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Abstract

This article proposes a new method for the resolution of parametrized multidisciplinary analysis (MDA) using
disciplinary surrogate models within a multi-query context. The main idea is to replace the costly disciplinary
solvers of the MDA by Proper Orthogonal Decomposition and Interpolation models. The main challenge we
address is the high dimensional coupling variables whose ranges are unknown. To overcome this issue, a training
strategy is developed by uncoupling the disciplinary solvers from the MDA context. This new surrogate MDA
called Disciplinary Proper Orthogonal Decomposition and Interpolation (DPOD+I) is iteratively enriched to
solve the analysis with an estimation of the error made by the surrogate model. The disciplinary surrogate
model which has the most influence on this error is determined by a sensitivity analysis and thus enriched. This
approach allows to uncouple the disciplinary solvers during the training and enrichment phases. The approach is
applied to various aeroelastic problems of an aircraft wing and allows to reduce by a factor 5 the mean number
of disciplinary solver calls needed for the resolution of the MDA.

Keywords : MDA solver, surrogate models, Gaussian Process, POD, POD+I, multi-query context

1 Introduction

This article addresses the numerical solving of parametrized multidisciplinary analysis (MDA) in a multi-query
context such as multidisciplinary design optimization (MDO) or reliability analysis among others. In both cases,
numerous calls to a quantity of interest depending on the solution of a complex parametrized coupled problem
is necessary. This coupled system, defined by the interaction between several disciplines through some coupling
variables is called MDA. The basic idea of the MDA is to take into account these interactions to accurately
describe complex physical phenomena. A common example of MDA is the determination of the static aeroelastic
equilibrium of an aircraft wing. The aeroelastic equilibrium is affected by parameters or design variables such
as the angle of attack, the dimensions and properties of the structure. This fluid structure interaction problem
couples an aerodynamic model and a structural mechanics one. Indeed the elastic deformation of a wing is derived
from the forces that are applied to the structure and the aerodynamic loads are defined by the wing shape and
therefore by the elastic deformation of the structure. Thus, the solution of this problem for a given parameter
needs the resolution of a coupled problem involving the two disciplines. For the last decades, the intensive use
of MDA has been struggling with the use of high fidelity models for which the cost of the disciplinary solvers
can be prohibitive when used for more than a single analysis. Here, a focus is made on the resolution of MDA
problems where the coupling variables are fields discretized over a mesh (e.g. displacement and pressure fields)
and the disciplinary solvers are black boxes (e.g. industrial softwares), limiting the use of intrusive methods. In
this study, the focus is on partitioned techniques for independent disciplinary solvers [1].

In MDO context, a survey of several formulations for the resolution of the MDO have been proposed by
[2] where the coupling and design variables are managed in various ways. Those formulations can be split into
two categories: the one-level strategies are those where the design variables and the coupling ones are handled
simultaneously (all-at-one (AAO), Simultaneous Analysis and Design (SAND), etc.). Those strategies might be
difficult to use as handling large dimensional coupling variables like fields discretized over a mesh is challenging.
Then, a particular interest is given to the feasible strategy [3] where the optimization and the resolution of the
MDA are considered separately. The resolution of the MDA is solved by a dedicated method that can handle
a large number of coupling variables and that can be used for various multi-query problems (MDO, reliability
analysis,...). However, the repeated resolutions of the MDA involve a high number of calls to the disciplinary
solvers leading to some intractable computational cost issues when high fidelity models are involved. To reduce
this computational cost, a surrogate model of the quantity of interest given by the MDA can be built providing
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an inexpensive approximation of this quantity (see for examples [4, 5, 6]). Those methods are not dedicated to
the MDA and do not exploit the partitioned procedure used to solve the MDA. Even if this kind of strategy
succeeds in reducing the number of MDA calls, each enrichment of the surrogate model implies to solve the
whole MDA. Consequently, in order to further reduce the cost of the MDA computation, few studies propose to
take advantage of the partitioned methods used to solve the MDA.

One way to benefit from this partitioned approach is to replace the costly disciplinary solvers by surrogate
models. For example, authors of [7, 8, 9, 10] use surrogate models of the disciplinary solvers and couple them to
solve an approximate version of the MDA. These studies rely on an independent construction of each surrogate
model and do not consider the resulting approximation error made by coupling the disciplinary surrogate models.
To improve the disciplinary surrogate model construction in an MDO context, it is proposed in [11] to use
Gaussian Processes (GPs) to approximate each disciplinary solver. Then, a dedicated strategy is applied to
solve the MDO by taking into consideration the randomness brought by the GPs during the MDA resolution.
Nevertheless, it should be noted that learning a GP surrogate model from the disciplinary solvers requires a low
number of coupling variables (low dimensional input space) which is a strong limitation of the previous approach.
Indeed, the approximation of models with a high number of inputs and outputs is still a challenging task.

With respect to this issue, in the context of single disciplinary approximation, the parametric model order
reduction methods (pMOR) have been widely developed in the last decades. Among all the existing pMOR
approaches, a particular attention is given to projection methods. The main idea is to project the physical
equations of the disciplinary solver onto a low dimensional subspace using a dedicated projection basis. Several
methods exist to compute the projection basis such as snapshot Proper Orthogonal Decomposition (POD) [12],
greedy procedures [13], goal-oriented methods [14] among others. Although these methods allow to drastically
reduce the number of degrees of freedom associated to the physical solver, they require the assembly and projec-
tion of large scale operators when no affine decomposition of these operators with respect to the parameters of
interest is available. To overcome this issue, several techniques using hyper-reduced-order models [15] based on
discrete empirical interpolation [16] were proposed. They are based on computing few components of the large
scale operator to build approximations but remain intrusive as the sparse sampling is not always achievable.
Moreover, all of them are based on an offline-online strategy. In fact, a computationally expensive offline stage
is needed to build the reduced model using many calls to the disciplinary solver. As no information regarding
the interesting regions of the design space are available, the reduced models have to be accurate on the whole
input space. The computational burden of the offline stages can be prohibitive and can dominate the compu-
tational cost of the entire process. To tackle this issue, Proper Orthogonal Decomposition and Interpolation
(POD+I) [17, 18, 19] aims at approximating the POD coefficients using surrogate models. Once the POD basis
is assembled, a regression-based approach is used to establish a mapping from design variables to projection
coefficients onto the POD basis. This ensures a complete decoupling of offline and online stages as the online
solutions only require direct outputs from the reduced-order regression model. Therefore, those methods are
non-intrusive but suffer from the lack of information concerning the error made by the regression model. One of
the possible ways to address this issue is the use of GPs [20] that give an estimation on the error made on the
interpolation. It should be noted that POD+I relies on a Design of Experiments (DoE) containing samples of
the disciplinary solver solutions. This DoE is challenging to build in the context of coupled simulations. Indeed,
in that particular case, the definition sets of the coupling variables are unknown which creates a difficulty for
the construction of the DoE used to train the disciplinary surrogate models. In fact, POD+I has mainly been
used to give an approximation of the solution of the whole MDA such as in [19, 21, 22].

In this paper an approximation of each disciplinary solver is proposed using a POD+I type technique to
adapt the strategy developed in [11] in a coupled context simulations with high-dimensional coupling variables.
A similar approach has been proposed in [23] where only one of the disciplinary solvers was approximated. This
approach allows to drastically reduce the number of solver calls for one discipline in an optimization context.
However, both disciplinary solvers are considered costly in our study. The training of the POD+I in [23] is
made using incomplete MDA solutions; in this study, another training strategy will be proposed in addition to
an estimation of the error made on the interpolation. Our approach is based on a reduction of the coupling
variables using POD. This reduction of the coupling variables defines a new reduced MDA that can be learned
using surrogate models to get an inexpensive approximation of each discipline. The challenge is the training of
the surrogate models in a multidisciplinary environment where coupling variables depend on each other output
through the feedback loops. Those coupling variables live in a large, unknown space leading to a dedicated
sampling strategy. More precisely, the training strategy of both the POD basis and the DoE for the surrogate
models is the first contribution of this paper. The second contribution is an original adaptive enrichment of the
surrogate models allowing to give precise estimation of the MDA. The enrichment strategy relies on a sensitivity
analysis. Thus, a probabilistic estimation of the error is developed based on the surrogate model information.
The tolerance on this online error can be adjusted arbitrarily by the user.

Presentation of these two contributions is organized as followed. In Section 2 the construction of the POD
basis and GPs in the MDA context are presented. This section highlights the issue of the construction of the
disciplinary DoE and proposes a sequential sampling for the initial disciplinary DoE. In Section 3 an enrichment
strategy is described to solve the MDA using the surrogate model. Finally, the performance of the proposed
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Discipline 1
y1 = f1(z, y2)

Discipline 2
y2 = f2(z, y1)

y1

y2

Figure 1: Illustration of the MDA problem involving 2 disciplines.

method is assessed on various static aeroelastic examples in Section 4.

2 Surrogate model of the MDA

In this study, the approach is presented on an aeroelastic example with two disciplines. Note that the same
methodology can be adapted with more than two disciplines.

2.1 Problem formulation

In the following, the superscript 1 will refer to the discipline 1 and the superscript 2 to the discipline 2. A
parametrized MDA problem, of two disciplines involving feedback loops, could be written as a system of two
equations, {

y1 = f1(z, y2)
y2 = f2(z, y1)

(1)

where the design variables z belong to a design space Z ⊂ Rq. The coupling variables of the system are

y1 ∈ C1 ⊂ Rd
1

and y2 ∈ C2 ⊂ Rd
2

, and f1 and f2 are the solvers of the two disciplines. The solutions of this
system, which only depend on the design variables are denoted by y1

∗(z) and y2
∗(z). This system is illustrated in

Figure 1. In an aerostructure example, y1 are the displacements of the wing nodes and y2 are the aerodynamic
pressures that are applied to the structure. As we assume that those solvers are black boxes, one can solve the
system using an iterative algorithm. Here a non linear Gauss Seidel solver is used and described in the Appendix.
The two user defined parameters of this MDA solver are the initial guess y1

0 and a convergence tolerance εMDA.
This first guess y1

0 defines the initial point of the iterative solver and is usually obtained by the solution of
the MDA for the design variable z0 corresponding to the center of the design space Z if it’s available or from
physical considerations (zero displacement for the structure for example). The solver ends when the relative
error between two successive iterates is lower than εMDA. In the following, existence of a unique solution for
Eq. (1) is assumed by physical considerations and the solution obtained using the MDA solver is denoted by
exact MDA.

The proposed methodology to solve this system is to build a surrogate model of each disciplinary solver.
Unfortunately, surrogate models like Gaussian Processes (GPs), radial basis functions, Polynomial Chaos Ex-
pansion (PCE) cannot be used in this context as coupling outputs are high dimensional vectors (d1 � 1 and
d2 � 1). To overcome this issue, a reduction of the coupling variables is proposed. The objective is to replace
both disciplines by surrogate models using a POD+I strategy. This method will be split into two steps: the
reduction of the coupling variables using POD and the interpolation with the use of surrogate models to ap-
proximate POD coefficients. In this approach, both disciplinary solvers are replaced by surrogate models unlike
the approach developed in [21, 22] where only one of the disciplinary solver was approximated. To train the
surrogate models, physical simplifications are developed to avoid expensive exact MDA [10].

2.2 Reducing the dimensionality of the coupling variables

The coupling variables are the outputs of numerical solvers representing physical phenomena and a reduction of
their dimensionality is needed. Thankfully, it has been shown that for many physical problems, those outputs
can be well described by few dominant modes allowing to reduce drastically the dimensionality. To define this
low dimensional subspace, called projection space, several methods have been studied [24, 25]. In this paper,
the POD method is considered as it has been widely used and has shown its efficiency on computational fluid
dynamics and structural problems, for both linear and non linear solvers.

The POD is described here for the first discipline and the same methodology holds for the second. The POD
aims at representing the output of each solver on a linear subspace:

y1(z, y2) ≈ ỹ1(z, y2) = c1 +

n1∑
j=1

α1
j (z, y

2)φ1
j (2)
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Reduced discipline 1
α1

1, . . . , α
1
n1 = f̃1(z, α2

1, . . . , α
2
n2)

Reduced discipline 2
α2

1, . . . , α
2
n2 = f̃2(z, α1

1, . . . , α
1
n1)

α1
1, . . . , α

1
n1

α2
1, . . . , α

2
n2

Figure 2: Illustration of the reduced MDA using POD coefficients.

where ỹ1 is an approximation of the vector y1, φ1
j is the jth basis vector for the solver 1, α1

j is the corresponding
coefficient, and c1 is a constant vector associated with the projection basis. The number of terms n1 is chosen
for the approximation and is described in the following. In practice, the POD basis is built using the method
of snapshots. First, several computations of disciplinary solver are performed to get a representative set of the
variety of possible solutions. Let ((y1)k)mk=1 be a set of m snapshots (m � d1) computed for different inputs.
The mean of the snapshots reads:

c1 =

m∑
k=1

(y1)k

m
(3)

The centered solutions are stored in a d1 ×m matrix where d1 is the dimension of y1.

ψ =
[
(y1)0 − c1| . . . |(y1)m−1 − c1

]
(4)

Then, a Singular Value Decomposition (SVD) [26] on ψ is achieved leading to

ψ = USV T (5)

where U is a (d1 × d1) orthonormal matrix containing the left singular vectors, S is a (d1 ×m) diagonal matrix
with diagonal entries containing the singular values σi and V is a (m ×m) orthonormal matrix containing the
right singular vectors. The singular values are sorted decreasingly: σ1 ≥ . . . ≥ σm ≥ 0. For a given number of
basis vector s, the optimal basis, i.e that minimizes the mean of the quadratic projection error, is given by the
s first columns of U . The number n1 (n1 � d1) of basis vector retained is

n1 = min
s
s subject to

∑s
i=1 σi∑m
i=1 σi

> η (6)

where η represents the percentage of captured energy by the POD basis from the original model. Let φ1
j with

j ∈ [|1, . . . , n1|] be the columns of φ1 defining the linear basis in Eq. (2). With this basis, the projection
application Φ1 is now defined by:

Φ1 : C1 → C̃1 ⊂ Rn
1

u1 7→ Φ1(u1) = {α1
1, . . . , α

1
n1} = (φ1)T (u1 − c1)

(7)

where C̃1 is the image of C1 by Φ1. The reverse of Φ1, noted Φ−1, allowing to reconstruct the full vector from
the coefficients is defined by:

Φ−1 : C̃1 → C1

α1
1, . . . , α

1
n1 7→ Φ−1(α1

1, . . . , α
1
n1) = c1 +

∑n1

j=1 α
1
jφ

1
j

(8)

The same methodology applied to the second discipline allows to define a projection function Φ2 and its
inverse Φ−2.

Finally, two functions allowing the transition from a large dimensional space to a reduced one have been built
and will be used to efficiently represent the solutions from each solver by mean of a few coefficients (usually less
than 20). The new MDA system using the coefficients of the POD as coupling variables reads{

α1
1(z, α2

1, . . . , α
2
n2), . . . , α1

n1(z, α2
1, . . . , α

2
n2) = f̃1(z, α2

1, . . . , α
2
n2)

α2
1(z, α1

1, . . . , α
1
n1), . . . , α2

n2(z, α1
1, . . . , α

1
n1) = f̃2(z, α1

1, . . . , α
1
n1)

(9)

where f̃1(z, α2
1, . . . , α

2
n2) = Φ1(f1(z,Φ−2(α2

1, . . . , α
2
n2))) and f̃2(z, α1

1, . . . , α
1
n1) = Φ2(f2(z,Φ−1(α1

1, . . . , α
1
n1))).

In the following, f̃1 and f̃2 are called reduced disciplinary solvers. This new reduced MDA is illustrated in Fig-
ure 2. Once the coupling variables reduced, the next objective is to build Gaussian Process (GP) approximations
of the POD coefficients to surrogate the reduced MDA.

Remark:

One of the main difficulties here is the dependency of the coupling variables on each other. Indeed, this
phenomena has to be taken into account for the construction of the snapshots. A partial solution is proposed
in Section 2.4 by mean of a specific sampling strategy.
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2.3 Surrogate model of the reduced MDA

2.3.1 Interpolation

Let us consider a continuous function we seek to approximate by a surrogate model:

f : Ω ∈ Rn → R
x 7→ f(x)

(10)

The idea is to approximate the function using GPs conditioned on a few observations of the function output
[27]. The conditioned GP is built over a prior GP defined by:

• a prior mean µprior(x) = F (x)β computed using a regression on a set basis of functions defined by F (x)
and by their associated coefficients β.

• a prior variance σ2
prior defined by the covariance function (sometimes called kernel):

k(v, w) = cov(G(v),G(w)) = σ0Ψ(v, w, θ) (11)

where Ψ is a user defined correlation function.

An estimation of hyperparameters σ0, β and θ is necessary to ensure an accurate response for any unknown
point of the domain. For a fixed kernel, several techniques exist to obtain the optimal values of these hyperpa-
rameters, for example Maximum Likelihood Estimation or cross-validation.

Then, the GP is conditioned relatively to the observations of the function f . For any input x ∈ Rn, the
conditioned GP is defined by its mean µ and its variance σ:

G(x) ∼ N (µ(x), σ2(x)) (12)

For additional details on the construction of the GP, readers are referred to [27].

2.3.2 Surrogate models of the reduced disciplinary solvers

The purpose of this section is to apply a POD+I like methodology for MDA analysis. It should be noted that the
POD+I strategy cannot be applied to replace the disciplinary solver directly. Indeed, the inputs of the surrogate
models are composed of design variables z and coupling variables y1 or y2, so their dimensions are quite high.
To handle this issue, a surrogate model of the reduced MDA illustrated in Figure 2 is proposed. This approach
is called Disciplinary Proper Orthogonal Decomposition and Interpolation (DPOD+I) in the following.

To distinguish deterministic variables from random ones, all random variables will be denoted by a hat
symbol. Thanks to the reduced MDA (system of Eq. (9)), the dimension of the coupling variables has been
drastically reduced. After the POD projection, the projected disciplines f̃1 and f̃2 can be approximated by
disciplinary surrogate models. The idea here is to replace each coefficient on the POD basis by a GP, denoted
by the hat symbol:

α̂1
i (z, α

2
1, . . . , α

2
n2) for α1

i (z, α
2
1, . . . , α

2
n2) ∀i = 1, . . . , n1

α̂2
j (z, α

1
1, . . . , α

1
n1) for α2

j (z, α
1
1, . . . , α

1
n1) ∀j = 1, . . . , n2 (13)

Consequently the coefficients of the reduced MDA are replaced by

α̂1
i (z, α

2
1, . . . , α

2
n2) = µ1

i (z, α
2
1, . . . , α

2
n2) + ε̂1i (z, α

2
1, . . . , α

2
n2) ∀i = 1, . . . , n1

α̂2
j (z, α

1
1, . . . , α

1
n1) = µ2

j (z, α
1
1, . . . , α

1
n1) + ε̂2j (z, α

1
1, . . . , α

1
n1) ∀j = 1, . . . , n2 (14)

where µ1
i and µ2

j are the means of the GP; ε̂1i and ε̂2j are random variables following a zero mean GP whose
covariance function is the one of the corresponding GP.

It should be noted that the training of the disciplinary surrogate models implies the construction of a DoE
and thus to sample the disciplinary solver with respect to the design space and the coupling variables spaces.
If sampling in the design space is trivial, efficient sampling in the large dimensional coupling variables spaces is
more difficult due to the unknown range of the corresponding variables. An original sampling method is thus
proposed in Section 2.4.

Once the disciplinary surrogate models have been trained, the solution of the surrogate MDA is no longer
deterministic as the exact coefficients onto the POD basis have been replaced by GPs. To handle the random
variables introduced in the random MDA, a methodology is proposed in Section 3.1.
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Figure 3: Distribution of the inputs of each disciplinary call during the resolution of 10 MDA associated to 10
different design variables. Here, only the first coefficient on each POD basis and the first design variable are
displayed. Each MDA resolution is differentiated by different colors, the resolution of the 10 MDA involved 54 calls
to each disciplinary solver.

2.4 Training of surrogate models

In this section, the process allowing to initiate the snapshots to build the POD basis and the DoE to train the
GPs is described. One naive way to do is to use a sample of exact MDA (solving Eq. (1) for different design
variables z). A sample of p design variables zi, i = 1, . . . , p over the space Z can be generated using an
appropriate DoE method, Latin Hypercube Sampling (LHS) [28] for example. Then, the exact MDA associated
to each design sample is computed using the MDA solver (or unconverged ones as proposed by [23]). For each
design zi, a certain number of iterations is needed. All those solver solutions are used as snapshots to build Φ1

and Φ2. Knowing Φ1 and Φ2, a DoE of f̃1 and f̃2 is obtained by projecting all the coupling variables inputs and
the outputs of each solver call. However, this DoE is not efficient for the exploration of the coupling variable
spaces. Indeed, during one MDA resolution, the design variables are constant (equal to zi) and the coupling
variables y1 and y2 converge to the exact MDA. The distribution of the DoE obtained with this basic strategy
is illustrated on Figure 3. This figure shows the first two POD coefficients and the first design variable of an
aerostructure example which will be presented in the following. In this figure, each color corresponds to the
resolution of the MDA for a given design variable zi. It had been observed that the training of the surrogate
models with this DoE is not efficient as the space of the coupling variables is not explored by the successive
iterations of the fixed point algorithm used to solve the MDA. One way to improve this method could be to
not use exact MDA but rather some incomplete MDA analysis [23] to avoid the coupling variables y1 and y2 to
remain around the coupled solutions.

Here, a specific methodology exploiting a decorrelation between design and coupling variables is proposed
to train the GPs. The main purpose is to get a well distributed DoE allowing to build a global model of the
parametric MDA. This DoE is challenging because no sampling method can be used to generate a well distributed
sample for the coupling variables. Indeed, the spaces C1 and C2 are unknown or hard to define: C1 is the image of
Z×C2 under f1 and C2 is the image of Z×C1 under f2 leading to high correlations. Thus, a method inspired by
the MDA solver is used; instead of keeping the same design variables through the iterates, the design variables
are randomly changed at each iteration. As the MDA, this method involves a first sample of initial guesses to
begin the iterations. Then, the iterations and the new stopping criterion are described.

2.4.1 First sample of the coupling variables

First of all, no solver computation can be achieved without an initial guess of the other solver solution. The
objective of this task is to generate a sample of r initial guesses for each discipline. Once this sample is built,
exact computation of the other discipline can be achieved using the given sample as inputs. To do so, one way
to generate samples from C1 is to build a 1D manifold spanned by the initial guess of the MDA solver y1

0 . We
seek to generate a manifold F = {λy1

0 , λ ∈ [λ−;λ+]} where every element of F is likely to be an element of C1.
To obtain the bounds λ+ and λ− a physical analysis is required. For example, in an aerostructure context, the
maximum displacement of the wing lies between zero and a value given by some physical considerations over the
wing structure. Next, the idea is to use a sample from F to generate a sample for the second discipline.

The algorithm corresponding to this method is described in Algorithm 1. The following steps of the associated
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algorithm are described in the following:

1. Generate r samples from [λ−;λ+] by mean of a sampling method (LHS).

2. The initial guesses of the first discipline are given by the product between the r samples from [λ−;λ+] and
y1

0 .

3. Generate r design variables zi from the design space Z by LHS for example.

4. The initial guesses of the second discipline are given by outputs of the exact disciplinary solver. The inputs
of the disciplinary solver are given by the sample of design variables zi and the initial guesses of the first
discipline (y1)0

i .

Remarks:

• As for the MDA solver initial guess, high accuracy for the generated sample is not required because the
influence of the initial guess will decrease during the iterative training process. The same holds for the
estimation of λ+ and λ− whose influence will decrease through the iteration of the training process.

• The solver solutions computed in Algorithm 1 are not used to train the GPs.

Algorithm 1: Compute r samples of coupling variables.

input : An initial guess y1
0 , a number r > 0, bounds λ− and λ+

{λi, i = 1, . . . , r} ← r samples from [λ−;λ+] obtained by LHS;
for i = 1, . . . , r do

(y1)0
i ← λiy

1
0 ;

end
{zi, i = 1, . . . , r} ← containing r samples from Z obtained by LHS;
for i = 1, . . . , r do

(y2)0
i ← f2(zi, (y

1)0
i );

end
output: {(y1)0

i , i = 1, . . . , r}, {(y2)0
i , i = 1, . . . , r}

2.4.2 Training Algorithm

The objectives are now to get an accurate POD basis and data to train the GPs. The idea is to generate batchs
of disciplinary solutions using the first samples obtained during Algorithm 1. To evaluate the accuracy of the
POD basis, the relative projection error is computed for the newly computed batch. This allows to evaluate the
accuracy of the POD basis on solutions that are independent from the one used to train the basis. The POD
basis is accurate enough when the mean relative error does not exceed a tolerance εPE chosen by the user.

The steps of the method, called Algorithm 2, are described in the following:

1. Initiate the projection error and the iteration counter n

2. Compute samples of both disciplines until the mean projection error is lower than εPE . To do so, a sample
of design variables {(z1)ni , i = 1, . . . , r} is generated using LHS. Then, each design variable is associated
to a sample of {(y2)n−1

i , i = 1, . . . , r} to get the inputs of the first discipline solver. The exact solution
to the corresponding input is computed using the disciplinary solver. The relative error between the
new computed solution and its POD approximation is computed. The mean projection error for the first
discipline is obtained by the mean of the relative errors obtained.

3. Another sample of design variables {(z2)ni , i = 1, . . . , r} is generated using LHS. Each design variable is
associated to the sample of the newly computed solution of the first discipline {(y1)ni , i = 1, . . . , r}. The
exact solution of the corresponding input is computed using the disciplinary solver. The relative error
between the newly computed solution and the POD approximation is computed. The mean projection
error for the second discipline is thus obtained by the mean of the relative errors obtained.

4. The POD basis are generated by SVD with the information given by all the computed solver solutions.

5. If the criterion on the relative error is satisfied, the algorithm ends and a robust POD basis is obtained
defining Φ1 and Φ2. Then, each solver call of the disciplinary solver is used to build a DoE for the
reduced disciplinary solver. {(z1)ji ,Φ

2((y2)j−1
i )} → Φ1((y1)ji ), i = 1, . . . , r, j = 1, . . . , n are observations of

α1
1, . . . , α

1
n1 and {(z2)ji ,Φ

1((y1)ji )} → Φ2((y2)ji ), i = 1, . . . , r, j = 1, . . . , n are observations of α2
1, . . . , α

2
n2 .

Finally we succeed in building a POD basis for each discipline and a DoE to train the GPs. The obtained DoE
is illustrated in Figure 4 where the inputs for each disciplinary solver call are displayed with respect to the first
design variable and the first POD coefficient for each discipline. One can note that, compared to Figure 3, the
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Algorithm 2: Compute a POD basis and a training set for the GPs.

input : {(y2)0
i , i = 1, . . . , r}, a tolerance over the projection error εPE

projection error ← 1 + εPE ;
n← 1;
while projection error > εPE do

sample {(z1)ni , i = 1, . . . , r} obtained by LHS in Z;
for i = 1, . . . , r do

(y1)ni = f1((z1)ni , (y
2)n−1
i ));

(e1)ni ←
‖(y1)ni )−Φ−1(Φ1((y1)ni )))‖2

‖(y1)ni )‖2 ;

end

e1 ← 1
r

∑r
i=1(e1)ni ;

sample {(z2)ni , i = 1, . . . , r} obtained by LHS in Z;
for i = 1, . . . , r do

(y2)ni ← f2((z2)ni , (y
1)ni );

(e2)ni ←
‖(y2)ni −Φ−2(Φ2((y2)ni ))‖2

‖(y2)ni ‖2
;

end

e2 ← 1
r

∑r
i=1(e2)ni ;

Φ1 ← POD basis built from {(y1)ji , i = 1, . . . , r, j = 1, . . . , n};
Φ2 ← POD basis built from {(y2)ji , i = 1, . . . , r, j = 1, . . . , n};
projection error ← max(e1, e2);
n← n+ 1;

end

output: Φ1, Φ2, {(y1)ji , i = 1, . . . , r, j = 1, . . . , n}, {(y2)ji , i = 1, . . . , r, j = 0, . . . , n},
{(z1)ji , i = 1, . . . , r, j = 1, . . . , n}, {(z2)ji , i = 1, . . . , r, j = 1, . . . , n}

obtained DoE is spread in the input spaces thus the distribution of points is much better suited for a surrogate
construction.

Remark:

As no MDA is solved for the training, the accuracy of the POD basis is not proven for the whole coupling
variables spaces and even more for the space where the exact MDA lives. A local correction of the POD
basis will be proposed in the online phase to solve this issue.

3 Resolution of the MDA using surrogate models

The objective of this section is to use a MDA solver, called DPOD+I, to solve the MDA analysis with an
enrichment strategy based on the work presented in [11]. In Section 2.4.2, an initial model is trained to obtain
an accurate POD basis for each discipline. However, the GPs constructed on this initial basis are not accurate
enough. Thus an enrichment of the GPs is proposed. To do so, a local model is initialized as a copy of the initial
model obtained during the training phasis in Section 2.4.2 and locally enriched. Then, the data gathered during
the local enrichment are filtered and used to enrich the initial model. The purpose of the filtering is to avoid
poorly distributed inputs for the GPs that could lead to ill-conditioned GPs as explained in Section 2.4.

The first step is the enrichment of the local model to get an accurate approximation of the exact MDA for
a given value z = z∗. To illustrate this process through figures, a simplification is made by considering only one
vector in each POD basis. Thus each reduced disciplinary solver only depends on one coupling variable. The
reduced MDA problem is shown in Figure 5 where the green dotted curve represents the response of the first
discipline according to the coupling variable α2

1 for a fixed parameter z∗ and the purple dotted curve represents
the response of the second discipline according to the coupling variable α1

1. The solution of the MDA is the
intersection between the two curves displayed with a red star.

From the training steps, a surrogate model of the MDA is initiated:{
α̂1
i = µ1

i (z∗, α̂
2
1, . . . , α̂

2
n2) + ε̂1i (z∗, α̂

2
1, . . . , α̂

2
n2) ∀i = 1, . . . , n1

α̂2
j = µ2

j (z∗, α̂
1
1, . . . , α̂

1
n1) + ε̂2j (z∗, α̂

1
1, . . . , α̂

1
n1) ∀j = 1, . . . , n2 (15)

where µ1
i and µ2

j are the mean values of the GPs. The terms ε̂1i and ε̂2j are random processes following a zero
mean GP whose covariance function σ1

i or σ2
j is the one of the corresponding GP.
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Figure 5: Illustration of the reduced MDA problem on a 1D POD basis. Reduced disciplinary solvers and MDA
solution for a fixed parameter z∗.
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Figure 6: Illustration of the reduced MDA problem on a 1D POD basis. Reduced disciplinary solvers and their
associated surrogate models with the solution of both the reduced and mean MDA.

From the mean values of the disciplinary GPs, an approximation of the MDA can be computed:{
ᾱ1
i = µ1

i (z∗, ᾱ
2
1, . . . , ᾱ

2
n2) ∀i = 1, . . . , n1

ᾱ2
j = µ2

j (z∗, ᾱ
1
1, . . . , ᾱ

1
n1) ∀j = 1, . . . , n2 (16)

This mean solution is displayed with an orange star in Figure 6. The surrogate approximations of the reduced
disciplinary solvers f̃1 and f̃2 are displayed with continuous lines while the exact reduced disciplinary solvers
are displayed with dotted lines. This information does not manage to evaluate the uncertainty of the surrogate
models, as this uncertainty is provided by the variances of the GPs. Then, even if the initial problem is
deterministic, taking into account the variances of the GP brings randomness to the MDA. Thus, the first step
will be to generate a sample of random solutions to evaluate the accuracy of the surrogate models. Then, an
enrichment strategy will be proposed to enhance the accuracy of the surrogate models until its accuracy is
equivalent to the one of the MDA solver.

3.1 How to generate random solutions considering the variance of the GPs?

One way to get random solutions of this system is to consider the following trajectories:

t̂1i (z∗, α̂
2
1, . . . , α̂

2
n2) trajectory of ε̂1i (z∗, α̂

2
1, . . . , α̂

2
n2) ∀i = 1, . . . , n1

t̂2j (z∗, α̂
1
1, . . . , α̂

1
n1) trajectory of ε̂2j (z∗, α̂

1
1, . . . , α̂

1
n1) ∀j = 1, . . . , n2 (17)

Then, the following system is solved{
α̂1
i = µ1

i (z∗, α̂
2
1, . . . , α̂

2
n2) + t̂1i (z∗, α̂

2
1, . . . , α̂

2
n2) ∀i = 1, . . . , n1

α̂2
j = µ2

j (z∗, α̂
1
1, . . . , α̂

1
n1) + t̂2j (z∗, α̂

1
1, . . . , α̂

1
n1) ∀j = 1, . . . , n2 (18)

This allows to generate random solutions that can be reached by the GP trajectories. Unfortunately, trajectories
of GPs are difficult to simulate when the number of inputs of the GP (design variables and POD coefficients) is
high leading to a representation with a large number of random variables which is not suitable for the following.
One solution proposed in [11] is to use perfectly dependant GPs. The idea is to model the unknow functions as a
conditionned GP with mean and variance obtained as described in Section 2.3.1 but with a correlation function
constant and equal to one. This model is thus expressed as

α̂1
i = µ1

i (z∗, α̂
2
1, . . . , α̂

2
n2) + ξ1

i σ
1
i (z∗, α̂

2
1, . . . , α̂

2
n2), ∀i = 1, . . . , n1

In the following, Figure 7 illustrates this idea.
Thus, we propose to solve the system:{

α̂1
i = µ1

i (z∗, α̂
2
1, . . . , α̂

2
n2) + ξ1

i σ
1
i (z∗, α̂

2
1, . . . , α̂

2
n2) ∀i = 1, . . . , n1

α̂2
j = µ2

j (z∗, α̂
1
1, . . . , α̂

1
n1) + ξ2

jσ
2
j (z∗, α̂

1
1, . . . , α̂

1
n1) ∀j = 1, . . . , n2 (19)

Here, the solution depends on the draw ξ1
i and ξ2

j of the standard Gaussian variables ξ̂1
i and ξ̂2

j . Thus, several

random solutions of the surrogate model are given by different draws of ξ̂1
i and ξ̂2

j . To characterize the variability
of these random solutions a direct Monte Carlo (MC) is used. On the left of Figure 7, 3 random solutions are
generated using these simplified trajectories. On the right, the same methodology is used to generate 75 MC
simulations of the random solutions. In the next section, a method is proposed to deal with the random solutions
given by the surrogate models.

Remarks:
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Figure 7: Illustration of the reduced MDA problem on a 1D POD basis. On the left, 3 random solutions obtained
with simplified trajectories. On the right, a Monte Carlo simulation of 75 random solutions.

• This simplification in the GP modelization is not detrimental in the evaluation of the interpolation uncer-
tainty as this GP model shares the same variance as the original one, only the covariance is different. It
has been shown in [11] that this choice of modelization is numerically efficient to quantify the uncertainty
due to GP interpolation.

• Getting a random solution of such surrogate model is inexpensive. Indeed, for a given draw of ξ̂1
i and

ξ̂2
j , the solution of Eq. (19) only requires calls to the analytical means and variances of the GPs. This

resolution is achieved using a non linear Jacobi solver.

3.2 How to evaluate the accuracy of the surrogate model?

q̂1(α̂1
1, . . . , α̂

1
n1) =

‖Φ−1(α̂1
1,...,α̂

1
n1 )−Φ−1(ᾱ1

1,...,ᾱ
1
n1 )‖2

‖Φ−1(ᾱ1
1,...,ᾱ

1
n1 )‖2

q̂2(α̂2
1, . . . , α̂

2
n2) =

‖Φ−2(α̂2
1,...,α̂

2
n2 )−Φ−2(ᾱ2

1,...,ᾱ
2
n2 )‖2

‖Φ−2(ᾱ2
1,...,ᾱ

2
n2 )‖2

(20)

The surrogate model is considered accurate enough if the τ -quantiles q1
τ and q2

τ of q̂1 and q̂2 are lower than
εq where εq is the tolerance of the resolution (that can be equal to εMDA) and τ can be typically chosen as 0.9.
This criterion ensures that a τ proportion of the random MDA is close enough to the mean solution. To estimate
the quantiles, nMC MC simulations are used. This quantity is similar to the convergence criterion of the MDA
solver where the relative error between the coupling variables over two successive iterations is evaluated.

3.3 How to locally enrich the surrogate model?

If the criterion on the quantile is not fulfilled, a local enrichment of the surrogate model is proposed. One
could enrich both disciplines but this solution is not optimal as only one of the surrogate disciplinary solvers
could be inaccurate. Then, enriching only one discipline is of interest to reduce the number of calls to the exact
disciplinary solvers. The less accurate discipline to be enriched is chosen according to the approximation of the
following Sobol sensitivity indices [29]:

S1 =
Var(E(q̂|ξ̂11,...,ξ̂

1
n1 ))

Var(E(q̂))

S2 =
Var(E(q̂|ξ̂21,...,ξ̂

2
n2 ))

Var(E(q̂))

(21)

with
q̂(ξ̂1

1 , . . . , ξ̂
1
n1 , ξ̂

2
1 , . . . , ξ̂

2
n2) = q̂1(α̂1

1, . . . , α̂
1
n1) + q̂2(α̂2

1, . . . , α̂
2
n2) (22)

where, α̂1
1, . . . , α̂

1
n1 and α̂2

1, . . . , α̂
2
n2 are solutions of the surrogate MDA from Eq. (19) with the corresponding

Gaussian variables ξ̂1
1 , . . . , ξ̂

1
n1 and ξ̂2

1 , . . . , ξ̂
2
n2 . Every sample of q̂ needs a solution of the surrogate model. The

Sobol indices are estimated using a Polynomial Chaos Expansion approximation.
Then, the discipline associated to the highest value of S1 or S2 is enriched. If the projection error on the

newly computed solution is considered as too important, the POD basis is enriched. This step ensures that even
if the POD basis was not accurate enough at the end of Algorithm 1, the POD basis can be enriched to maintain
a small error between the reduced MDA and the exact one. This enrichment strategy is applied repeatedly until
the criterion over the quantiles is fulfilled. In other words, the objective is to decrease the variability of the
random solutions by some successive enrichments. This process is described in Algorithm 3.
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Figure 8: Illustration of the reduced MDA problem on a 1D POD basis. 3 iterations of the solving algorithm: i)
initial GPs leading to first disciplinary surrogate model enrichment. ii) enriched GPs leading to second disciplinary
surrogate model enrichment. iii) final GPs where no enrichment is required.

1. The mean solution defined by Eq. (16) is computed. This is used as a reference for the computation of the
variability of the random solutions and for the enrichment.

2. First, a sampling of standard Gaussian (ξ1
i )k, i = 1, . . . , n1 and (ξ2

j )k, j = 1, . . . , n2 is generated using a
MC sampling method. Those samples define the simplified trajectories needed to solve the random MDA.

3. The surrogate MDA defined in Eq. (19) is solved for each sample (ξ1
i )k, i = 1, . . . , n1 and (ξ2

j )k, j =
1, . . . , n2. For each random solution, the distance to the mean solution is computed by Eq. (20).

4. If the τ -quantile of q̂ defined in Eq. (22) is higher than εq, an enrichment is needed.

5. To decide which of the two surrogate models to enrich, the estimation of S1 and S2 defined in Eq. (21) is
made using a PCE approximation. The higher Sobol sensitivity indice determines which discipline has to
be enriched. A call to the corresponding discipline is carried out using the information given by the mean
solution and the surrogate discipline is enriched accordingly.

6. If the relative projection error is greater than εPE , the POD basis is enriched using an on-the-fly method
[30],[31]. For example, if the first discipline is enriched, the column ȳ1−Φ1(Φ−1(ȳ1)) is added to the POD
basis φ1 after orthonormalisation. The applications Φ1 and Φ−1 are modified to suit the new basis.

If the variability is small enough, the surrogate solution is given by projecting back the mean solution to obtain
ỹ1(z∗) and ỹ2(z∗). These steps of the algorithm are illustrated in Figure 8. The GP means and variances are
displayed and MC simulations of the random solutions obtained are showed. In Figure 8 i), when no enrichment
has been done, the random solutions are spread over a large area. The sensitivity analysis leads to the enrichment
of the first disciplinary model reducing the variance of the corresponding GP in Figure 8 ii). Then, the second
disciplinary model is enriched. In Figure 8 iii), the random solutions are concentrated near the mean solution of
the surrogate model. Thus, the surrogate model is considered to be close enough to the exact model as illustrated
in Figure 9 showing the exact and surrogate MDA solution.

Remarks:

• The enrichment of the POD basis requires to save all the previous solver solutions.

• Sometimes, the successive enrichment of the GPs around the reduced MDA solution leads to poorly trained
GPs due to ill-conditioning. Then, the convergence of the random MDA solutions is not possible as no
solution exists. In this case, the resolution is aborted and the exact MDA solution is used instead.

• It should be noted that the GPs do not have to be accurate in the whole coupling variable space but only
where the MDA solution lies. This remark is illustrated in Figure 9, where one can see that the GPs are not
very accurate near the boundaries of the domain, without this affecting the quality of the MDA solution.
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Figure 9: Illustration of the reduced MDA problem on a 1D POD basis. Reduced disciplinary solvers and their
surrogate models after enrichment with the solution of the reduced and mean MDA where the surrogate models are
only accurate close to the intersection.

Algorithm 3: Compute MDA solution using surrogate models.

input : z∗, nMC

while τ -quantile of q̂ > εq do
ᾱ1
i , i = 1, . . . , n1, ᾱ2

j , j = 1, . . . , n2 ← solution of Eq. (16);

(ξ1
i )k, i = 1, . . . , n1, k = 1, . . . , nMC ← n1 × nMC standard Gaussian samples.;

(ξ2
j )k, j = 1, . . . , n2, k = 1, . . . , nMC ← n2 × nMC standard Gaussian samples.;

for k = 1, . . . , nMC do
(α1
i )k, i = 1, . . . , n1, (α2

j )k, j = 1, . . . , n2 ← solution of Eq. (19) associated to (ξ1
i )k, i = 1, . . . , n1

and (ξ2
j )k, j = 1, . . . , n2;

q1
k ←

‖Φ−1((α1
1)k,...,(α

1
n1 )k)−Φ−1(ᾱ1

1,...,ᾱ
1
n1 )‖2

‖Φ−1(ᾱ1
1,...,ᾱ

1
n1 )‖2 ;

q2
k ←

‖Φ−2((α2
1)k,...,(α

2
n2 )k)−Φ−2(ᾱ2

1,...,ᾱ
2
n2 )‖2

‖Φ−2(ᾱ2
1,...,ᾱ

2
n2 )‖2 ;

qk ← q1
k + q2

k;

end
q1
l ← τ -quantile of (q1

k)nMC

k=1 ;
q2
l ← τ -quantile of (q2

k)nMC

k=1 ;
if q1

l > εq or q2
l > εq then

S̃1 ← estimation of S1 by PCE;

S̃2 ← estimation of S2 by PCE;

if S̃1 > S̃2 then
Enrich the first disciplinary surrogate model;
ȳ1 ← f1(z∗,Φ2(ᾱ2

1, . . . , ᾱ
2
n2));

if ‖ȳ
1−Φ1(Φ−1(ȳ1))‖2

‖ȳ1‖2 > εPE then

φ1 ← {φ1, ȳ1−Φ1(Φ−1(ȳ1))
‖ȳ1−Φ1(Φ−1(ȳ1))‖2 };

end

else
Enrich the second disciplinary surrogate model;
ȳ2 ← f2(z∗,Φ1(ᾱ1

1, . . . , ᾱ
1
n1));

if ‖ȳ
2−Φ2(Φ−2(ȳ2))‖2

‖ȳ2‖2 > εPE then

φ2 ← {φ2, ȳ2−Φ2(Φ−2(ȳ2))
‖ȳ2−Φ2(Φ−2(ȳ2))‖2 };

end

end

end

end
output: ỹ1(z∗) = Φ1(ᾱ1

1, . . . , ᾱ
1
n1), ỹ2(z∗) = Φ2(ᾱ2

1, . . . , ᾱ
2
n2)
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3.4 How to globally enrich the surrogate model?

In this section, the main objective is to add information from the local enrichment to the global surrogate model.
The local model allows to get accurate MDA solution for a given design variable through local enrichment. The
global model is the starting model of the local one before the enrichment steps. To lower the local enrichment
cost, an enrichment of the initial model is proposed to enhance its accuracy on the design space after each local
resolution.

An intuitive idea is to add all the information gathered during the local enrichment but this results in a
poorly trained GPs and leads to stability issues (as explained in Section 2.4 concerning the initial DoE creation).

To avoid this issue, we filter the information and only add the last call to each disciplinary solver. Here, a
choice has been made to not enrich the POD basis of the initial model. The POD basis is thus given by the
initialization process and is only enriched during the local enrichment in Algorithm 3. This solution allows to
handle local phenomenon through local POD basis enrichment without getting a large global POD basis affected
by all the local singularities.

3.5 POD+I

The classic POD+I aims at approximating directly the exact MDA solutions y1
∗(z) and y2

∗(z) as proposed in
[19]. Then, to train the POD+I only exact MDA data shall be used. First, a DoE is needed. To do so, nDoE
different design variable points are obtained through a LHS: {zDoEi , i = 1, . . . , nDoE}. The MDA solutions
{y1
∗(z

DoE
i ), i = 1, . . . , nDoE} and {y2

∗(z
DoE
i ), i = 1, . . . , nDoE} associated to each design variable is obtained

using the MDA solver. Then, a POD basis is created for the first and the second disciplines. A DoE for the
surrogate models of each POD coefficient is obtained by projecting each MDA solution on the POD basis. The
surrogate models used are GPs:{

(α̂1
∗)i(z) = µ1

i (z) + ε̂1i (z) ∀i = 1, . . . , n1

(α̂2
∗)j(z) = µ2

j (z) + ε̂2j (z) ∀j = 1, . . . , n2 (23)

where ε̂1i and ε̂2j are zero mean GP whose covariance function is the one of corresponding kriging (i.e. σ1
i and σ2

j

respectively). From this offline training, it is possible to compare the performance of the POD+I by analyzing
the online approximation given by the mean values of the GPs.

The idea is now to develop a new POD+I solver that could be used as comparison for the DPOD+I based
on an enrichment strategy derived from the enrichment strategy obtained in Section 3.3. This method is called
enriched POD+I in the following. The enrichment algorithm described in Algorithm 4 follows the following
steps:

• The mean values of the GPs give an approximation of the solution. It should be noted that the solution is
easier to get as the POD+I is approximating the solution of the coupled system rather than each disciplinary
solver.

• MC simulations are generated using the variance values of the GPs.

• A similar analysis is made on the variability of the random solutions around the mean solution.

4 Application to a static aeroelastic problem

In the following, an application involving aerodynamic and structure disciplines is presented to illustrate the
proposed approach. First, the physical problem is described. Then, the algorithms are tested and compared.

4.1 Description of the MDA

The static aeroelastic problem is a common test case in multidisciplinary analysis. This study case involves two
disciplines: the displacement of a wing is derived from the forces applied to the structure and the aerodynamic
forces are defined by the wing shape and therefore by the displacement of the structure. This leads to the
following non linear system: {

u =Ms(z, f)
f =Ma(z, u)

(24)

where u is the displacement vector of the wing, f is the aerodynamic loads vector, z is the design variables vector
described later, Ma is a aerodynamic solver and Ms a structural one.

In this study, the wing structure is assumed linear elastic and the displacement governing equation is solved
using a finite element method. The wing finite element model is composed of thin plate elements for the skins,
the ribs and the spars and beam elements for the skins stringers. The geometry of the wing is defined by the
undeflected Common Research Model (configuration uCRM-9) [32] whose mesh is presented in Figure 10. The
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Algorithm 4: Compute MDA solution using POD+I.

input : z∗, nMC

(ᾱ1
∗)i ← µ1

i (z), i = 1, . . . , n1;
(ᾱ2
∗)j ← µ2

j (z), j = 1, . . . , n2;

(ξ1
i )k, i = 1, . . . , n1, k = 1, . . . , nMC ← n1 × nMC standard Gaussian samples;

(ξ2
j )k, j = 1, . . . , n2, k = 1, . . . , nMC ← n2 × nMC standard Gaussian samples;

for k = 1, . . . , nMC do
((α1
∗)i)k ← µ1

i (z) + (ξ1
i )kσ

1
i (z), i = 1, . . . , n1 ;

((α2
∗)j)k ← µ2

j (z) + (ξ2
j )kσ

2
j (z), j = 1, . . . , n2 ;

q1
k ←

‖Φ−1(((α1
∗)1)k,...,((α

1
∗)n1 )k)−Φ−1((ᾱ1

∗)1,...,(ᾱ
1
∗)n1 )‖2

‖Φ−1((ᾱ1
∗)1,...,(ᾱ1

∗)n1 )‖2 ;

q2
k ←

‖Φ−2(((α2
∗)1)k,...,((α

2
∗)n2 )k)−Φ−2((ᾱ2

∗)1,...,(ᾱ
2
∗)n2 )‖2

‖Φ−2((ᾱ2
∗)1,...,(ᾱ2

∗)n2 )‖2 ;

qk ← q1
k + q2

k;

end
q1
l ← τ -quantile of (q1

k)nMC

k=1 ;
q2
l ← τ -quantile of (q2

k)nMC

k=1 ;
if q1

l > εq or q2
l > εq then

Then, the surrogate model is not accurate enough and the exact MDA is computed. ;
The GPs are enriched accordingly.;
y1 ← y1

∗(z∗);
y2 ← y2

∗(z∗);

else
The surrogate model is accurate enough;
y1 ← Φ1((ᾱ1

∗)1, . . . , (ᾱ
1
∗)n1);

y2 ← Φ2((ᾱ2
∗)1, . . . , (ᾱ

2
∗)n2);

end
output: y1, y2
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Figure 10: Structural mesh of the wing.

Figure 11: Aerodynamic mesh of the wing.

structure of the wing is composed of 3 spars modeled with T-beam shape with plate elements. The wing skin is
stiffened by 9 stringers on the upper and the lower skin modeled by beam elements (note that in Figure 10 the
upper skin of the wing is removed for sake of clarity). The total number of degrees of freedom of the structure
model is d1 = 43416. Finally, the black box structural solver used is Code Aster [33].

The aerodynamic is described by the theory of potential flow solved using a Vortex Lattice Method [34]. The
VLM models the lifting surfaces of the wing as an infinitely thin sheet of discrete vortices to compute lift and
induced drag. The influence of the thickness and viscosity is neglected. This resolution leads to a linear system
of dimension d2 = 2100. The aerodynamic mesh of the wing is presented in Figure 11 and the resolution is
ensured by an in house black box solver.

The transfer of the forces and displacements between the aerodynamic and structure mesh is made by radial

basis interpolation [35]. An interpolation matrix H ∈ Rd
2×d1 is built using the radial basis interpolation. Then,

the displacement on the aerodynamic mesh ua is obtained by ua = Hu and the aerodynamic loads on the
structure mesh fs is obtained by fs = HT f in order to enforce the conservation of the work (see [35] for more
details). The MDA obtained is described in the Figure 12.

Discipline 1
u = Ms(z, fs)

Discipline 2
f = Ms(z, ua)

Transfert
ua = Hus

Transfert
fs = HT f

Figure 12: Illustration of the MDA on a aeroelastic problem described in Eq. (24) where the coupling variables are
transferred from each mesh using a transfer matrix H.
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variables angle of incidence (AoI) speed thickness
spars skins

ranges [0,1] [0,1] [0,1] [0,1]

Table 1: Scaled parameters of the 4 parameter problem.

variables AoI speed thickness
leading/middle/training spars upper/lower skins ribs

ranges [0,1] [0,1] [0,1]×[0,1]×[0,1] [0,1]×[0,1] [0,1]

Table 2: Scaled parameters of the 8 parameter problem.

4.2 Parametrization of the problem

Two slightly different parametric problems are now introduced. Both problems use the disciplinary solvers
previously introduced but a different number of design variables. The first one counts 4 parameters described in
Table 1 and the second counts 8 parameters described in Table 2. One could note that the difference between
the two problems concerns the number of parameters used to represent the thickness of the structural parts. In
the 4 parameter problem the same thickness is applied to the 3 spars and the thickness of the lower and upper
skins is also assumed equal. In the 8 parameter problem 4 new design variables are introduced to differentiate
the thicknesses of these structural parts.

It should be noted that the design parameters are scaled to take values in [0, 1] (see Table 1 and Table 2).
However, the scaling values have been chosen so that the range of variation obtained with respect to the outputs
of the MDA is large enough to assess the performance of the proposed method. As an example, the displacement
of the wing tip obtained belongs to [0.06, 3.95].

The tolerance of the MDA solver εMDA is set to 0.01. The starting point is given by the solution for the
mean parameter. The reference for testing the method is made on a DoE containing 100 MDA solutions defined
by 100 different design variables obtained through a LHS {zDoEi , i = 1, . . . , 100} and is denoted test set. The
resolution of the MDA requires an average of 4.3 calls to each disciplinary solver for the 4 parameter problem
and 3.9 for the 8 parameter problem.

4.3 Setting parameters for the DPOD+I

The bounds λ+ and λ− described in Section 2.4.1 are given in this case by a physical analysis: the maximum
displacement of the wing is assumed to lie between 0 and 3.6 meter. Those values are not the ones given in
Section 4.1 but approximated values to ensure that accuracy on those bounds is not required. The tolerance on
the mean projection error is set to the same threshold as the MDA solver: εPE = 0.01. This parameter allows
to manage the error between the exact MDA and the reduced MDA. The projection matrix is obtained by SVD
using the scikit-learn library [36]. The percentage η of captured energy is set to 99.995%. The GPs are trained
using the SMT library [37]. The correlation function used is a Matérn with ν = 5

2
[27]. For the resolution of the

MDA, two parameters have to be set : τ which defines the quantile retained and εq which is the threshold to
be reached by this quantile. Here and for the rest of the study, τ is set to 0.9 and εq to 0.01. Those parameters
allow to manage the error made between the reduced MDA and the surrogate MDA. To evaluate the quantile,
the number nMC of random MDA generated is set to 2000.

Remark:

The AoI and speed only concern the aerodynamic whereas the thicknesses only concern the structure.
Consequently, for the 4 parameter problem, the number of inputs for the surrogate model of the aerodynamic
solver is n1 +2 and n2 +2 for the surrogate model of the structural solver. For the 8 parameter problem, the
number of inputs for the surrogate model of the aerodynamic solver is n1 + 2 and n2 + 6 for the surrogate
model of the structural solver.

5 4 parameter static aeroelastic problem

5.1 Resolution with the DPOD+I solver

First, a DPOD+I has been generated by setting r, the size of the initial sample of the coupling variables described
in Section 2.4.1, to 10. The training algorithm ends after n = 5 iterations leading to 50 structure disciplinary
calls and 60 aerodynamic disciplinary calls. The size of the POD basis for the structure is 6 and 5 for the
aerodynamic. First, the quality of the POD basis obtained is analysed by mean of the relative errors between
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Figure 13: 4 parameter problem, histogram of the relative error between the solution of the MDA and its projection
reconstruction: e1

DoE and e2
DoE over the test set.
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Figure 14: 4 parameter problem, histogram and 9-th 10 quantile of q̂ through the iterations of Algorithm 3 when
solving the MDA for z = zDoE1 with the DPOD+I solver.

the solution of the exact MDA and its projection reconstruction:

(e1
DoE)i =

‖y1(zDoE
i )−Φ−1(Φ1(y1(zDoE

i )))‖2
‖y1(zDoE

i )‖2
, i = 1, . . . , 100

(e2
DoE)i =

‖y2(zDoE
i )−Φ−2(Φ2(y2(zDoE

i )))‖2
‖y2(zDoE

i )‖2
, i = 1, . . . , 100

(25)

Note that the quality of the POD basis has to be analysed a posteriori on exact MDA as the set of vector used
to build the POD basis does not contain any exact MDA. This analysis ensures the ability of the Algorithm 2
to create an accurate POD basis for exact MDA. Histograms of these quantities are presented in Figure 13. The
relative error for the structure POD model lies between 0.16% and 3.8% with a mean of 0.7%. The relative error
for the aerodynamic POD model lies between 0.03% and 0.7% with a mean of 0.16%. The POD approximation
performs well for this type of disciplinary solvers and an accurate approximation with a reduced POD basis is
obtained. Note that this result is important for the DPOD+I as the POD components are inputs of the reduced
models that will be learned with GPs. Indeed, a large POD basis would complicate the learning of those reduced
models.

The information obtained during the training step is used to build the GPs as explained in Section 2.4.2. As
a first illustration, the DPOD+I solver is used to solve the MDA at the first design point of the test set denoted
by zDoE1 . The histogram and τ -quantile of the quantity q̂ defined by Eq. (20) on the 2000 random MDA solutions
through the iterations are shown in the Figure 14. In this figure, the convergence of the τ -quantile of q̂ towards
the desired threshold εq is shown. The algorithm ends after 4 iterations which means 3 enrichment steps. Those
enrichments were a structural one followed by an aerodynamic one and finally a structural one. This shows that
the convergence to the MDA solution is faster than the usual 4 disciplinary solver calls for both disciplines with
the exact MDA. Only the POD basis of the structure has been enhanced on the last iteration of the algorithm.

Then, the resolution for the 100 different parameters of the test set is achieved using Algorithm 3. The
number of disciplinary calls to each solver needed for the resolution of the MDA is shown in Figure 15. The
resolution of the MDA is obtained, in mean, with less than 1 disciplinary solver evaluation for each of the 100
design variables allowing to drastically reduce the computational cost. The total number of disciplinary solver
calls needed for the training and the resolution is 99 for the structure and 65 for the aerodynamic.
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Figure 15: 4 parameter problem, number of disciplinary solver calls needed for the resolution of the test set using
the DPOD+I solver.
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Figure 16: 4 parameter problem, histogram of the relative error between the exact MDA solution and the solution
given by the DPOD+I solver over the test set.

Finally, an analysis on the solution given by the DPOD+I solver is proposed. To do so, an histogram of the
relative error between the exact MDA and the solution given by the DPOD+I is given in Figure 16. The relative
error for the structure lies between 0.25% and 4.8% with a mean of 1.1%. The relative error for the aerodynamic
lies between 0.07% and 2.1% with a mean of 0.46%. First, the mean of the error is close to the target error
which was 1%. Then, it appears that some MDA solutions are harder to approximate as their relative error is
greater than 2%, this is potentially due to the error between the MDA solution projected on the POD basis and
the solution that is given by the resolution of the MDA using POD projection.

5.2 Comparison with classic POD+I

A comparison with a classic POD+I is now presented to compare the accuracy of both method when an equal
number of data are used to train each model. We remind that, in this context, the POD+I aims at approximating
directly the exact MDA while the DPOD+I aims at creating a surrogate model of each disciplinary solver. The
comparison is then made on their ability to predict the exact MDA.

From 25 exact MDA solutions, the POD basis and the GPs are trained. The number of exact MDA used (25)
is chosen so that the number of disciplinary solver calls used for the DPOD+I method matches the number of
disciplinary solver calls used for the resolution of the 25 exact MDA (used in the classic POD+I). Here, the 25
exact MDA resolutions involved 99 calls to each disciplinary solver (to be compared to the 50 + 49 calls to the
structural solver used by DPOD+I method). Then, the relative error between the exact solution and the solution
given by the classic POD+I is computed for the test set. The mean, minimum and maximum of the relative
error obtained for the 100 design variables of the test set are displayed in Table 3 for the structure discipline
and in Table 4 for the aerodynamic discipline. This study shows that the disciplinary surrogate models allow
to get more accurate approximations. The mean error on the structure and the aerodynamic models have been
reduced by a factor 3. The minimum of the relative error is lower for the DPOD+I strategy. The histogram of
the relative error for both disciplines over the 100 MDA is displayed in Figure 17.
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approach min (%) mean (%) max (%)
DPOD+I 0.25 1.1 4.8
POD+I 0.4 3.5 28

Table 3: 4 parameter problem, minimum, maximum and mean of the relative structure error for the DPOD+I and
the classic POD+I over the test set.

approach min (%) mean (%) max (%)
DPOD+I 0.07 0.46 2.2
POD+I 0.12 1.6 13

Table 4: 4 parameter problem, minimum, maximum and mean of the relative aerodynamic error for the DPOD+I
and the classic POD+I over the test set.

5.3 Comparison with enriched POD+I

The idea here is to compare the enrichment capacity for each method. Then, a similar enrichment criteria is
used for both methods and they are compared on the budget needed for the enrichment. The initial POD+I
approximation is given by the classic POD+I presented in Section 5.2 and is enriched using Algorithm 4.

The comparison is made on the number of disciplinary solver calls and it is presented in Table 5. For the
100 design variables, the MDA solver needed 429 calls to each disciplinary solver, the enriched POD+I allows to
reduce slightly the number of disciplinary solver calls. On the other hand, DPOD+I solver reduces by three the
number of structure solver calls and by five for aerodynamic solver calls compared to the enriched POD+I.

Finally, we have shown in this initial study that the DPOD+I is a promising method compared to the POD+I
and performs well on this 4 parameter problem. However as the proposed method is probabilistic, a robustness
study is performed in the following. Furthermore, the influence of the parameter r is also studied.

5.4 Robustness of the training algorithm

In the following, it is proposed to study the influence of the number r of samples retained in Algorithm 1 and
Algorithm 2. Although this parameter can be chosen by logistic constraints like the number of disciplinary
solver calls that can be achieved in parallel, it influences the quality of the initial model. As the process is
random, 10 realisations of the training algorithm are computed. The values tested for r are 5, 10, 15 and 20.
Table 6 presents the mean number of disciplinary calls to achieve the convergence of the training steps for each
different r value and their associated coefficient of variation (CV). First it appears that a high r value tends to
increase the number of disciplinary calls for the training algorithm. Then, this r value should be kept as small as
possible. However, if the POD basis obtained and the GPs are not trained enough, this results in more expensive
enrichment phase. It should be noted that the value 10 is the best value in term of stability as it minimizes the
variation of the disciplinary solver calls needed. With r set to 20, the variation is the highest due to the training
phases that requires up to 200 calls for the structure solver and 210 for the aerodynamic one.

For each realisation j of the training algorithm, let (n1)j and (n2)j be the number of POD vectors retained
for each discipline. The mean of (n1)j and (n2)j over the 10 realisations are displayed in Table 7. Then, the
relative projection error (e1

DoE)ji , i = 1, . . . , 100, j = 1, . . . , 10 and (e2
DoE)ji , i = 1, . . . , 100, j = 1, . . . , 10 are

10 4 10 2 100

structure relative error

5

10

15

20

25

30

10 4 10 2 100

aerodynamic relative error

5

10

15

20

25

30
DPOD+I structure relative error
classic POD+I structure relative error
DPOD+I aerodynamic relative error
classic POD+I aerodynamic relative error

Figure 17: 4 parameter problem, histogram of the relative error on the structure and the aerodynamic made on the
test set using the classic POD+I and the DPOD+I approach.
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method structure solver calls aerodynamic solver calls Total
Offline Online Offline Online

exact MDA 0 429 0 429 858
DPOD+I 50 49 60 5 164
POD+I 99 251 99 251 700

Table 5: 4 parameter problem, number of disciplinary solver calls needed for the resolution of the test set using the
exact MDA solver, the enriched POD+I and the DPOD+I solver.

r structure solver calls CV (%) aerodynamic solver calls CV (%)
5 24.5 37 29.5 31
10 49 14 59 12
15 61.5 30 76.5 24
20 78 47 98 37

Table 6: 4 parameter problem, influence of r on the computational cost of the training algorithm: mean and CV of
the disciplinary solver calls over 10 realisations.

computed for every exact MDA of the test set and for every realisation. Theirs means are exhibited in Table 7.
It appears that the value of r does not influence the quality of the POD basis except for the low value r = 5.
In that case the POD basis lacks some information to be accurate enough. The influence of this lack of initial
accuracy is analysed next.

For each r value, 10 realisations of the training phase have been generated. Then, for each trained model,
the resolution on the test set is achieved. For each realisation, the number of total calls of each disciplinary
solver counting the calls from the training and the enrichment phases is computed. The mean and CV of the
disciplinary solver calls over the 10 realisation are presented in Table 8. The total number of structure solver
calls is only slightly impacted by the parameter r whereas the total number of aerodynamic solver calls clearly
increases with the value of r. Indeed, it has been seen that, on this example, for the aerodynamic solver, the
number of disciplinary calls for the enrichment phase is negligible compared to the training phase which is
strongly influenced by the parameter r as shown by Table 6. Contrarily, for the structural solver, more points
are added during the enrichment phase which smoothes the impact of the initial training phase.

Concerning the accuracy of the solution obtained by the surrogate models, the mean error over the test set
is computed for each discipline and their mean and CV over the 10 realisations are displayed in Table 9. As
expected, the surrogate models with r set to 5 are slightly less accurate but for the other ones, the difference
remains negligible. For the coefficient of variation on the mean error made, the value 10 remains the more
interesting one.

Finally, one of the remarks made on Section 3.3 concerned the fact that the random MDA does not converge
when the surrogate models are poorly trained. With r set to 5, the number of failed resolution is around 1%
which is acceptable. For the other ones, the fails are too rare to be noticed: less than 0.2% failed resolution.

To end this analysis, the mean number of disciplinary calls for each value of r are displayed in the Figure 18
as function of the number of MDA solution already solved. To analyse what should be the cost to solve further
MDA with the DPOD+I solver, the mean number of disciplinary solver calls after 80 MDA solving is computed
as it appears that this number grows almost linearly in Figure 18 after 80 MDA. Almost no further aerodynamic
enrichment are needed: the surrogate model of the aerodynamic is accurate enough. For the structure, an average
of 0.2 disciplinary solver calls is needed for the resolution of an MDA using DPOD+I solver. This reduces the
computational cost of the MDA by a factor 20 compared to an iterative MDA solver.

r 1
10

∑10
j=1(n1)j 1

10

∑10
j=1(n2)j 1

1000

∑10
j=1

∑100
i=1(e1

DoE)ji
1

1000

∑10
j=1

∑100
i=1(e2

DoE)ji
5 4.9 4.4 1.06% 0.23%
10 5.3 5. 0.74% 0.17%
15 5.3 5. 0.81% 0.17%
20 5.3 5. 0.78% 0.17%

Table 7: 4 parameter problem, influence of r on the POD basis obtained with the training algorithm: mean number
of POD modes and relative projection error on the test set over 10 realisations.
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r structure solver calls CV (%) aerodynamic solver calls CV (%)
5 88.8 15 45.8 21
10 89.5 8 66 10
15 92.5 10 82.1 22
20 105.9 27 107.7 35

Table 8: 4 parameter problem, influence of r on the total computational cost: mean number of calls and CV for
each disciplinary solver after the training and the solving phases for the resolution of test set using DPOD+I over
10 realisations.

r structure mean relative error (%) CV(%) aerodynamic mean relative error (%) CV(%)
5 1.3 10 0.61 17
10 1.1 6 0.42 10
15 1.2 14 0.43 17
20 1.1 15 0.38 15

Table 9: 4 parameter problem, influence of r on the accuracy of the DPOD+I: mean relative error for both disciplines
and their associated CV on the test set using DPOD+I over 10 realisations.
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Figure 18: Application example, robustness study. Number of disciplinary calls through the resolution of the test
set with r set to 5, 10, 15 and 20 and with exact MDA.
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Figure 19: 8 parameter problem, histogram of the relative error between the solution of the MDA and its projection
reconstruction: e1

DoE and e2
DoE over the test set.
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Figure 20: 8 parameter problem, histogram and 9-th 10 quantile of q̂ through the iterations of Algorithm 3 when
solving the MDA with z = zDoE1 with the DPOD+I and exact MDA solver.

6 8 parameter static aeroelastic problem

6.1 Resolution with the DPOD+I solver

The same analysis is proposed for the 8 parameter problem in order to validate the result on a larger test case.
The number r retained is still 10. The training algorithm ends after n = 5 iterations too which involves 50
structure disciplinary calls and 60 aerodynamic disciplinary calls. The size of the POD basis for the structure
is 11 and 5 for the aerodynamic one. The number of POD modes for the aerodynamic remains constant but
that number is increased for the structure. Indeed, the complexity of the structural output is increased due to
a higher number of design variables attributed to the structure discipline. First, the quality of the POD basis
obtained is analysed by means of the relative errors between the solution of the exact MDA and its projection
reconstruction defined in Eq. (25). The histograms of these quantities are presented in Figure 19. The relative
error for the structure POD model lies between 0.22% and 3.4% with a mean of 0.83%. The relative error for
the aerodynamic POD model lies between 0.05% and 0.6% with a mean of 0.18%. The POD approximation is
still accurate even with the raise of design variables.

After the training step, the DPOD+I method is illustrated on the first design point of the reference solution
DoE zDoE1 . The histogram and τ -quantile of the quantity q̂ on the 2000 random MDA solution through the
iterations are shown in Figure 20. In this figure, the convergence of the τ -quantile of q̂ is showed until it is
lower than εq. The algorithm ends after 3 iterations which means 2 enrichment steps. Those enrichments were
a structure one followed by an aerodynamic one.

Then, the resolution for the 100 different design parameters is achieved using the DPOD+I solver. The
number of disciplinary calls to each solver needed for the resolution of every MDA is shown in Figure 21. The
resolution of the MDA with the DPOD+I requires less than 1 call to each disciplinary solver except one that
required 2 structure solver calls. Even with a higher number of design variables, the number of disciplinary
calls per resolution remains low. The total number of disciplinary solver calls needed for the training and the
resolutions is 128 for the structure and 66 for the aerodynamic.

To analyse the error made by the DPOD+I solver, the histogram of the relative error between the solution
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Figure 21: 8 parameter problem, number of disciplinary solver calls needed for the resolution of the test set using
the DPOD+I solver.
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Figure 22: 8 parameter problem, histogram of the relative error between the exact MDA solution and the solution
given by the DPOD+I solver over the test set.

of the exact MDA and the solution given by the DPOD+I solver is presented in Figure 22. The relative error
for the structure lies between 0.13% and 3.4% with a mean of 1.1%. The relative error for the aerodynamic lies
between 0.05% and 2.2% with a mean of 0.55%. The mean of the error is still close to the target error of 1%.

6.2 Comparison with classic POD+I

The same methodology is applied to compare with the classic POD+I. In the 8 parameter problem, 30 exact
MDA are used as the total number of disciplinary solver calls needed for the DPOD+I on the 8 parameter
problem is now 128. Here, the 30 exact MDA involves 121 disciplinary solver calls. The relative error between
the exact solution and the solution given by the mean values of the GPs is computed for the test set. The mean,
minimum and maximum of the relative error obtained for the 100 design variables of the test set are reported
in Table 10 for the structure and in Table 11 for the aerodynamic. The mean error on the aerodynamic have
been reduced by a factor 5 and by a factor 15 for the structure. The minimum of the relative error is lower
for the DPOD+I strategy. This example shows the limits of the POD+I strategy when the number of design
variables grows. Indeed, a higher number of data are needed to train accurate POD+I models. The DPOD+I
is less sensitive to this phenomenon. The histogram of the relative error for both disciplines over the test set is
displayed in Figure 23.

approach min (%) mean (%) max (%)
disciplinary surrogate approach 0.13 1.1 3.4

POD+I 1.6 16 117

Table 10: 8 parameter problem, minimum, maximum and mean of the relative structure error for the DPOD+I and
the POD+I over the test set.
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approach min (%) mean (%) max (%)
disciplinary surrogate approach 0.05 0.55 2.2

POD+I 0.3 2.6 13

Table 11: 8 parameter problem, minimum, maximum and mean of the relative aerodynamic error for the DPOD+I
and the POD+I over the test set.
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Figure 23: 8 parameter problem, histogram of the relative error on the structure and the aerodynamic made on the
test set using the POD+I and the DPOD+I approch.

6.3 Comparison with enriched POD+I

The comparison is made on the number of disciplinary solver calls and is reported in Table 12 on a similar
enrichment criterion. For the 100 design variables, the MDA solver needed 392 calls to each disciplinary solver,
the POD+I solver does not allow to reduce the number of disciplinary solver calls. Indeed, there are only four
times where the quantile criteria are fulfilled. Then, the total computational cost is higher due to the training
phase. On the other hand, the DPOD+I solver reduces by 1.5 the number of structure solver calls and by six that
of aerodynamic solver calls compared to the MDA solver. Finally, with this example involving a higher number
of design variables, we have shown the limits of the POD+I and the POD+I solver compared to the DPOD+I.
The accuracy is improved when using disciplinary surrogate model rather than global surrogate model. Indeed,
when using POD+I strategy, each enrichment requires an exact MDA solution involving several calls to each
disciplinary solver. This increases the computational cost of this method. However, the disciplinary surrogate
models, with an adapted training algorithm, overpass this difficulty and show more efficiency to surrogate the
MDA.

7 Conclusion

This article presents a new adaptive surrogate based methodology to solve MDO problems when dealing with
high dimensional coupling variables. The first challenge is the high dimensional coupling variables. It is proposed
to use disciplinary POD approximations to reduce their dimensionalities which leads to a reduced MDA defined
by problem (9). Then, the idea is to interpolate the reduced disciplinary solvers by GP surrogate models. This
DPOD+I builds independent surrogate models for each disciplinary solver allowing to uncouple the MDA non
linear problem, which can be advantageous in an industrial context. One of the challenges of this approach is
to uncouple the training of the DPOD+I as the use of exact MDA for the training leads to poorly distributed
DoE as shown in Figure 3. To do so, a new training strategy has been developed without initial knowledge on
the ranges of the coupling variables. Finally, a new MDA solver is developed to solve the coupled problem by
successive enrichments. This solver, includes an estimate of the error. If this error is too high, an enrichment
of the discipline that has the most influence on the quantity of interest, according to Sobol sensitivity indices

method structure solver calls aerodynamic solver calls Total
Offline Online Offline Online

exact MDA 0 392 0 392 784
Surrogate 50 78 60 6 194
POD+I 121 378 121 378 998

Table 12: 8 parameter problem, number of disciplinary solver calls needed for the resolution of the test set using
the exact MDA solver, the POD+I solver and the DPOD+I solver.
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estimation, is achieved. Finally, some numerical applications confirm the interest of the proposed methodology.
The new DPOP+I method is compared to POD+I. With a comparable number of disciplinary solver evaluations
for the training, the DPOD+I outperforms the classic POD+I in term of accuracy. When the same enrichment
strategy is applied to the POD+I methodology, the DPOD+I outperforms the enriched POD+I in term of
disciplinary solver evaluations. Indeed, this new strategy allows the enrichment of each disciplinary surrogate
model independently involving a reduction of the enrichment cost. One of the challenges is the determination
of the parameters of the DPOD+I. The tolerance on the POD approximation εPE and the tolerance on the
interpolation εq are related to the target tolerance of the solving of the MDA εMDA. The most difficult parameter
to be set a prior is the training parameter r but we showed that its influence on the accuracy of the DPOD+I
method is smoothed by the enrichment phase. Finally, the DPOD+I has shown good robustness when increasing
the number of design variables contrary to POD+I. A perspective is to apply this strategy to more complex
MDA problem involving non-linear disciplinary solver. However, one of the limits of this DPOD+I approach is
the necessity of accurate approximation with a low number of POD modes. Indeed, the inputs of the surrogate
models scales with the number of POD modes which can lead to difficulties when interpolating with GPs. As
non-linear solver might be difficult to approximate with POD, dedicated non linear model order reduction could
be used like ISOMAP [38].
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8 Appendix

Non linear Gauss Seidel solver

The solution of the MDA problem (1) is obtained iteratively via:

y2
i+1 = f2(z0, y

1
i )

y1
i+1 = f1(z0, y

2
i+1)

(26)

where y1
i and y2

i are the ith approximation of the solution of the MDA. This first guess y1
0 defines the initial

point of the iterative solver and is usually obtained by the solutions of the MDA for the design variable z0

corresponding to the center of the design space Z. The iterative algorithm ends when the relative errors between

two iterates are low enough:
‖y1i+1−y

1
i ‖2

‖y1i+1‖2
≤ εMDA and

‖y2i+1−y
2
i ‖2

‖y2i+1‖2
≤ εMDA where εMDA is the tolerance on the

MDA resolution fixed by the user.
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