Baptiste Pollien
email: baptiste.pollien@isae-supaero.fr

Vérification d'une bibliothèque mathématique d'un autopilote avec Frama-C

Keywords: Preuve de programme, méthodes déductives, interprétation abstraite

Session doctorants

Introduction

Les méthodes formelles sont des techniques de vérification basées sur des modèles mathématiques qui permettent de vérifier et de garantir certaines propriétés. Il existe de nombreux outils de vérification formelle qui possèdent des spécificités en termes des propriétés vérifiables et qui nécessitent des efforts plus ou moins importants de spécification ou de modélisation du système afin de les mettre en oeuvre.

L'objectif de ma thèse est de procéder à une revue des différentes techniques de vérification formelle afin de définir un processus d'analyse d'une architecture d'autopilote de drone tirant parti de ces techniques. Ce processus d'analyse est appliqué au cas de l'autopilote Paparazzi développé à l'ENAC en langage C.

Frama-C [START_REF] Kirchner | Frama-C : A software analysis perspective[END_REF] est un outil d'analyse de code C qui nécessite l'ajout d'annotations dans le code pour spécifier les propriétés attendues : définition de contrats pour les fonctions (préconditions, postconditions et pour spécifier l'ensemble des éléments mémoire (hors pile) qui seront modifiés lors de l'exécution de la fonction), définition des invariants et variants de boucle pour vérifier la terminaison et l'ajout d'assertion. Frama-C dispose de nombreux greffons dont trois nous intéressent pour vérifier formellement les annotations : WP (Weakest Precondition qui utilise un calcul de plus faible préconditions), RTE (RunTime Errors) pour l'ajout automatique d'assertions afin de vérifier l'absence d'erreur à l'exécution et EVA (Evolved Value Analysis) utilisant des techniques d'analyse statique par interprétation abstraite.

Dans le cadre de cet article, la vérification a été effectuée avec la plateforme Frama-C en n'utilisant que des démonstrateurs automatiques et s'est limitée à une bibliothèque mathématique de Paparazzi présentée en section 2. La section 3 présente la première partie de l'analyse concernant la vérification de l'absence d'erreur à l'exécution. La seconde partie, présentée en section 4, présente la vérification de propriétés fonctionnelles pour certaines fonctions mathématiques en ne considérant pas les erreurs d'arrondies potentielles liées aux calculs sur les nombres à virgule flottante.

Paparazzi

Paparazzi [START_REF] Hattenberger | Using the Paparazzi UAV System for Scientific Research[END_REF] est un autopilote open-source (sous licence GPL) développé à l'ENAC depuis 2003. Il supporte differents types de drones et permet le contrôle simultané de plusieurs drones. Paparazzi possède également différents modes intégrés et offre la possibilité de créer des plans de vol personnalisés. La bibliothèque mathématique étudiée correspond à la conversion de rotation de vecteurs dans différentes représentations (matrices de rotation, angles d'Euler, quaternions). Elle définit également certaines opérations élémentaires sur ces représentations. Elle est composée d'environ 4000 lignes de code C et chaque fonction dispose d'une version travaillant sur les types int, float et double. Cette bibliothèque est principalement utilisée pour faire le lien entre les capteurs et la partie contrôle de l'autopilote qui n'utilisent pas nécessairement les mêmes représentations. La vérification de cette bibliothèque permet donc de garantir la cohérence des données traitées malgré l'utilisation de représentations différentes.

Absence d'erreurs à l'exécution

La bibliothèque définit des structures C pour représenter les données manipulées (matrices de rotation, quaternions, vecteurs...). Les fonctions de la bibliothèque travaillent uniquement par référence pour les entrées et pour les sorties. Afin d'éviter des erreurs liées à un déréférencement de pointeurs non valides, des préconditions garantissant la validité des références ont été ajoutées dans les contrats des fonctions. Il a aussi été nécessaire de spécifier les variants et invariants de boucle ainsi que les variables de sorties comme seuls espaces mémoire (hors pile) qui seront modifiées.

WP dispose de différents modèles arithmétiques qui prennent en compte de façon plus ou moins précise la sémantique de C. La vérification de la bibliothèque sur les entiers a été faite en utilisant le modèle réaliste de l'arithmétique machine des entiers. Avec le greffon RTE, il est alors nécessaire de vérifier qu'il n'y a pas de débordement de valeur (ou overflow en anglais) pour chaque opération arithmétique. Pour vérifier l'absence de dépassement, chaque fonction a été analysée dans l'objectif de déterminer les bornes maximales possibles des différentes variables. Lorsque ces bornes ont pu être déterminées, elles ont été ajoutées en préconditions dans les contrats des fonctions.

Malheureusement, WP associé à des prouveurs automatiques n'est pas parvenu à vérifier ces nouveaux contrats. L'utilisation de références pour l'accès aux valeurs numériques surcharge les prouveurs et ce même en spécifiant en précondition que les structures en paramètres sont stockées à des emplacements mémoire séparés.

Pour pallier ce problème, nous avons décidé d'associer EVA à WP. EVA arrive à calculer des intervalles suffisament précis des valeurs possibles pour chaque variable. Ce résultat est ensuite transmis à WP par Frama-C ce qui permet de conclure plus facilement les preuves. Cette limitation de WP avait aussi été notée par Vassil Todorov durant sa thèse [START_REF] Todorov | Automotive embedded software design using formal methods[END_REF] et il avait également utilisé un outil d'analyse statique par interprétation abstraite, Astrée, pour résoudre ce problème. En conclusion, lorsque l'on associe EVA avec WP, il est possible de vérifier l'absence d'erreur à l'exécution des fonctions de la bibliothèque sur les entiers.

WP dispose également d'un modèle arithmétique real qui correspond à l'arithmétique réelle au sens mathématique. Pour la vérification des versions de la bibliothèque travaillant sur des valeurs numériques à virgule flottante (aussi bien float ou bien double), nous avons décidé d'utiliser ce modèle. Il nous a permis de vérifier l'absence de division par 0 et que les variables ne prennent pas la valeur NaN (Not A Number). Pour effectuer ces vérifications, il a été seulement nécessaire d'ajouter comme préconditions que chaque valeur numérique passée en paramètre ne prend pas la valeur NaN et qu'elle n'est pas infinie. Là encore, l'absence de ces deux erreurs à l'exécution et la terminaison des fonctions ont été prouvées pour les versions float et double de la bibliothèque en utilisant WP et EVA. Par contre, notre vérification n'offre aucune garantie sur le risque de dépassement ou sur les erreurs liées aux arrondis. Cependant, ce modèle nous a été particulièrement utile pour la vérification des propriétés fonctionnelles présentée en section 4.

Vérification fonctionnelle de propriétés

La vérification fonctionnelle permet de garantir les résultats attendus d'une fonction. Dans notre cas d'étude nous avons décidé de vérifier certaines propriétés fonctionnelles de la fonction float_rmat_of_quat car elle est représentative et indépendante des autres fonctions présentes dans la bibliothèque. Cette fonction prend en paramètre un quaternion normalisé et retourne la matrice de rotation correspondante.

Afin de spécifier les propriétés fonctionnelles, des types et des prédicats ont été définis dans la logique fournie par le language ACSL. On retrouve la définition des types pour les matrices et les quaternions ainsi que des opérations élémentaires. Des lemmes ont ensuite été spécifiés et vérifiés pour garantir que ces opérations sont correctes. Une fonction logique qui convertit un quaternion en une matrice de rotation a également été définie, indépendamment du code C. Cette fonction est basée sur la formule mathématique de conversion d'un quaternion vers une matrice de rotation [START_REF] Grubin | Derivation of the quaternion scheme via the euler axis and angle[END_REF][START_REF] Klumpp | Singularity-free extraction of a quaternion from a directioncosine matrix[END_REF].

À partir de ces définitions, le contrat de la fonction a pu être établi. En supposant que le quaternion passé en paramètre est normalisé, nous avons voulu vérifier 2 propriétés fonctionnelles. La première est que la matrice retournée correspond bien à la conversion du quaternion passé en paramètre : notre post-condition vérifie que la matrice de rotation générée par le code C est égale à la matrice de rotation générée par notre fonction logique. Comme dans la section précédente, nous utilisons le modèle real de WP pour la vérification de cette fonction, ce qui permet d'ignorer les différences de résultats entre la version C et la version mathématique qui auraient pu être liées à des erreurs d'arrondis. La seconde propriété vérifie que la matrice générée est bien une matrice de rotation, i.e. que la transposée de la matrice est son inverse.

Malgré l'utilisation du modèle real d'arithmétique, WP n'arrivait pas à vérifier le contrat. Il a donc été nécessaire d'analyser le code. Nous avons remarqué que le code C utilisait une constante M_SQRT2 pour représenter √ 2 et qu'en simplifiant les calculs, la constante M_SQRT2 était tout le temps multipliée à elle-même. Nous avons donc suggéré une modification du code en remplaçant ces opérations par une multiplication par 2. Cette modification ne change pas le nombre de multiplications mais permet de réduire les erreurs d'arrondis propagées par la fonction. Avec ces modifications de code et avec le modèle real pour l'arithmétique, WP vérifie le contrat de la fonction float_rmat_of_quat. Ce contrat garantit bien l'absence d'erreur à l'exécution et définit les propriétés fonctionnelles attendues. Ces propriétés permettent de vérifier uniquement le comportement idéaliste de la fonction sans considérer les erreurs potentielles de calcul.

Conclusion

Dans cet article, nous avons pu présenter mon travail de vérification d'une bibliothèque mathématique de Paparazzi qui est disponible sur GitLab. Ce travail s'est principalement concentré sur la vérification de l'absence d'erreurs à l'exécution et a nécessité l'ajout de près de 3,5k lignes d'annotations sur le code.

Dans la continuité de ce premier travail, il est envisagé de vérifier fonctionnellement d'autres fonctions de la bibliothèque mathématique de Paparazzi et d'étudier les erreurs d'arrondis en ne se limitant plus au modèle real mais en utilisant un modèle représentant plus fidélement les flottants.

Remerciements

Je remercie mon directeur de thèse Xavier Thirioux (ISAE-SUPAERO) et mes co-encadrants Christophe Garion (ISAE-SUPAERO), Gautier Hattenberger (ENAC) et Pierre Roux (ONERA). Je tiens également à remercier l'Agence pour l'Innovation de Défense (AID) du Ministère des Armées pour le financement de cette thèse (projet de recherche CONCORDE N • 2019 65 0090004707501).