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Abstract

Dense time series of optical satellite imagery describing vegetation activity provide essential information for the efficient and regular monitoring of
vegetation. Nevertheless, the temporal resolution of optical sensors is strongly affected by cloud cover, resulting in significant missing information.
The use of complementary acquisitions, such as Synthetic Aperture Radar (SAR) data, opens the door to the development of new multi-sensor
methodologies aiming at the reconstruction of missing information. However, the joint exploitation of new radar and optical missions, such as
the Sentinel, raises new challenges given the different nature and response of the two data sources. In this work, the SenRVM methodology is
proposed as a new multi-sensor approach to regress SAR time series towards Normalized Difference Vegetation Index (NDVI). A deep Recurrent
Neural Network architecture which integrates SAR acquisitions and ancillary data is adopted. The regression task permits a continuous optical
temporal resolution of 6 days. Multiple experiments are carried out to assess the SenRVM framework by studying two large-scale areas in France.
Through an extensive interpretation of the results, SenRVM is evaluated on three main vegetation types (grasslands, crops, and forests). High
accurate results (R2 > 0.83 and MAE < 0.05) over more than 140, 000 vegetation polygons are obtained, both for multi-class and class-specific
models. The importance of the SenRVM input features is discussed through an ablation study, highlighting that the relevance of the features
differs for the various classes. The good performances of SenRVM are assessed by evaluating the quality of the reconstruction over short- and
long-term data gaps. Results are compared to five state-of-the-art methodologies. Finally, some preliminary experiments are first carried out to
show how SenRVM results could be used to improve the existing cloud & shadow masks. The recovering of time series breaks caused by vegetation
cover changes is also illustrated.

Keywords: Time series, Recurrent Neural Network (RNN), Regression, Missing Data, Sentinel-2, Sentinel-1, Data
fusion, NDVI, Vegetation, Monitoring

1. Introduction

A growing body of evidence shows the essential benefits of vege-
tation cover for ecosystem services. Its capacity for carbon storage,
quality food production, or as a biodiversity reservoir (Hufkens et al.,
2016; Yang et al., 2019) are increasingly threatened by current climate
changes and human interventions. Large vegetation areas across the
globe can be divided into three major types: grasslands, crops and
forests. Forests and grasslands are respectively the world’s first and
second carbon sinks for climate regulation (Dass et al., 2018). Both
are home to the most important terrestrial biodiversity and preserve
soil from erosion or impoverishment. Crops play a key role in many
sustainable agricultural practices aiming a healthy environment, eco-
nomic profitability and social and economic equity (Massawe et al.,
2015). Monitoring the status and evolution of vegetation surfaces
at a global scale provides essential information for climate modeling
or public policy implementation (Bengtsson et al., 2019; Buchmann,
Nina and Fuchs, Kathrin and Feigenwinter, Iris and Gilgen, Anna K.,
2019). Vegetation types exhibit multiple modes of growth and senes-
cence within their different phenology cycles, which vary under hu-
man interventions and climate influences. Regular vegetation moni-
toring over the globe thus requires frequent wide-area measurements.
Large scale remote sensing time series is a well-known tool meeting the
global coverage and repeated measurement requirements (Chuvieco,
2008; Li and Roy, 2017).

The relevance of remote sensing imagery for vegetation monitor-
ing has been proven since the launch of the first Earth Observation
(EO) satellites (Wulder et al., 2012). Vegetation dynamics can be recog-
nized from optical measurement given their spectral reflectance prop-
erties. Consequently, numerous studies exploit optical time series for
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vegetation related applications. Mapping the extent of vegetation ar-
eas (Fensholt and Proud, 2012; Zhang et al., 2017), estimating yields
and management practices, monitoring the impact of climatic events
and diseases (Liu et al., 2020) are some classical examples. The liter-
ature commonly adopts vegetation indices derived from satellite data
for applications involving vegetation monitoring. The most prominent
vegetation index is the Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979), which is still extensively used (Ali et al., 2016; Belgiu and
Csillik, 2018; Misra et al., 2020; Yang et al., 2020). Besides its simple
computation, the popular success is explained by its efficiency to re-
trieve vegetation phenology information and health conditions (Rein-
ermann et al., 2020; Zeng et al., 2020).

Temporal NDVI profiles provide efficient information for vegetation
condition monitoring. Vegetation phenological changes can be accu-
rately captured when optical satellite observations are acquired with
sufficient repetitivity. Unfortunately, the temporal resolution of op-
tical satellites is significantly affected by weather conditions. Cloud
coverage causes considerable data gaps in both spatial and temporal
domains. As a consequence, the temporal sampling of optical time se-
ries is irregular. It is among others, constrained by the geographical lo-
cation of the area under study (Sudmanns et al., 2020). Large temporal
data gaps can last from weeks to months or occur at key dates involv-
ing important vegetation changes (e.g., growth or senescence periods
or even harvest time). To address the data loss, gap filling methods are
commonly proposed to increase the time series temporal resolution.
Most of the existing methodologies exploit past and future observa-
tions of the same sensor to recover missing data. This classical strategy
can suffer from important limitations in the presence of large data gaps
(Moreno-Martínez et al., 2020). These drawbacks become more appar-
ent for non-stationary vegetation time series having seasonal gradual
or abrupt breaks. To address such shortcomings, the integration of ex-
ternal complementary data in the gap filling process is proposed by
some recent strategies.
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In this era of new satellite missions, the opportunity of fusing in-
formation from different sensors opens the door to the development
of new methodologies aiming at reconstructing vegetation index time
series with high temporal sampling. One of the most promising com-
plementary satellite data sources is the one acquired by the Sentinels
missions. The trade-off between spatial, spectral, and temporal reso-
lutions is significantly improved by the Sentinels satellites. The con-
stellation provides free and open access data covering the globe which
are acquired by different high resolution sensors. Sentinel-2 A&B (Gas-
con et al., 2014) are carrying multi-spectral imaging sensors while Syn-
thetic Aperture Radar (SAR) instruments are on-board Sentinel-1 A&B
(Potin et al., 2019) satellites.

Given the particular nature of optical and radar signals, each of
the sensors has its pros/cons and fields of application. Sentinel-2
brings new opportunities for regular vegetation monitoring, however,
its high temporal resolution cannot be guaranteed due to cloud cover-
age. Weather independent Sentinel-1 acquisitions can allow constant
vegetation monitoring (Schmitt and Zhu, 2016). The benefit of SAR
data exploitation for vegetation studies involving forests (Frison et al.,
2018; Sr. et al., 2018), crops (Veloso et al., 2017; Kumar et al., 2018; Hos-
seini et al., 2019; Ouaadi et al., 2020) or grasslands (Tamm et al., 2016;
Fauvel et al., 2020)) is highlighted by numerous studies. Nevertheless,
the extraction of interpretable descriptors is not straightforward. High
statistical fluctuations of SAR signals bring strong inconsistencies in
their time series. SAR acquisitions are significantly influenced by ex-
ogenous factors such as climate and relative humidity effects (Vreug-
denhil et al., 2018) or geometric effects led by the side-looking nature
of SAR sensors (Nasrallah et al., 2019). Another inherent problem of
SAR systems is the speckle noise, which is due to the negative or pos-
itive interferences of all elementary targets within a pixel. As a conse-
quence, the use of SAR sensors for monitoring changes in vegetation is
more restricted in the literature.

In this context, this work proposes a multi-source methodology ex-
ploiting the capabilities of both satellite data sources. The joint com-
plementarity between SAR and optical Sentinel imagery is used to re-
construct dense temporal NDVI time series. A new recurrent deep-
based architecture is designed to explore the high dimensionality of
the data and their complex relationships. The proposed architecture,
namely SenRVM, targets to regress multivariate SAR time series and
proposes the incorporation of contextual knowledge to reduce the im-
pact of exogenous factors leading to SAR data variability. The contri-
butions of the proposed object-based methodology are:

(i) a recurrent neural network (RNN) approach that jointly inte-
grates multivariate SAR and optical time series with ancillary
data. The proposed approach permits to densely estimate NDVI
at a 6 days temporal rate,

(ii) an extensive evaluation of the results which are obtained over
large scale geographical areas for the next three vegetation
classes: grasslands, crops and forests,

(iii) a comparison with existing methodologies both in terms of pre-
diction accuracy and ability to recover time series breaks.

The content of this work is organised as follows. A review of promi-
nent gap filling and deep-based data fusion techniques is first pro-
posed in Sec. 2. In a second step, Sec. 3 details the study areas, data
sources, and the compulsory pre-processing steps, both for satellite
and ancillary data. Sec. 4 explains the proposed architecture and ex-
perimental results are presented in Sec. 5. Finally, conclusions and fu-
ture perspectives are drawn in Sec. 6 and 7.

2. Related work

A large range of research efforts has been devoted to develop
non-parametric methodologies for recovering time series of optical-
derived vegetation indices with high temporal sampling (Verrelst
et al., 2015; Cai et al., 2017; Belda et al., 2020a). Two main categories of
methods are found in the literature that target to increase the temporal
resolution of the time series: standard interpolation methods and
machine learning (ML) regression algorithms.

Standard interpolation methods can be considered as gap fill-
ing reconstruction strategies recovering missing information. These
methodologies can be divided into different categories (Shen et al.,
2015; Desai and Ganatra, 2012; Yin et al., 2017; Lepot et al., 2017; Ger-
ber et al., 2018; Moreno-Martínez et al., 2020). Traditionally, these
mono-sensor approaches exploit past and future observations ac-
quired by the same sensor to estimate missing data. Despite numer-
ous relevant spatial and spatio-temporal approaches (Kang et al., 2005;
Zhang et al., 2007; Das and Ghosh, 2016; Ding et al., 2017; Vuolo et al.,
2017; Moreno-Martínez et al., 2020), local and global temporal inter-
polation approaches remain the most prevalent methods.

Local temporal methods exploit the temporal evolution of the time
series by using a sliding temporal window. Among these approaches,
the classical linear interpolation method is the most well-known and
used (Inglada et al., 2017; Defourny et al., 2019; Hubert-Moy et al.,
2019; Bolton et al., 2020; Kamir et al., 2020). Polynomial-based strate-
gies have been extensively proposed as alternatives. Some examples
are spline interpolation methods (Xu et al., 2017; Meng and Li, 2019),
Savitzky-Golay filter-based methodologies (Chen et al., 2004; Jöns-
son and Eklundh, 2004; Kandasamy et al., 2013; Julien and Sobrino,
2019) or locally weighted scatterplot smoothing (Moreno et al., 2014)
method. The accuracies of these methods are directly influenced by
the sliding window’s size, which is a predefined parameter related to
the gap length.

Instead of working at the local scale, global temporal methods
propose to recover missing information by fitting the data to prede-
fined functions. For instance, the widely used Whittaker smoother fits
the time series by minimizing penalized weighted spline regression
squared errors (Atkinson et al., 2012; Kandasamy et al., 2013). Further
global approaches include asymmetric Gaussian function fitting (Jon-
sson and Eklundh, 2002; Beck et al., 2006) or Fourier-based harmonic
analysis (de Wit and Su, 2005; Zhou et al., 2015; Julien and Sobrino,
2019; Solano-Correa et al., 2020). One of the main limitations of global
strategies is that they generally assume that the data follows some a
priori distribution shape. They are therefore class-specific, resulting in
a lack of flexibility in the presence of non-stationary data (Chen et al.,
2004; Moreno-Martínez et al., 2020).

One of the main weaknesses of the standard interpolation methods
is their poor effectiveness when large data gaps are occurring. In these
situations, these methods fail in reconstructing temporal trajectories
describing high frequency variations. It can result in missing crucial
information about vegetation changes described by such variations.
The effectiveness of standard interpolation approaches directly
depends on the valid number of observations acquired by the used
sensor. Consequently, these methods have been mostly applied to
dense optical time series (e.g., MODIS or SPOT-VEGETATION) with
coarse spatial resolutions or for tasks requiring limited temporal
information, e.g., yearly land-cover classification (Cai et al., 2017; Sun
et al., 2021). The temporal resolution of time series acquired at high
spatial resolution (e.g., Landsat or Sentinel) is usually less dense. In
this case, missing data periods can range from weeks to months (Roy
et al., 2008). To address such limitations, some interpolation methods
consider the fusion of complementary optical data (Gao et al., 2017;
Claverie et al., 2018; Dwyer et al., 2018; Dong et al., 2020; Griffiths
et al., 2020; Moreno-Martínez et al., 2020). Unfortunately, these
multi-sensor methods require important corrections to homogenize
the different spatial (Zhu et al., 2016) and spectral (Barsi et al., 2018;
Bolton et al., 2020) resolutions. Additionally, complementary optical
data is also affected by cloud coverage and cannot guarantee to
provide a high number of supplementary valid observations.

The exploitation of multi-sensor observations for recovering time
series of optical-derived vegetation indices has been emphasized by
ML regression methodologies (Kamilaris and Prenafeta-Boldú, 2018;
Reichstein et al., 2019). An increasing number of works has proposed
the use of optical and weather-independent SAR time series (Schmitt
and Zhu, 2016). The availability of complementary optical and SAR
satellite missions (e.g., Sentinels) has supported their joint exploita-
tion. Three categories of ML regression algorithms approaches can
be found in the literature, exploiting Sentinel images: classical ML ap-
proaches, Gaussian processes, and deep learning methods.
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Classical ML approaches such as Support Vector Machines (SVM)
or Random Forests (RF) have been commonly adopted. For instance,
the work in (Wang et al., 2019) has proposed to apply SVM and RF algo-
rithms on Sentinel-1, Sentinel-2 and Landsat 8 data to predict frequent
Leaf Area Index (LAI) estimations. RF and Support Vector Regression
have been used in (Mohite et al., 2020) to generate dense NDVI time
series. A six-month time period has been investigated over five dif-
ferent crop types. Despite the good results obtained by SVM and RF
approaches, it must be noticed that they have been mostly validated
on small agricultural datasets composed almost only of crops samples.
It is therefore difficult to assess whether these techniques could be ac-
curate over large areas with different vegetation covers. In addition,
these techniques require a feature extraction step and do not exploit
the temporal trajectory of the input time series.

Gaussian process (GP) is another supervised regression method
which has been increasingly exploited in several works. Pipia et al.
(2019) have proposed a multi-output GP methodology to fill gaps in
LAI time series derived from the joint exploitation of Sentinel-2 and
Sentinel-1 observations. Besides time series reconstruction, the GP
performances have been also corroborated by other regression tasks
involving vegetation monitoring. An example is found in (Mercier
et al., 2020) where biophysical parameters have been extracted from
wheat and rapeseed parcels by exploiting Sentinel-1&2 time series. Al-
though neglecting Sentinel images, the use of GP for crop yield estima-
tion is also studied in (Martínez-Ferrer et al., 2020), combining MODIS
and SMAP datasets. Despite previous works have shown a satisfactory
ability of GP for regression tasks, the scalability of these methods can
be challenging. Long training times and significant computational re-
sources are required. The tuning of GP is also complex and very sen-
sitive to the choice of the kernel. Such a choice questions its general-
ization capacity in the presence of very heterogeneous covers. Finally,
likewise classical ML approaches, GP does not exploit the temporal or-
der of the input data used for regression.

In the last decade, deep neural networks have attracted a lot of at-
tention of the scientific community for solving regression problems
Lathuilière et al. (2020). The increasing computer capabilities and the
availability of large datasets have greatly supported their expansion.
Modern neural network architectures have proven to be efficient for
time series data mining where there is limited knowledge about the un-
derlying processes. The use of large training datasets describing high
variability further improves their generalization ability on unseen data.
This capability is essential for handling large geographical areas.

Deep-based SAR-to-optical regression architectures proposed for
Sentinel data have first been devoted to exploit the spatial dimension
of images acquired at a single date (He and Yokoya, 2018; Cresson et al.,
2019; Gao et al., 2020; Meraner et al., 2020). Convolutional Neural Net-
works (CNN) or Generative Adversarial Networks architectures have
been proposed as a single-date regression solution without exploit-
ing the temporal information of times series. The main objective of
this work is the regression of SAR data to optical raw spectral bands to
fill the missing data. Only a few deep-based architectures have been
proposed to exploit the temporal information of high resolution re-
mote sensing time series and almost exclusively for classification tasks
(land-cover mapping). Scarpa et al. (2018) have proposed the use of
CNNs to estimate NDVI from Sentinel data for dates between May and
November. Several scenarios have been investigated to exploit optical
and SAR data either separately or jointly. The images preceding or fol-
lowing the date to be estimated have been used to integrate temporal
information. While the scenario involving both optical and SAR data
as input to their architecture allowed a satisfying estimation of NDVI,
in the case of SAR data only, the results were less accurate. The need for
non-cloudy optical data can nevertheless be a problem depending on
the persistence of the cloud cover. The satisfactory results also high-
light the interest of deep learning approaches compared to standard
interpolation methods. High regression scores are obtained, albeit the
very limited time series used.

To the best of our knowledge, only Zhao et al. (2020) have proposed
a deep-based regression framework based on yearly SAR time series
to retrieve optical-derived vegetation indices. The authors combine
CNNs and RNNs in a reconstruction framework aiming at predicting
gap-free optical NDVI time series. 1D-CNNs have been used to extract

information from SAR time series separately for VV and VH polariza-
tions. RNNs were then exploited to integrate the temporal evolution
of the time series. Promising results have been presented by this lat-
ter approach. Nevertheless, its generalization capability over hetero-
geneous vegetation types and large areas can be questioned. Indeed,
the work proposed in Zhao et al. (2020) has solely focused on crops and
a limited spatial extent. Crops are known to have a clearly defined phe-
nological cycle. This is especially true on restricted areas, where agri-
cultural practices take place at the same time and phenological cycles
are similar. Consequently, the limited geographical area and the lack
of class variability do not allow to conclude on the potential accuracy
in the context of larger areas and more complex vegetation types. Fur-
thermore, high calculation costs and long training times, which may
be challenging in an operational context have been reported, due to
the pixel-wise approach. Finally, the input data in Zhao et al. (2020)
seems restricted: only descending orbit Sentinel-1 acquisitions have
been used, discarding the ascending orbit which could provide addi-
tional information to the regression process. Concerning Sentinel-2,
cloud & shadow masks have been used to select only non- or partially-
cloudy images for both training and validation. The predictions are
thus made on dates that have been extensively seen during training.
This strategy does not allow to assess the approach neither on dates
strongly affected by clouds nor on unseen dates. As for the feature
used, only SAR backscatter coefficient information is selected. Addi-
tional features such as coherence information, which embeds tem-
poral information and has demonstrated its usefulness for the study
of vegetation could have been considered. Furthermore, Zhao et al.
(2020) have reported inferior results when important changes in scat-
tering mechanism (e.g., from diffuse soil scattering to vegetation vol-
ume scattering) are occurring. The introduction of ancillary informa-
tion to support the contextualisation of SAR measurements could im-
prove the results. Moreover, this inclusion could allow to improve the
generalization of the regression over larger geographical areas and het-
erogeneous vegetation covers.

3. Study areas and data

3.1. Study areas
The study is carried out on two geographical areas located in France,

as shown in Fig. 1. The study of each area is performed over two dis-
tinct time periods.
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Fig. 1 The two study areas (left : Mâcon, right : Toulouse) with a true-
color composition of Sentinel-2 image overlayed by grasslands (light-
green), crops (orange), and forests (dark-green).

The first area, denoted as Mâcon, covers the Sentinel-2 T31TFM
MGRS tile. Agricultural season from October 2016 to October 2017 is
studied. Consequently, only Sentinel-2A data is considered for the first
half of the studied period, until Sentinel-2B was available (see Fig. 2).
The study site is thus defined over overlapping swaths of two adjacent
orbits. It allows a temporal resolution of 6 days despite the momentary
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(a) Mâcon

(b) Toulouse

Fig. 2 Temporal distribution of satellite acquisitions for the two study areas. Sentinel-2 (dots), Sentinel-1 ascending (crosses), and descending
(triangles) orbits are shown in the upper part of each plot. Percentage of polygons affected by clouds (at least one pixel) for each Sentinel-2
acquisition is indicated by red bars.

availability of only Sentinel-2A satellite. This area of 5, 328 km2 is lo-
cated in Eastern France and is depicted by a varied topography. A river
valley, hills, and plateaus characterise the area.

The second area, denoted as Toulouse, is located in the South-
West of France and straddles two Sentinel-2 MGRS tiles (T31TCJ and
T31TCH). The area covers 15, 120 km2 and it is characterized by dif-
ferent landscapes. Plains regions are located in the North whereas the
Pyrenees mountains cover the southern part. The time period under
consideration is from February 2017 to April 2018. Sentinel-2A&B full
revisit capacity is therefore available from July 2017.

3.2. Vegetation classes and reference data
Reference data is composed by a large set of polygons which are ob-

tained from two governmental databases. Three vegetation classes are
considered:

• Grasslands are composed of 19 and 21 subclasses for the re-
spective Mâcon and Toulouse areas. This class is composed by
some sub-classes such as permanent meadows or pastures, fod-
der legumes, or temporary herbaceous areas.

• Crops are composed of three major cereals cultivated throughout
both areas: maize, winter wheat and winter barley.

• Forests include closed-canopy deciduous and coniferous forests
which belong to different species. The resulting datasets contain
11 subclasses for both studied areas.

The first database used is the yearly updated French Land Parcel
Identification System (LPIS). For each parcel, this database describes
the main cultivated species according to its farmer’s declaration. The
LPIS is obtained under the framework of the Common Agricultural
Policy (Campos-Taberner et al., 2019; Sitokonstantinou et al., 2020).
Grasslands and crops polygons, corresponding to parcels, are selected
from the LPIS for both areas. The resulting polygons are filtered to
remove non-agricultural surfaces within their boundaries. This fil-
tering task removes pixels identified for example as isolated trees,
ponds or ditches. The second database is the BD FORET (produced
by the French Mapping Agency, IGN), which delineates forest areas
and provides semantic information on the dominant species. For this
database, only polygons having sizes ranging from 4 to 40 hectares are
considered. This consideration permits to balance the size of the for-
est polygons with respect to the grassland and crop ones. The specific
details of the reference data are described in Tab. 1.

Tab. 1 Spatial statistics for grassland, crop, and forest polygons, which
are obtained for the two Mâcon and Toulouse study areas.

Area Class Polygons Area size Total
(km2) polygons

Mâcon
Grasslands 27,832 1274,9

46,001Crops 12,557 594,9
Forests 5,612 579,2

Toulouse
Grasslands 50,103 2758

98,203Crops 34,504 1870,4
Forests 13,596 1177,4

3.3. Satellite and ancillary data

Satellite data includes optical Sentinel-2A&B and SAR Sentinel-
1A&B images. The temporal distribution of their acquisitions is shown
in Fig. 2, where information about cloud coverage is also displayed.
The cloud cover percentage of the reference polygons illustrates how
optical time series may contain many missing values. Optical data
was retrieved from the THEIA web portal (https://theia.cnes.fr/,
accessed: 2020-11-23). Level-2 (Bottom-Of-Atmosphere) data are
produced by the MACCS ATCOR Joint Algorithm processor (MAJA,
(Baetens et al., 2019)) developed jointly by the French and German
space agencies (CNES and DLR, respectively). The resulting products
contain a cloud and & shadow mask, generated for each acquisition
through a multi-temporal approach. Between October 2016 and
October 2017, 53 Sentinel-2 images were recovered for the Mâcon
area. For Toulouse, 73 images were downloaded between February
2017 and April 2018. The images have 13 spectral bands with three
different spatial resolutions. In this study, only the 10×10 m red and
near-infrared bands are kept to compute NDVI time series profiles.
SAR data are obtained from the CNES PEPS platform
(https://peps.cnes.fr, accessed: 2020-11-26). Time series of
radar backscatter coefficients, denoted sigma0, are computed from
Ground-Range-Detected (GRD) products. For the Mâcon area, 60
ascending orbit and 60 descending orbit GRD products are collected.
GRD products gathered on the Toulouse area consists of 71 ascending
orbit and 71 descending orbit acquisitions. A cross-ratio band
between VV and VH polarizations is additionally calculated for each
date. The interest of this cross-ratio band is its good correlation with
vegetation biophysical parameters (Veloso et al., 2017; Vreugdenhil
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(a) Permanent grassland

(b) Maize crop

(c) Closed deciduous oak forest

Fig. 3 Yearly time series of optical and SAR features retrieved from Sentinel’s for the three studied vegetation classes. Green dashed-line corre-
sponds to the cloudless NDVI time series, brown line to sigma0 VV polarization in dB, and light-blue line to 6-days coherence VV polarization time
series.

et al., 2020). All sigma0 bands are converted from linear scale
to logarithmic decibels (dB). For the same dates, interferometric
coherence time series were computed from Single-Look-Complex
(SLC) products. Coherence measurements are obtained every 6 days
calculated from following pairs of images, independently for ascend-
ing and descending orbits. As the SLC products are delivered with a
pixel spacing of 2.3×14.1 m (range and azimuth, respectively), a 9×3
window (range and azimuth, respectively) is used for the coherence
calculation. The processing of the GRD products to sigma0 and SLC
products to coherence images is done using the freely available SNAP
software (http://step.esa.int, accessed: 2020-11-23). All images
are then orthorectified using Range Doppler Terrain Correction
algorithm and the Shuttle Radar Topographic Mission (SRTM) 1
Arc-Second corresponding elevation data. Resulting images have an
output spatial resolution of 10×10 m matching the optical ones.

Ancillary data integrates climatic and topographic data. Climate
data are extracted from the Météo France SAFRAN dataset (Quintana-
Seguí et al., 2008; Vidal et al., 2010). This dataset gathers measure-
ments from all climate stations of the French national meteorological
service (more than 500 stations across the country). Data are provided
daily and measure 25 variables such as solid and liquid precipitation,
average daily temperature, radiation, evapotranspiration, soil mois-
ture index, or drainage. A point grid evenly spaced 8 km apart is used
for the spatial sampling of the data. Each point gathers data from the
nearest meteorological station. The large number of climate stations

allows to ensure data variability despite the low spatial resolution of
the grid.
Topographic data are retrieved from 5×5 m spatial resolution Digital
Terrain Models (DTMs) acquired by IGN. Terrain height, slope, and
exposure bands are computed from the DTMs. Reference data and
the DTMs are perfectly co-registered with the Sentinel images. IGN-
France is indeed responsible for providing the georeferencing grid of
Sentinels over Europe.

3.4. Satellite data pre-processing

The prediction of NDVI measurements from SAR time series is
framed here as a supervised learning problem. Thus, a common tem-
poral grid is defined for the optical and SAR datasets. This target grid
is the ascending or descending SAR time series (e.g., crosses or trian-
gles in Fig. 2) having the lowest average time lag (in days) with respect
to optical acquisitions. Optical and remaining SAR data are then re-
sampled to this temporal grid using the nearest neighbour technique.
The resulting optical and SAR time series contain 60 dates for Mâ-
con and 71 dates for Toulouse. Polygons described in Tab. 1 are then
eroded with an internal buffer of 10 m to remove border pixels. The
satellite information of the resulting polygons is extracted at the ob-
ject level. The object-oriented strategy was chosen for three reasons:
1) the reference data permit the delineation of relatively homogeneous
clusters (parcels) which reduces possible inconsistencies in measure-
ments (Atzberger, 2004), 2) pixel-wise analysis would require further

Tab. 2 Summary of features computed at polygon level for Sentinel-1 and ancillary data.

Sentinel-1 features computed for descending and ascending orbits

(1) Sigma0 dB mean, median and standard deviation for VV, VH and VV/VH bands from Sentinel-1 GRD

(2) Coherence mean, median, standard deviation for VV and VH bands from Sentinel-1 SLC

(3) Derivative features first order derivative computed for the previous (1) and (2) mean features

(4) Neighborhood features features in (3) are averaged on the polygon neighborhood within a specific radius

Features computed from ancillary data

(5) Topographic features mean and standard deviation for height, slope, exposure bands. Area, perimeter, and size are also provided

(6) Climatic features day of SAR acquisition and day before from the nearest weather station

(7) Metadata features temporal distribution of satellite acquisition and LPIS subclass
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SAR processing as it suffers from the speckle noise, 3) the compu-
tational and storage challenges associated to the high data volume
(Atzberger, 2013; Inglada et al., 2017; Mallet and Le Bris, 2020) can be
avoided.

From Sentinel-2 data, the information extracted from each poly-
gon is the average NDVI. These values are used to train and vali-
date the proposed supervised deep learning methodology. Each NDVI
value has its corresponding validity flag ∈ [0, 1] which is computed by
considering MAJA’s cloud & shadow mask information. The cloud &
shadow mask information is used in the most restrictive way: if one
pixel of the polygon is affected by a cloud, the polygon is considered as
cloudy.

From Sentinel-1 data, the two categories of features summarized in
Tab. 2 are computed for each polygon. The first category describes the
statistics computed on the different polarization bands of Sentinel-1
dataset and is denoted as (1) and (2). The statistics correspond to the
mean, median, and standard deviation values calculated on the pro-
cessed GRD and SLC images. For each date, the resulting datasets con-
tain 9 features describing the statistics of sigma0 bands and 6 features
from the coherence bands. The second category of Sentinel-1 features
corresponds to the datasets (3) and (4) of the Tab. 2. These features
provide information about the first order derivatives computed on the
time series considered in (1) and (2). The features in (3) describe the
statistics previously computed on (1) and (2) for the first order deriva-
tive between date t and date t−1. In order to incorporate information
about the polygon neighbourhood, the set of features in (4) is also pro-
posed. The dataset (4) contains then the average of features computed
on (3) on a specific neighbourhood. The polygon neighbourhood is
defined by all the polygons belonging to the same vegetation class in-
side a given pre-defined radius of 2 km. The goal of features in (4) is to
highlight if a specific polygon has a diverging behaviour compared to
its neighbourhood (Ding et al., 2017).

The above described features derived from satellite data are com-
puted for the different studied classes. Fig. 3 illustrates three exam-
ples of feature-based time series derived from satellite data. For each
example, NDVI, sigma0, and coherence (VV polarization and ascend-
ing orbit) are shown. Different phenology dynamics are observed for
the three vegetation classes across the temporal dimension. For in-
stance, crops NDVI response curve follows a double logistic function
as described in (Jonsson and Eklundh, 2002). In contrast, no specific
shape is observed for the grasslands NDVI response curve. Concern-
ing forests, it can be observed how the temporal NDVI signal is rela-
tively stable describing seasonal trends. Fig. 3 also shows that the in-
terpretation of SAR time series is not straightforward given their strong
fluctuations. For instance, at the beginning of the year until the sow-
ing crop period in May, sigma0, and coherence time series of Fig. 3b
exhibit low stabilities. In this case, the presence of bare soil leads to a
high surface roughness and diffuse scattering and important response
variations. Besides drawing phenological cycles, Fig. 3 also corrobo-
rates that the features time series can be used to monitor anthropic
activity. For instance, a mowing act is observed in Fig. 3a at the end
of April. The agricultural practice results in different responses among
the features. A drastic drop is observed in NDVI response, whereas the
act results in a marked increase of SAR coherence signal.

As shown in Tab. 2, object-level information is also extracted from
ancillary data. Additional features (corresponding to (5) and (6) in
Tab. 2) are integrated into the network architecture as an input infor-
mation. For each Sentinel-1 acquisition date and the previous day, 25
climatic variables are collected. Information about the previous day
of the acquisition is incorporated to take into account the morning
schedule of some SAR acquisitions as well as rain accumulation. Con-
cerning topographic information, 9 features are derived to incorpo-
rate polygon geometric characteristics alongside SAR measurements
(O’Grady et al., 2013; Nasrallah et al., 2019). Working at the poly-
gon level, mean and standard deviation values are computed from
the height, slope, and exposure bands. Additionally, polygon shape
features are also considered with area in hectares, perimeter, and the
number of Sentinel pixels.

Finally, the last category of ancillary features comes from two types
of metadata information (features (7) in Tab. 2). The first one concerns
the temporal information about Sentinel’s acquisitions. The days of

the year of Sentinel-1 ascending and descending acquisitions are pro-
vided. Temporal differences in days between Sentinel-1 acquisitions
and their associated Sentinel-2 NDVI observations are taken into ac-
count. This last information is considered to reduce the impact of the
nearest neighbouring resampling pre-processing step used to unify the
temporal grid. The subclass of each polygon described in the LPIS and
BD FORET databases is proposed as second metadata information.

4. Method

4.1. Regression task and loss function
Let us denote as X = (x1, x2, ..., xT ) the multivariate time series

of length T containing all features derived from Sentinel-1 (see Tab. 2).
For each t ∈ {1, 2, ..T}, SAR features derived from an image acquired
at instant tth are represented by xt. In parallel, Z = (z1, z2, ..., zT ) is
the multivariate time series where each zt contains the features com-
puted from ancillary data, tailored to provide information about SAR
measurements (Benninga et al., 2019). Considering these definitions,
{X,Z}asc and {X,Z}desc correspond to the couples of features from
ascending and descending orbits. SAR orbits are individually pro-
cessed to avoid mixing information acquired from different viewing
angles. The proposed SenRVM regression method then uses both cou-
ples to predict the time series Ŷ = (ŷ1, ŷ2, ..., ŷT ) where ŷt denotes the
predicted NDVI measure at the instant tth.

The proposed supervised SenRVM methodology is based on a deep
learning recurrent architecture. As described in Sec. 4.3, our method-
ology mainly relies on two types of neural networks which are briefly
introduced in Sec. 4.2.

To supervise SenRVM, NDVI time series Y = (y1, y2, ..., yT ) of
length T derived from Sentinel-2 acquisitions are used. The training
process estimates the network parameters by minimizing a loss func-
tion J . This function quantifies the error L between predicted and
expected NDVI values. Given n training samples, J is defined as the
average Mean Squared Error (MSE)L and is committed during the for-
ward training propagation step as:

J =
1

n

n∑
i=1

L(Ŷi, Yi), (1)

where L evaluates the average error between prediction ŷt and ex-
pected yt values as instant t. The MSE is preferred to other classical re-
gression loss functions Lathuilière et al. (2020) given its ability to con-
verge towards the optimal solution. Note that the Mean Absolute Er-
ror outputs continuously large gradients even in the case of small er-
rors, which can lead to convergence problems. The alternative Huber
loss requires the setting of a hyper-parameter delta. The setting of this
value can be data dependent and is an iterative problem.

To take into account the sensitivity of MSE to outliers, cloudy
NDVI acquisitions are removed from the MSE computation. The in-
formation contained in the cloud & shadow masking vector M =
(m1,m2, ...mT ) is incorporated in Eq. 1 with the validity flag mt ∈
{0, 1} associated with each yt :

L =
1

T

T∑
t=1

mt(ŷt − yt)2. (2)

It must be noticed that the presence of outliers in the training data
cannot be entirely discarded since cloud & shadow masks can con-
tain errors. The performance impact of such errors is discussed in
Appendix A where a re-training/refinement strategy is presented to
slightly improve the SenRVM results.

4.2. Multilayer Perceptron and Recurrent Neural Net-
works

A Multilayer perceptron (MLP) is an artificial neural network (Atkin-
son and Tatnall, 1997) based on the formalisation of the perceptron
(Rosenblatt, 1958). MLPs are feedforward networks, meaning that each
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layer output is fed into the next layer. Traditionally, MLPs are used to
map inputs into an output representation describing the complex re-
lations among the data, which is known as the encoding task. Con-
versely, they are used for decoding tasks, which intend to output the
closest match from the given input to the intended output.

MLPs are composed of an input layer, one or more hidden layers,
and an output layer. During the training process, the weights and
biases of the network are iteratively adjusted by minimizing a cost
function. To perform it, the most common technique is to use the
back-propagation algorithm which calculates the gradient of the error
function with respect to each weight. Stochastic gradient descent and
its variations such as AdaGrad, RMSprop, or Adam are commonly
used for updating weights to minimize the loss. By means of nonlinear
activation functions (e.g., Sigmoid, ReLu, or Tanh), a multi-layer net-
work introduces nonlinear relationships in the data, which is essential
to effectively back-propagate the model’s error in the training phase.
To improve the generalization of training and prevent overfitting
(i.e., fitting too closely to the data used for training), regularization
techniques such as dropout or normalization layers are routinely
used. Dropout limits the interdependence between neurons in a layer
by randomly ignoring neurons during training. Normalization helps
to stabilize the training accuracy when data have different ranges.

Recurrent neural networks (RNNs) are capable of learning features
and long-range dependencies from sequential data (Campos-Taberner
et al., 2020). Compared with MLP, RNN breaks the imposed feedfor-
ward neural network rule where information is processed unidirec-
tionally. RNNs have recurrent layers where the neurons composing a
layer are interconnected in both directions of the network. These re-
current connections are used for dynamic information processing and
are naturally suited to satellite time series.

Bi-directional RNNs (BRNN) process the sequence in both direc-
tions. Typically, two separate RNNs are used: one for the forward direc-
tion and one for the reverse direction. Two common variants of RNN
include Long Short-Term Memory (LSTMs, (Hochreiter and Schmid-
huber, 1997) units and Gated Recurrent Units (GRUs) (Cho et al., 2014).
These variants propose the use of gating mechanisms to control the
memorization process along the sequence. GRUs are similar to LSTMs
networks but with a simpler architecture (e.g., one gate less). This re-
duces the network complexity and allows for significant decrease in
network parameters and computing times, while providing similar re-
sults (Ndikumana et al., 2018).

4.3. SenRVM architecture
The Sentinels Regression for Vegetation Monitoring (SenRVM) ar-

chitecture is decomposed into three blocks as depicted in Fig. 4. Firstly,
the encoder block combines SAR and ancillary data to extract a joint
complex representation.Secondly, the recurrent block captures the
temporal dependencies among the previous representations. Finally,
the decoder block translates the networks representation into the tar-
get variable.

The encoding block individually processes ascending and de-
scending orbit datasets by two parallel branches, which are fed by
{X,Z}asc or {X,Z}desc couples. Each branch is composed of two
MLPs, which separately maps each {xt, zt} couple to an output
representation of 256 features. The four MLPs composing the encoder
block contain 4 fully connected (FC) layers whose output sizes are
equal to 128, 128, 200 and 256. FC layers, except for the last one, are
followed by batch normalization, dropout, and non-linear activation
layers. As described in Sec. 4.2, these layers are used to improve the
accuracy and generalization of the training. A fixed probability p for
the dropout layers is set to 0.2 and a rectified linear unit (ReLU) is
used as non-linear activation function. The use of MLPs allows us
to obtain a feature representation with the same output size (256).
This intermediate representation encodes complex relationships for
each data modality and allows their fusion without prior correlation
knowledge. An element-wise multiplication (Hadamard product)
is proposed to combine the encoded SAR and ancillary feature
representations computed for each acquisition date. Alternatives
such as concatenation, summation, or subtraction are discarded
because lower results were obtained for these strategies in preliminary
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Fig. 4 SenRVM model overview. It targets to regress SAR and associated
ancillary data into optical-like vegetation index (here NDVI). The size
of the vectors is also indicated.

experiments. Finally, the encoding block concatenates the two
ascending and descending branches in a single vector of 512 features
for each date t. The concatenation is chosen here to keep both orbits
information.
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The second block is a single layer BRNN, scanning the input in
both directions. The choice of a bi-directional RNN is made to obtain
robust predictions using past and future observations. A single BRNN
layer is proposed as it achieves similar performances than more
complex multi-layers BRNN while reducing the number of network
parameters. This block takes as input the outputs of the encoder
block (i.e., the joint SAR and ancillary representation). The RNN is
composed of GRU cells which have a memory size equal to 256. Work-
ing with short-length satellite time series, GRU has been preferred
to LSTM. GRU cells carry two memories (update and reset gates)
allowing the model to determine which information is transmitted or
removed from hidden state t to hidden state t+1. The purpose of this
block is to extract the underlying temporal information contained in
the time series described for each t by 512 features. The bi-directional
RNN outputs two vectors corresponding to forward and backward
scanning. These two vectors are element-wise multiplied to obtain a
single vector of 256 values per date which is passed to the next block.
The recurrent block outputs a time series of size T × 256.

For each date t, the last SenRVM block processes its corresponding
256 features to predict ŷ. This last block is composed of a funnel-
shaped MLP which is a succession of six FC layers whose input sizes
are equal to 256, 64, 32, 16, 8, and 4. As previously proposed, FC layers
are followed by batch normalization, dropout, and ReLU activation
layers. Dropout probability is here initially set to 0.4 and decreases by
0.1 for the successive following layers. Finally, the last FC layer applies
the sigmoid function as the final activation function, considering the
dynamic range of NDVI values. The decoding block regresses the 256
features to a single NDVI value ŷ for all dates t ∈ T .

SenRVM network weights are learned through the training phase
by minimizing the loss function of Eq. 1. Iterative backpropagation
with Adaptive Moment Estimation (Adam) algorithm (Kingma and Ba,
2017) is used to find the optimal network weights. After each iteration,
Adam algorithm updates the weights towards the global minimum of
the loss function.

5. Results

Multiple experiments are carried out to evaluate the performances
of the SenRVM architecture. The accuracy of the predicted NDVI time
series at high temporal coverage is first investigated over a multi-class
dataset including three types of vegetation. In a second step, single-
class models are studied by analyzing the specific class results con-
sidering different spatial and temporal criteria. The importance of
the different input SenRVM features is then evaluated by an abla-
tion study. To further assess the SenRVM performances, the proposed
methodology is compared with standard interpolation and ML regres-
sion methodologies. The SenRVM prediction accuracy is evaluated on
small and significant data gaps.

5.1. Experimental setup
All experiments are carried on a Intel(R) Xeon(R) Silver 4116 CPU

with 12cores @2.10GHz with 32GB of RAM and a NVIDIA GeForce RTX
2080 Ti GPU with 11 GB GDDR6 memory. Reference data is randomly
splitted into disjoint train, validation and test data subsets. The train-
ing dataset contains 3/5th of the polygons describing the complete ref-
erence dataset. The remaining polygons are divided equitably for the
validation and test datasets. A 5-fold cross-validation is performed by
repeating the splitting procedure five times. Hereinafter presented re-
sults are obtained by averaging the 5-fold results.

The SenRVM input features are described in Tab. 2. Each dataset is
standardized by its mean and standard deviation to homogenize the
different ranges. For the different experiments, the batch size (Bs) and
learning rate (Lr) are empirically set. During the training process, the
number of epochs is set to 150. The validation dataset is used to select
the epoch having the lowest loss result.

Four classical regression metrics are used to assess the SenRVM per-
formances. The coefficient of determination R2 is used to estimate

how strong the linear relationship is between the expected and pre-
dicted NDVI measures. Prediction errors are evaluated by the Mean
Absolute Error (MAE, with Absolute Error = | yt − ŷt |), Mean Squared
Error (MSE), and the Root Mean Squared Error (RMSE).

5.2. Evaluation of the multi-class SenRVM model

The performances of a multi-class SenRVM model trained on a large
dataset are evaluated here. The multi-class training dataset is obtained
by merging the three (grassland, crop and forest) vegetation training
datasets (see Tab. 1). For Mâcon, 27, 599 polygons are used for training
the models while 58, 921 are used for the Toulouse area. As previously
described in Sec. 3.3, the three vegetation classes have distinct phe-
nologies, which leads to a high data variability. For both study areas,
the learning rate and batch size are set to 0.0005 and 512 respectively.
Training times for the models are 71 minutes for the Mâcon area and
145 minutes for Toulouse.

Results obtained for the multi-class SenRVM model are shown in
Tab. 3. Results are averaged over all polygons belonging to the test
dataset and for all dates of the time series. Highly accurate results are
obtained, with R2 above 0.86 and MAE errors below 0.042. Low stan-
dard deviations are also found across the four metrics for both areas.
This shows the ability of the SenRVM network to provide good predic-
tions despite the different phenologies of the vegetation types.

Tab. 3 Average results and ± standard deviation obtained by multi-
class SenRVM models.

Mâcon Toulouse

M
u

lt
i-

cl
as

s R2 0.8650± 0.0039 0.8947± 0.0016
MAE 0.0419± 0.0016 0.0404± 0.0016
MSE 0.0039± 0.0002 0.0030± 0.0002
RMSE 0.0628± 0.0021 0.0547± 0.0017

The best performances are reached on Toulouse. Nonetheless, the
differences found between both areas are relatively small. The differ-
ences can be justified by several reasons. Firstly by a difference in land-
scapes between the two areas, with large parts of plains marked by a
little topography for the Toulouse area. The Mâcon area, on the other
hand, has a more spatially distributed topography. Because of the side-
looking nature of SAR data, this can lead to data being masked by to-
pography (see Sec. 5.3.1). The temporal distribution of satellite acqui-
sitions, with more dates for the Toulouse area can also be beneficial.
Lastly, the uneven number of training samples allows the models of
Toulouse to integrate for learning about double the number of poly-
gons of Mâcon.

Fig. 5 shows the predicted NDVI time series for the three valida-
tion polygons previously studied in Fig. 3. As observed, the NDVI
time series obtained by SenRVM follow the 6-day temporal sampling
of Sentinel-1. The figure visually assesses the results detailed in Tab. 3
and corroborate how the predicted NDVI values fit the expected NDVI
measurements. Those results illustrate how SenRVM is capable of pre-
dicting dense NDVI time series describing different phenological pro-
files.

Fig. 5a shows how the grassland clear cut previously discussed in
Fig. 3a is well retrieved. The interest of having dense NDVI time series
for regular vegetation monitoring is also attested by Fig. 5b. In this
case, the resulting NDVI allows us to observe the maize growth during
the month of June and the harvest mid-September. Such interest is
also visible in Fig. 5c where several NDVI measurements are recovered
from a large winter data gap. Despite several months without optical
acquisitions, the results corroborate how SenRVM allows to predict the
stable NDVI response curve expected on this forest polygon.

5.3. Evaluation of single-class SenRVM models

This study aims to investigate if previous results could be improved
by training SenRVM on single-class datasets. Hence, three SenRVM
models are individually trained on grassland, crop and forest datasets.
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(a) Permanent grassland

(b) Maize crop

(c) Closed deciduous oak forest

Fig. 5 Example of three reconstructed time series belonging to the testing dataset. These three examples are previously studied in Fig. 3. Dots are
the actual NDVI values calculated on the Sentinel-2 images. Green dots correspond to cloudless acquisitions, whereas red dots indicate a cloudy
measurement. The black line is the prediction of the multi-class SenRVM model. Grey surrounding region is the average MAE of predictions for
the time series.

Tab. 4 Training time (T) and main SenRVM hyperparameters: learning
rate (Lr) and batch size (Bs).

Area Class Lr Bs T (min)

Mâcon
Grasslands 0.0005 256 57
Crops 0.0005 256 32
Forests 0.001 128 24

Toulouse
Grasslands 0.0001 256 96
Crops 0.0005 512 61
Forests 0.001 256 36

Hyperparameters are empirically tuned according to each vegetation
class, which are reported in Tab. 4.

Results obtained over Mâcon and Toulouse are shown in Tab. 5. The
minimum R2 and the maximum MAE are here respectively equal to
0.83 and 0.044. Results of single-class and multi-class models are of
the same order of magnitude. The differences found with the multi-
class model are highlighted in green (improvement) or red (decrease).

The highest accuracies are reached by the crops class for both study
areas, which obtain similar results. Conversely, grasslands obtains the
worst results and the highest standard deviations. This can be ex-
plained by its high intra-class variability and the important number
of abrupt events impacting them. Despite some R2 differences are ob-
served between crops and grasslands, similar results are obtained by
the rest of the precision metrics. Forests class results obtain the lowest
precision errors which are related to the class signal stability discussed
in Fig. 3c. Human intervention in forests remains rare and their phe-
nology response curve only variates with some specific factors such as
climate. Some differences are observed by comparing the forest results
obtained on the two study areas. The best performances are reached
on Toulouse which can be justified by a greater number of training
samples, approximately double that of the Mâcon area.

Even with a high heterogeneity within the training dataset (see
Sec. 3.2), the results corroborate that a multi-class SenRVM model can
obtain accurate predictions. Furthermore, the use of a large training
dataset permits to increase the batch size, which reduces the com-
putational times. Compared to single-class models, training a multi-

Tab. 5 Class-specific average results ± standard deviation, over all the
predicted instant of times and for all testing polygons. Differences with
results obtained with the multi-class model are marked in green (im-
provement) or red (decrease).

Mâcon Toulouse

G
ra

ss
la

n
d

s R2 0.8384 (+0.0038)± 0.0152 0.8464 (+0.0089)± 0.0115
MAE 0.0418 (+0.0011)± 0.0058 0.0443 (-0.0002)± 0.0029
MSE 0.0040 (+0.0003)± 0.0009 0.0037 (-0.0002)± 0.0006

RMSE 0.0629 (+0.0018)± 0.0069 0.0606 (-0.0011)± 0.0049

C
ro

p
s

R2 0.9433 (+0.0033)± 0.0017 0.9676 (+0.0001)± 0.0037
MAE 0.0420 (-0.0061)± 0.0014 0.0353 (-0.0019)± 0.0038
MSE 0.0040 (+0.0008)± 0.0001 0.0026 (+0.0001)± 0.0005

RMSE 0.0630 (+0.0065)± 0.0010 0.0503 (-0.0001)± 0.0044

Fo
re

st
s R2 0.8486 (+0.0006)± 0.0268 0.9235 (+0.0030)± 0.0106

MAE 0.0343 (-0.0001)± 0.0066 0.0318 (-0.0017)± 0.0051
MSE 0.0032 (+0.0002)± 0.0007 0.0020 (-0.0001)± 0.0005

RMSE 0.0562 (+0.0013)± 0.0057 0.0450 (-0.0013)± 0.0049

class SenRVM model can offer some advantages as, for instance, the
reduction of the number of parameters to be learned. Besides simpli-
fying the parameter tuning, the reference data scarcity problem which
may exist for minority classes can be reduced by training a multi-class
model. In addition, the variability of multi-class training data is usually
increased. Therefore, multi-class SenRVM models can improve their
generalization performance and potentially reduce overfitting, while
preserving accurate results.

5.3.1. Spatial and temporal assessment
Firstly, a spatial assessment evaluates the effect of size and loca-

tion of polygons on the reconstruction accuracy. In a second step, the
time-dependent accuracy of SenRVM is evaluated on different dates
and seasons of the year. The temporal assessment also evaluates how
the number of valid Sentinel-2 acquisitions can influence the SenRVM
performances.
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The polygon area size distribution is studied by ten categories,
where each category contains the same number of polygons. In gen-
eral, the number of polygons for each category is similar for both study
areas (see Fig. 6). Only some differences are found for grasslands since
large summer pastures covering several hundred hectares are present
in the Toulouse area.

Fig. 6 SenRVM accuracies evaluated according to the polygon size. Ten
polygon sizes classes of equal population are defined for each vege-
tation class (rows) and both areas (columns). Average R2 of SenRVM
predictions per class and their standard deviation is displayed by bars.
Correlation coefficient r between SenRVM predictions and polygon
sizes are displayed on the bottom right corner of each plot.

The previous results obtained at Sec. 5.2 are studied according to the
ten categories. Fig. 6 shows the obtained results where for each vege-
tation class the correlation coefficient r between polygon size and R2

score is also displayed. The results show that a strong correlation ex-
ists between the polygon size and the prediction performances, with
the highest accuracies obtained by the largest polygons. Grasslands
reach the highest correlation coefficients, which are higher than 0.99
for both study areas. In contrast, the lowest correlation coefficients are
obtained on forests. The strong correlation obtained on grasslands and
crops can be mainly explained by three reasons. The first is that large
polygons contain more pixels and the resulting statistics (i.e., mean,
median, and standard deviation used as features) are more stable and
less sensitive to outliers. The second reason is the mechanization of
farming practices on large agricultural parcels, which leads to the pres-
ence of more homogeneous and human-controlled vegetation cov-
ers. Time series describing homogeneous vegetation polygons lead to
more predictable and reliable results. Lastly, large polygons are less af-
fected by speckle noise given the proposed object-oriented approach.
Although similar satisfactory results are obtained for the three classes,
the effects of polygon size on prediction accuracies are different. The
R2 difference between small and large polygons is minimal for crops
and forests. In contrast, for grasslands, impact of polygon size appears
greater with R2 gains of about 0.1 for larger polygons.

Following the same idea, the effects of the altitude, slope, and expo-
sure of polygons on SenRVM results are also studied. Polygon altitude
does not seem to influence the SenRVM performances with correla-
tion coefficients close to 0. Slope and exposure exhibit a significant
negative correlation (−0.75 < r <−0.6), except for forests. In the case of
grasslands and crops, the increase of slope and exposure decreases the
prediction quality. Nevertheless, the correlations obtained for these
three topographic features are not as significant as the ones presented
in Fig. 6. Consequently, these results are not further explored in the
following.

Fig. 7 shows the spatial distribution of the R2 results obtained by
SenRVM for both study areas. A four-color map is used to evaluate
the defined R2 scale ranges. Results show that high relief areas obtain
the worst SenRVM performances. This can be observed by looking
at the eastern part of Mâcon and the Southern part of Toulouse. The
zoom box of each area is superimposed with a DTM. Light colours
describe high altitude areas, where an accuracy decrease is observed
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(a) Mâcon 

(b) Toulouse 

Fig. 7 Spatial visualisation of the SenRVM performance obtained on
all vegetation polygons. DTM is displayed as base-map in the zoom
boxes. Four scale R2 ranges are used to evaluate SenRVM predictions
which exhibit less accurate prediction in mountainous areas (East part
of Mâcon and South part of Toulouse).
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in mountainous areas. Polygons located on mountain regions can
suffer from non-exploitable Sentinel-1 data (i.e., due to geometric
effects such as layover or foreshortening). Furthermore, as these
high relief parts also have strong slopes and exposures, this visual
assessment confirms the quantitative correlation results. Another
interesting remark is that SenRVM errors seem not to be concentrated
in specific areas but rather isolated.

The second evaluation carried out here assesses the temporal con-
sistency of the SenRVM results. For each single date, the SenRVM
performances are evaluated by computing the MAE. Only valid NDVI
measurements not affected by clouds are considered. The MAEs and
their respective standard deviations obtained are shown in Fig. 8. To
simplify the result interpretation (and considering the similar results
obtained for the three classes), the results are averaged across the three
vegetation classes.

Fig. 8 MAE obtained for each date comparing the expected non cloudy
NDVI observations with their corresponding SenRVM predictions. Re-
sults are averaged for the three classes and reported for the Mâcon
(top) and Toulouse (bottom) areas. Large MAE are explained by the
presence of cloud & shadow mask errors.

As observed, most of the dates obtain MAE lower than 0.1, which
confirms the SenRVM performances. The two study areas show simi-
lar and satisfactory results despite the timelines of image acquisitions
are different. Some abnormal MAE higher than 0.2 are visible in Jan-
uary (Mâcon area) and December (Toulouse area). These high values
are explained by the presence of cloud & shadow mask errors which
can be visually confirmed. At these dates, the corresponding validity
flags denote as valid numerous cloudy Sentinel-2 observations. In this
situation, the NDVI values predicted by SenRVM are compared with
invalid NDVI measures (see Sec. Appendix A). As a result, MAE cal-
culated for those dates is high, however, it cannot be associated with
methodological limitations among the temporal dimension.

Further analysis is carried out to evaluate if MAEs are influenced by
the yearly season. Previous per-date results are averaged over the four
seasons of the year as illustrated in Fig. 9. At the bottom of the figure,
the percentages of cloudless NDVI measurements per season are also
reported. Despite the seasons having a similar number of valid optical
observations (except for spring in Mâcon), the winter period obtains
the highest MAEs. These high values can be explained by the persistent
winter cloud coverage producing large gaps without Sentinel-2 images
(see Fig. 2).

Although Fig. 8 shows similar MAEs for both study areas, they are

Fig. 9 On top, MAE computed for the four seasons of the year are shown
for both study areas. The bottom chart indicates the percentage of
cloudless observations available per season.

differently impacted by cloud coverage as shown in Fig. 2. Consider-
ing the R2 between predicted and expected NDVI time series of each
polygon, correlation between R2 and the number of cloudless NDVI
observations used is also investigated. Although 60 dates are available
for the Mâcon area, cloudless measurements are ranging from 18 to 43
among all the polygons. Concerning Toulouse, the valid number of ob-
servations ranges from 7 to 35 out of the 71 dates. Significant correla-
tion, above 0.7, is only found for grasslands and crops from the Mâcon
area. In these cases, the performances are improved with an increased
number of cloudless NDVI observations available for training. These
results must be nevertheless tempered since the temporal distribution
of missing data nor is their duration taken into account in this study.
Moreover, the number of polygons greatly varies between classes. The
results are therefore indicative and are not illustrated.

5.3.2. Ablation study
An ablation study is presented here by analyzing the SenRVM per-

formances obtained with 6 input data scenarios. The study aims to
evaluate the impact of the input features on the SenRVM predictions.
The first scenario is the baseline one (denoted as ALL), in which the in-
put SenRVM data corresponds to all features described in Tab. 2. The
other 5 scenarios are constructed by removing some specific features
from the baseline one.

Referring to Tab. 2, the sigma0 (1) and coherence (2) features are
removed, respectively, for the SIG and COH scenarios. In the SAR sce-
nario, all features derived from Sentinel-1 and denoted as (1),(2),(3),
and (4) are not considered. The AUX scenario studies the removal of
(5), (6), and (7) ancillary features from ALL. Finally, the MASK scenario
investigates how SenRVM performances differ when the validity flags
provided by the cloud & shadow masks are not incorporated in the loss
function. The different scenarios consider the same SenRVM parame-
ter configurations and the same train/validation/test datasets.

The results of the ablation study are detailed in Appendix B, where
the different scenarios are both evaluated with multi-class and single-
class models. The four past metrics are computed to assess the results
over Mâcon and Toulouse. Both study areas obtain similar results and
attest that as expected, the highest accuracies are obtained by the ALL
scenario. This result corroborates that none of the set of features re-
moved from the different input data scenarios decrease the optimal
ALL SenRVM accuracies. Only forest class models obtain different fea-
ture removal impact.

A visual interpretation of the ablation study results is illustrated
in Fig. 10, where the summarized results of each specific scenario
are compared with the ALL scenario. For this visual evaluation, a
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global score is computed by averaging the four metrics obtained by
both study areas. To take into account that the metrics have different
ranges, they are normalized between 0 and 1 by considering the re-
sults of the different scenarios. The best result, obtained here in each
case by ALL, is 1. Conversely, 0 indicates the worst result among the
assessed scenarios. The global score is used to represent the accuracy
decrease in Fig. 10. The arrow direction represents the accuracy de-
crease between the best (top) and worst (bottom) scenarios.
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Fig. 10 Ablation study results obtained by the multi-class and single-
class SenRVM models. The accuracies of the five scenarios are com-
pared to the baseline (ALL) by using a global score summarizing the
four metrics results obtained for both study areas. The arrow direction
represents the accuracy decrease between the best and worst scenar-
ios. For further analysis, these results are detailed in Appendix B.

SAR results : the worst prediction accuracies are obtained by the
SAR scenario where all features derived from Sentinel-1 are removed.
Looking at the R2 values obtained by single-class grassland model, it
can be observed that SAR scenario obtains low values (around 0.55)
compared to the baseline ALL scenario (≈ 0.84) for both study ar-
eas. Similar results are obtained by the multi-class model, which is
expected given that multi-class data is mostly populated by grasslands.
The R2 performance decrease is also observed on single-class crop re-
sults, however lesser with a decrease of 0.2. As discussed in Sec. 5.2, a
high intra-class variability exists in grasslands and crops classes. Fur-
thermore, the time series describing these classes have many abrupt
breaks (i.e., due to agricultural practices). Ancillary data are in these
cases not sufficient to model the NDVI curves. The importance of
Sentinel-1 data is here highlighted by its capacity in delivering pre-
cise and temporally close information describing the vegetation poly-
gons. The SAR scenario thus leads to a significant performance de-
crease. Concerning single-class forest models, the removal of SAR fea-
tures seems less important (decrease of about 0.02) for both study ar-
eas. This result is explained by the importance of ancillary data over
forests, explained below.

AUX results : the lowest accuracy decrease (≈ 0.02 of R2) is obtained
by single-class models trained on grasslands and crops and conse-
quently by the multi-class model. In contrast, the removal of AUX fea-
tures seems to have a strong impact on the single-class forests model.
Results obtained by the AUX scenario are, for forests, almost equiva-
lent to the SAR scenario. This surprising results are explained by the
low temporal variability of forests NDVI curves, which only have small
fluctuations due to seasonal climate evolution. Information provided
by the ancillary data is on one hand less prone to noise compared to
satellite remote sensing features. For forests, ancillary data are thus
valuable for obtaining satisfactory reconstruction results.

SIG and COH results : the results obtained by all SenRVM models
for both study areas corroborate that the importance of sigma0 and
coherence features are relatively similar. The decrease of R2 observed
for the two scenarios ranges from 0.01 to 0.06. Despite the similar re-
sults, some differences can be discussed between both scenarios. For

instance, the high standard deviations obtained by SIG scenario indi-
cate a slightly superior importance of sigma0 features. In this case, the
results may be more stable as the number of inputs differs between
both scenarios (i.e., sigma0 additional VV/VH polarization ratio band).
Furthermore, while temporal information is directly integrated in co-
herence features, the use of RNNs to extract temporal dependencies
akin to coherence information may explain this result. Opposite re-
sults can be observed between Mâcon and Toulouse areas concerning
the impact of the SIG and COH scenarios. The contradictory results
may be due to temporal and spatial differences existing in both areas
and discussed in Sec. 5.3.1. Concerning single-class forests results, it
can be observed that the removal of one of these two families of fea-
tures does not greatly impact the performances.

MASK results : in general, the MASK scenario results obtained by
the different SenRVM models indicate that the incorporation of the
validity flags in the loss function is beneficial. Excluding the single-
class forests results, the rest of the models exhibit that this scenario ob-
tains the second most significant performance reduction. The perfor-
mance decrease is more visible on single-class grasslands results with
R2 of 0.78 and 0.73 for Mâcon and Toulouse respectively. For forests,
the MASK scenario leads to the worst overall results. As in this case
cloud & shadow mask information is not incorporated in the loss func-
tion, important label noise is affecting the training process. This noise
prevents an accurate learning of the small variations observed in the
forests time series (see Fig. 3c).

5.4. Comparison with existing methodologies
Single-class SenRVM models are here evaluated against standard in-

terpolation and ML regression methodologies. The robustness and ef-
ficiency of the methods are evaluated through their ability to recon-
struct short- and long-term missing data gaps. The MAEs obtained for
these two different scenarios are discussed in Sec. 5.4.1 and 5.4.2.

In these experiments, a new learning constraint is incorporated
in the SenRVM training stage. The learning constraint ensures that
satellite observations acquired on the dates that want to be predicted
are not used to train the SenRVM models. It must be remarked that
the same temporal grid is shared for the disjoint training and test-
ing datasets used in the previous experiments. Therefore, a few non-
cloudy observations acquired on the specific predicted date are most
of the time considered in the training step. This is prevented here by
completely masking the date during the training step.

The three ML regression algorithms described in the following are
studied. For the three methods, the same SAR and ancillary input data
as SenRVM is considered.

• a Random Forest Regression (RF) algorithm. This ensemble
learning method is based on the construction of multiple deci-
sion tree classifiers (Belgiu and Drăguţ, 2016; Li et al., 2020). The
individual trees are built by applying a bagging strategy which
randomly selects a subset of training samples and features. Fol-
lowing Pelletier et al. (2016) conclusions, the number of trees is
set to 100. The maximum number of features taken into account
for tree splitting is set to the square root of the number of input
features and the maximum depth of a tree to 25.

• a Gaussian Processes Regression (GPR). It is a non-parametric
kernel-based probabilistic regression algorithm based on a
Bayesian framework. GPR is selected given the convincing results
obtained in similar regression tasks (Belda et al., 2020b; Mercier
et al., 2020). A squared exponential kernel function is employed.

• a deep-based method using MLPs architecture (MLP). This simpli-
fied version of the SenRVM is obtained by removing the recurrent
block (i.e., GRU cells) from the architecture. The training is thus
performed for each date individually without handling the inher-
ent temporal information of the time series. The MLP method in-
tegrates 4 MLPs for encoding and 1 MLP for decoding.

A fair comparison of the three previous regression algorithms with
SenRVM requires the use of the same training samples. Nevertheless,
substantial computational problems can occur if all polygons and their
entire corresponding NDVI time series are used for training RF and
GPR methods. Therefore, a temporal sampling strategy is proposed for
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RF and GPR methods. The solution proposed is to discard some dates
that are temporally far from the prediction date. For half of the train-
ing polygons of SenRVM, the selected training dates correspond to the
nearest past cloud-free date of each polygon. For the other half, the
following cloud-free date is used. It must be remarked that besides
the sampling selection strategy, the space-time evolution of the cloud
coverage makes it possible to include numerous dates and cover up
to several months. The same training sample size as for SenRVM and
MLP is thus kept for the RF method while temporal information is fed to
the model. Concerning the GPR method, the number of training poly-
gons is nevertheless limited to 10, 000 polygons, due to long calcula-
tion times and memory constraints. It must be remarked that despite
reducing the number of training samples, the resulting training dataset
of GPR remains significant. This only impacts grasslands for both areas
and crops for the Toulouse area.

Besides the previous ML algorithms, two mono-sensor standard in-
terpolation methods are also considered in this study:

• a Whittaker smoother (WHIT), which is based on a penalized
least-square regression algorithm combining fidelity to the data
and smoothness of the filtered sequence (Vuolo et al., 2017;
d’Andrimont et al., 2020). The smoothing criterion (λ value) is set
to 1. This low value preserves the temporal variability of the origi-
nal signal, describing important changes in vegetation cover. The
d parameter used in the penalty calculation is set to 2.

• a weighted linear interpolation method (linear), which assigns
weights to neighbouring observations (two before and after),
based on the distance to the interpolated value.

Compared to the previous methods, the main difference is that WHIT
and linear interpolation approaches only consider valid Sentinel-2
observations. These mono-sensor methods focus on exploiting the
temporal trajectory of neighbouring NDVI observations. The Decom-
position and Analysis of Time Series Software (DATimeS, Belda et al.
(2020a)) is selected for the WHIT method. For the linear interpolation,
the Orfeo ToolBox implementation (Grizonnet et al., 2017) is used.

5.4.1. Gap filling of short-term data gaps
The short-term study consists in removing 6 individual non-

consecutive acquisitions from the training datasets. The chosen dates
are distributed along the complete year and have a low cloud cover
rate. This implies that a high number of measurements can be used to
validate this experiment. Prediction results obtained on the six recon-
structed dates are evaluated for the three vegetation classes and over
the two study areas.

In the case of SenRVM and the MLP method, a unique model is
trained and used for the prediction of the six dates. In contrast, as a
temporal sampling strategy is defined for the RF and GPR methods, six
models are independently trained for the six masked dates.

Fig. 11 shows that similar satisfactory results are obtained by the dif-
ferent methods which most of the time achieve MAE lower than 0.15.
Grassland and forest results obtained on Mâcon show that high errors
are obtained on the second reconstructed date (i.e., February 14th).
These high values are justified by the high number of cloud & shadow
mask errors existing at this date.

Results show how SenRVM achieves accurate and comparable per-
formances compared to standard interpolation methods. Further-
more, SenRVM obtains in most cases the lowest standard deviations.
The interest of SenRVM is especially remarkable at the dates of June
8th over Mâcon and June 6th over Toulouse. At these dates, numer-
ous anthropic activities exist given the agricultural calendar of grass-
lands and crops. These activities lead to phenology breaks in the time
series (see Fig. 3) occurring during the masked dates. For the ML re-
gression methods, based on SAR data, an accurate reconstruction of
these breaks is possible whereas standard interpolation methods fail.
A complementary discussion about break reconstruction can be found
in Appendix C. Concerning forests, the stability of the NDVI temporal
trajectory of this class leads to obtain similar results for all methods.
For this class, SenRVM obtains the best accuracies for three dates.

The RF, GPR and MLP methods generally obtain comparable results.
The highest MAEs are obtained by these methods, especially remark-
able on grasslands and crops. The RF method obtains slightly better re-

sults than GPR for several dates, and notably lower standard deviations.
Over 18 assessed dates for each area, RF achieves greater accuracy than
SenRVM for 4 dates over Mâcon and 3 dates over Toulouse. GPR reaches
lower MAE than SenRVM for 2 dates over Mâcon and only one date over
Toulouse. The upper accuracy found with SenRVM can be explained
by several factors. In comparison to RF and GPR methods, entire time
series are fed to SenRVM. The bi-directional RNN used in SenRVM ar-
chitecture can therefore extract long-term phenological stages helping
accurate predictions. This long-term evolution may be neglected by
the temporal sampling strategy of the RF and GPR methods. Another
explanatory factor is the adoption of several encoding branches in the
SenRVM and MLP methods, allowing more complex and descriptive
features to be considered.

Regarding the results obtained by the MLP method, it only achieves
the best results over the first date on crops for both areas and the first
date over forests of the Mâcon area. The main explanatory factor is
that MLP processed each date individually without exploiting temporal
information. Comparing MLP with SenRVM results, the improvements
achieved by the use of recurrent networks are highlighted. For exam-
ple, crop results obtained by MLP show a high MAE in Toulouse at the
date of November 27th. At this date, bare soil covers most of the crops
parcels which leads to the presence of large fluctuations in SAR time
series (see Sec. 3.4 and Fig. 3). Processing individual dates with the MLP
method produces low prediction results while recurrent cells permit
accurate predictions, taking advantage of the full temporal trajectory.

This experiment also corroborates the good results of the com-
monly used linear interpolation method. Over the 12 reconstructed
dates, the linear interpolation reaches the highest accuracies for 5
dates on grasslands and forests and 3 dates on crops. The satisfactory
results can be explained by the availability of cloudless neighbouring
Sentinel-2 acquisitions, close to the reconstructed dates (see Fig. 2).
Therefore, information describing the temporal trajectory of NDVI al-
lows the linear method to obtain low MAE. As expected, the WHIT ap-
proach obtains results similar to the linear method. This method ex-
hibits the highest inconsistencies that can be explained by the use of a
smoothing function. This function is mostly well adapted for filtering
purposes over long time series.

5.4.2. Gap filling of a long-term data gap
Consecutive missing values are likely to occur in optical time series.

Consequently, the performances of gap filling methods can strongly
decrease when the temporal frequency of exploitable observations is
reduced. As previously discussed with Fig. 9, the presence of long-term
gaps during winter can lead to a decrease of SenRVM performances.
The robustness of the different methods in the presence of a significant
data gap wants to be assessed here.

To perform this study, long-term data gaps are artificially created by
removing 4 consecutive dates from the valid NDVI time series. The
four consecutive dates are removed over different time periods for
the two study areas. The number of valid observations as well as the
agricultural practices calendars are considered as selection criteria. A
long gap is then considered in June for the Mâcon area. Concerning
Toulouse, October is chosen. For this experiment, as the four masked
dates are consecutive, an unique model is trained for all ML regression
methods.

The results obtained by the different methods can be compared by
looking at Fig. 12. The reconstruction performances consolidate the
previous results and further demonstrate the interest of the SenRVM
approach. Grassland and crop results show how SenRVM obtains al-
most in all cases the lowest MAE and standard deviations. The per-
formance improvement is more remarkable over Mâcon. This is ex-
plained by the frequent presence of anthropic interventions taking
place during the reconstructed time period (see Appendix C). Solely
the first date over forests for the Mâcon area and the last date over
grasslands for the Toulouse area is better predicted by the two optical-
based methods than by SenRVM. Nevertheless, the difference in MAE
difference between SenRVM and the two methods is very low for this
specific date. Concerning forests, similar results are obtained by all the
methods. The low temporal variation of NDVI curves of forests again
explains these similarities.
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Fig. 11 Comparison of gap filling performances for six non-consecutive dates, corresponding to short-term data gaps. Mean Absolute Error are
assessed over Mâcon and Toulouse areas for the three vegetation classes.

Fig. 12 Comparison of gap filling performances over four continuous dates, corresponding to long-term data gaps. Mean Absolute Error are
assessed over Mâcon and Toulouse areas for the three vegetation classes.
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Close MAEs are obtained for both areas by RF, GPR, and MLP methods
for the three vegetation classes. GPR and MLP methods provide supe-
rior results than RF for the Mâcon area while it is the opposite for the
Toulouse area. The exploitation of the temporal SAR trajectory and the
use of multiple encoding branches explain the good SenRVM results.

Linear and WHIT methods exhibit substantially lower results than
SenRVM, except for two dates. The differences are more noticeable
for the Mâcon area. This is related to the presence of numerous agri-
cultural practises, which are not detected by the mono-sensor inter-
polation methods. Consequently, differences are less marked for the
Toulouse area, where few agricultural practices are performed.

6. Discussion

Sentinel family of satellite missions offers an efficient and accessi-
ble tool for continuous vegetation monitoring. Freely available optical
and radar imagery can provide significant information to monitor veg-
etation changes over wide areas and different temporal scales. The de-
velopment of new multi-source methods combining optical and radar
satellite data can reduce the limitations of both sensors. To this aim,
this work has proposed the SenRVM as a new joint strategy aiming at
providing dense temporal resolution time series describing the phe-
nological evolution of vegetation covers. The high temporal resolu-
tion of SAR acquisitions has been exploited to recover NDVI time se-
ries on a regular temporal grid of 6 days. The SenRVM methodology
relies on a supervised recurrent deep learning architecture which inte-
grates ancillary data to tackle the SAR signal weaknesses and its fluc-
tuations sensitivity. The fusion of climate, topography, and SAR fea-
tures has allowed to extract complex relationships. The SenRVM per-
formances have been evaluated on a large dataset covering three vege-
tation classes exhibiting many agronomic subclasses over two distinct
landscapes. This complete evaluation is a novelty since the majority
of similar existing works have exclusively focused on crops. The ac-
curate results have been obtained simultaneously on grasslands, crops
and forests, demonstrating the relevance of the proposed SenRVM ap-
proach.

6.1. Vegetation monitoring with SenRVM
The quality assessment of SenRVM has been firstly evaluated by an-

alyzing the prediction results obtained on a multi-class dataset cov-
ering the three types of vegetation. Satisfactory generalization capa-
bilities of SenRVM have been obtained, despite the high phenological
variability of the different classes. Further experiments will be nec-
essary to study the SenRVM performances on minority classes (such
as dactylis grass or common beech forests). It must be noticed that
the reconstruction of minority classes with varied phenologies, such
as coniferous forests or certain crop classes with less stem and leaf de-
velopment could be challenging. Class-oriented results have been an-
alyzed according to different temporal scales. The temporal stability of
the results has been corroborated by the low errors. The highest errors
have been observed during winter, more prone to long-term data gaps
due to heavy cloud cover (Fig. 2). Besides the lack of information due
to clouds, these results have been explained by the important fluctua-
tions of SAR measurements in winter, due to the presence of bare soil
or very little vegetation cover (Fig. 3). Discarding winter and focusing
on a period restricted by phenological interest (e.g., from March to Oc-
tober), is possible for some applications (Veloso et al., 2017; Karasiak
et al., 2020). To improve the current results, training on multi-annual
time series could allow to gather more measurements over the winter
period. RNNs could in this case extract additional recurrent phenolog-
ical patterns over winter, leading to more robust SenRVM models.

A spatial evaluation of the results has been also performed to in-
vestigate if the reconstruction accuracies were impacted by the poly-
gon sizes and their respective locations. This study has shown how a
significant correlation exists between the size of the polygons (rang-
ing in our study from 0.12 to several hundreds of hectares) and their
prediction accuracies. The results have assessed that large homoge-
neous polygons reach the best accuracies. Among others, large poly-
gons benefit from a strong speckle filtering, which could explain the

performance increase. Concerning the location of the polygons, a de-
crease in performance has been detected on high-relief geographical
regions (up to 1295 m for the Mâcon area and 3127 m for Toulouse).
It can be explained by the particular side-looking geometry and the
strong local incidence angle effects induced by surface topography.
These effects degrade the usefulness of SAR images. In some cases
when steep topography is present, it may even prevent information
extraction (Tamm et al., 2016). It must be remarked that the SenRVM
method has proposed a solution to reduce these undesirable topo-
graphic effects through DTM-derived data. This data describing the
polygons that have been integrated helped mitigate the topographic
effects which nevertheless cannot be discarded.

The performances of multi-class and single-class SenRVM models
have been also evaluated and compared by performing an ablation
study (Fig. 10). The study has investigated the impact of different
SenRVM input feature scenarios on the SenRVM performances. The
obtained results have suggested different conclusions for agricultural
and forest classes. For instance, ancillary data (e.g., climatic and to-
pographic information) do not provide sufficient information for the
prediction of NDVI time series on grassland and crop classes, driven
by anthropic activities and phenological stages. Conversely, these fea-
tures have seemed of utmost importance for accurate predictions on
forests. This result has been explained by the lower impact of human
activities leading forest time series to be defined by a more stable and
seasonal evolution. The removal of the cloud & shadow mask infor-
mation has allowed another distinction among vegetation classes. The
use of the cloud & shadow masks have permitted a performance gain
in all cases, which has been considerable on forests.

At last, different experiments have been carried out to evaluate Sen-
RVM performances with respect to several existing ML regression al-
gorithms and standard interpolation methods. Two different situa-
tions have been investigated to confirm the advantages of the SenRVM
approach for regular vegetation monitoring. The reconstruction over
short- and long-term data gaps has shown that the SenRVM approach
obtained satisfactory results. SenRVM have reached identical absolute
errors with classical mono-sensor methodologies and even the lowest
in many cases. The advantages of SenRVM have been more notice-
able for recovering long-term data gaps. Especially, the SenRVM per-
formances have been remarkable when vegetation changes occur dur-
ing the missing data period. In this situation, standard interpolation
methods have obtained low accuracies and failed to capture changes
in vegetation cover. The good performances of the deep-based Sen-
RVM architecture have been mainly explained by two factors: its abil-
ity to extract complex features and relations between SAR and ancillary
data and the efficient extraction of temporal information through re-
current cells.

6.2. Methodological perspectives

The combination of two standard neural networks has been pro-
posed in the SenRVM architecture. The ability of RNNs to extract tem-
poral information has been particularly conducive to a multimodal ap-
proach. E.g., NDVI, sigma0 and coherence features time series have
staggered temporal responses to vegetation changes (see Sec. 3.4). The
temporal memory of the RNN has made possible the modelling of a
common temporal response from the different features, resulting in
stable and accurate results. Despite the SenRVM satisfactory results,
the use of RNN as a key piece of the architecture could be discussed for
further improvements. RNN has been traditionally used to process se-
quences that are longer than the exploited satellite time series. More-
over, they are relatively long to train. Alternatives can be considered for
the exploitation of temporal (Pelletier et al., 2019) or spatio-temporal
(Ienco et al., 2019) information. But most of these alternatives have
been adopted in classification tasks. In the last years, new architec-
tures such as the Transformers have replaced RNN, achieving remark-
able results to process sequential data. Their use in remote sensing
has just started (Garnot et al., 2020; Rußwurm and Körner, 2020) and
needs further exploration for continuous regression problems.

Several considerations have been taken into account to avoid over-
fitting issues in our experiments. Nevertheless, overfitting problems
could arise when a large number of parameters have to be learned.
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Despite SenRVM being a supervised methodology, it must be high-
lighted that the lack of reference data is not an issue. The training of
SenRVM models depends on Sentinel-1&2 acquisitions, which are en-
sured both spatially and temporally by the two constellations. Train-
ing models at different spatial scales (e.g., Sentinel-2 tiles, adminis-
trative areas, climatic zones) are therefore possible. Moreover, even
if RNNs have seemed relatively long to train, training times reported
in Tab. 4 are reasonable. The SenRVM reconstruction task has taken
about an hour for a complete Sentinel-2 tile (i.e., 1/90th of metropoli-
tan France). Thanks to the considerable amount of data describing the
high diversity of landscapes and limited calculation times, the overfit-
ting problem can then be minored.

Unlike the standard interpolation methods mentioned in Sec. 5.4,
the temporal trajectory of Sentinel-2 NDVI time series was not ex-
ploited by the SenRVM method. Optical measurements have only
been used for network supervision. The simplest solution to incorpo-
rate this optical information would be to insert valid NDVI measure-
ments as input to the SenRVM architecture. Alongside the SAR fea-
tures, these NDVI measurements might help the model to adjust its
learning and improve the prediction performances. As the supervision
would be this same value, there would be a significant risk that the net-
work weights would be overwhelmingly adjusted according to it. The
network could entirely discard the SAR features and completely rely
on this NDVI value. Another interesting perspective for improvement
would be to modify the loss function (Sec. 4), by proposing other sim-
ilarity metrics measuring the trajectory similarity between predicted
and expected time series. Other constraints based on first order deriva-
tives, but computed on Sentinel-2 time series, could be explored. How-
ever, in any case, as missing data frequently occurs in optical time se-
ries, their exploitation can be tedious.

Finally, the SenRVM performances have been here only evaluated
by the prediction of NDVI measurements. As previously mentioned,
this choice was made given its versatility and simplicity. Nevertheless,
it must be highlighted that the SenRVM methodology could be applied
to different vegetation indices (e.g., EVI, MSAVI, NDMI), biophysical
variables (e.g., LAI, faPAR, fCOVER) or even raw optical spectral bands.

7. Conclusion

Prediction of dense time series describing vegetation phenology is
valuable for many environmental applications. In this work, the Sen-
RVM recurrent-based architecture has been proposed to regress SAR
and ancillary features towards NDVI values. Annual NDVI time se-
ries over three prominent classes of vegetation, grasslands, crops and
forests, have been predicted for two areas (> 20,000 km2). The result-
ing time series with a temporal resolution of 6 days have exhibited high
accurate results and limited standard deviation with respect to the ex-
pected Sentinel-2 NDVI time series.

Among the three classes and two areas, R2 above 0.83 and MAE un-
der 0.05 have been found on a large set of vegetation polygons. Despite
distinct phenologies and different observed time periods, satisfactory
results have been obtained. The consistencies of the results have been
assessed both spatially and temporally. The significant contribution of
the SenRVM multi-sensor approach has been illustrated by its capac-
ity to recover missing information even in the presence of breaks in
the original time series (see Sec. Appendix C). Obtained results have
corroborated that the reconstruction of dense NDVI time series with
SenRVM can allow an accurate and regular monitoring of vegetation.

The contribution of this work has therefore opened the door to
the development of SAR and optical data fusion methodologies. The
use of SenRVM could be adapted for other applications, for instance,
near real-time monitoring or forecasting. As such, learning a SenRVM
model by integrating data acquired in one or multiple years could al-
low to predict NDVI measurements in near-real time, after each new
SAR acquisition. Moreover, a country-wide and systematic application
of the SenRVM method could be envisaged given the continuity of the
Sentinel data, ensured at least until 2030. The imminent arrival of SAR
satellites expanding the Sentinel-1 constellation may also let us apply
the SenRVM approach with a temporal resolution higher than 6 days.
Such improvements will be beneficial for regular vegetation monitor-
ing through satellite time series.
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Appendix A. Towards cloud/shadow mask refinement

Accurate cloud and shadow detection remains a well-known chal-
lenge in optical remote sensing, despite a plethora of approaches
(Baetens et al., 2019; Chen et al., 2019). Errors can be divided into
two categories. Undetected observations flagged as valid measure-
ments are known as omission errors, while commission errors corre-
spond to the non-cloudy observations detected as invalid measure-
ments. The presence of errors can occur, negatively impacting a large
number of reference polygons, and subsequently the SenRVM perfor-
mances (Sec 5.3.1 and 5.3.2).

(a) Omission of the cloud & shadow mask.

(b) Commission of the cloud & shadow mask.

Fig. A.13 Two examples on how cloud/shadow mask errors could lead
to an erroneous performance assessment. Omission (a) and commis-
sion (b) errors are shown in the black dashed boxes. As seen, accurate
SenRVM results over neighboring polygons (black lines) are obtained
on dates affected by cloud/shadow mask errors. Red dots are masked
dates.

Fig. A.13 depicts how significant SenRVM errors could be associated
to cloud omission and commission (Fig. A.13a and A.13b, respectively).
SenRVM is particularly insensitive to such errors and could be used
as a solution to improve the mask quality. An experimental set-up is
proposed here.

To filter the errors, MAEs of SenRVM prediction are considered. This
refinement is performed by applying at each date simple thresholds:

m̃ =


0, ifmt = 1 and |yt − ŷt| > αom

1, ifmt = 0 and |yt − ŷt| < αcom

mt, otherwise.

(A.1)

mt is the original mask validity flag for the instant t. The expected
NDVI and SenRVM predicted NDVI values are yt and ŷt, respectively.
The performance of the refinement process depends on the commis-
sion and omission thresholds, which are empirically set: αom = 0.3
andαcom = 0.02. Eq. A.1 is applied on the original masks of both study
areas by considering the prediction results obtained by the single-class
SenRVM models presented in Tab. 5. It results in removing or adding
a few validation measurements: for each polygon, 1.26 and 1.82 dates
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were found as omission and commission, respectively. To investigate
the impact of outliers on performances, the resulting m̃ masks are
then used to retrain the SenRVM architecture for the three vegetation
classes (the same datasets and hyperparameters as those in Tab. 5).
Results obtained by using the refined mask are reported in Tab. A.6.

Tab. A.6 SenRVM performances obtained after mask refinement. Re-
sults correspond to difference with those shown in Tab. 5, Sec.5.2. In
all cases, results are improved.

Mâcon Toulouse

Grasslands

R2 +0.0334± 0.0043 +0.0228± 0.0023
MAE -0.0037± 0.0014 -0.0034± 0.0007
MSE -0.0010± 0.0002 -0.0008± 0.0001

RMSE -0.0083± 0.0023 -0.0064± 0.0011

Crops

R2 +0.0099± 0.0024 +0.0029± 0.0010
MAE -0.0025± 0.0013 -0.0026± 0.0008
MSE -0.0009± 0.0001 -0.0005± 0.0001

RMSE -0.0070± 0.0013 -0.0049± 0.0015

Forests

R2 +0.0300± 0.0035 +0.0092± 0.0044
MAE -0.0032± 0.0004 +0.0004± 0.0037
MSE -0.0008± 0.0001 -0.0000± 0.0004

RMSE -0.0069± 0.0016 -0.0003± 0.0038

The gain in accuracy corroborates that the removal of cloud &
shadow mask errors could improve the SenRVM performances. The
benefit is observed for both areas and the three vegetation classes and
across the four metrics. The minimum R2 of 0.83 is improved to 0.86
by using the m̃ masks. Improvements are especially significant in the
Mâcon area, given its important number of errors and over grasslands:
the R2 increase is around 0.04 and 0.02 for Mâcon and Toulouse ar-
eas, respectively. Concerning crops, the improvement is less noticeable
given that very good scores are already obtained by using the original
masks. For both grassland and crop classes, MAE errors are improved.
MAE below 0.04 is achieved for both classes over the Mâcon area. The
single-class forests model also improves its prediction performances
(for Mâcon, R2 goes from 0.84 to 0.87). The interest of the refinement
strategy is finally reflected in the standard deviation values of Tab. A.6,
which are much lower than those described in Tab. 5.

Appendix B. Ablation study detailed results

Detailed results of the ablation study experiment conducted and
analyzed in Sec. 5.3.2 are presented in Tab. B.7.

Appendix C. Reconstruction of time series breaks

We explore the ability to reconstruct time series breaks, which are
usually associated with vegetation changes over agricultural areas (i.e.,
grasslands and crops). SenRVM is especially relevant, with respect to
the other methods, for dates containing numerous breaks (June 8th

and June 6th for Mâcon and Toulouse respectively, in Fig. 11). The long-
term experiment (Sec. 5.4.2) shows such conclusions, SenRVM reach-
ing the highest accuracies on agricultural classes, but without signifi-
cant differences in terms of MAE. A qualitative evaluation of the results
obtained in Sec. 5.4.2 is proposed. This evaluation permits to highlight
the interest of the SenRVM method to recover vegetation changes.

The reconstructions of two types of breaks are considered: a dras-
tic decrease in NDVI due to mowing or ploughing, or an increase due
to vegetation growth. Fig. C.14 shows four examples over two grass-
land and two crop polygons. It corroborates the interest of ML regres-
sion methods: the results show that the reconstruction performances
of mono-sensor methods (linear, WHIT) are strongly affected by the
distance between the reconstructed date and the valid NDVI measure-
ments used in the reconstruction. Because of the simulated data gap of

about one month, the standard interpolation methods are using tem-
porally distant dates for interpolation. On intensively exploited and
quickly evolving agricultural parcels, this interpolation significantly or
even entirely obscures part of their phenological cycles. SAR-based
multi-sensor solutions can integrate temporally close knowledge, and
efficiently recover these cycles. Comparing RF, GPR, MLP and SenRVM,
the latter exhibiting the highest accuracies obtained and more stable
results.

Fig. C.14a shows the results for a permanent grassland parcel (a
mowing followed by a vegetation regrowth). Standard interpolation
approaches use the dates of June 2nd and July 26th for reconstruct-
ing the missing period. Despite the mowing occurring in-between, the
vegetation has grown back on July 26th, reaching high NDVI values.
The resulting reconstructed time series follow a gradual but not signif-
icant decrease in NDVI, preventing abrupt change detection.

Fig. C.14b, illustrates the capability of the methods for recovering
vegetation changes on a maize parcel. As observed, the four masked
dates result in a gap of two months without cloudless measurements.
The vegetation growth is well captured by all methods. However,
the standard interpolation methods show gradual and weak growth,
whereas ML regression methods suggest that such a growth occurs
mainly in June. The image acquired on June 20th confirms the accu-
rate reconstruction of the four multi-sensor methods.

A complete phenological cycle showing the growth and harvest pe-
riods is shown in Fig. C.14c. The two dates related to both growth and
mowing stages are unfortunately acquired during the data gap. As a re-
sult, the two successive dates available for the standard interpolation
methods both correspond to a bare ground cover with close NDVI val-
ues. The reconstructed time series are therefore flat and do not reflect
vegetation changes. In contrast, ML regression approaches accurately
fit the phenology cycle of the parcel.

The harvest period of a winter wheat parcel is shown in Fig. C.14d.
In this example, a single cloudless NDVI observation is masked. It re-
sults in a two-month data gap between September 10th and November
9th. The standard interpolation methods fail to reconstruct the veg-
etation decrease, while ML regression approaches accurately mark a
clear decrease in NDVI values, suggesting that the mowing occurred
between September 10th and September 16th. Even without mask-
ing the date of October 10th to the standard interpolation methods,
it would have been impossible to determine the date of mowing with
such precision.

These last results further corroborate that regular vegetation mon-
itoring needs the exploitation of multi-sensor information such as it
has been proposed by the SenRVM approach.
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Tab. B.7 Average results and ± standard deviation for the ablation study experiments described in Sec. 5.3.2. Five input data scenarios are com-
pared to the baseline scenario (ALL) for which the complete dataset described in Tab. 2 is used. Four metrics are provided for the grasslands, crops,
forests and multi-class datasets. Green color indicates the input removal having the lowest impact on performances, while the red colour denotes
the highest.

Multi-class (Grasslands, Crops, Forests)

R2 MAE MSE RMSE

M
âc

on

ALL 0.8650± 0.0121 0.0419± 0.0065 0.0039± 0.0010 0.0624± 0.0069
- COH 0.8293± 0.0097 0.0459± 0.0030 0.0046± 0.0004 0.0681± 0.0028
- SIG 0.8346± 0.0100 0.0469± 0.0029 0.0048± 0.0004 0.0689± 0.0029
- AUX 0.8458± 0.0145 0.0443± 0.0060 0.0043± 0.0008 0.0654± 0.0058
- SAR 0.6314± 0.0084 0.0848± 0.0019 0.0148± 0.0004 0.1217± 0.0015
- MASK 0.7854± 0.0152 0.0532± 0.0041 0.0058± 0.0007 0.0761± 0.0041

To
u

lo
u

se

ALL 0.8947± 0.0056 0.0404± 0.0039 0.0030± 0.0005 0.0545± 0.0038
- COH 0.8669± 0.0071 0.0452± 0.0024 0.0038± 0.0003 0.0616± 0.0022
- SIG 0.8562± 0.0111 0.0498± 0.0050 0.0045± 0.0007 0.0671± 0.0049
- AUX 0.8778± 0.0135 0.0435± 0.0055 0.0035± 0.0008 0.0587± 0.0057
- SAR 0.5758± 0.0067 0.1194± 0.0021 0.0267± 0.0004 0.1634± 0.0012
- MASK 0.8179± 0.0152 0.0531± 0.0044 0.0054± 0.0007 0.0732± 0.0046

Grasslands

R2 MAE MSE RMSE

M
âc

on

ALL 0.8384± 0.0152 0.0418± 0.0058 0.0040± 0.0009 0.0629± 0.0069
- COH 0.7891± 0.0081 0.0470± 0.0021 0.0048± 0.0004 0.0691± 0.0027
- SIG 0.8011± 0.0115 0.0470± 0.0038 0.0048± 0.0006 0.0690± 0.0041
- AUX 0.8159± 0.0147 0.0439± 0.0043 0.0043± 0.0007 0.0657± 0.0048
- SAR 0.5557± 0.0061 0.0791± 0.0019 0.0122± 0.0005 0.1106± 0.0023
- MASK 0.7893± 0.0819 0.0528± 0.0063 0.0060± 0.0011 0.0772± 0.0063

To
u

lo
u

se

ALL 0.8464± 0.0115 0.0443± 0.0029 0.0037± 0.0006 0.0606± 0.0049
- COH 0.8076± 0.0106 0.0506± 0.0032 0.0046± 0.0005 0.0677± 0.0037
- SIG 0.7976± 0.0173 0.0526± 0.0040 0.0050± 0.0007 0.0706± 0.0047
- AUX 0.8256± 0.0114 0.0470± 0.0025 0.0040± 0.0005 0.0635± 0.0037
- SAR 0.5535± 0.0093 0.0914± 0.0016 0.0151± 0.0004 0.1231± 0.0016
- MASK 0.7332± 0.0173 0.0579± 0.0034 0.0063± 0.0006 0.0791± 0.0034

Crops

R2 MAE MSE RMSE

M
âc

on

ALL 0.9433± 0.0017 0.0420± 0.0014 0.0040± 0.0001 0.0630± 0.0010
- COH 0.9270± 0.0070 0.0490± 0.0042 0.0052± 0.0007 0.0718± 0.0043
- SIG 0.9220± 0.0080 0.0516± 0.0058 0.0057± 0.0010 0.0753± 0.0059
- AUX 0.9358± 0.0081 0.0466± 0.0075 0.0047± 0.0010 0.0684± 0.0076
- SAR 0.7212± 0.0080 0.1181± 0.0051 0.0257± 0.0011 0.1603± 0.0034
- MASK 0.9176± 0.0100 0.0536± 0.0077 0.0061± 0.0015 0.0776± 0.0085

To
u

lo
u

se

ALL 0.9676± 0.0037 0.0353± 0.0038 0.0026± 0.0005 0.0503± 0.0044
- COH 0.9584± 0.0048 0.0389± 0.0040 0.0031± 0.0005 0.0551± 0.0042
- SIG 0.9526± 0.0039 0.0422± 0.0048 0.0037± 0.0006 0.0608± 0.0045
- AUX 0.9652± 0.0026 0.0363± 0.0031 0.0027± 0.0004 0.0517± 0.0035
- SAR 0.7151± 0.0076 0.1293± 0.0039 0.0296± 0.0007 0.1720± 0.0021
- MASK 0.9501± 0.0062 0.0440± 0.0063 0.0041± 0.0011 0.0634± 0.0076

Forests

R2 MAE MSE RMSE

M
âc

on

ALL 0.8486± 0.0268 0.0343± 0.0066 0.0032± 0.0007 0.0562± 0.0057
- COH 0.8443± 0.0182 0.0352± 0.0042 0.0034± 0.0005 0.0582± 0.0043
- SIG 0.8349± 0.0234 0.0365± 0.0050 0.0035± 0.0006 0.0587± 0.0044
- AUX 0.8189± 0.0243 0.0373± 0.0050 0.0037± 0.0005 0.0604± 0.0041
- SAR 0.8207± 0.0056 0.0403± 0.0009 0.0043± 0.0003 0.0653± 0.0021
- MASK 0.7119± 0.0266 0.0514± 0.0073 0.0064± 0.0010 0.0795± 0.0059

To
u

lo
u

se

ALL 0.9235± 0.0106 0.0318± 0.0051 0.0020± 0.0005 0.0450± 0.0049
- COH 0.9232± 0.0041 0.0317± 0.0015 0.0021± 0.0001 0.0454± 0.0015
- SIG 0.9152± 0.0076 0.0340± 0.0034 0.0024± 0.0004 0.0484± 0.0033
- AUX 0.9086± 0.0047 0.0343± 0.0026 0.0024± 0.0002 0.0487± 0.0024
- SAR 0.9058± 0.0050 0.0395± 0.0012 0.0033± 0.0002 0.0577± 0.0018
- MASK 0.8454± 0.0204 0.0483± 0.0081 0.0049± 0.0011 0.0698± 0.0070
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(a) Mowing of a permanent grassland over the Mâcon area.

(b) Greening of a maize parcel over the Mâcon area.

(c) Growth and mowing of an alfalfa parcel over the Toulouse area.

(d) Harvest of a winter wheat parcel over the Toulouse area.

Fig. C.14 Performance assessment comparing six different methods aiming at recovering vegetation changes occurring during a long-term data
gap (red square). NDVI values evaluating the reconstruction results are depicted by the green crosses. Black-dashed lines and circle numbers
correspond to the specific dates which are analyzed by the Sentinel-2 images shown on the right part of the figures.
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