(τ)〉 dτ.

According to (89), we have ‖u̇(t)‖2 ≤ − 2t
α Ẇ (t). Therefore,

ḧ(t) +
α

t
ḣ(t) +

(
1− αβ

t

)
(W (t)− f(z)) +

(
1− αβ

t

)
İ(t) ≤ −

(
3t

α
− β

)
Ẇ (t)

+ ‖e(t) + βė(t)‖‖u(t)− z‖ −
(

1− αβ

t

)∫ +∞

t

〈u̇(τ), e(τ) + βė(τ)〉 dτ.

Dividing by t and rearranging the terms, we have with g(t) := e(t) + βė(t)

1

t
ḧ(t) +

(
1

t
− αβ

t2

)
(W (t)− f(z))

≤ −
(

3

α
− β

t

)
Ẇ (t)−

[
α

t2
ḣ(t) +

(
1

t
− αβ

t2

)
İ(t)

]
+

1

t
‖g(t)‖‖u(t)− z‖ −

(
1

t
− αβ

t2

)∫ +∞

t

〈u̇(τ), g(τ)〉 dτ.

After integration, and using Lemma A.2, we get

1

t
ḣ(t) +

∫ t

t1

(
1

s
− αβ

s2

)(
W (s)− f(z)

)
ds ≤ −

∫ t

t1

(
3

α
− β

s

)
Ẇ (s) ds+C +K1(t) +K2(t),

(91)
where

K1(t) =

∫ t

t1

1

s
‖g(s)‖‖u(s)− z‖ds and K2(t) =

∫ t

t1

(
1

s
− αθ

s2

)∫ ∞
s

‖u̇(τ)‖‖g(τ)‖dτds.

Let us majorize K1(t) and K2(t). The relation

‖u(s)− z‖ ≤ ‖u(t1)− z‖+

∫ s

t1

‖u̇(τ)‖ dτ,

and u̇(·) bounded (see (87)) give

K1(t) ≤
∫ t

t1

1

s
‖g(s)‖‖u(s)− z‖ds ≤

(
‖u(t1)− z‖

t1
+ sup
t≥t1
‖u̇(τ)‖

)∫ +∞

t1

‖g(s)‖ds ≤ C < +∞.

For K2(t), we use again u̇(·) bounded (see (87)) and integration by parts to obtain

K2(t) ≤ C
∫ t

t1

(
1

s

∫ ∞
s

‖g(τ)‖ dτ
)
ds ≤ C

(
log t

∫ ∞
t

‖g(τ)‖ dτ +

∫ t

t1

‖g(τ)‖ log τ dτ + 1

)
.

Let us examine the integral terms that enter (91). Since W (·) is non-increasing∫ t

t1

(
1

s
− αβ

s2

)(
W (s)− f(z)

)
ds ≥ (W (t)− f(z))

∫ t

t1

(
1

s
− αβ

s2

)
ds

= (W (t)− f(z))

(
log t− log t1 +

αβ

t
− αβ

t1

)
.(92)

In turn, integration by parts gives

−
∫ t

t1

(
3

α
−
β

s

)
Ẇ (s) ds
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=

(
3

α
−
β

t1

)(
W (t1)− f(z)

)
−
(

3

α
−
β

t

)
(W (t)− f(z)) + β

∫ t

t1

W (s)− f(z)

s2
ds

≤
(

3

α
−
β

t1

)(
W (t1)− f(z)

)
−
(

3

α
−
β

t

)
(W (t)− f(z)) + β

(
W (t1)− f(z)

)( 1

t1
−

1

t

)
,

≤
3

α

∣∣W (t1)− f(z)
∣∣− ( 3

α
−
β

t

)
(W (t)− f(z)) (93)

since t 7→W (t)−f(z) is non-increasing and t ≥ t1 ≥ αβ. Combining (91) with (92)
and (93), we obtain

1

t
ḣ(t) + (W (t)− f(z))

(
log t+D +

E

t

)
≤ C

(
log t

∫ ∞
t
‖g(τ)‖ dτ +

∫ t

t1

‖g(τ)‖ log τ dτ + 1

)
for appropriate constants C,D,E ∈ R. Now, take t2 ≥ t1 such that log s+D+E

s ≥ 0
for all s ≥ t2. Integrate from t2 to t and use again that W is non-increasing to obtain

h(t)

t
− h(t2)

t2
+

∫ t

t2

h(s)

s2
ds+ (W (t)− f(z))

∫ t

t2

(
log s+D +

E

s

)
ds

≤ C ′
∫ t

t2

(
log s

∫ ∞
s

‖g(τ)‖ dτ +

∫ s

t1

‖g(τ)‖ log τ dτ + 1

)
ds.

Since h is non-negative, this implies

(W (t)− f(z)) (t log t+ (D − 1)t+ E log t+ F )

≤ C ′
(
t+ t log t

∫ ∞
t

‖g(τ)‖ dτ +

∫ t

t2

‖g(τ)‖ τ log τ dτ + t

∫ t

t1

‖g(τ)‖ log τdτ

)
+G,

(94)

for some appropriate constants D,E, F,G ∈ R. Divide by t log t, let t → +∞, and
use Lemma A.5, to obtain limt→+∞W (t) ≤ f(z). The integrability of g and u̇(·)

bounded (see (87)) yield lim
t→+∞

∫ +∞

t

〈u̇(τ), g(τ)〉 dτ = 0. As a consequence,

lim
t→+∞

(
f(x(t)) +

1

2
‖ẋ(t) + βξ(t)‖2

)
≤ f(z)

for each z ∈ H. Thus

inf
H
f ≤ lim inf

t→+∞
f(x(t)) ≤ lim sup

t→+∞
f(x(t)) ≤ lim

t→+∞

(
f(x(t)) +

1

2
‖ẋ(t) + βξ(t)‖2

)
≤ inf
H
f,

whence we get limt→+∞ f(x(t)) = infH f , and thus limt→+∞ ‖ẋ(t) + βξ(t)‖ = 0.
Claim (iv). This follows from claim (iii) and lower semicontinuity of f .
Claim (v)-(a). Let x? ∈ S. We start from (94) with z = x? and divide by t. To
conclude, we note that

log t

∫ ∞
t

‖g(τ)‖ dτ ≤
∫ ∞
t

log τ ‖g(τ)‖ dτ < +∞,∫ t

t2

‖g(τ)‖ τ
t

log τ dτ ≤
∫ t

t2

‖g(τ)‖ log τ dτ < +∞ and

log t

∫ +∞

t

〈u̇(τ), g(τ)〉 dτ ≤ C
∫ +∞

t

log τ ‖g(τ)‖ dτ,

where C = supt≥t0 ‖u̇(t)‖ < +∞ (see (87)).
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Claim (v)-(b). Putting together (91) and (93) with z = x? ∈ S, and using non-
negativity of h, we infer that for some positive constant C(

1− αβ

t1

)∫ t

t1

1

s
(W (s)− f(z)) ds ≤ C +K2(t).

Arguing similarly as for proving part (v)-(a), we can show that K2(·) is bounded.
Thus∫ t

t1

1

s

(
f(x(s))− f(z) + ‖u̇(s)‖2

)
ds ≤

∫ t

t1

1

s
(W (s)− f(z)) ds+

1

t1

∫ t

t1

‖u̇(s)‖ ‖g(s)‖ ds < +∞,

which completes the proof.

5.1.2. Fast convergence rates. When α ≥ 3, under a reinforced integrability as-
sumption on the perturbation term, we will show fast convergence results. The
following theorem is the non-smooth counterpart of Theorem 3.2.

Theorem 5.2. Suppose that α ≥ 3. Let f ∈ Γ0(H) such that S 6= ∅. Suppose that

e(·) ∈ W1,1(t0, T ;H) for all T > t0, with

∫ +∞

t0

t‖e(t) + βė(t)‖dt < +∞. Then, for

any global strong solution (x, y) of (4)

(i) f(x(t))−minH f = O
(
t−2
)
.

(ii)
∫ +∞

t0

t(f(x(t))−min
H

f)dt < +∞,

∫ +∞

t0

t2‖ξ(t)‖2dt < +∞,

∫ +∞

t0

t‖ẋ(t)‖2dt < +∞.

(iii) ‖ẋ(t) + βξ(t)‖ = O(t−1).

Proof. Let (x, y) : [t0,+∞[→ H×H be a global strong solution of (4). Take α ≥ 3
and x? ∈ S. Recall f̄ := minH f and g(t) = e(t) + βė(t). Our analysis relies
on the non-smooth version of the Lyapunov function in (36), which is defined for
λ ∈ [2, α− 1], as Eλ,T : [t0, T ]→ R by

Eλ,T (t) =t(t− β(λ+ 2− α))(f(x(t))− f̄) +
1

2
‖vλ(t)‖2 + λ(α− λ− 1)

1

2
‖x(t)− x?‖2

−
∫ T

t

τ 〈vλ(τ), g(τ)〉 dτ, (95)

where vλ(t) := λ(x(τ)− x?) + τ u̇(t), and u is defined on [t0,+∞[ by (80) and u̇ is
given by (81).
Eλ,T (·) is the sum of four terms, each of which is absolutely continuous on [t0, T ]

for all T > t0. Hence Eλ,T is differentiable almost everywhere. We first differentiate
each term of Eλ,T :

d

dt

[
t(t− β(λ+ 2− α))(f(x(t))− f̄)

]
=(2t− β(λ+ 2− α))(f(x(t))− f̄) + t(t− β(λ+ 2− α)) 〈ξ(t), ẋ(t)〉 .

Using (83), we have

d

dt

1

2
‖vλ(t)‖2 = 〈λ(x(t)− x?) + tu̇(t), λẋ(t) + u̇(t) + tü(t)〉

= 〈λ(x(t)− x?) + tu̇(t), (λ+ 1− α)ẋ(t)− (t− β)ξ(t)− tg(t)〉
= λ(λ+ 1− α) 〈x(t)− x?, ẋ(t)〉 − t(α− λ− 1)‖ẋ(t)‖2 − βt(t− β)‖ξ(t)‖2

− λ(t− β) 〈x(t)− x?, ξ(t)〉 − t(t− β(λ+ 2− α)) 〈ξ(t), ẋ(t)〉 − t 〈vλ(t), g(t)〉 ,
d

dt
λ(α− λ− 1)

1

2
‖x(t)− x?‖2 = λ(α− λ− 1) 〈x(t)− x?, ẋ(t)〉 , and
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d

dt

(
−
∫ T

t

τ 〈vλ(τ), g(τ)〉 dτ

)
= t 〈vλ(t), g(t)〉 .

By collecting these results, the perturbation terms cancel each other out. We get

d

dt
Eλ,T (t) = (2t− β(λ+ 2− α))(f(x(t))− f̄)− λ(t− β) 〈x(t)− x?, ξ(t)〉

−t(α− λ− 1)‖ẋ(t)‖2 − βt(t− β)‖ξ(t)‖2, (96)

for almost all t > t0. Since ξ(t) ∈ ∂f(x(t)) for all t > t0, we have 〈ξ(t), x(t)− x?〉 ≥
f(x(t)− f(x?), and we deduce from (96), that

d

dt
Eλ,T (t) ≤ −((λ−2)t−β(α−2))(f(x(t))−f̄)−t(α−λ−1)‖ẋ(t)‖2−βt(t−β)‖ξ(t)‖2,

(97)
for almost all t ≥ t1 = max (t0, β). It follows that Eλ,T is non-increasing on [t1, T ].
In particular, Eλ,T (t) ≤ Eλ,T (t1) for t1 ≤ t ≤ T . This gives the existence of a
constant C such that

1

2
‖vλ(t)‖2 ≤ C +

∫ t

t0

‖vλ(t)‖‖τg(τ)‖dτ. (98)

Applying Lemma A.3 to (98), and using the integrability of t 7→ tg(t), it follows
that

sup
t≥t0
‖vλ(t)‖ ≤

√
2C +

∫ ∞
t0

‖τg(τ)‖dτ < +∞. (99)

As a consequence, we can define the energy function

Eλ(t) := t(t− β(λ+ 2− α))(f(x(t))− f̄)

+
1

2
‖vλ(t)‖2 + λ(α− λ− 1)

1

2
‖x(t)− x?‖2 −

∫ ∞
t

τ 〈vλ(t), g(τ)〉 dτ,

which has the same derivative as Eλ,T . Hence Eλ(t) ≤ Eλ(t0). Combined with (99),
this gives

t(t− β(λ+ 2− α))(f(x(t))− f̄) ≤ C + sup
t≥t0
‖vλ(t)‖

∫ ∞
t0

‖τg(τ)‖dτ < +∞,

whence statement (i). Claim (iii) is obtained by letting λ = 0 in (99). Integration
of (97) gives the integral estimates of (ii), which completes the proof.

5.1.3. Convergence of the trajectories and faster asymptotic rates. Similar argument
as in the smooth case (see Theorem 3.3), but now using the Lyapunov function (95),
gives weak convergence of the trajectories of (4). Moreover, in the same vein as
Theorem 3.2, o(·) rates can also be obtained. We leave the details to the readers
for the sake of brevity.

Theorem 5.3. Let α > 3. Let f ∈ Γ0(H) and assume that S = argmin f 6= ∅. Sup-

pose that e(·) ∈ W1,1(t0, T ;H) for all T > t0, with

∫ +∞

t0

t‖e(t) + βė(t)‖dt < +∞.

Then, for any global strong solution (x, y) of (4)

(i) x(t) converges weakly, as t→ +∞ to a point in S;

(ii) f(x(t))−minH f = o
(
t−2
)

and ‖ẋ(t) + βξ(t)‖ = o
(
t−1
)

as t→ +∞.
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Remark 5.1. In the special case where e ≡ 0 in (4), i.e., unperturbed case, The-
orem 4.2, Theorem 5.2 and Theorem 5.3 recover the result of [19, Section 4]. In a
nutshell, our result demonstrates that the properties of the unperturbed system are
preserved under reasonable integrability conditions on the errors.

5.2. Implicit Hessian damping. As we have already discussed in the smooth
case (see Section 3.3), the analysis of the convergence properties of the system
with implicit Hessian driven damping heavily relies on Lipschitz continuity of the
gradient. As shown above, such a property was not needed to analyze system (4).
Therefore, the study of the convergence properties for the non-smooth system (13)
(even without perturbations) is an open challenging topic.

6. Numerical experiments. To support our theoretical claims, we consider nu-
merical examples in H = R2 with two real-valued functions:

• The first one is given by f(x1, x2)) = (x1 − 1)4 + (x2 − 5)2. This function is
obviously convex (but not strongly so) and smooth, and has a unique mini-
mizer at (1, 5). For this function, we consider the continuous time dynamical
system (ISEHD-Pert) with parameters (α, β) = (3.1, 1), and (ISIHD-Pert)
with parameters (α, γ, β) = (3.1, 1, 1).

• The second example we consider is with the convex non-smooth function
f(x1, x2) = (x1 − 1)4 + (x2 − 5)2 + 0.1(|x1|+ |x2|). For this function, we use
the continuous time non-smooth system (4) with parameters (α, β) = (3.1, 1).
Although we have no theoretical guarantee for system (13), we do report the
corresponding numerical results with parameters (α, γ, β) = (3.1, 1, 1).

For both examples, we take as an exogenous perturbation

e(t) =
cos(2πt)

tδ
with δ ∈ {0.1, 1.1, 3.1}.

All systems are solved numerically with a Runge-Kutta adaptive method in MAT-
LAB on the time interval [1, 50] with initial data (x0, ẋ0) = (−10, 20, 5,−5). The
results are displayed in Figure 1 and Figure 2.

Let us first comment on the results for the smooth function (Figure 1). For
δ = 3.1, all required moment assumptions on the errors are fulfilled (for the explicit
Hessian, the term ė is dominated by e and can then be discarded). Hence the fast
rates predicted by Theorem 3.2(i) and Theorem 3.4(i) as well as convergence of
the trajectories (see Theorem 3.3 and Theorem 3.5) hold true. For the value δ =
0.1, since the error is not even integrable, neither the convergence of the objective
value nor that of the trajectories is ensured, with large oscillations appearing. The
implicit Hessian damping seems also less stable as anticipated from our discussion
in Section 3.3. For δ = 1.1, though there is no convergence guarantee for the
trajectory, the objective value for (ISEHD-Pert) decreases but at a rate which is
dominated by the error decrease. This can be explained in light of the proof of
Theorem 3.2(i), where a close inspection of (29) and (31) shows that the bound on
the objective error decomposes as

f(x(t))− f̄ ≤ O
(

1

t2

)
+

C

(∫ t

t0

τ ‖e(τ)‖dτ
)2

t2
.
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(a) Explicit Hessian damping: smooth function
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(b) Implicit Hessian damping: smooth function

Figure 1. Example on a smooth function: Evolution of the ob-
jective error and distance to the minimizer as a function of t for
different error decay exponents.

For δ ∈]1, 2], the second term indeed dominates the first one and decreases at the
slower rate t−2(δ−1). This confirms the known rule that there is a trade-off between
fast convergence of the methods and their robustness to perturbations.

Similar observations remain true for the non-smooth function (Figure 2) with
system (4) where we now invoke Theorem 5.2 and Theorem 5.3. As for system (13),
it seems that it has a behaviour similar to what we observed in the smooth case for
system (ISIHD-Pert). As we argued in Section 5.2, supplementing the numerical
observations for system (13) with theoretical guarantees is an open problem that
we leave to a future work.

7. Conclusion and perspectives. The introduction of the correction term at-
tached to the damping driven by the Hessian in first-order accelerated optimization
algorithms makes it possible to considerably dampen the oscillations in the tra-
jectory. The study of the robustness of these algorithms with respect to error
perturbations is crucial for their further development in a stochastic framework.
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(a) Explicit Hessian damping: non-smooth function
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(b) Implicit Hessian damping: non-smooth function

Figure 2. Example on a non-smooth function: Evolution of the
objective error and distance to the minimizer as a function of t for
different error decay exponents.

Our systematic study of these questions for the dynamics underlying these algo-
rithms is a fundamental first step in this direction. We paid particular attention to
the explicit and the implicit forms of the Hessian driven damping, showing several
advantages of the explicit form. Our study concerns the dynamics with damping
driven by the Hessian within the framework of the Nesterov acceleration gradient
method. It shows that the convergence of the values still holds when the error terms
satisfy an appropriate integrability condition, and fast convergence is satisfied when
the (first or second-order) moment of the error is finite. Indeed, as a general rule,
there is a balance between the rate of convergence of the methods and their robust-
ness with respect to error disturbances. An interesting technique studied in [1, 2] is
the introduction of a dry friction term. This makes it possible to have errors which
do not necessarily go to zero, they must not exceed a certain threshold, but on
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the other hand we only obtain an approximate solution. Finding the right balance
between the convergence rate and robustness is an important issue that should be
the subject of further study. Another important aspect of our study is the fact
that several results are valid in the case of a non-smooth function. This opens the
door to the study of similar topics with respect to structured composite optimiza-
tion problems involving a non-smooth term. These are some of the many facets of
these flexible dynamics and algorithms which, in the unperturbed case, have been
applied in various fields including PDE’s and mechanical shocks [18], deep learning
[25], non-convex optimization [6], monotone inclusions [16, 17] to mention a few
important applications.

Appendix A. Auxiliary results. Let us first recall the continuous form of the
Opial’s Lemma [32], a key ingredient to establish convergence of the trajectories.

Lemma A.1. Let S be a nonempty subset of H and let x : [t0,+∞[→ H. Assume
that

(i) for every z ∈ S, limt→∞ ‖x(t)− z‖ exists;
(ii) every weak sequential cluster point of x(t), as t→∞, belongs to S.

Then x(t) converges weakly as t→∞ to a point in S.

Lemma A.2 ([19, Lemma 7.3]). Let τ, p > 0 and let ψ :]τ,+∞[→ R be C2(]τ,+∞[)
and bounded from below. Then,

inf
t>τ

∫ t

τ

ψ̇(s)

sp
ds > −∞ and inf

t>τ

∫ t

τ

ψ̈(s)

sp
ds− ψ̇(t)

tp
> −∞.

Lemma A.3 ([24, Lemma A.5]). Let m : [t0;T ] → [0,+∞[ be integrable. Suppose
w : [t0, T ]→ R is continuous and

1

2
w(t)2 ≤ 1

2
c2 +

∫ t

t0

m(s)w(s)ds,

for some c ≥ 0 and for all t ∈ [t0, T ]. Then

|w(t)| ≤ c+

∫ t

t0

m(s)ds, t ∈ [t0, T ].

Lemma A.4. Let β be a positive function on [t0,+∞[ such that β 6∈ L1(t0,+∞;R+).
Then, the differential inclusion

ż(t) + β(t)∂Φ(z(t)) + F (t, z(t)) 3 0, (100)

is equivalent to

ẇ(s) + ∂Φ(w(s)) +G(s, w(s)) 3 0, (101)

with

G(s, w(s)) =
1

β(τ(s))
F (τ(s), w(s)), t = τ(s), and β(τ(s))τ̇(s) = 1.

Proof. Make the change of time variable t = τ(s) and z(t) = z ◦ τ(s) = w(s). We
then have

1

β(τ(s))τ̇(s)
ẇ(s) + ∂Φ(w(s)) +

1

β(τ(s))
F (τ(s), w(s)) 3 0,

Choose τ(·) such that

β(τ(s))τ̇(s) = 1. (102)
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Introduce a primitive of β, p(t) =
∫ t
t0
β(r)dr Therefore, (102) can be equivalently

written

d
dsp(τ(s)) = 1 ⇐⇒ p(τ(s)) =

∫ τ(s)
t0

β(r)dr = s+ C,

for any constant C. Thus, τ defines a change of variable if and only if
∫ +∞
t0

β(r)dr =

+∞, hence our assumption on β.

Lemma A.5. Take t0 > 0, and let f ∈ L1(t0,+∞;R) be continuous. Consider
a nondecreasing function ϕ : [t0,+∞[→ R+ such that lim

t→+∞
ϕ(t) = +∞. Then,

limt→+∞
1
ϕ(t)

∫ t
t0
ϕ(s)f(s)ds = 0.

Proof. Given ε > 0, fix tε so that
∫∞
tε
|f(s)|ds ≤ ε. Then, for t ≥ tε, split the

integral

∫ t

t0

ϕ(s)f(s)ds into two parts to obtain∣∣∣∣ 1

ϕ(t)

∫ t

t0

ϕ(s)f(s)ds

∣∣∣∣ =

∣∣∣∣ 1

ϕ(t)

∫ tε

t0

ϕ(s)f(s)ds+
1

ϕ(t)

∫ t

tε

ϕ(s)f(s)ds

∣∣∣∣
≤ 1

ϕ(t)

∫ tε

t0

ϕ(s)|f(s)|ds+

∫ t

tε

|f(s)|ds.

Let t→ +∞ to deduce that 0 ≤ lim supt→+∞

∣∣∣ 1
ϕ(t)

∫ t
t0
ϕ(s)f(s)ds

∣∣∣ ≤ ε.
Since this is true for any ε > 0, the result follows.

Lemma A.6 ([11, Lemma 5.9]). Let t0 > 0, and let w : [t0,+∞[→ R be a twice
differentiable 2 function which is bounded from below. Assume that

tẅ(t) + αẇ(t) ≤ g(t),

for some α > 1, almost every t > t0, and some non-negative function g ∈ L1(t0,+∞;
R). Then, the positive part [ẇ]+ of ẇ belongs to L1(t0,+∞;R) and limt→+∞ w(t)
exists.
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