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1. Totrewiuction

In this paper, we present an experimental study of the nonlinear behavior

of an Agar-gelatin based phantom by uwsing an uwltrafast ultrasonic scanner. 1t
includes o medical ultrasonic array 5 MHz) with 128 chammels [1]. Each chantiel
i cononeeled tooa large memory {2 Mbytes), and the echoes are sampled at
S0 MHy and digitized with 9 bit resolution. In a typical experiment, 250
cehographic imeages (ol a 3000 He frame rate) are recorded in memony,
A displacerment movie is obtained using crosscorrelation algorithms between
successive speckle inages [21, Thus it allows to detect fast tissue motion induced
by low [requency shear waves within the medium, The sensitivity of this
apparitus allows Lo detect displacements as small as 1 pm. The whole technique
5 kooman as lransient elastography, As shown in figure 1, the low frequency (00
He) shear wave i3 generated by shaking transversally a rigid aluminum plate
(11x17 e applied on one side of the phantom with a vibrator {Brileld K jer,
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Figure 1 : Nsperimental set-up. Transicnt elasropraphy technique: a muedicul ransducer
array contected to an ullralasl scanner nsonities a tissue-mimicking phuntom, A 100 7
shear wave train is gencrated by a vibrator from a rigid plate spplicd on one gide of the
phantom. Simullancously, frames (at 5 3000 Hz repetition rate} are stored in memory. With
cross correlulion algorichms between frames, the lrunsverse displacement field (along the »-
axis) of the shear wave is measured aluny the central axis of the plate iparallel o e s-
axiz).

4800 lype). The transverse displacement [Geld of the shear wave is measured i wne
dimension along the axis of the rigad plate un a distance of 40 mm which represents a few
shear waveleniths, An accelerumeler is set an the vibeatar to make sure thal no hurmonic 18

pgenerated by the source.

2. Acvusto-elasticity experiment

A slatic uniaxial stress is applied in the ¥ dircetion, Experimentally, loads
are set on a rigid plate placed on the top of lhe phantom. Then, one can observe
changes on the speed measurements of shear waves polarized in the direction
parallel { dircelion} or perpendicular {x direction) Lo the stress axis, Figure, 2. In
arder to ensure good contacts in the experiment, a preload is applicd on the
phantomn that explains why the same value of the shear modulus is not recovered
at zero siress for both polarizations.

"The three plane wave solulions that propagate in a plane perpendicular to
the: axis of the static uniaxial stress arc ussociated with the three tollowing
vigenvalues [3.4]:
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Figpre 2 Experimenlal shear moeduli as fuoction of the uniaxial stress. From the two
slapes, the twa romlinear Landag cosflicients A and B are computed,
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In equations (1, 2, 33, ¥p stands for the speed of the compressional wave,
¥ \ for the speed of the shear wave with a polarization parallel to the stress axis,

and Vﬁ_il' for the speed of the shear wave with a polarization perpendicular to the
stress axis, From a quantitative point of view, the shear clastvily is estructed
from the first point of the curves null siress), g = 6.35 kPa. The perpendicutar
elastic maduli increase by 4 % and the paralle]l maduli by @ % (Figure 2.5 From
the pair of slopes and using the set of equations (3, 3% one can found (he
following walues -L01 kPa and -14.3 GPa for the Landan coefficients 4. &
respectivaly, ‘The huge difference herween these third order moduli iz striking
since in more conventional media such as meral, rocks or crystals they are of fhe
same order. At last, the third order coefficient = obtamed from resullz foond in
the literature, Actually, Everbach measured with a thermodynamic method {the
pressiure 15 changed while the temperature is kept constant), the nonlinear
parameter for longituwdinal wave 7 3.64 in an Apar-gelatin phantom [5], This
vatlue of the nonlinear parameter does not change significantly from one sample
to another and is in fact close o the paramerer found in warer, f= 3.5, Since Fis
expressed as tunetion of the Landau coefficients:



Jmint Warkshop of Russian Acoustical Soclety (RAS) and French seoustical Socieky (SFA}
“Iligh Intensity Accustic Waves in Modern Techuelogical ang Medlesl applications™, 14-15 Mowarmber, 2006, Mosaow

I A+IE+C
Bl e s (4]
2 Pl
anid using the experimental value of o and B. One linally obtains ©=131 GPa [6].
TABLE, f Llastic moduli measured in an Agac-gelalin based phanwom.

Linear secand order elastic Monlinear third avder elastic moduli

moduli (Lamé cosflicienls) _ { Landau coelficients)
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. Shock transverse wave
In the field of soft solids, such as biolovical Gssues (muscle, fat, breast)
or Agar-pelatin based phantom (a soft tssue model), the very low value of the
shear elasticity (fypically 2.5 kPa) allows the propagation of a Iour frequency
tramsverse wave {100 Hf) with a very high particle velocity (0.6 ms } compared
w it speed (1.6 m.s™'h Thus Mach numbers as huge as unity are obtained.
Consequently in this peculiar configuralion, thivd order nonlinear effects become
very high and clearly modify the ransverse wave shape, The temporal shape of
the particle velocity at 15 mm away from the source is not a saw-tooth shape as
for the longitudinal waves, Froon a theoretical point of view, this result is well
explaimed considering the local specd (3,
=gd ¥ ey {5}
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Each point of the wave profile travels with its own constant speed, which
depends on the value of the square of the particle velocity +°, As a result and
contrary to longitudinal wave, the high amplitude parls of the wave travel Faster
whatever the sign of the parricle velocity: the slope steepens simultaneously oo
the positive and the negative half period ( Figure 3(a).). Thix can be interpreted as
a consequence of the symmetric behavior of the displacements field as regard to
the propagation direction. As predicted by theory, for such plune waves one can
ohsarve only odd harmenics al 100 11z, 300 Hz and 500 He (Fisure Hh Asa
comparison, the spectrum of the accelerometar set on the vibeator {the shear wave
source} only containg the fandamantal harmonic at 100 Hz,

The sudy of the amplitude of each harmonics as funclion of depth
allows L characterize the shock distance. As predicted by the thaory, the shock
distunce increase as the emitted amplitude of the source decrcase. This
experimendal results are confirmed by a finite difference simulation bascd on
McDonald and Ambrosiano algorithin e compure the modified Burgers cepration
imcludding viscosity | 7,8,

4. Conclosion

Although gelatin based phantoms are knewn 1o be vary linear from an
elastic poinl of view. quantitative measurements of lheir nonlinear behavior is
possible with clastographic methods, The experiments presented in this paper are
probably still loo academic to be easily applied on real soft tissues but give a
clear illusiralion of the shear wave behavier in sofl media, Iurther works are
necded W investizate the nonlinear behavior of non plane shear waves in order Lo
apply hese lechninues i vive,
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