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Abstract. Recently a nonlinear equation describing the plane shear wave propagation in 
isotropic quasi-incompressible media has been developed using a new expression of the 
strain energy density, as a function of the second, third and fourth order shear elastic 
constants (respectively µ, A, D) [1]. In such a case, the shear nonlinearity parameter βS 
depends only from these last coefficients. To date, no measurement of the parameter D 
have been carried out in soft solids. Using a set of two experiments, acoustoelasticity and 
finite amplitude shear waves, the shear elastic moduli up to the fourth order of soft solids 
are measured. Firstly, this theoretical background is applied to the acoustoelasticity 
theory, giving the variations of the shear wave speed as a function of the stress applied to 
the medium. From such variations, both linear (µ) and third order shear modulus (A) are 
deduced in agar-gelatin phantoms. Experimentally the radiation force induced by a 
focused ultrasound beam is used to generate quasi-plane linear shear waves within the 
medium. Then the shear wave propagation is imaged with an ultrafast ultrasound scanner. 
Secondly, in order to give rise to finite amplitude plane shear waves, the radiation force 
generation technique is replaced by a vibrating plate applied at the surface of the 
phantoms. The propagation is also imaged using the same ultrafast scanner. From the 
assessment of the third harmonic amplitude, the nonlinearity parameter βS is deduced. 
Finally, combining these results with the acoustoelasticity experiment, the fourth order 
modulus (D) is deduced. This set of experiments provides the characterization, up to the 
fourth order, of the nonlinear shear elastic moduli in quasi-incompressible soft media. 
Measurements of the A moduli reveal that while the behaviors of both soft solids are close 
from a linear point of view, the corresponding nonlinear moduli A are quite different. In a 
5% agar-gelatin phantom, the fourth order elastic constant D is found to be 30 ± 10 kPa. 
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INTRODUCTION 

In a recent paper, shear wave propagation theory in soft solids brought new ideas in 
the field of elasticity theory. Under the assumption of quasi-incompressible soft solids, 
Hamilton et al. [1] and Zabolotskaya el al. [2] obtained a straightforward expression 
of the shear strain energy density:  
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where I2, I3 are the strain tensor invariants defined by Landau, µ is the linear shear 
modulus and A, and D the third and fourth order shear elastic constants respectively. 

The aim of this paper is to quantify these three parameters in agar-gelatin based 
phantoms (quasi-incompressible media) and particularly for the first time the fourth 
order coefficient in soft solids through two different nonlinear elasticity experiments: 
acoustoelasticity and propagation of plane finite amplitude shear waves. 

ASSESSMENT OF THE THIRD ORDER LANDAU MODULUS A: 
ACOUSTOELASTICITY 

The well-known principle of acoustoelasticity in a lossless solid is based on the 
variations of the speed of elastic waves induced by an uniaxially applied stress. In a 
quasi-incompressible media, and by considering propagating plane shear waves only, 
the applied stress induces an elastic anisotropy resulting from nonlinear effects. 
Changing the amplitude of the uniaxial stress induces an effective shear modulus 
(µeff = ρ0V2

Sij, i,j=1,2,3) according to a linear dependence with a slope which depends 
on the ratio of A and µ. The variations of the corresponding effective shear moduli are 
[3]: 
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where VS is the shear wave speed according to axes of propagation presented on figure 
1, σ22 is the uniaxial stress and ρ0 is the density.  

 
Figure 1: Acoustoelasticity experiment: The three possible configurations generating (using the acoustic 

radiation pressure) and detecting (with an ultrafast scanner) the propagation of polarized quasi-plane 
shear waves in the phantom under uniaxial stress (σ22). The three resulting shear waves are designated 

as [12] or [32], [21] or [23] and [13] or [31], for a), b), c) respectively. 
 
Shear moduli (µeff) during an acoustoelasticity experiments were assessed using the 
supersonic shear imaging technique [4]. Using a fully programmable electronic device 



an ultrasonic beam is focused in the medium, inducing acoustic radiation force which 
locally generates a quasi-plane shear wave propagating perpendicularly to the 
direction of the ultrasonic beam (Fig. 1). Then using the same device as an ultrafast 
scanner (able to reach 5000 frames/s) a movie of the shear displacements is computed. 
From this movie, and using a time of flight algorithm, the shear wave velocity is 
retrieved and then the nonlinear modulus A. 

ASSESSMENT OF THE SHEAR NONLINEARITY PARAMETER: 
PLANE FINITE-AMPLITUDE SHEAR WAVES 

In soft solids, such as biological tissues or agar-gelatin based phantom, the very low 
value of the shear elasticity allows the propagation of a low frequency transverse wave 
(f0 = ω0/2π = 100 Hz) with a shear Mach number close to unity (MS = v0/VS ≈ 0.3) [5]. 
These peculiar materials allow the observation of nonlinear cubic effects affecting the 
propagation of shear waves. 

Nonlinear shear wave propagation was acquired using the same ultrafast ultrasonic 
scanner used for the acoustoelasticity experiments. In order to create finite amplitude 
plane shear waves, a vibrator bounded to a rigid plate applied on one side of the 
phantom was used. The modified Burgers equation for plane shear waves [5] is: 
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=β  is the nonlinear parameter of shear waves and η is the shear 

viscosity. 
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Figure 2: Absolute amplitude of the third harmonic component v3f0 versus the propagation distance z. 

Measurement is fitted using Eq. 6, leading to the value of the nonlinear parameter βS. 
 

For such plane waves one can observe only the generation of odd harmonics [5]. 
Below the shock formation distance, the amplitude of the third harmonic component 
can be calculated as a function of depth using a perturbation method [2]: 
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with α0 the shear attenuation coefficient at f0. 



The amplitude of the 3rd harmonic is measured using a band pass filter (from 250 to 
350 Hz). Then, the evolution of v3f0 with respect to the propagation distance z is 
plotted for various source amplitude v0 emissions (Fig. 2). βS is adjusted to fit the 
experimental data with equation 6. 

RESULTS 

In acoustoelasticity experiments, the shear modulus evolution clearly exhibits the 
appearance of an anisotropic behavior in all phantoms. The mean value of µ and A and 
there standard deviation were calculated from three independent values of A for each 
direction of propagation (Table 1). One can notice that both the linear shear modulus µ 
and the third order elastic constant A increase with the gelatin concentration of the 
phantom. 
 

Table 1: Linear and second order shear moduli in agar-gelatin based phantom 

Materials: agar-gelatin 
phantom with in any cases 

3% agar concentration. 

Linear shear modulus (µ in 
kPa) (mean value over the 

three measurements on each 
axis of propagation at 0 

stress) 

Nonlinear shear modulus 
(A in kPa) (mean value 

over the three 
measurements on each 
axis of propagation) 

#1 (5% gelatin) 6.6 ± 0.6 -37.7 ± 9.8 
# 2 (7% gelatin) 8.5 ± 0.8 -22.7 ± 2.5 

# 5 (8.5% gelatin) 9.9 ± 0.5 -5.9 ± 1.2 
# 3 (10% gelatin) 16.6 ± 0.1 101.4 ± 9.0 
# 4 (13% gelatin) 19.2 ± 0.1 394.4 ± 77.2 

Finite amplitude wave experiment presented on Fig. 2 was realized in AG phantom #1. 
The estimation of parameter βS = 4 ± 0.5 allows; using the expression of βS, to 
retrieved the fourth order nonlinear shear coefficient D. This is the first time that D 
coefficient is measured in soft solid and is found to be equal to 30 ± 10 kPa. 

CONCLUSION 

In this paper we have shown two possible ways to quantify the nonlinear 
parameters of soft solids and particularly of biological soft tissues. Furthermore, for 
the first time the nonlinear fourth order shear elastic coefficient is estimated. At last, 
further analysis must be realized on biological tissues to see if nonlinearity could have 
an impact on tissue characterization.  
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