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ERGODICITY OF THE FISHER INFINITESIMAL MODEL WITH QUADRATIC
SELECTION

VINCENT CALVEZ, THOMAS LEPOUTRE, AND DAVID POYATO

ABSTRACT. We study the convergence towards a unique equilibrium distribution of the solutions to a
time-discrete model with non-overlapping generations arising in quantitative genetics. The model de-
scribes the dynamics of a phenotypic distribution with respect to a multi-dimensional trait, which is
shaped by selection and Fisher’s infinitesimal model of sexual reproduction. We extend some previous
works devoted to the time-continuous analogues, that followed a perturbative approach in the regime
of weak selection, by exploiting the contractivity of the infinitesimal model operator in the Wasserstein
metric. Here, we tackle the case of quadratic selection by a global approach. We establish uniqueness
of the equilibrium distribution and exponential convergence of the renormalized profile. Our technique
relies on an accurate control of the propagation of information across the large binary trees of ancestors
(the pedigree chart), and reveals an ergodicity property, meaning that the shape of the initial datum is
quickly forgotten across generations. We combine this information with appropriate estimates for the
emergence of Gaussian tails and propagation of quadratic and exponential moments to derive quantita-
tive convergence rates. Our result can be interpreted as a generalization of the Krein-Rutman theorem
in a genuinely non-linear, and non-monotone setting.

1. INTRODUCTION

Fisher’s infinitesimal model (also known as the polygenic model) is a widely used statistical model in
quantitative genetics initially proposed by R. FISHER [15]. It assumes that the genetic component of a
quantitative phenotypical trait is affected by an infinite number of loci with infinitesimal and additive
allelic effects and claims that the genetic component of descendants’ traits is normally distributed around
the mean value of parents’ traits, with a constant (genetic) variance across generations. This model
allowed reconcilling Mendelian inheritance and the continuous trait variations documented by F. GALTON
via a Central Limit Theorem. More specifically, by taking limits when the number of underlying loci
tends to infinity on a model with Mendelian inheritance, N. BARTON, A. ETHERIDGE and A. VEBER [5]
recently proved rigorously the validity of Fisher’s infinitesimal model under various evolutionary processes
(e.g., natural selection).

In this paper we study a time-discrete evolution problem for the distribution of a phenotypical trait
z € R? in a population undergoing sexual reproduction and the effect of natural selection. Specifically,
starting at any initial configuration Fy € M (R?) of trait distribution, we analyze the long term dynamics
of trait distributions {F, }nen across successive generations n € N, which solves the following recursion

Fp = T[F,_1], (1.1)

for any n € N. The operator 7 encodes the balanced effect of sexual reproduction in the population
(under the infinitesimal model) and natural selection. Specifically, T is defined by

TF] := e ™B[F], (1.2)

for any trait distribution F' € M, (R?). On the one hand, m = m(x) > 0 is called the selection function
and represents the mortality effect of a trait-dependent natural selection on the population, so that e~
stands for the survival probability in the next generation. On the other hand, the operator B is chosen
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to be Fisher’s infinitesimal operator and it takes the form

. 21+ 22\ F(x1)F(22)
B[F)(x) := /deG (x— ! 5 2) " ;(m’);x’ dxydry, x€RY (1.3)

for any trait distribution F' € M (R?). Here G = G(z) is a probability density (the mizing kernel) and
the factor G(x — '7””2"”2) represents the transition probability that two given individuals with trait values
21, T2 € R? will mate and yield a descendant with trait value € R?. In other words the resulting trait
distributes around the mean value % of parents’ trait with law G. By definition, B[F| quantifies the
number of births after all possible matches of any couple of individuals according to the trait distribution
F. Altogether, T[F] quantifies the amount of offspring of a population distributed according to F' having
resisted the effect of selection.

The above sexual reproduction operator B has recently pulled the attention of both the applied and
more theoretical communities, ¢f. [5] [0} [I8] 19, 20} 21]. In this paper we shall restrict to Gaussian mixing
kernel and quadratic selection function, i.e.,

1 _l=?
G("E) = W@ 2, T € Rd, (14)

m(z) == %W, z € R, (1.5)

where o € R is a fixed parameter. Thereby, the trait of offsprings is normally distributed around the
mean value of the trait of parents by assumption , thus reducing to the standard infinitesimal model
when the assumptions of the Central Limit Theorem are met [5]. For simplicity, we set a Gaussian G with
unit variance, but any value of the genetic variance could also be considered (see nondimensionalization
in Appendix .

Before introducing our results, we shall relate the previous time-discrete problem to analogous
time-continuous quantitative genetics models of evolutionary dynamics that have been studied in the
literature. Meanwhile, we will anticipate the major difficulties that can be faced when analyzing the
long-time dynamics of . To this end, we consider, the following type of integro-differential equations
for the evolutionary dynamics of a trait distribution f(¢,x):

O f = —m(x)f +R[f], t>0,z€R?,
f(ovx):f0($)7 xERd,

where, m = m(z) is again the mortality rate and R = R[f] is the reproduction operator. Hence,
R[f](z) determines the amount of births with trait value z € R? per unit of time. As for (L)), the
resulting dynamics of the population becomes a consequence of a balance between selection encoded by
the trait-dependent mortality and the diversity generated by the growth term R across generations.

Many studies consider a linear reproduction operator R, associated with a probability density K =
K (z) characterizing the mutational effects at birth, of the form

(1.6)

Rif(w)= | Kl-yfty)dy, =€ R, (1.7)
The factor K(x — y) determines the probability that an individual with trait value y € R? produces
a descendant with trait value 2 € R? (possibly deviating from y). This class of linear reproduction
operators is well-suited for an asexual mode of reproduction. This includes parabolic equations in the
limit of small variance of K. In particular, we refer to a series of works about the long-time asymptotics in
the regime of small variance, initiated in [3] 4} [T4], including an additional density-dependent competition
term that makes the analysis non standard (see e.g. [11] and references therein for the well-posedness of
the constrained Hamilton-Jacobi equation derived in the limit).

Recently, inspired by the infinitesimal model, the case of sexual reproduction has been addressed by
invoking the preceding nonlinear version B in as reproduction operator R = B. Several asymptotic
regimes have been addressed: large reproduction rate [I8] 20, 21], small variance asymptotics [10, 19]. In
the latter case, the limiting problem keeps the non-local nature of the problem, being of a finite-difference
type, rather than a Hamilton-Jacobi PDE. Before we continue the discussion about the state-of-the-art,
let us emphasize that there is no restriction on the parameter o in the present work.

Since both f — mf and f — B[f] are 1-homogeneous operators, we can seek for special steady
solutions of through the following ansatz:

ft,x) = eMF(x), (7)€ Ry xRY, (1.8)
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The parameter A € R represents the rate at which the number of individuals grows (if A > 0) or decreases
(if A €0), and F = F(z) > 0 is an unknown probability density. By imposing such an ansatz on
(1.6)-(1.3), the following generalized spectral problem arises for the couple (A, F'):

{ AF(z) +m(x)F(z) = B[F)(z), x¢€RY,
S F(a') da’ = 1.

Note that the operator B is genuinely non-linear so that methods based on the Krein-Rutman theory
or maximum principles cannot be applied straightforwardly, see [6l [13] and the references therein for
the linear case. Further, usual extensions of the Krein-Rutman theory to 1-homogeneous operators [16]
cannot be applied neither because B is not monotone. To date, the main strategy behind the existence
of solutions of relies on a suitable application of Schauder fixed-point theorem to the operator
F — (XA +m)71B[F] over an appropriate cone of L!(R?) that is conserved by the nonlinear operator,
see [8]. However, uniqueness cannot be achieved by this method. Moreover, it has been proven in [10,
Corollary 1.5] that several equilibrium states (A, F') can co-exist in the presence of multiple local minima
of m (provided the variance of G is small enough). That is, the generalized eigenproblem does not
admit a unique positive eigenfunction, in contrast with general conclusions of the Krein-Rutman theory.

Recently, G. RAOUL addressed the long-time dynamics of in 1D, with R = B and a trait depen-
dent fecundity rate [21]. He obtained local uniqueness and exponential relaxation under the assumption
of weak and localized (compactly supported) selection effects. To this end, he controlled locally in space
the Wasserstein distance between the solution and the stationary state, using the uniform contraction
property of B in the space of probability measures sharing the same center of mass. Unfortunately, the
Wasserstein metric is not fully compatible with multiplicative operators, such as trait-dependent fecun-
dity (see the discussion in [2I, Section 3.4] and Section [2| below). This can be circumvented under the
additional assumption that the trait density is locally uniformly bounded below, following [7]. Obviously,
this cannot hold globally for integrable densities, hence G. RAOUL developed estimates of the distribu-
tion’s tail to complete the contraction estimates. Also, a lot of attention has to be paid to the dynamics of
the center of the distribution which is essentially driven by selection. Indeed, in the case of flat selection
(m = 0), the problem is invariant by translation, so that local uniqueness cannot hold. To conclude this
discussion, let us emphasize that global uniqueness and the asymptotic behavior of generic solutions to
the evolution problem 1) is still open. Below, we provide a first result in this direction, for the
time-discrete problem ([1.1)), though.

We remark that the time-discrete version that we propose in this paper can be partially regarded
as a discretization in time of the above time-continuous problem (L.6)-(L.3), with non-overlapping gen-
erations (see Appendix [Al for further details). As for the time-continuous problem, we could seek special
solutions to the time-discrete problem in the following form

Fo(z) = \"F(z), (n,z) € NxR% (1.10)

Again, A € R is the rate of growth (if A > 1) or decrease (if A < 1) of individuals, and F' = F(x) is an
unknown probability density. This yields the following generalized eigenproblem for the couple (A, F'):

{ AF(z) = T[F)(z), z¢€R
Jga F(2') da’ = 1.

In this paper we aim to address the following questions:

(Q1) Does the eigenproblem have a unique solution (A,, Fy), with A, € R and F, being a
probability measure, for each a € R%?

(Q2) Consider any generic initial datum Fy € M (R?) and its associated solution {F,},en of the
time-discrete problem (L.I). Do the renormalized profiles F,, /|| F, || 11 (ra) converge to the unique
steady profile F',, solving when n — oco?

We shall prove that the answer to both questions is affirmative. It stands to reason that similar
existence and local uniqueness results like in [§] [10] could be extended to the new eigenproblem
by applying Schauder and Banach fixed point theorems. Nevertheless, in this paper we introduce a novel
method that unravels an ergodicity property of the operator 7T, leading to quantitative estimates for the
relaxation of profiles {F), },en towards F,. First, we prove that an explicit (Gaussian) solution to the
eigenproblem exists. Second, by computing n iterations of the operator T, that is F,, = T"[Fp],
we notice that information of F,, at the trait value x is propagated from the initial datum F across
2™ ancestors over a binary tree with height n and rooted at x (the pedigree chart). Interestingly, an
appropriate reformulation of 7™ in the case of Gaussian mixing and quadratic selection shows
that the dependence of the solution {F),},en on the initial datum Fj is rapidly lost across the different

(1.9)

(1.11)
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levels of the tree. More specifically, a strong convergence of generic solutions {F,} of the time-discrete
problem towards the steady Gaussian profile F',, solving is achieved locally with respect to .
Third, we prove an appropriate propagation of quadratic and exponential moments, leading to uniform
tightness of the family {F,},en. Finally, we glue all the information together and conclude the final
global convergence result in question (Q2) in relative entropy. We refer to Section [2| for a more detailed
sketch of our strategy of proof. Specifically, we obtain our main result:

Theorem 1.1. Assume that a € R’ and set any initial non-negative measure Fy € M, (R?). The
solution { I, }nen to the time-discrete problem (1.1)) verifies that the growth rates || Fy|| 11 (ay/|| Fn—1ll1 (re)
relax towards Ao and the normalized profiles Fy, /|| Fy | 1 (ray relax towards F, with

52\ 4
Ao = <1+a (1—1—2“)) , Fo:=Gooz, (1.12)
and the variance o2 € R? is the unique positive root of the equation
1 1 1+20)2+8ax—(1+2
— —at——p, e, o= (1+20)" +8a— (1+2) (1.13)
o? 14+ Za 2a

2
Specifically, for any € € R’ there exists a sufficiently large C. € R such that

F
DxL (n
1 Fnll L (mey

‘F) < C((2ka)? +2)",

—Xa| S C(2kq +o)™,

[l ey

for any n € N, where Dy, is the Kullback-Leibler divergence (or relative entropy), i.e.,

P(z)
DkL(P||Q ::/ P(x)log <) dx, 1.14
w(PlQ) = [ Pla)tos (o) (1.14)
for any P,Q € LY (RY) N P(RY), and the coefficient kq € (0, 3) reads
o? _ (3+2a) — /(1 +2a)? + 8«
ko= gyoy e y . (1.15)

Note that any solution (A, F') to the eigenproblem (1.11]) yields a solution to the time-discrete problem
(1.1) through the ansatz (L.10). Then, question (Q1) will readily follow from question (Q2) and, in
particular, the unique solution (A, F'y) to (L.11) is Gaussian.

Corollary 1.2. Assume that a € R, then there exists a unique solution (A, Fy) to the eigenproblem
(1.11), with F, being a probability measure, namely given by (1.12)).

Remark 1.3 (About the assumption of quadratic selection). By the assumption of a quadratic selection
function, we can henceforth push extensively explicit computations of the iterated operator. The latter
consists in recursive multiplication and convolution by Gaussian functions. This enables capturing the
essence of the relaxation phenomenon, and having a precise description of the behaviour at infinity, which
crucially helps to localize the convergence argument. As a by-product, we are able to consider very general
initial condition Fy. Two of the authors, together with F. Santambrogio, have obtained similar results
when the selection function m is more generally assumed to be strongly conver [12]. However, they imposed
stringent conditions on the initial datum Fy, that is, it should behave at infinity as the equilibrium profile
F, in a very strong sense. It would be of interest to merge the two works, having a general (strongly
convex) selection function, and a general initial datum. This is left for future work.

Remark 1.4 (About the choice of metric). The convergence of the profiles has been quantified in Kullback-
Leibler divergence in Theorem in contrast with the results in [20, 21], where the quadratic
Wasserstein distance was used for perturbative regimes of the case without selection. We anticipate that
there are several compelling reasons for such a change of metric in our non-perturbative setting:

(i) (Quadratic Wasserstein distance) When a = 0, the operator T reduces to B, which is non-
expansive with respect to the quadratic Wasserstein distance, and indeed contractive over distri-
butions with common center of mass, cf. Section|2.1l However, when a > 0, the multiplicative
operator leads to an operator T which is not even Lipschitz continuous with respect to the qua-
dratic Wasserstein distance, cf Section[2.3 Therefore, the quadratic Wasserstein distance seems
to be unadapted to scenarios where reproduction and selection operate together.
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(ii) (Log-Lipschitz norm) As we show in Section[2.3, the operator T is non-expansive in the log-
Lipschits norm ||V log FLQHLOO(RGZ) for all @ > 0, and indeed it is contractive if o > 0. However,
this contraction only gives actual information when the initial datum Fy has identical tails to the
Gaussian density F',, so that initially the log-Lipschitz norm is finite.

(iii) (Relative entropy distance) Note that the above log-Lipschit norm amounts to the natural
L wersion of the relative Fisher information ||V log FLQ||L2(R47F). By the log-Soboled inequality,
contraction of the log-Lipschits norm readily implies decay of the Kullback-Leibler divergence,
which is a more standard metric in relative entropy arguments. However, we emphasize that our
use of the Kullback-Leibler divergence is not only aesthetic, but we actually need it in order to
go beyond the above structural constraint on the tails of the initial data. Specifically, for generic
initial data we need to prove an appropriate shaping of tails over time, which cannot be expressed
using uniform norms, but only in an averaged sense (compatible with the relative entropy).

Altogether justifies that the whilst the quadratic Wasserstein distance is useful in perturbative regimes,
the use of alternative norms is necessary to quantify contraction in purely non-perturbative settings.

Remark 1.5 (About the positivity of ). Our form of ergodicity, as measured in Theoremm it breaks
down when o = 0, simply because the operator is invariant by translation in that case, and it admits a
one-parameter family Fo—o(- — ) with p € R of fized Gaussian probability densities. Nevertheless, as
mentioned in item (i) above, when o =0 and we restrict to centered initial data, there is convergence to
the right centered Gaussian probability density F o—o with respect to the Wasserstein distance. It is an
open problem to make both approaches meet for o = 0, and prove contraction in norms stronger than the
Wasserstein distance, but comparable to the log-Lipschitz norm, in this subclass of initial data.

The rest of the paper is organized as follows. In Section [2] we discuss about the generic incompatibility
of the Wasserstein distance with a multiplicative operator and we provide a brief outlook of the strategy
of our proof. In Section [3| we provide some necessary notation and we introduce the special class of
Gaussian solutions of both problems and , which will inspire some parts of the paper. Section
is devoted to introduce some main properties of T regarding the emergence of Gaussian behavior (in
the large) from generic initial data, and a suitable propagation of quadratic and exponential moments
across generations. In Sectionwe reformulate via a high-dimensional integral operator propagating
ancestors’ information across the different levels of the pedigree chart, which will be the cornerstone to
study the long-term dynamics. In Section [f]we prove our main results, namely, Theorem[I.I]and Corollary
Section [7] contains some numerical experiments that illustrate the results in this paper. In Section
B] we provide some conclusions and perspectives. Finally, Appendix [A] contains the adimensionalization
of the problem, and the relationship between and the previous time-continuous analogues in the
literature is discussed. A full list of the main notations in the paper is presented in Table

2. MOTIVATION AND STRATEGY OF THE PROOF OF THEOREM [

In this section, we discuss the incompatibility of the quadratic Wasserstein distance to quantify directly
contractivity under the joint effect of the reproduction operator B in and a generic multiplicative
selection e~™. Although a small perturbation of the case of flat selection (m = 0) could still be considered
via a perturbative argument (see discussion above, [2I] and also [20]), our novel approach is able to tackle
a purely non-perturbative setting. We end the section by briefly discussing the strategy of our proof.

2.1. Some properties of the sexual reproduction operator. We start by recalling some of the main
properties of the sexual reproduction operator B. Since the fecundity rate has been normalized to 1 (see
Appendix , then B preserves the mass and center of mass, namely,

IBF s = WPy, [ aBIF@)de = [ aP(aa), (21)
for any F € M, (R%). Furthermore, it is contractive in the space of probability measures with a common
center of mass, endowed with the quadratic Wasserstein metric. As discussed above, this property has
been used fruitfully by G. RAOUL (¢f. [2I]) to analyse the long term behavior of the time-continuous
problem in the regime of weak (and compactly supported) selection acting on fecundity. For the sake of
clarity, we recall this fact and its proof below:

Lemma 2.1. Assume that Fy, Fy € Pg(Rd) and they have the same center of mass. Then,

WA(BIRL BIR) < S WE(Fy, ).
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Notation Meaning Page
M(RY), M, (RY) Signed and non-negative finite Radon measures 4
P(RY), P2(RY) Probability measures (with finite 2nd order moment) 5
P®Q e M(R*) Tensor product of the finite measures P, Q € M(RY) 43
Dk (P|Q) Kullback-Leibler divergence between P,Q € P(RY) 4
Wh(P,Q) Quadratic Wasserstein distance between P,Q € Po(R?) |[6
G0 Gaussian with mean ;1 € R? and covariance 021; € R™¥? [[13
G.x Gaussian with mean p € R? and covariance ¥ € R7¥9 33
N(p,X) Normal with mean y € R? and covariance ¥ € R7¥9 33
E[X] Expectation of a random variable X 34
G(z) Gaussian mixing kernel Gy j, 2
m(z) Quadratic selection function % |z]? 2
B[F| Fisher’s infinitesimal operator 2
TI[F] Selection-reproduction operator 1
MI[F) Normalized multiplicative operator by e™™ 8
S[F] Scaled selection-reproduction operator 21
EnlF) High-dimensional integral operators 35
{F  nen Solution to the time-evolution equation 1
(Aa, Fo) Gaussian solution to the non-linear eigenproblem (1.11)) |}4
o2 Variance of Gaussian eigenfunction F,, 4
F= % Normalized profile associated to F' € M (R%) 26
T™, T, T Perfect binary tree, rootless tree and leafless tree 11
L., L" Level m and leaves (level n) of the tree 11
il,42 Parents of a node i € T of the tree 11
Xn = (7i)ieT: Variables indexed by the rootless tree 13
Yn = (¥i)ieTr

z, = (2j)jeLn Variables indexed by leafs 13
Ixl=(", \xi\Q)l * | ¢, sum of Euclidean norms of x = (z1,...,2,) € R 36
o/ (2;y,,) Lineage map from leaf j € L” to root value z € RY 30
u@uv e R Kronecker product (u;v;)1<i j<n of vectors u,v € R 34
kn, Kn Sequences of coefficients in the change of variables 28
(2k,)? Convergence rate of Dk, 4
2k, Convergence rate of the log-Lipschitz norm S
To Relaxation rates of variances recursion 15

TABLE 1. List of notations

Proof. Recall the following dual characterizations of the quadratic Wasserstein distance (¢f. [Il 24]):

W22(F1,F2) = inf {/Zd |lx — y\z y(dz,dy) : v € P(Rd X Rd), migy = F1, mopy = FQ}
R2d
(2.2)

=Sup{/Rd ¢1dFy +/Rd GadFy : |¢1(2) + d2(y)| < |z —y|> Va,ye Rd}7

where m; : R? x R? — R? is the projection onto the i-th component for ¢ = 1,2. Taking any couple
(41, ¢2) as above and using the specific form of the operator B we obtain:

B[Fi](z) ¢1(x) dx + y B[F2](y) ¢2(y) dy

R4

-/ (a:— 9”‘2““) 61(a) Fildon) Fifdo)do+ [ (y— L ‘2“”) 6(y) Fa(dys) F(dys) dy
R3d R3d

= |, 6@ a (z+ = ”2> Fa(da) Fy(deo)dz + | G(z) 6o (z+ = ;”) Fa(dyr) Fa(dyn) d=.
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Consider any transference plan v € P(RY x R?) between (Fy, F») as above. Specifically, we have that
mixy = F1 and mauy = Fy. Then, we can gather both integrals as follows:

/ BIF](x) é1(x) de + / BIE:)(4) ba(y) dy
Rd R4

+ +
=/, G(z) <¢1 <Z+ o 5 mg) + &2 (Z-i- 2 5 y2>> y(dxy, dyr) y(d, dy2) dz.
R5d

Since the condition |¢1 () + ¢o(y)| < |x — y|? is verified for all z,y € R?, then we find

/ BIF)(x) b1 () da + / BIE:)(y) 62(y) dy
R4 Rd

1
< 1l G(2) [(z1 + 22) — (y1 + y2)|* y(da, dyr) y(daa, dys) dz
R

1

2 /]R4d |(z1+ x2) — (Y1 + y2)|2 ~v(dxz1,dyr) v(dxa, dys)

1 1
= Z/ |21 — 1 |* y(dw1, dyr) + 1/ |0 — yo|* Y(daa, dys),
R2d R2d

where in the third line we have used that G is a probability density and in the last line we have used the
crucial fact that F; and F5 share the same center of mass in order to cancel the cross-terms (otherwise
the estimate would boil down to a non-expansiveness estimate). Taking supremum over (¢1,¢2) and
infimum over v and using the dual characterizations yields the result. O

Note that the fact that both F} and F; have the same center of mass has been crucially used to
cancel the crossed term. Otherwise, by the Cauchy-Schwarz inequality we would merely obtain non-
expansiveness:

Wa(B[F1], B[F2]) < Wh(Fy, Fs). (2.3)

Using the contractivity property of Lemma along with the conservation of mass and center of mass
in (2.1) yields the long term dynamics of (|1.1)) in the special case o = 0.

Corollary 2.2. Set any initial datum Fy € My (R?) such that [z, |z|*Fo(dz) < oo and consider the
solution {Fy, }nen to the time-discrete problem (1.1) with o =0, i.e., F,, = B[F,_1] for alln € N. Then,

1l L1 (e ( E, ) 1
T = 17 W2 77GL ,2 Sj on/2?
[ Fn-1ll L1 (e 1Fall ey’ " 2n/2

for every n € N, where py = fRd x Fy(dx). In particular, the set of stationary distributions under B is

{Fo—o(-—p): peRY, where Fo—g = Go o will denote here on the Gaussian centered at the origin with
variance equals 2 in agreement with the notation (1.12) in Theorem .

The preceding result might be regarded as the counterpart of Theorem [[.] for & = 0. Indeed, by
Talagrand transportation inequality for a Gaussian measure [23] we obtain the relation

F, F,
Wa (,Gmg) < 4Dk, ( GW) .

1 Fnll L (mey 1 ll o (rey

However, Theorem does not hold when o = 0, as mentioned in Remark due to two fundamental
reasons. First, when o = 0 there is translation invariance and therefore, for generic Fy € M, (R?)
one cannot expect that the normalized profiles F,/||Fy||11(ray always converge to the Gaussian Fo—o
centered at the origin (contrarily to what happens when « > 0). Otherwise, the centers of mass must get
shifted toward the origin, thus breaking the translation invariance. Indeed, as mentioned in Corollary
the equilibria are not unique when o = 0 (contrarily to the case a > 0), and the center of mass
of the resulting equilibria must stay equal to the initial one. Second, even if we set the initial center of
mass at the origin so that we kill the translation invariance, our method of proof of Theorem leads
to estimates that blow up as a — 0 since we have 2k,—g = 1.

2.2. Incompatibility of Wasserstein metric with multiplicative operators. Note that by defini-
tion , our operator 7 is the composition of the sexual resproduction operator B with the multiplica-
tive operator by the survival probability e™"". Then, it might be natural to study perturbations of the
previous Lemma [2.1] including the following conservative multiplicative operator.
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Definition 2.3 (Normalization of multiplicative operator).
_ e mF

e Pl mray
However, the latter is not Lipschitz continuous with respect to the quadratic Wasserstein metric. Hence

the composition of B and M is not expected to be contractive, even in the case of weak selection, without
any additional restriction. We illustrate such a Lipschitz discontinuity of M in the following example.

MIF] : ., Fe M (RYH\{0}.

Example 2.4. Suppose that the m € C}F(R) 1s radially symmetric around the origin and set Fiy,Fs €
P2(R) as the sum of two Dirac masses, Fy being symmetric, and Fy nearly symmetric. More precisely,

1 1 1 1
Fy=20-n+ 500 F2 = S0-nie + 50nte,
where h > 0 is fized so that m/(h) # 0 and € > 0 is small. Note that

MF ] =F, M[F]=(1-pc)0—hte+ DeOnie,

where p. € (0,1) is given by
e—m(h+s)

Pe = Tmhte) 1 eomihte)”

On the one hand, we have Wh(F1, Fy) = € because Fy is simply deduced from Fy by a translation of size
€. On the other hand, assuming m/(h) > 0 for simplicity (a similar argument holds if m’(h) < 0) and
taking € > 0 sufficiently small we obtain p. < % and

1
Wa(M[Fi], M[F3]) = \/52 +4h(h —¢) (2 - p€> ~ e+ hm'(h)"/?e?,

as € — 0 by symmetry and the mean value theorem. In a sense, the leading order term corresponds to
the cost of moving a piece of mass % — pe from —h + ¢ to h in order to equilibrate the Dirac masses in
the transport plan. Since m’(h) # 0 this leads to the Lipschitz-discontinuity of the operator M.

In [21], this case is ruled out by assuming that the densities are uniformly bounded below on compact
intervals. In our case, we will avoid relying on the above quantification in Lemma[2.1] for the contractivity
of B and will propose a different strategy that we discuss in the sequel.

2.3. Log-Lipschitz contraction estimate. In this paper, we explore an alternative approach to derive
some suitable contraction of the operator 7 in appropriate norms in the regime of strong, but quadratic,
selection. As anticipated in Remark [[.4] our computations suggest using a log-Lipschitz norm, which
measures the uniform deviation of tails of any profile F' relative to the Gaussian tails of F,. More
specifically, we obtain the following result for any « > 0 (but only useful when « > 0).

Lemma 2.5 (Log-Lipschitz estimate). Let m be the quadratic selection function in (L.5)) and consider
any value o > 0. Then, the following estimate holds true

’ T1F]

Vlog ——
08
for any F € LY (RY)NCY(RY) such that |V log FLHLOC(W) < 00. The coefficient ko above is given by the
numerical value ([I.15)) in Theorem [1.1]

When applied to F' = F,, for any solution {F},},en of the time-evolution problem , the above
inequality in Lemma allows propagating a control of growth/decrease of the log-Lipschitz norm under
the flow of the equation. In particular, when a > 0, we have 2k, < 1 (¢f. Figure 7 and therefore
we obtain an actual contractivity estimate. There is one main drawback though: typically V log 5—’; are
genuinely unbounded unless Fj and F',, have the same Gaussian decay for large = (which is much too
restrictive). A major point of our work will precisely be to circumvent this unbounded factors.

However, when o« = 0 we have 2k, = 1, and we simply obtain non-expansiveness. We emphasize
that in the derivation of such a rough estimate, we do not use carefully the preservation of the center of
mass. This results in a non-expansiveness estimate, which is conceptually no better than the previous
non-expansiveness property in the quadratic Wasserstein metric, obtained as in Lemmawithout
assuming that the centers of mass are the same. For this reason, our method of proof will finally not yield
satisfying results in the case a = 0, but we find this idea illuminating to address the case of a non-trivial
effect of selection when o > 0. A refinement of Lemma leading to real contractivity would require
tackling more carefully the center of mass. However, as mentioned in Remark [[.5] we will not address
this in the current paper, and we refer to Section [§] for some perspectives and future works in this line.

F
Vlog —

e

<2k,
Lo (Rd)

)

Lo (R%)
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FIGURE 1. Parameter k. against parameter a.

Proof of Lemma[2.5 Our starting point resides in the following normalization of the operator 7

F Ao F F
T1F)(@) = () // P(xz; 21, 22) (1) (w2) dxq dxs, (2.4)
FQ(:C) Rd W‘Tz/) Fa(x/) dx/ R2d Fa(xl) FOZ(‘T2)
for all z € R?, where we have
e% Sz —a)|zf? 1 21+ 29 |2 1
. _ o 2 2
P(Z‘,l‘l,l‘Q) = WGXP [—2 ’l’ — 2 — 20%((|$1| + |l‘2| ) . (25)

Above we have exploited the explicit Gaussian shape of F,, to find P explicitly. Note that P consists
in a one-step Markov transition kernel representing the probability that parental traits (z1,z2) lead to
a descendant trait x. Indeed, ffde P(z;71,22) dry dzg = 1 for all z € R? because (A, Fy) solves the
non-linear eigenproblem . We remark that the quadratic form in the exponential in reaches
its maximum value at (z1,72) = (kz,kz) for k = 02 /(2 + 02) and by definition of kq, we infer
k = k.. This motivates using the change of variables

r1=kox+y, w2=kor+ys, (2.6)
which appropriately centers the quadratic form at the minimum. Specifically, we obtain
2
1 1 + T2 1 9 9
3o - 252 - ozl + el
Uy +w> 1 ) o 1 s 2k2\, o, 1 2k,
=—= — — =1 (1—-k4 —= (1 —Fky) — . ,
5| P3| gl el — g (k) + T el g (k) = 5 ) ()
Ty +y2

2 2

where in the second line we have noticed that the coefficient of the crossed term x - (y; + y2) vanishes due

2
1 1 1
- ~ gl 1) - 5 (25 — ) oP

« «

to the relation k, = %, and the coefficient of the |z|? factor can be reformulated as
2k 2 1 1
R R
o5 2+0q 142 0%
thanks to the implicit equation (1.13)) satisfied by o2. Therefore, (2.4)-(2.5) transform into
TIF)(x Ao ~ F(kox+ F(kox+
@ fRd Fo, @) FQ(JC )d:c R2d al\Ra 1 aRa Y2

2

1 +
P(yl,yQ) _ Y1 Y2

1
- . _Z
Ao (2T 0 y)? Xp[ 2 2
We remark that the new Markov transition kernel P = ﬁ(yl,yg) does not depend on x thanks to the
explicit cancellation of the |x|?> dependent factors. At this level, we start to observe the ergodicity

(1 * + [y2*) | - (2.8)

1
202
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phenomenon since the dependence of x on the right hand side of (2.7) has shrunk by a factor k.. A
possible strategy to see if there is a quantitative degradation of the dependence on x is to take logarithmic
derivatives and try to relate the log-Lipschitz norms of T[F] and F. Specifically, we have

TIF](x) / Fkoz+1y1) F(kox+ 1)
Viog Lo _ g Viog ol T | glgg Z\FaT T V2) - dy, dys), 2.9
o8 Fa(x) ‘ R2d o8 Fa(ka T+ yl) * o8 Foc(k:a T+ y2) V(I oy y2) ( )

where the xz-dependent measures v(x; dy;, dys) on the variables (y1,y2) have the following density with
respect to the Lebesgue measure:

~ Fkoxz+y1) Flkax+y2)
. P(yla 92)
V(xvdyladyQ) o Fa(kax+y1) Fa(kax+y2)
dyy dyo // S0 F(kax"_y/l) F(kax"_yé) b
P(y7, dyy d
R2d (yl yZ)Fa(kax+y/1) F(x(kax"‘ylg) 1 a4Y2
Since the integrands of (2.9 are uniformly bounded by our assumptions, we end the proof by taking L*°
bounds and using that v are probability measures on the variables (y1, y2). O

2.4. Brief description of our strategy. As advanced before, our strategy is based on a finer under-
standing of the iterations of 7 across generations. Specifically, it relies on a suitable reformulation of
the solutions {F}, },en solving the recursion for the special quadratic selection function m in .
At this stage we intentionally keep notation simple and intuitive, since our goal is to briefly present the
main strategy. However, a rigorous approach with more descriptive notation for the trees of ancestors,
which arise from the recursion, is developed in detail in Section

The first step consists in choosing the appropriate normalization extending the previous normalization
F,/ F, in the proof of Lemma In this paper, we have opted for

e F,
n Fa:() )

(¢f. Definition but there is some freedom here. In particular, the term e is not mandatory, but
it is convenient as such for an easier sorting of the various terms. Indeed, we may typically consider
any normalization F,, /Gy ,2 with o2 larger but arbitrarily close to o2 (being o2 the variance (1.13))
of the expected equilibrium F,). In other words, we could take any “close-to-optimal” normalization
as compared to the “optimal” normalization used in the strategy in Section [2.3] However, for general
selection functions m we do not know the expected equilibrium. To account for a more robust viewpoint,
we follow a more robust approach so that we do not “optimize” the normalization.

In a nutshell: we iterate the operator 7 in the recursion for F,, up to the initial datum and we obtain
(modulo a multiplicative constant) a formula of the following type

Fa@)oc [ Palai{a) I Fotes) e

for an explicit n-step transition kernel P,, with Gaussian shape:

P (z;{z:}) := exp(=Qun(w; {2:})).
Here, the index ¢ spans the 27! — 2 members of the genealogical tree with n generations of ancestors
from the root (excluded) to the leaves, whilst j only spans the 2 members at the leaves. In addition,
Q. = Q,(z;{x;}) is a quadratic form taking as arguments all traits = and {z;} (i.e., all the 2"+! — 1
ancestors in the family chart including the root ). As compared to Section we have iterated n times,
which raises the dimension of the quadratic form to 2"*! — 1. In addition, the change of normalization
2

leads to additional quadratic contributions %|z;[* (with v = 5725)). Therefore, the minimizers of Q,,
get shifted (¢f. Section . As a result of successive backwards changes of variables from leaves to the
root very much in the spirit of ([2.6)), the following alternative expression is obtained:

Fu@) o Fote) [ Pulinh) [T Fo(@h (o (ui)) diws} (210)

R(27 1 —2)d

Above, for every leaf j the maps ®/ defined by
@), (3 {yi}) = wnz + N ({yi}),

where A7 are affine transformations with respect to the variables {y;}. We shall call them the lineage maps
(¢f. Definition , since they contain precise information of the effect of the leaf j of the genealogical
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tree on the resulting trait x. In addition, P,, are n-step transition kernel with Gaussian shape:

P,({yi}) = exp(—Qu({:})),

for a z-independent quadratic form Q,, taking as arguments all traits {y;} (root excluded). In this case,
the |z|? remainders coming from the changes of variables on P,, do not simplify due to our different
normalization, and they contribute with an explicit Gaussian factor ﬁ'n(z) Then, the dependency upon
x is split into two parts: the explicit term Fn(x) outside the integral (which is proven to converge
towards F', by construction) and the contribution ., of the lineage maps ®J (z; {y;}) inside Fy for an
appropriate sequence {kp tneny € Ri. The major observation here is that ,, < 27" when a > 0 because
of the strong shift towards the origin under selection. Otherwise, for « = 0 we only have k,, = 27".
Formula for @ > 0 then suggests a strong form of ergodicity, reminiscent of the contraction of
the log-Lipschitz norm in Lemma [2.5] where the dependency on x fades as n — oo. Indeed, there are still
2" terms in the product indexed by j, but the contraction parameter k,, appears to decay fast enough to
compensate them. To make this argument quantitative, let us differentiate again to obtain

Vlog F,(x) = Vlog F, () + Kn Z /]R Vlog Fo(®7 (z; {y:})) vn(z; d{y:}), (2.11)

(2n+1_2)d

where the z-dependent probability measures v, (z; d{y;}) on the variables {y;} have the following density
with respect to the Lebesgue measure:

valesd{y}) P, ({yi}) T1, Fo(®}(w; {wi}))
d{y:} S —za Pu({yi}) T1; Fo(@h (s {yl})) d{yi}

We remark that a naive repetition of the strategy in Lemma [2.5| under the additional assumption
that Vlog Fy € L>(R?%) would immediately retrieve an exponential decay of the second factor in
when « > 0 (or only a uniform bound if @ = 0) since the large sum over j would be bounded by
2"y ||V 10g Fo || 1o (re). However, as mentioned before, there is a strong drawback: the factors V log Fy
are not bounded, not even after long enough times. In the current formal argument, we have not discussed
about the precise shape of the linear components A7 of the lineage maps ®7, since it was not relevant
thus far. However, we anticipate that to overcome the aforementioned complication, we shall require
more precise estimates for large values of {y;} in the high-dimensional integral, which are guaranteed by
the strong enough decay of £, and which will be essential in the rigorous proof in Section [6}

More specifically, and this explains why our approach moves from one-step contraction estimates (in
the spirit of Section to ergodicity results, note that the same reformulation of the iteration as above
could be done exactly n — k times up to an advanced enough time step k. By doing so, we can grasp
on some natural Gaussian shaping under selection, which we expect to lead to unbounded V log F},, but
growing sublinearly at infinity. Hence, we require precise compensations in the high-dimensional integral
which we find by deriving a suitable control of moments of v,,. By doing so, one has to irremediably
move from uniform estimates to averaged estimates, and being able to propagate them for large times.
This requires a thorough and highly technical analysis, which becomes the main objective of this paper.

For an easier readability, and to guide the reader along the various steps of the proof, we provide an
overall map of it in Figure [2] which allows interconnecting the main fundamental results.

3. PRELIMINARIES

In this part, we collect some necessary preliminary tools and results that will be used later on.

3.1. Perfect binary trees. In this paper, we shall systematically use indices ¢ that do not range on
discrete intervals {1,...,n} but rather on the vertices of a specific type of trees, which are called perfect
binary trees, see [22| [25]. First, we introduce the notion of binary trees, which we present using their
universal address system, see [22] Section 11.3.3]. Namely, a binary tree T consists in a finite subset of
words T C Wy := U2 ({1, 2}% with letters in the alphabet {1, 2} that verifies:

(i) 0eT.

(ii) If i1 € T or 42 € T for some word i € Wy, then i € T.
This implies that the root is the empty word , and T is stable under chopping letters on the right of
its words. Given a word i € T, we denote its length (number of letters) or height in the tree by [i|. In
particular, || = 0. A binary tree T is said to be perfect if, in addition, the following properties hold:

(iii) Given a word i € Wa, then il € T if, and only if, i2 € T.
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Reformulation of Formation of
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FIGURE 2. Overall map of the proof of Theorem
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FIGURE 3. Perfect binary tree T°

(iv) There exists n € N such that [i| < n for every ¢ € T and
#{ieT: li|=n} =2".
This implies that, except for the root, words in T appear in couples {i1,i2} and paths in the tree arising
from the root achieve the same maximal height n. The above four conditions determine a unique tree,
which we call the perfect binary tree with height n € N and we denote by T". See Figure [3|for a graphical
representation of the perfect binary tree T? of height 3. Binary trees are often used to describe the
different generations of offsprings after a given individual. In our case, we shall make a reverse use of
trees. Namely, a binary tree will represent the family tree or pedigree chart of an individual, consisting
of the different generations of ancestors of such an individual. For this purpose, we shall establish the
following terminology:

(i) (Leaves) We say that a vertex ¢ € T" is a leaf of the tree if |i| = n. The set of all leaves of T"
will be denoted by
L":={ieT": |i| =n}.
(ii) (Levels) We say that a vertex ¢ € T" is on the m-th level of the tree if |i| = m for some
1 < m < n. The set of all vertices on the m-th level will be denoted

m = {Z eT": M = m}

In particular, note that Ly = {0} is the root and L, = L" are the leaves. For simplicity of
notation, we denote the set of vertices of the root-free and leaves-free tree respectively by

Tr=T\{0}, T =T"\L".
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(iii) (Child) Given a vertex i € T, then there exists a unique word j € Wy such that ¢ = j1 or
i = j2. Such a vertex j is called the child of i and will be denoted by c(i) = j.

(iv) (Parents) Given a vertex € 'T'n, we define the parents of i as the subset of all vertices that have
the same common child ¢, that is,

P(i) := {il,2}.

(v) (Mate) Given a vertex i € T, we define the mate of ¢ and we denote it m(i) as the only other
vertex in T™ that has the same child as 1, i.e.,

{i,m(i)} = {c(i)1, c(2)2}-
(vi) (Tree order) Given two vertices 4,5 € T", we say that ¢ < j if the associated words are so
ordered according to the lexicographical order of the set of words Wa with two letters {1, 2}.

(vii) (Highest common descendant) Given two vertices ¢,j € 'T'n, we define the highest common
descendant of i and j, and we denote it by i A j, as

iNj=max{l e T": [ <i, 1 <j},
where the maximum is considered with respect to above tree (lexicographic) order.

Remark 3.1 (Tree-indexed variables). Given n € N, we shall identify R*2" D4 = (RH)T: and R?"? =
(RHY". Specifically, vectors x,,y,, € R*?" =D and gz, € R*"¢ will be regarded as indexed families

Xn = (Ti)ictrs  Yn = Wiietr,  2Zn = (2j)jeLn, (3.1)
where x;,y; € R and z; € R for each i € T} and j € L™.
3.2. Gaussian solutions. In this part, we compute particular solutions of the time-discrete problem
(1.1) and the associated eigenproblem (1.11)). As we advanced before, we shall exploit the explicit
algebraic structure imposed by G (given by the Gaussian mixing kernel (1.4)) and m (given by the

quadratic selection function (1.5)). Namely, explicit Gaussian solution will be obtained. We recall first
the following stability property of Gaussians under convolutions.

Lemma 3.2 (Stability of Gaussians). The following relation holds true

G#l,ﬂf * G#mffg - Gu1+#2,0f+tf§’ (3‘2)

for any couple of means 1, po € R and variances 02,03 > 0.

Using the above result, we can obtain the following explicit evaluation of the operator 7 in (|1.2)) over
the class of Gaussian functions.

Lemma 3.3 (Evaluation on Gaussians). Consider any p € R? and o? € R%, then
TG o2l =ms G, 02,

where the parameters m.,, p, and o2 are given by:

1 o pl?
2

2 ta(i+22) 1+ 2
m* = c 22 ) M* = - S 2 0‘3 = 722' (3.3)
(1+a(l+ %))4/? l+a(l+ %) 1+ a(l+ %)
Proof. On the one hand, note that by Lemma [3.2
BlG,0)(@) = (G (5) * G * G2 ) (22) = G, 2 (@),
for each 2 € R?. Therefore, by definition of 7 in (I.2)) we obtain
o 1 a 1 1
G — —7\$|2G - - 2 o e — ]2
T(Gpo2](z) =€ u,1+§(x) 2r(1+ 2))4/? P73 ] 21+ 2 |l —pl” |,
for each = € R%. By completing the square inside the exponential, we conclude our result. (I

Consequently, the following explicit Gaussian solution of the eigenproblem (1.11)) is found.

Proposition 3.4 (Gaussian solution of the eigenproblem). Assume that o € R, then the eigenproblem
[L.13) has a unique Gaussian solution (Aa, Fy), determined by the relation (L.12) in Theorem[1.1]
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(a) The malthusian exponent A, against parameter o for d = 1. (b) The equilibrium variance o’i against parameter o.

FIGURE 4. Plot of eigenvalue A, and variance at equilibrium o2 against a for d = 1.
The case o = 0 corresponds to absence of selection, which is conservative (Ao—g = 1),
and the variance at equilibrium o2 _, is twice the variance of the mixing kernel in B.

Proof. We look for A € RY, i € R? and o2 € R* such that MG, > = T[G, +2]. By Lemma and
bearing in mind parameters m., . and o2 in (3.3) we obtain that (\, iz, %) must solve the equations:

—p ol 2
\ e Clta(+g) 7 ) 1+ %
= ) b= ————"—""">S, [ — S
(1+a(l+ %))4/? 1+a(l+ %) 1+a(l+2)
Hence, the only solution is given by = 0 and A and ¢? are determined by (1.12) and (1.13). O

Remark 3.5 (Dependency on selection). The eigenvalue A, € RY and the variance o2 € R%. determined
by the relations and for the the unique Gaussian solution (Ay, F) to the eigenproblem
are monotonically decreasing with the selection coefficient o. Namely, the larger o, the smaller o2 and
Ao Indeed, we obtain (see also Figure

a oo = o2N\0, Ay \ 0
aNO0 = o2 72 A, 1L

Therefore, if selection is strong, then F is very concentrated around the origin and, if selection ceases,
then F,, is twice as spread as the mizing kernel G in , a famous result in quantitative genetics, see
e.g. [9. Note that Ao, < 1 for any o € RY and, consequently, the special steady solutions F,, = X, F,
coming from ansatz (1.10) always get extinct for large n. This is an artificial consequence of our parameter
reduction in Appendiz|Al In particular, if we maintain parameter 8 in coming from the ratio between

2
birth and mortality rates, then the above special steady solution only extincts if f < (1 + (14 %)).

Remark 3.6 (Eigenproblem with a = 0). The same ideas as in Proposition yield the Gaussian
solutions to the eigenproblem (1.11)) in the absence of selection (i.e., « = 0). However, there is no longer
uniqueness due to the translation invariance of B. Indeed, we obtain the Gaussian solutions:

A= Aoz:O = ]-7 F= Fa:O(' - M) = G}L,Zﬂ

for any p € RY. Indeed, it is a consequence of the contraction property stated in Section that these
are all possible generic solutions (not only Gaussian). Specifically, by the conservation of mass we
obtain that the only possible eigenvalue is A = 1. Then, the eigenproblem reduces to a fived point
equation for B. We can then conclude by Corollary[2.3

We emphasize that the above presents a crucial difference of behavior between the nonlinear problem
with sexual reproduction and the analogous linear version with asexual reproduction operator .
Namely, whilst in the former case there exists nontrivial solutions in the absence of selection, in the latter
case it can be seen that such a nontrivial solution does not exists (e.g., through Fourier arguments). This
suggests that whilst in the linear problem both reproduction and selection stay balanced, in the nonlinear
problem reproduction appears to dominates selection structurally.



ERGODICITY OF THE FISHER INFINITESIMAL MODEL WITH QUADRATIC SELECTION 15

Finally, we note that by iteration of the operator 7 and Lemma [3.3] we can compute the explicit form
of solutions of the time-discrete problem (1.1)) issued at Gaussian initial data. In fact, the Gaussian
structure is preserved along generations, although mass, mean and variance are modified.

Proposition 3.7 (Gaussian solutions of the time-discrete problem). Consider any mo € RY, pg € R
and 03 € Ry, and set the Gaussian initial datum Fy = myg GM’U%. Hence, the solution {F,}nen to the
time-discrete problem (1.1)) takes the form

Fo,=m,G,, 2, (3.4)
for n € N, where the parameters m,, € R, pu, € R? and 02 € R% are governed by the recursions:
1 Q\Mn—1\2
2 =2
B e 1+(y(1+ z 1) - P 1 - 1
My = Mp_1 > o M= 5, Ty = At . (3.5)
(14 a(l+ =52))42 1+a(l+221) %0 14 Zot

Lemma 3.8 (Relaxation of variance). Assume that o € R%, consider any of € R% and define the
sequence {02 }nen by recursion according to the third recursion in (3.5)), i.e.

1 1
— —a+

A (36)
(o= 1 + 712—1

for every n € N. Hence, if 03 > o2 then o, \, 0% asn — oo and, if 03 < o2 then o, / 02 asn — oo,
where o is given by (1.13)). In addition, we obtain the convergence rates
‘0—721 - O'i | < Cﬂ TZ» (37)
for every n € N, where the constant C,, € R depends on o} and o (we obtain that C, = 0 if 03 = 02),
and the ratio v, € (0, %) satisfies ro = Qki and is given explicitly by
8
Ty = 5 (3.8)
((2a +3)+/Cat 1P+ Sa)

Proof. e STEP 1: Monotone convergence of {02 },en.
Consider the function f: Ry — R given by

1
=a+ —, € Ry,
f(x) o 1_’_% T +

and, for simplicity of notation, define

Dz, = (027!, neN (3.9)

Ly 1= (Ua n
Notice that x, is the unique fixed point of f in R} and {z, },ecn determines the fixed-point iteration of
the map f issued at zo = (03)7 !, that is, 2, = f(xn_1), n € N. Our goal is to show that {z, }nen
converges towards z, and find convergence rates. By direct computation we obtain f/(z) = 2/(1 + 2x)2,
which is above 1 near x = 0, and therefore f is not contractive. Hence, we cannot apply the usual Banach
contraction principle and a different argument is provided. First, note that x € Ry — f(z) is strictly

increasing and r € RY @ is strictly decreasing. Then, we obtain that

T < f(x) <y, if0< T < T8y
flx) =, if x =z,
e < f(z) <z if x>,
which implies the aforementioned monotonicity properties of {z, }nen and, in addition,
min{z., zo} < z, < max{z.,xo}, (3.10)

for any n € N. In particular, this yields the monotonic convergence of {x,, } nen towards z., or equivalently,
the claimed monotonic convergence of {02}, cn towards o2 as n — oc.

o STEP 2: Convergence rates.
Second, to compute the convergence rates we shall use the special algebraic structure of function f, which
is the restriction to R of the Mobius function M : R\ {—3} — R given by

M(z) = % xeR\{—;}.
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FicUurE 5. The ratio r,, against parameter a.

Note that M has two fixed points:

~ 2a+1+/(2a+1)2+8a
= . ,

where we note that 2y =z, € R} and x_ € R™. Then, by definition of {z, }nen in (3.9) we obtain

. :2(a+1)zn_1+oz_2(oz+1)x++a: 2 (s — 24) (3.11)
mo 2n_1 + 1 204 + 1 (22p_1 + 1)(2my + 1) "H T '

Since xg (thus x,_; for initial time steps n) can be chosen arbitrary close to 0, then, the best a priori
control that we can have on the prefactor in the right hand side of (3.11) is
0< 2 < 202
2rp-1+1)(224++1) — 2+ 02
which gives true contraction in (3.11)) when o > 0, since 2k, < 1. Nevertheless, such a rate is non-
optimal, and we show an alternative approach to achieve a sharper one. Specifically, note that

20a+Dap1+a 2a+Dz_+a 2
n— T = - = et —T_). 3.12
I 2%n_1 +1 20— +1 Gt @e £ 1) Pt ) (312)

By dividing (3.11)) by (3.12) and iterating the identity we obtain

T4+

:2kom

T — Ty _ 20 +1 nxo—er, (3.13)
Ty — T_ 204 +1 xTo— T_
for every n € N. In fact, the basis can be restated as follows
22_4+1  (2a+3)—/(Q2a+1)2+8a 8 B <1
= - = 5 =Ta < 5.
224 +1  (2a+3)+ /(2 + 1)% + 8a ((2a—|—3)—|— (2a+1)2+8a) 2
Therefore, using the uniform control (3.10]) and (3.13]), we conclude that
|y — x| = MMO — x|l < mz.ix{x*,xo} e |z — zs| 77, (3.14)
|xg — x— min{z,,xo} —x_
for every n € N, thus leading to an improved rate since r, = 2 k:i < 2k,. Finally, notice that
o2 — o2 | =02 02 |z, — x| < max{c?, 05} |2, — 24, (3.15)

for every n € N. Hence, joining (3.14]), (3.15) along with (3.10) ends the proof. |

In particular, for Gaussian initial data we recover an explicit particular case of the general relaxation
result in Theorem [.11

Corollary 3.9 (Relaxation of Gaussian solutions). Assume that o € R, consider any mg € Ry, po € R4
and o2 € Ry, and set the Gaussian initial datum Fy = mo G, o,. Hence, the Gaussian solution {F,,}nen
to the time-discrete problem (L.1)) verifies that the growth rates ||Fy| 11 way/||Fn—1l1re) relaz towards
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Ao and the normalized profiles Fy, /|| Fy| 1 (ray relax towards Fo, where (Ao, Fo) is the unique Gaussian

solution (1.12) to the eigenproblem (1.11)) as proved in Proposition . Specifically, for any e € RY,

F,
DKL (
Pl

[Fnllr me)

‘F"‘> < CueW/ e+ Cyrl,

D W RN WARES LYol

| Fr—1ll 21 (a)
where Dy, is the Kullback-Leibler divergence (or relative entropy), v is given by (3.8) in Lemma[3.8,
C,.c € Ry depends on «, po, 08 and e, and C,, € Ry depends only o and o3. In fact, Cpe =0 if up =0
and C, =0 if 0} = o2

.
Again, in this case the computations of the Kullback-Leibler divergence becomes explicit, and it is
based on the general formula below for the divergence between two Gaussian density functions:

1 _ 1 _ d 1 -
DKL (G 201Gz ) = 5 (12 = 1) T35 (2 = ) + Strace(313, 1) = 5 + 5 logdet(3o3 1), (3.16)

for every puy, iz € R% and any positive non-singular matrices ¥, 2y € R4¥4,

Proof of Corollary[3-9. First, note that when o € R% , then the parameters m,,, p, and o2 in (3.5) verify

My . .
=Xy, lim pu, =0, lim 0721 = ai .
n—oo n—oo

lim
n—00 My_1

In the sequel, we quantify the rates of convergence. Since o2 has already been studied in Lemma we
shall focus only on i, and m,. Let us fix any arbitrarily small € € R} . On the one hand note that

TR 1+ a1+ 220 C1ta(l+ %)

for every n € N. By the mean value theorem and Lemma [3.8 we obtain

ltn]  y2a _ 1 1

|,un| _ A2/d
1]
for an appropriate C, € R depending on v and o2. Since A, € (0,1) then d’Alembert’s ratio test readily
shows that p,, relaxes to zero as a geometric sequence. Indeed, note that

tnl = (“'f"1| - Af/d) o |+ N2/ 1] < (N9 +Cy v 1,

for any n € N. By an inductive argument, this yields

< Cyry,

] < IO +Co 7)ol S C-(NY? +2)™, (3.17)
k=1

for sufficiently large C), . € R?, where we have used that r, € (0,1) to absorb C, " in an e-small term.
On the other hand, note that

olpy_1l?

_ —,
N e ,

- Na = 2 - Pl
M1 (1+ a1 + Z2-1))d/2 (I+a(l+ ‘%a))d/z

Nl=

1 elwnal?
2

e () N 1 1

(I+a(l+ %))d/2 (14 a(l+ %))d/z (1+ a(l + %))d/2

By the mean value theorem,

Mp A ‘ < a|ﬂn—1|2 dj |072171 - Ui\
I 21 4a)s 4 (14a)st!
Therefore, using contraction of mean (3.17)) and contraction of variance (3.7) in Lemma entail the

rate of convergence for the m,/m,_1. Finally, given that both F,/||Fy,[ ;1) and F, are Gaussian
functions, the relative entropy can be computed explicitly through (3.16)). Specifically,

F, |/f4n|2 d (o2 d o2
D — || F, | = — == 1) =21 Zn o)
K ( | Enll 21 (mey ) 202 * 2\ o2 98 o2

Mp—1
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— (2k,)?
2k,
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F1GURE 6. Comparison of convergence rates in Theorem and Corollary

Hence, using again (3.17) and (3.7) concludes our result. O

The proof of Theorem for generic non-Gaussian initial data Fy € M (R?) will be the core of this
paper and we postpone it to Section @

Remark 3.10 (Optimality of convergence rates). As illustrated in Figure@ the convergence rate of the
normalized profiles obtained in our main Theorem (blue line) is sharp, compared to the explicit one
found in Corollary (red line) for the special class of Gaussian solutions. In fact, one can easily check
that the identity )\i ¢ = (2ky)? holds. However, there is a mismatch between the convergence rate of
the rate of growth of mass in Theorem (orange line) and the sharp rate for Gaussian solutions found
n Corollary (again red line). On the one hand, it stands to reason that the relative entropy has a
certain quadratic structure, whilst the rate of growth of mass is related to L' norms, and then it is not
quadratic. We will see that more clearly in the proof of Theorem[I.1] in Section[f, where we use explicitly

the following relation
F,
¢ fou (P |v)
[ Enll L1 (ma)

based on Pinsker’s inequality. However, a certain quadratic structure is still present in the rate of con-
vergence of My, /My—1 in Corollary which may become explicit for generic solutions to (L.1|) if one
finds the hidden cancellations. However, for simplicity we do not address this technical detail here.

1 Fl L1 (re)

P A
”anlHLl(Rd) “

4. SOME PROPERTIES OF THE OPERATOR T

First, note that for any F € M, (R%) we obtain that T[F] € W*1(R4) n Wk>(R9) for each k € N
thanks to the fact that F' has finite mass and the Gaussian mixing kernel G in is smooth and has
bounded and integrable derivatives of any order. In particular, solutions {F},},en to the time-discrete
problem become instantaneously smooth after the first generation for any generic initial datum
Fy € M (R%). In the sequel, we will derive a quantitative control on the emergence of Gaussian tails
for T[F]. In addition, we will quantify the propagation of quadratic and exponential moments for the
normalized profile T [F]/||T[F]||11ay- Both a priori estimates will be required later in Section @

4.1. Emergence of Gaussian tails.

Lemma 4.1 (Emergence of tails). Assume that o € R, consider F € My (R?) and set 52,02 € R%. by

1 1
7li=—, o’c¢c (O,).
« 1+«

Then, the following properties are fulfilled:
(i) (Upper control of tails) There exists C = C(a, F) > 0 such that

TFl(z) < CGoz(x), (4.1)

for every x € R%.
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(ii) (Lower control of tails) There erists ¢ = c(a, 0%, F) > 0 such that
TFl(z) > c¢Gp 2 (x), (4.2)
for every x € R?.

(ii) (Control of log-derivative) Assume that F is absolutely continuous with respect to the Lebesgue
measure and it has Gaussian tail, i.e., there exists 0% € R and C" € RY such that F(x) < C'Gy 42
for every x € R, Then, there exists C" = C"(a,0?,0%,C", F) > 0 such that

[Vieg T[F)(x)| < C"(1+ |z]), (4.3)
for every x € R%.

Proof. First, notice that F' € M (R?) is any generic distribution but G € L>(R?). Then, B[F] € L>(R%)
and, by definition of 7 in (1.2]), we obtain

a2 —_1\d/2
TIF)(@) < IBIF)| s gaye™ £ = |IBIF]| L gy (201" G g (),

for every x € R?. Hence, ({.1)) holds for appropriate C' > 0. Second, note that

e~ 3=l 1 1+ X9 2
F = —_— — F(d F(d
TIF®) = G A / e Z\x ! (day) F(da)

e 5lzl? / 1| |2 1| i |2+ 1 (o1 22) ) Fdrs) F(das)

= exp | —=|zx|* = =|r1 + = I O - -
@) [ Fll gy oy Juza D\ 200 7RI TR T 1) F(dzs

> e~ $lal® / ex _2+€|x|2 3 2+e|$ + o2 ) F(day)F(das)
= (2m)2||F|| pmy may Jroa P 4 Qe 11T 2 1 2

_g|m|2 2

€ 2 +e 5 24¢e, 5 24 o
2 - - - F(dz1)F(d
- (27T)d/2||FHM+(Rd) /de eXp( 4 2] Ae |71 4 |22 (dx1) F(dxs),

for every € > 0, where in the third and last lines we have used Cauchy—Schwarz’s and Young’s inequalities.
Consequently, we obtain that

d 2
2e ) ||G0’22+EEF”M+(R[$)e—%|m|26—¥\1\27

TIFl) > ()" (2

1] At (e

for every x € R%. Taking ¢ > 0 small enough and an appropriate constant ¢ > 0 yields (#.2). Finally,
taking derivatives on (1.2)) we obtain

VTIFI() = —aa T{F|(e) - < /R (m - W) G (x - xl;”) Fldzy) F(dzs)

B 1] 21 (may 2
~glef?
— (e TR - — [ (P572) 6 (- P52 Fldn) Pldoy)
HF”LI(Rd) R2d 2 2

Therefore, dividing by T[F](z) and taking norms yield the following estimate

1 e~ 5z 1+ o
[Vieg T[F)(z)| < (1+ a)|z| + V3IFl ey TIEI) /RM [(z1,22)| G <:c - ) F(dzy)F(dxs),

(4.4)

for every x € R?. Consider any R > 0 and split the integral in the right hand side of (4.4) into the
subsets {(z1,22) € R : |(x1,22)] < V2R|z|} and {(z1,22) € R?*? : |(z1,22)| > V2R|z|}. For the first
subset, we use the definition (1.2]) of the operator 7. For the second subset, we use the uniform bound
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of G along with the assumptions on F' and the preceding lower bound (4.2)) of 7[F]. Then, we obtain
ngdefguﬁegz%lm\? /
\@CHF”LI(R‘{) |(z1,22)|>V2R|z|
C2gde—8lo? 5oz 7’ /+oo
V2| F| g1 (mey V3R|z|
C’die_%mzeﬁmz (Sd B 4>d—; . /+Oo
o
V2| F | e e V3R|z|

V2020452441 (84 — 4 d—3 3 (ot ) jap
AFlp@sy \ e ‘ )

IV1og T[F)(z)] < (1 + a+ R)|z| + (21, 22)e” 2021022 gy day

_1,2
r?le= 32" dr

— (1+a+ R+

_ a2
re 4.2" dr

<(1+a+R)z+

=(1+a+ R)|z|+

)

for every x € R?, where in the third line we have used the inequality

_1\43 2d—1
-1 o (241 (g) exp (iﬁ) ’
e € 202

for every r > 0 and € > 0 in the particular case of ¢ = 1/2. Taking R > 0 large enough ends the proof. O

The previous result can be iterated to obtain similar properties for solutions {F},},en to the time-
discrete problem issued at a generic initial datum Fy € M, (R%). In particular, we note that
Gaussian tails emerge instantaneously after the first generation n = 1 and linear growth of the log-
derivative is guaranteed after the second generation n = 2.

Corollary 4.2 (Propagation of tails). Assume that o € R, consider the solution {F,}nen of (1.1)
issued at a generic initial datum Fy € M4 (RY) and set 51,07 € R% by

1 1
—2 2
= —, c (0, .
71 A ( 14 a)

Define the associated sequences of variances {2 }nen and {02 }nen by the following recursive relations
1 1

77::&“"772, 71204“" 3y (45)
Toi1 1+ % T 1+ %
for every n € N. Then, the following properties are fulfilled:
(i) (Upper control of tails of F,,) There exist C,, = Cy(«, Fy) > 0 such that
Fo(z) < G, Gogz (), (4.6)
for each x € R% and every n € N.
(ii) (Lower control of tails of F,) There exist ¢, = c, (o, 0%, Fy) > 0 such that
Fn(l‘) > Cp GO,Q% (3:)7 (47)

for each x € R% and every n € N.
(iii) (Control of log-derivative of F,,) There exists D,, = D, («, a3, Fy) such that

1V log F(2)] < Do(1+ o)), (4.8)
for each x € R? and every n > 2.

Proof. Note that once (4.6) and (4.7) are proved, we can readily apply (4.3 in Lemma to FF'=F,_
with n > 2 (which satisfies the required upper control by a Gaussian function) and we recover the estimate

for the log-derivative of F,, = T|[F,_1]. Then, we just focus on proving estimates and
through an inductive argument. First, note that Lemma applied to F' = Fy yields and with
n = 1. Let us assume that and hold for some n € N and let us prove it for n + 1. Specifically,
using the induction hypothesis we obtain that

Frpi(z) = e 2P BIF, ) (2)

= |}‘_'nCL72L1(]1W)egﬂvl2 (G (5) * GO,E%L * Go,E,‘j’L) (22)

Cy 51zl
=" e 2 g _ <O G
HFnHLl(Rd)e 0,1+é(x) = ¥ntl O,Uiﬂ(x)»
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for every € R? and appropriate C,,,1, where we have used Lemma for the stability of Gaussian
under convolutions and the definition ({5 of 3% _,. This proves (4.6) for n + 1 and a similar argument
yields the lower estimate (4.7]). O

By Lemmawe note that the sequence of variances {72 },en and {2 },en relax towards the asymp-
totic value 2 with a geometric convergence rate. This is consistent with our main result in Theorem 1.1
and Corollary In fact, this suggests that any solution {F,},en to the time-discrete problem (1.1)
must relax towards the asymptotic profile F',,. In addition, recall that for any solution (A, F') of the eigen-
problem we recover a particular solution of the time-discrete problem via the ansatz ,
i.e., F,, = \"F. Hence, we expect that (A, F,) must indeed be the unique solution to the eigenvalue
problem . However, we are still far from characterizing the full long-term dynamics for the solution
{Fy}nen in Theorem and the uniqueness result in Corollary Namely, the above coefficients C),
and ¢, contains crucial information about the balance of mass and their values in Corollary [4.2] are not
necessarily optimal. Indeed, note that they are given by explicit recursive formulas
2

n

2
Coir=(1—az2)2 __Cn (1 ap2)i?

| FnllLr (ma) Nl gy

but they require further knowledge about the behavior of || Fy, || L1 (r4)- In the next paragraph, we overcome

this important issue of scaling factor by focusing on renormalized profiles, for which we prove uniform
propagation of moments.

4.2. Propagation of quadratic and exponential moments. In this section we analyze the propaga-
tion of quadratic and exponential moments along the normalized profiles Fy, /|| Fy || 1 (ra), where {F}, }nen
is a solution to . As we anticipated in Section we need to move from uniform estimates of the
high-dimensional integral to estimates in an average sense. This will be precisely the point in proof
of the main Theorem in Section [6.2] where a suitable control of moments will be crucial, as sketched in
the overall map in Figure [2| Before addressing the case of generic initial data Fy € M (R?), we illustrate

the particular explicit case of Gaussian initial data Fy = myo G 10,02

Remark 4.3 (Gaussian case). Consider any mo € Ry, po € R? and 0 € Ry, set § € R with
0 < m and consider the solution {Fy, }nen to the time-discrete problem (1.1)) with initial datum
Fo=moG, 2. Then, by direct calculation we obtain

H0,04 "
F,
R S T
R | Fulli(me
|2

: Fy(x) eﬁ""%m"
/ Ml e da = 1 —99,2)d/2°
R HFnHLl(Rd) (1 —2‘9%) /

Here, {jin}nen and {02 }nen are the mean and variance of {F, }nen according to formula (3.5) in Propo-
sition[3.7. As studied in the proof of Corollary[3.9 we have the uniform bounds

ltin] < lo]  and  min{o?, 02} < 0? < max{o?, o2},
for everyn € N. Then, we obtain that both the quadratic and exponential moments are uniformly bounded.

In the sequel, we explore the case of generic initial data Fy € M4 (R). For simplicity of notation, we
define the following conservative operator associated with 7.

Definition 4.4 (Normalization of T).

TR
S = e

Therefore, we obtain the following control of quadratic moments under S.

F e My (RY)\ {0}

Lemma 4.5 (Control of quadratic moments). Assume that o € R and set any parametern € (m, 1).

Then, there exists a constant M = M(a,n) € R such that
F(d
/ (2|2 S[F)(x) dr < M + n/ a2 L)
Rd R [ Fllrmra

for any measure F € M, (R?).
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Before we proceed with the proof, let us comment on some apparent difficulties. For this discussion,
we assume normalized F' € P(R?) without loss of generality, as we are only concerned with the shape of
profiles here. Note that the conservative operator S in Definition (4.4] associated with 7 is actually the
composition of the conservative operator B, and the conservative multiplicative operator M in Definition
namely, S = M o B. The former is invariant by translation, whereas the latter is not. However, we
have the following inequality for the operator M:

/ |17|2M[F](x)dx§/ |z|2F(dz) . (4.9)
Rd Rd

This inequality is intuitively clear: by applying the selection operator M, the quadratic moment (that
is, the Wasserstein distance to the Dirac distribution at the origin) is non-increasing. In fact, the proof
is a straightforward consequence of the following identity:

/Rd |z[>M[F](z) dz — /Rd |z|*F(dx) = %/de (]2 = |y[?) (e—m(w) _ e—m(y)) %.

Note that the right-hand-side of this equality is indeed non-positive, provided that m is radially non-
decreasing as it is the case for our quadratic choice (|1.5). A similar estimate can also be tested on the
operator B. Specifically, by a simple change of variable the following identity holds true:

2

/Rd \2[2B[F](z) dz = Var G + %/ (o2 F(dz) + = (4.10)

! / x F(dx)
R4 2| Jra

Then, it might seem natural to combine these two relationships in order to control the quadratic moments
of the composition S = M o B. Suppose, for instance, that the center of mass in the last term of
can be bounded a priori uniformly on F'. Then, the combination of and yields the contraction
property in Lemma [£.5] due to the reduction by half in the size of the quadratic moment of F'. Of course,
without such a uniform control on the center of mass, the last two terms in would contribute
together (by Jensen’s inequality) with a merely non-expansive factor f]Rd |#|? F(dz) that is not enough
for our purpose (we will iterate Lemma on the F,, later). This a priori estimate of the center of
mass should then be derived mainly from the selection component M, as the reproduction component
B is invariant by translation. However, it cannot be derived solely from M, because the latter can have
a dramatic effect on nearly symmetric distributions. This can be seen on the same configuration as in
Example 2.4] above: for a sum of nearly symmetrical Dirac masses, the center of mass is close to zero
before selection, and close to one of the endpoints after selection (when h is large). Nevertheless, such a
configuration is destroyed by B, so that the combination of M and B is crucial to guarantee the uniform
boundedness of the quadratic moments as shown in the argument below.

Proof of Lemma[[.5. Set any F € M (R?). First, note that

/ PG (w Tt x2> F(dzy) F(dzs) i
R34 2 1| pray 1l aemey

/ @) G (x i 96‘2) F(dey) Fldws)
R3d 2 1F [ pqray 1l mcray
Since G is a Gaussian function given by (1.4) and m is a quadratic function given by (|1.5)), then we can

compute explicitly the integrals with respect to x in the numerator and denominator. Specifically, for
fixed z1, 2 € R% we define 7 := % and we obtain

/ (2[2S[F) (z) di =
Rd

B ~ 1 1 a | _ 1 |j|2
2 _—m(x) _ - - J— 2 4.11
/Rd|x|e Gz —T)dx (1_|_a)d/2eXp< 21+a|x|)<1+a+(1+a)2)’ (4.11)
1 1 «
—m(x) _ = - - _Z 712 ) . 4.1
/Rde G(x —z)dx L+ )i GXP( 21JrOL|=75|) (4.12)

Therefore, we can write alternatively

9 1 a _o\ F(dr1) F(dze)
|Z["exp | — |Z|
1 1 R2d 21+ a 1l mray 1F | may

1+a * (14 a)? / exp (—1 @ |f2) F(dxy)  F(dxg)
R2d 21+a IE | pmray 1l mray

Our ultimate goal is to bound the second term in (4.13]). To this end, we provide a lower bound for the
denominator and an upper bound for the numerator in two separate steps.

[ P SIFI(@) dz = (4.13)
Rd
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e STEP 1: Consider an arbitrary R; € R’} to be determined later. Then, we obtain
/ exp <1 « £|2> F(d:cl) F(dl’g)
R2d 21+« ||F||M ®a) [ Fll meeey
1 F F
> / exp < |z |2> (1) (2) dxy dro
2| <R 21+a IE 2y ey 1F 21 (rey

1 F F

> exp (_a R?) 1-— / (dz1) (dz,)
21+a iz1>Ry 1E I amray 1F e

1 1 F(d
> exp <“R%) (1 o | IFM),
214+« 2R1 R HFHM(Rd)

where in last line we have used Young’s and Chebyshev’s inequalities.

(4.14)

e STEP 2: Consider an arbitrary Ry € R} to be determined later. Then, we obtain

1 F(d F(d
/ |Z|* exp (_ - I:c|2) Tl Ly =TI + I,
a 1F1 pgray 1F Nl At ey

where each term reads

1 F(d F(d
I ::/ |E|26Xp (— a |f2> (dar1) (dz>) )
|| <Rs 21+« I E N pqray 1F ]| mrey

1 F(d F(d
I ::/ 12 exp (_ o |x2> (dxy) (dwa)
|Z|>Ra 21+« I E N pqray 1F ]| mrey

On the one hand, the first term can be readily estimated by

| () )l s
- 21+a I F | mceay 1 Fmray

On the other hand, the second term can be estimated by

21 1-— F(d F(d
I2 <= +O‘/ exp < v o« j|2> ( $1) ( ‘TQ)
|Z|>Ra 2

ey « 1+a F F
271 ) IE | meray 1| preay (4.16)
< 2l e (-2 R2),

ey « 2 14+«
for any v € (0,1), where in the first line we have used that e’ > fes with s = |z|? and § = Tia and
in the second line we have exploited that F/||F|| »(ra) are probability measures, thus normalized.

e STEP 3: Putting (4.14)), (4.15) and (4.16)) into (4.13)) yields
a 2 2
1 R3 2 1 eXP(21 aR>eXP (‘TﬁR)
PSP dr < T e e e - "
R «@ «o ey a a 1-— 2R2 fRd || HFHM(Rd)
for any Ry, Ry € R% and v € (0,1). We set the values
1 F(d 2
R = [P m o
2(1=9) Jpa 11| ot ey 1—n
with v,d € (0,1). Then, we obtain
1 2 1 1 F(dz)
2
z|*S dx < + — + =
/Rd‘ FSIF() “1+4a eyall+a) 20-0)1-7)1+a)? Jx | I | Fll pmrey’

thus ending the proof by the arbitrariness of v,d € (0,1). O

By iteration, we then obtain the following contractivity of the variance of generic solutions of (1.1)).

Corollary 4.6 (Propagation of quadratic moments). Assume that a € R, set any parameter n €
(m, 1) and consider the solution {Fy,}nen of (L)) issued at a generic initial datum Fy € My (R?)
with [pa |x|*Fo(dx) < co. Then, there exists M = M (o, n) such that

F,(x) Fy(dz)

|:1: dr < +77”/ |z —————,
1 Fnll o (rey 1—n R |[Follmray

for any n € N.
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Let us note that, on the one hand the factor ™ makes the dependence on the variance of the initial
datum Fj negligible as the amount of generations increases. On the other hand, the constant M does not
depend on the chosen initial profile Fj. This is compatible with our ergodicity property in Theorem

Lemma 4.7 (Control of exponential moments). Assume that o € R, set 0 € RY so that 6 < § and any

parameter x > 52 m Then, there exists a constant C' = C(«, 6, x) such that

/Rd e S[F)(w) da < C {1 +exp (X/ 'g”'inwn(A%)}

for any measure F € M, (R).

Proof. Since G is a Gaussian function given by (1.4)) and m is a quadratic function given by (1.5]), then
we can compute explicitly the integrals with respect to x in the numerator and denominator like formulas

(4.11)-(4.12) in the proof of Lemma and we obtain

1 o — 20 _12 (dml) (d.’L‘g)
2 Tra " Jee ®P\ 2170207 ) TFlnene, TElpacae)
/ 17 S[F) () do = ( ) (4.17)
R

1+ a—20 / ( 1 « 2) F(dz1) F(dzs) ’
exp ( —5 |Z|
R2d 2l+a I F [ mgay 1 F | mgay
where T = % Again, we provide bounds for the numerator and denominator in (4.17). Regarding the
denominator, we recover estimate (4.14]) for any R; € R* . Thus, we focus on the bound of the numerator

1 — 20 F(d F(d
/ eXp <_ 0‘ |x|2) = (dr2) =1 + Iy,
R2d 214+ a—20 I El| pway 11| pray

where each term reads

1 o — 20 2 F(d$1) F(d.rg)
I .= exp | —= |Z] ,
|Z|<Rq 214+ a—260 I avrey 1| aemeay

1 o — 20 2 F(dl‘l) F(dxg)
I = exp | —= |Z] )
|Z|>Ro 21+a—20 | E N aeqray 1] ey

On the one hand, note that

OR3 1 F(d F(d
I <exp (RQQ)/ exp( |z |2> (dr1) (dr2) , (4.18)
(1+Oé—29) R2d 21+Oé ”FHM (R9) ||FHM(]Rd)
where we have used the mean value theorem applied to the function r € R* +— 37— to derive the relation
@ o — 20 260

— < .
l+a 1+a—-20 " (1+a—20)?

1 a—20

Putting (4.14] - and (| into we obtain
d/2 2 exp ( “QQ‘Q R2> exp <f—aR2)
/ ee‘x‘QS[F}(z) i < ( 1+a ) exp (( OR3 > N 2Tta—20 21+
Rd

— —90)2 F(dx
1+a—20 14+ a—26) 1_ﬁfﬂad|x‘2” (dz)

Fll aray

On the other hand,

for any Ry, Ry € R%. As in the proof of Lemma 4.5 we choose them as follows

1 F(dx) a 14+a—-20
R2 _ 2 R2 _ R2
! 2(1—(5) /Rd ‘IE| HFHM(Rd)’ 2 1+a a—260 b

where § € (0,1). Then, we obtain

/ ea|x|28[F](x) dx

T+a \"?(1 a 0 1 / , F(dx)
<\ < +exp 2" = —— ) ¢ >
1+a—20 0 l+a(l+a—20)(a—20)2(1—19) Ja 1] pray

and we end the proof by arbitrariness of § € (0, 1). O
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Therefore, small exponential moments can be controlled by quadratic moments. We can then couple
Lemma and Corollary to obtain the propagation of exponential moments in the time-discrete

problem (1.1)).

Corollary 4.8 (Propagation of exponential moments). Assume that o € RY, set 6 € R} with 0 < § and
any parameter n € (m, 1). Consider the solution {F,}nen of (L.1)) issued at a generic initial datum
Fy € M (R?) with [5, |z|*Fy(dx) < co. Then, there exist C = C(a,0,m) and C' = C'(c,0,n) such that

/ 69‘z|2 Fn( ) dx<C{1+eXp <CI <1+7]n 1/ |.T|2 FO(dx) ))}’
Rd [ Fnll Lt (may R |[Follmcray

for any n € N.

5. REFORMULATING THE RECURSION

In this section we find an appropriate reformulation of the recursion for the solutions {F, },en of the
time-discrete problem , as already discussed in Section Note that by iterating 7 n-times we
find that F), depends on the initial datum Fy € M (R?) via a high-dimensional integral parametrized by
variables indexed on the binary tree T} (representing the traits of the ancestors in the pedigree chart).
Specifically, for any initial datum Fy € M (R?) we obtain:

o Iteration I:
By the explicit definition of 7 in (1.2]) we readily obtain

Fl(m) = #/ eim(I)G (:L’ — 7 +.’E2) F()((El)F()(xg) dxq, (51)
[Foll mere) Jrea 2

where we denote x; = (21, 22) € R?%.

o Iteration 2:
By (5.1) with Fy replaced by Fy and using Fy = T[Fp| in the right hand side we get

1 / _ xr1 + X9
Py () — o= (m(@)-+m(ay)+m(z2)) 7 <x )
) = T s oy [Ful gy s 2

+ +
x G (xl — 371129612) G (332 - x212x22> Fo(x11)Fo(r12) Fo(wo1) Fo(r22) dx2,  (5.2)

where we denote x9 = (ZZ?1, xr2,T11, ZZ?12,5L‘21,£E22) S RS,

o Iteration n € N:

By a clear inductive process, we can iterate the operator 7 as many times n € N as needed to recover an
explicit dependence of F), on the initial datum Fy. Of course, this generates a high-dimensional integral
involving 2(2™ — 1) variables that we can label along the vertices of the perfect binary tree T" according
to the universal address system notation in Section Namely, we obtain

1
Fn(x) = on—1—m
[Tzo | Fm

L1(R%)

x/ . exp | — Z m(z;) H G( il erzzz) H Fo(z;) dxp, (5.3)
R2 2m—1

=n

ieT ieL™

where we have used the tree-indexed notation x,, = (l‘z‘)z‘eT:} e R2(2"-1d iy Remark and zp := .

The ultimate goal of this section is to find a suitable change of variables as discussed in Section
We shall see that the effect of such a change of variable on the above high-dimensional integral in
will reveal that actual dependence of {F}, },en on the shape of Fy. We will see that such a dependence is
indeed weak and the initial datum is rapidly “forgotten” across the different levels of the tree T". This
ergodicity property will be crucial in our analysis and will be exploited later in Section [f] to derive our
main result in Theorem [L.1]
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5.1. A change of variables across the binary tree. The goal of this section is to appropriately
reformulate the high-dimensional integral by exploiting the special form of the Gaussian mixing
kernel G in and the quadratic selection function m in . Namely, we shall derive a suitable
change of variables according to a n-step backwards process starting at the leaf variables x; with j € L"
and ending at the root variable xy = x. More specifically, at each level m in the tree we shall change
the reference frame of the variables z; indexed with 7 € L, so that the quadratic form involving those
variables in the exponential of gets appropriately centered at its minimum. By doing so we find
that the minimum is located at a contracted value of the variable z.;y € Ly, ; at the level m — 1 below,
which is indexed by its children c(¢) in the binary tree (recall notation in Section . By appropriately
propagating the backwards process across the tree, and by tracking the accumulated contraction of
variables, we shall see that the eventual dependence on the root variable x is weakly gradually forgotten
as n — oo. This suggests an apparent form of ergodicity, which we will be crucial later in Section [6]

First, for the sake of clarity, we illustrate our method in the simpler case n = 2. Later, we address the
general case with n > 2 driven by the same strategy. As proposed in Section we define the following
choice for the rescaled profiles that will be used along the change of variables.

Definition 5.1 (Rescaled distributions). Consider any F € M (R?). Then, we define

y Fl(dz)

, zeRL
Fa:()(.%')

F(dz) =™
Here, we remind that F,—o = Gg 2 is the Gaussian eigenfunction corresponding to (1.12) with o = 0.

We also recall that there is some freedom in the normalization, and in particular the term e™ is not

mandatory but it is convenient for an easier sorting of the various terms, as we anticipated in Section
By substituting (1.4)) and (|1.5)) into (5.1) and writting the integral in the right hand side in terms of
the rescaled function Fy in Definition we obtain that

1 1 1
(2m)34/2 (dm)>d || Fy || o ey || Fo

(" Fy)(x) = .
Erme,

o 1 xr1 + T2 2
_ 2 2\ _ sl
X/Radexp( g (o1l + faa) 2’95 2 > (5.4)

2
« 1 r11+
e <_20(x11|2—|—|$12|2+|1'212+$22|2> _5 _ 11 5 12

B _ T21+ T2

1 T2

1
2

X Fo(x11) Fo(x12) Fo(we1) Fo(zee) dxsa.

Here, the parameter og € R has been defined by

so that the quadratic terms in the fist term of the third line of correct the rescaling Fy of Fy. The
new formulation will be obtained by an appropriate change of variables, so that the quadratic forms
inside the above exponential get appropriately centered. To do so, notice that this formula involves as
many variables z; as indices i in the perfect binary tree T?. Indeed, we have sorted the different terms in
in such a way that the second line only involves variables x1 and xo in the first level L? of the tree,
whilst the third line contains the terms involving the variables x11, 12, 21 and 95 in the second level
of the tree L3 (i.e., the leaves L?). We will divide the method into two steps. First, we will address the
change of the variables indexed by the leaves L%. Second, we will perform the change of variables indexed
by the first level of the tree L.

e STEP 1: Change of variables for x11, x12, 21 and x9s.
Consider some coefficient k; > 0 to be determined later and define the change of variables x11 — 11,
T12 — Y12, T21 — Y21 and Taz — Yoo given by

11 = k121 + Y11, 12 = k121 + Y12,

ZTo1 = k1T2 + Y21, T92 = k122 + Y10
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On the one hand, using the change of variables in the terms inside the exponential of (5.4)) which involve
11 and x12, we obtain

Q le’ 1 r11+ 2
Qg 2 , Q0 2, L _Tu 12
9 |z11|” + 9 |z12]* + 5 x —

1

2
Y11 Y12

Qg 9 O 9 1
= e+ Q0 vol1—k
> |kizy +yul” + 9 |k1z1 + y12] 3 ‘( 1)1 >

DN | =

« « 1
(2010/?% +(1- k1)2) \$1\2 + 70\911\2 + 70\2112\2 + §|y11 + y12\2

1—-k 1—-k
+ (a0k1—21> 1y + <a0k1— 5 1)551'2412-

On the other hand, using the change of variables in the terms which involve x5; and xs2, we get

2
T21 + X22

2 2

a0 2y o 1
2|$21|+2|$22\+2x

2
Y21 + Y22

Qg 9 O 9 1
= —lk + + —1k + +=-1(1—-k&
5 |k12z2 + yor | 9 |k1x2 + Yoo B ’( 1)T2 2

leY o 1
(2010k% +(1- kl)z) \12\2 + 70\921\2 + 70‘y22‘2 + §|y21 + 922\2

1—-% 1—k
+ (a0k1 - 21> To - Y21 + (Ozolﬁ - 21> T2 - Y22.

Notice that one can eliminate the crossed terms in both expressions by choosing

DN | =

1 1

T 1+2a 2(0ta)

kli

In that case, adding both terms we obtain that

e’ Q 1 T+ 2 e « 1 To1 + @ 2
0 2 0 2 1 i 12 0 9 0 5 T2 22
72 |.1311| + 72 |$12| + 5 ‘$1 72 + 72 ‘.7321| + 72 |l‘22| + 2 ‘332 72
1 1 1 1
— 21—k 2, 1 2, 1 2 1 _ 2
2( )]z i Y11l I Y12] 8|?J11 Y12|
1 1 1 1
S1—k 2, L 2, L 2 1 _ 2
+ 2( 1)z + 1 ly21|* + 1 |y22] 8|y21 Y22

Putting everything together into (5.4)) yields

1 1 1
(2m)34/2 (4m)>d || Fy || Lo oy || Fo

(" Fy)(x) = 3
I3z

o 1 xr1 + T2 2
% /]Rad exP( g (4 feal’) = 5 ‘x 2 ) (5.5)

1 1
X exp (—4161(|yl1|2 + |Z/12|2 + |y21|2 + \yngQ) + §(|y11 - y12\2 + |y21 — y22|2)>

x Fo(k1z1 4+ y11) Fo(k1z1 + y12) Fo(k1ze + y21) Fo (k122 + yoo) daq dzs dy11 dyrs dy21 dyso,

where the parameter a; € R has been defined by
ay:=1—k +a,

in order to recombine the initial terms in the second line of (5.4)) involving variables indexed by the first
level L% with the new remainders that have appeared from the previous step.

e STEP 2: Change of variables for z; and x».

Consider some coefficient k3 > 0 to be determined later and define the change of variables 1 — y; and
To — Yo given by

z1 =kox +y1, T2 = kox + yo.
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This time, using the change of variables in the terms of the exponential in the second line of (5.5)) yields

2
1| 1|2 1| |2 ‘ 1 2

2" D

2

(1 — ko)a — ity

(651 2 (651 2 1
—k k Z
5 |kox + y1|* + 5 |kaz + y2| +3 5

o o 1
(2003 + (1= k2)®) [ + S lya* + S lwel® + glon + vl

1—k 1-k
+<a1k2 22)x~y1+(a1k2 22>117'y2-

Again, we can cancel the crossed term by choosing
1 1

[N

ko = = .
> 1420 3+20-—2k
Namely, we obtain that
2
TN R Sk
5 [P+ Sl gl 2

1

1 1 1
— 11—k 2 2 2 _ L 2
2( 2) |z +*4k2|3/1| +74k2|y2| 8|y1 Yo

Then, putting everything together into ([5.5) yields

1 1 1 _1ta—kg \m|2
2

F =
(%) = Gy () [ s ey o o

2
HM(Rd)

1 2 2 1 2
>< [ — — —
/RM exp( ey (|y1| + |y2 ) + 8|3/1 2| )

1 1
X exp <4k‘1(|y11|2 + |y12? + |y21|* + \y22\2) + §(|y11 —y12|® + Y21 — y22|2)>
X FO(kleI + kyr + yn)po(klkzl” + kiy1 + y12)
X Fo(k1kox 4 k1yz + y21) Fo(k1kom + k1yz + ya2) dyo,
where we denote again y5 = (y1, Y2, Y11, Y12, Y21, Y22) € RS9,

Before stating the main result for general n € N, we collect some natural notation according to the
preceding computations, that will be useful here on. First, we define the following sequences of coefficients.

Definition 5.2 (Coefficients). Consider any o € R..
(1) The coefficients {ky}nen are defined by the recursive formula

1
kl = )
2(1+a)
1 (5.7)
kp = ——— > 2.
" S Ra— ke, 1TE
(2) The coefficients {kn}nen are defined by the recursive formula
Ko =1,
’ (5.8)

Kn:i=ky- - kn, forn>1.

We note that for n = 2 the above coefficients ki, ko reduce to those appearing in the previous refor-

mulation (5.6 of the recursion. Since it will be used later, we study the asymptotic behavior of such
sequences of coefficients as n — oco.

Lemma 5.3 (Asymptotic behavior of the coefficients). Consider the sequences {kn}nen and {kp}nen in
Definition[5.4 Then, the following properties hold true:

(i) (Coefficients k) The coefficients {kn }nen are positive numbers and k., \, ko as n — 0o, where
ko € RY is the smallest root of the equation
1

7:]{304' .
3+ 2a -2k, (5.9)



ERGODICITY OF THE FISHER INFINITESIMAL MODEL WITH QUADRATIC SELECTION 29
Specifically, ko is given explicitly by formula (1.15) and it is related to the coefficient ro in
formula (3.8) of Lemma by 1o = 2k2. In addition,

kp — ko <Cr 1 (5.10)

for every n € N, where v, is and C' € RY. depends only on a.
(ii) (Coefficients k,) The coefficients {kn}nen are positive numbers and decay geometrically with
mazimal rate kq. Specifically, for every e € RYy there exists C, € RY. such that

Kn < Ce(ke )", (5.11)
for every n € N.

Proof. On the one hand, the properties of {k,, } nen readily follow from those of {k,, }nen and the relation
(5.8) in Definition Specifically, for any given ¢ € N and any n > ¢ we get the decomposition

q n
n— k% n kg “+1 n
Koy = (Egkm) ( H km> < Kk = %kqﬂ < (Critt 4k, )"

m=q+1 q+1

Therefore, taking ¢ sufficiently large so that C'rZ*! < ¢ we conclude (5.11). We then focus on the
properties of {k, }neny and we use a similar strategy like in Lemma

e STEP 1: Monotone convergence of {ky }nen.

Define the following function

1

Then, by (5.7) {kn}nen obeys the following recursive relation
kn = f(kn-1), n>1
Let us consider the fixed points z_ < x4 of f, i.e,

(34 2a) £ /(1 4+ 2a)2 + 8«
4 .
By inspection, it is clear that 0 < k, = 2_ < x4 < % + o and

ro < flz) <z, ifze(r_,xq),

where k,, is given in . Since k1 € (x_,x), then we conclude that {k, },en is a well defined, positive
and monotonically decreasing sequence contained in the compact interval [z_,xz;]. Therefore, it must
converge towards some limit ¢, which is a solution of f(x) =z i.e., £ € {x_, x4 }. Since the full sequence
{kn}nen is below x4 and decreasing, we then conclude that £ = z_ = k,. In particular, we obtain

ka < kn S kly (512)
for any n € N.

e STEP 2: Convergence rates.
As for Lemma we shall use the special algebraic structure of the function f, which is the restriction
to (— 00,3 4+ a) of the Mobius function M : R\ {2 4+ a} — R given by

1 3

=— R = .

312020 °° \{2+0‘}
By definition of {k,, }nen in (5.7) we obtain

1 1 2 k )
Ty = — = - .
T 32— 2%, 3+20—21,; (3+20—2k,_1)(3+2a—2z,) "t

Similarly, we obtain

M (x)

ky, —

1 1 2
— — = (kn71 - 1'7).
34+2a—2k,—1 3420 —20v_-  (3+2a—2k,—1)3+2a—2z_)
By dividing both expressions and iterating such an identity we get
kn—x_  (3+2a—2z, n-t ki —ax_
34+ 2a —2x_

ky, —x_

(5.13)

kn—{I}+ kl-.’f+7
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FIGURE 7. Unique path joining the leaf j = 121 to the root in the perfect binary tree T3.
The corresponding lineage map takes the form ®2!(x;y3) = k3 + koY1 + K1y12 + Y121-

for every n € N. In fact, the basis can be restated as follows
34+2a -2,  3+2a—+/(1+20)+8a 8

3+20—2x- 3420+ /(14 2a)? + 8« <3+2a+ (1+2a)2+8a)

where 7, is determined by (3.8) in Lemma [3.8] Therefore, using (5.12) and (5.13) we conclude that
kl — Tr_

5 =7 <1,

kn — ko = T — ky (x-‘r - kn) rgil < n-t
for any n € N, thus ending the proof. O

Definition 5.4 (Quadratic forms). Consider the sequence {kn}nen in Definition[5.4 Then, we define
the quadratic form Q, = Q,(y,,) by

- ZZ(M (Iyia? +|y12>—|yu—yz2|), yo €RZZDL L (514)

m=04eL?,

where we are using the tree-indexed notation 'y, = (yi)ictn € R2(2"=Dd jn Remark ,

Again, note that when n = 2 the above quadratic form Q2 (y5) reduces to the one inside the exponential
of (5.6). We now show the following uniform control of the quadratic forms @, as n — co.

Lemma 5.5 (Uniform positive definite quadratic forms). Consider the quadratic form Q, = Q(y,,) n
Definition [5.4] and define the couple of coefficients Bumin, fmax € RE by

14 2c 1
/Bmin L ) Bmax - M7

4
where kq, is given by formula (1.15)). Then, we obtain that

ﬁmin” Y ||2 S Qn(yn) S ﬁmax” Y ||2a

where we are using the tree-indexed notation y, = (yi)icTr € R2(2"-Dd jn Remark .
Proof. By virtue of Young’s inequality, we obtain the following lower and upper bound for @,

"21 Z ( 1) (lya | + lyi2l*) < Qu(yn)

m=04ieL?,

+ |y12| )
m=04eL?,

for every y, = (yi)ictn € R2(2"=1)d_ Then, the result follows from Lemma which guarantees the
uniform control ko < kp—n < k1 for every m=0,...,n — 1.

Definition 5.6 (Lineage maps). We define the lineage maps ®), = ®J (x;y,) associated to the leave
j € L™ (see Figure[7) as follows

n—1

I (z;y,,) = Knz + Z KmYem(j)s  Yn € R2(2"-1)d, (5.15)

m=0
where © € RY represents the root value, y,, = (yi)ietr € R*® 7D is represented according to the tree-
indexed notation in Rema,rk. {Kn}nen is given in Deﬁnition and c™ = co---oc is the m times
iterated map ¢ : T} — T which, to any vertex i € Ty, it associates its child c(i) € T (cf. Sectzon
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We are now ready to state the main result of this section extending formula (5.6) to any n € N. The
starting point is again formula (5.3)). In the particular case of Gaussian mixing kernel (1.4]) and quadratic
selection function (|1.5)), it takes the explicit form

1 1 1
mE,
( )( ) (2 )(2n 1)d/2 (47T)2n g H ||Fm| %7; ]édm
1 T;1 + o 2
. /]Rz(znfnd P WLZOZ; [ |zzl| +|JC22| ) 2 T; — 5
) (5.16)
1 1 1 Ti1 + T
xexp (= Y |Flat ) (el +laelP) + 5 | - 2 ]
Ly,
X H F‘O(‘%‘])dxna

jeLn

for any € R and n € N. Above, we have used the tree-indexed notation x,, = (Ti)icTr € R2(2"-1)d
in Remark we have set 2y := = and we have considered the rescaled distribution F, according to
Definition Again, notice that the exponential terms in the fist term of the third line of have
been introduced to appropriately correct the rescaled distribution Fy of Fyy. As a consequence, the factor
(47)=2"""4 arises from the normalization by F,—o(z;) whilst the factor (27)~2"~D4/2 comes from the
repeated products of the Gaussian mixing kernel G. The main result then reads as follows

Proposition 5.7 (Reformulation of the iterations I). Assume that o € Ry and set any initial datum
Fy € M, (R%). Hence, the solution {F,,}nen to the time-discrete problem (1.1)) admits the following form

1+a—kn ||?

e~ 1
Fulw) = e [ e @0 ] R@ sy, dy, (7

(4m)2"~td(2) (2" =1)d/2 H ||F |L1 (&) R2(2n_1)d jein

for every x € R and n € N, where we are using the tree-indezed notation y, = (Yi)ieTn € R2("=Dd 4p

Remark along with further notation from Definitions and [5.6,

As we anticipated for the particular case n = 2 at the beginning of this section, the proof of Proposition
will be based on the following change of variables

Tit = kpn—m®s +Yi1, Tz = kn_m®; + Yi2,

for every i € L], which we will apply in a backwards way starting at indices 7 € L], _; and ending at i = ().
Again, the objective of such a change of variables is to appropriately move the reference frame so that the
above quadratic forms % |931 — % % inside the exponential of get appropriately centered and
no crossed terms remain when the selection parts §(|zi1|? + |2:2|%) are taken into account. For simplicity,
along the proof we shall restrict to tracking how the various terms inside the exponentials in get

modified after the change of variables.

Proof of Proposition [5.7.

e STEP 1: Change of variables ;1 — y;1 and x;3 — y;2 fori € L., .
We consider the change of variables given by

i1 = kixg + g1, T = ki + e,
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where k; is given by Definition The collection of all the terms for ¢ € L,_; in (5.16) then read

() (o7 1 Ti1 + Ti2 2
7|$i1|2 + 7\$i2|2 T %

2
_ Yi1 t Va2

Qg 9 Qo 5 1
= —|kizi + yi — ki +yi 5|1 =ki)z;
2|1w+y1+21m+y2|+2’( 1) 5

1 « « 1
== (200k] + (1 — k1)?) |ai|* + 70|yz‘1|2 + 7O|yi2|2 + §|yi1 + yia|?

2
1-k 1—-k
+ (ao/ﬁ - 1) i Y1 + (Oéo/ﬁ - 1) i Yi2

2 2

1 le’ leY 1
= = (2a0ki + (1 — k1)?) |z > + Dy + = lyial? + < lyi + viol?
2 2 2 8
1

2
where we have defined the coefficient ag € R by

1 1 1
= (1= k)il + —yar|* + —lyizl® — Zlyir — yazl?
(= kel + vl + ol — Sl — il

Qp = o+ 5
to recombine terms in the second and third lines of (5.16]), and we have used the following relation
between ki and ag in order to cancel the crossed terms, i.e.,

1

ki = .
! 1+20[0

e STEP 2: Change of variables ;1 — y;1 and x5 — y;o for i € LI, _,.
Again, we consider the change of variables given by
Ti1 = kowi + yi1, Tiz = kowi + Yo,

where ko is given by Definition Putting together the terms for i € L)', in (5.16) and the above
z;-dependent remainder in the above expression in STEP 1 yields the following term under the above
change of variables

2
oy ey Qe L Za t T
5 241" + 5 |z 2] + 35 | 5
2
@ @ 1 i1+ Yi
= 71“?2.'171 +yi1‘2 + 71‘]6233, +yi2|2 + 5 ’(1 _ k’g).’l?l _ %

1 a a 1
=5 (20411?% + (1 — kz)z) |l‘z|2 + élanQ + ?1|yi2|2 + §|yi1 + yi2|2

2
1-k 1—-k
+<a1k2— 5 2>$i'yi1+<a1/€2— 5 2)%"%2

1 aq aq 1
=5 (201 k3 + (1 — k2)?) |2i|* + ?|yi1|2 + ?|yi2|2 + §|yi1 + Yiz|?

1 1 1 1
= (1= ka)lzil® + —yar|* + —lyizl® — <y — vizl?
L0l + et et — Sl — vl

where we have defined again coefficient the a; € RY by
o = l1+a— kl,

in order to absorb the above-mentioned x;-dependent remainder. In addition, note that we have used
again the following relation between ko and oy to cancel the crossed term, i.e.,

_ 1
- 1—&—20&1.

k2

e STEP 3: Change of variables x;1 — y;1 and @2 — y;o for i € L, _,.
We consider the change of variables given by

i1 = k3x; + yi1,
Zio = k3x; + Y2,
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where ks is given by Definition Putting together the terms for i € L' 5 in (5.16) and the above
x;-dependent remainder in the above expression in STEP 2 yields the following term under the above
change of variables

gﬁww2+9%x¢2+la,_faiﬁg2
2 i 2 i2 9 |7 B
2
o ! 1 Vit + v
= ?2“63% +yal® + ?2 |kszi 4 yia|?® + 5 ‘(1 — ky)zs — %

o o 1
(202k3 + (1 — k3)?) |zi|* + 72|y11\2 + 72\%2|2 + §|yi1 + yiz)?

1—k 1-k
+ <Ozzk3 - 23> Ti Y1+ (azk‘:s - 3) i+ Yi2

DO =

1 o o 1
= 5 (200k5 + (1= ks)?) |aif* + Py P + S|yl + Sluin + ol

1 1 1 1
= (1 —ks)|zil®> + —lyal® + —|yiel® — = lyir — yi2|?
2( 3)|il +4k3|y1\ +4k3|yz| 8|y1 yizl*,

where we have defined again coefficient the ap € RY.
Qg 1= 1+a— kQ,
in order to absorb the above-mentioned x;-dependent remainder. In addition, note that we have used
again the following relation between k3 and s to cancel the crossed term, i.e.,
B 1
1420y
Following a similar recursive process, we readily identify the quadratic form @, in Definition [5.4] in the
exponential of the integrand in the final expression (5.17)).

e STEP 4: Identifying the lineage maps ®/, and the exponential factor.
On the one hand, the hierarchy of changes of variables immediately leads to

k3

zj = (23y,),
for any leaf j € L™, thanks to Definition [5.2|for the coefficients {#, }nen and Definition [5.6|for the lineage
maps ®J. On the other hand, since the Jacobian determinant of each change of variables is 1, no further
factors appear during the iterative process except for the exponential x-dependent remainder e~ R fa)?
of the last step of the recurrence, which is not absorbed in the quadratic form @Q,,. [

5.2. Probabilistic reinterpretation. For general purposes, in this part we reformulate the result in
Proposition [5.7]in appropriate probabilistic terms. More precisely, this reformulation will not only provide
shorter formulas, but it will also allow identifying a problematic key point when studying the asymptotics
of the high-dimensional integral in Section @ namely, the presence of non-negligible correlations
between the various factors indexed with indexes over leaves j € L™ of the tree, which do not dissipate
even for long time n — co. We shall use the following notation.

Definition 5.8 (High-dimensional normal distributions). Consider any integer n € N and

2 — kp_ - k2
( 1kn km)kn mId _ - n];m Id
S0 = B 2 ] (2- kn—m)kn—ml , (5.18)
1- knfm ¢ 1-— knfm ¢
for every m =0,...,n — 1. Then, we will define the random vector Y, = (Y;)ietn distributed according

to the following multivariate normal distribution

n—1

1 1 —1{Yi 2(2"—1)d

Gly,) = exp (=3 haBEn (1)), ya e R (59
Wl;[m.gln (2m)dy/det(Xm) 2 Yi2

where again we are using the tree-indexed notation 'y, = (y;)ietn € R2(" =14 in Remark .

Notice that for every index ¢ € L, with m = 0,...,n — 1 the pair (Y;1,Y;2) is normally distributed
according to N (0,37) and Y;; and Yy are certainly correlated. Nevertheless, the vector (Y;,Y;s) is
independent on any other random vector Y; for indices j # i1 and j # 2. We are now ready to introduce
the following probabilistic reformulation of Proposition [5.7]
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Proposition 5.9 (Reformulation of the iterations II). Assume that o € R% and set any initial datum
Fy € M, (RY). Hence, the solution {F,}nen to the time-discrete problem (1.1)) admits the following form

m—1
- ' Ak2 2 d
_ a*k'rlelZ n—1 ( —“n=-m
2 1 kn m

e _ )
oNdjagETd e | B Fo(®7,(2:Yn)) | (5.20)
(27r)d/222 1d n!;IO ||F ||L1(]}§d) jle—l_["

F.(z) =

for every x € R% and n € N, where we are using the high-dimensional random vector Y,, = (Y3)ieTn in

Definition [5.8 along with further notation from Definitions and[5.6,
Proof. By Proposition we obtain

14+a—kp 2
o et |y

1
Fn Qn y,,) F d -
(x) (47'(')2" 1d(27‘r)(2" 1)d/2 H ||F %qzﬂéd_)m /Rz(zn_1)d J];_[” 0 x Yn)) y

4k? 2"
(27T)(2"71)d/2 )

n—1 ( n—m
_l4a—k 2 1—-k
:WB tahn |y Il % / . n(y,,) H Fo(®I (23y,,)) dyn,
d m=0 ” ||L1 (R) R2(2 71>d jeLn

for every € R? and each n € N, where in the last line we have used that the inverse and determinant
of the covariance matrices X" in (5.18)) take the form

2— kn—nb 1
71,1 *Id 2 d
my— 4kn7m 4 m 4kn—m
(51— > 2y, | G = (1 ! kn_m)
4 Ay ¢

Then, the result follows by applying the law of the unconscious statistician (LOTUS) to relate the

preceding integral to the expectation of the random variable [ ] . Fo(®J (2;Y,))- O

As illustrated in the overall map in Figure [2] the reformulation of the iterations in Propositions [5.7]
and will be fundamental in order to characterize the long-time behavior of the solution {F,},en to
the time-discrete problem . More specifically, we need to unravel the asymptotic behavior of the
high-dimensional integral encoded in the expectation term . As discussed in Sections and
one is able to control it in the log-Lipschitz norm under stringent constraints on the initial data, which
are not fully satisfactory. In view of the structure of the expectation term, alternatively one may expect
to be able to interchange expectations with products and control each factor separately. However, as we
show below, this naive idea is bound to fail since the involved random variables are correlated, and they
do not uncorrelate even in the limit n — oo. This complicated structure imposes severe problems when
handling formula 7 and one needs more powerfull ideas, which we introduce later in Lemma

Remark 5.10 (Non-negligible correlations). Since Y,, in Deﬁnition is normally distributed and the
lineage map ®J (z;y,) in Deﬁm’tion are affine transformations of y,,, then all (®%(z;Y,));jeL are
also normally distributed. Unfortunately, the components of (®4(x;Y,))jeLn are correlated since, in
particular, all the components (i1,i2) are correlated in view of the structure of their covariance
matrices. Specifically, a straightforward computation shows that the covariance matrix

Kij =E [(®},(z;Y) — E® (2;Y,)) ® () (2;Y,) —E®) (2:Y,))]

between any couple (i,7) € L™ x L™ of components (see Table (1| for the notation @ of the Kronecker
product) takes the following explicit form

n—1
2—k k e
(Z ””3( 1 _q?if“) Ta, if linGl=n,
q=0 q
K = (2 k?zl [ing] + Z 5 (2 = kgi1)kg+1 I f0<ing <
Kp— |[ing|— 117‘1{: Kq 1-% dy % (AW n,
nlindl g Tingl a+1
2 k2 . . .
—Rnp— 11_]C Id7 ’Lf |ZAJ|:0

Here, |i A j| represents the level of the highest common descendant i \j of i and j (cf. Section . Note
that correlations only disappears for leaves (i,7) such that n—|i A j| — oo, that is, when the length of the
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path from i (or j) to the highest common descendant i \ j diverges as the height n of the tree increases.
Unfortunately, correlations are non-negligible in all other cases even for n — oo.

6. UNIQUENESS OF EQUILIBRIA AND QUANTITATIVE ERGODICITY PROPERTY

In this part we shall prove our main results, namely, Theorem and Corollary First, we will
derive a local convergence result as n — oo of the profiles { F}, },,en solving with generic initial datum
Fy € M4 (R?) towards the Gaussian profile F,, in . This weaker local analogue of Theorem [1.1
will be enough to derive the uniqueness of the solution (A, F',) of the eigenproblem in Corollary
Second, we will extend our local result into our main global result in Theorem [I.I] by quantifying the
relaxation of the growth rate || I, || 1 (ga) /|| Fr—1l| 1 (rey and the normalized profiles I, /|| F, || 11 (ray towards
the unique solution (A, F'y) of the eigenproblem (1.11)). Our strategy will exploit the high-dimensional

iterative formula ([5.20]) in Proposition

6.1. Local convergence result. In this part we shall prove our local convergence result. To this end,
we will show that the dependency of the expectation term in ([5.20) on the variable x decays to zero as
n — oo uniformly over compact sets. To simplify notation, we shall define the following operator.

Definition 6.1 (Expectation operators). Under the notation in Deﬁnitions and we define

EF)(z) :=E | [[ F(®i(2;Yn))|, =R’ (6.1)
JeL™

for any n € N and any non-negative measurable function F : R* — R.

Note that &,[F](z) possibly takes extended values in (—oo,+o00] if the expectation does not exist.
However, if F' is a bounded function (and it will be often the case), we obtain that &,[F](z) always
exists and is finite. The following technical lemma for the tail of the incomplete Gamma function will be
required later to determine the asymptotic behavior of the above operator &,.

Lemma 6.2. Consider the (upper) incomplete Gamma function with parameter a € R, i.e.,
+oo
I'(a,z) = / s le7*ds, zeRY. (6.2)
x

Then, the following estimate holds true
D(a+1,z) < 2e7/2 (6.3)
for every x,a € RY wverifying the constraints

r>e 2a<

log(z)

Proof. Let us restate the incomplete Gamma function as follows

“+o0
T(a+1,2) = / exp(—ta(s)s) ds,

where 1,(s) is the function

Yal(s) i =1— aloi(s), 5> 0.

Notice that 1, is monotonically increasing for s € [e, 00). Hence, we obtain that
1
¢a(5) Z wa(x) 2 ia
for every s > x, where we have used ((6.4) on each of the above inequalities. Consequently, we get

—+oo
Ila+1,x) S/ e ds,

x

and this ends the proof. O

Therefore, we obtain the following weak dependency of &,[F] on the variable z as n — co.
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Lemma 6.3 (Asymptotics of &,). Assume that o € R?. and consider any F € C*(R?) such that
0< F(z)<C,

[Viog F(x)| < D(1+|x]), (6.5)

for every x € R? and appropriate C,D € R%. Then, for every e € R, there exists a large enough
constant C. € R such that the following property holds true

\Vloggn[F](xﬂ <C. ((2 k., +€)n + (,,,a +5)n|1'| T 67(2+:) 6C5(21‘a +€)"\$|2> ’ (66)
for every x € R? and any n € N, where &, is the operator in Definition .
Proof. Before proving the main result, note that the hypothesis (6.5 guarantee that F' is bounded below
by a Gaussian profile. Indeed, by the fundamental theorem of calculus we obtain the following relation

1
log F(x) = log F(0) + / Y (log F)(0x) - 2 do),
0

for any 2 € R?. Using the linear growth assumption in (6.5]) for the log-derivative V log F we obtain that

1
log F(x) > log F'(0) — D|x|/ (14 0|x|)do > log F'(0) — g — D|z]?,
0

for any z € R?, where in the last inequality we have integrated with respect to # and we have used
Young’s inequality to interpolate |x| by |z|2. Therefore, we obtain the following Gaussian lower bound
F(z) > ce Pl#l*, (6.7)

for each z € R and some ¢, 3 € R*. depending only on F(0) and D.
For simplicity of notation we define

E, := &, [F),
for any n € N. In the sequel, we shall study the behavior of Vlog E,, as n — co.

e STEP 1: Control of 37, . [®](z;,)].
By definition (5.15) of the lineage map ®J, we obtain that

n—1
PREACTBIEDY < 2'malz] + )0 2"k D il
m=0

jeLn jeLn ieLr

n—m

n—1
Kn® + Z EmYem (5)
m=0

where we are using the tree-indexed notation y,, = (y;)setr € R22" =14 in Remarkﬂ andc:T! — T
is defined in Section Note that in the last inequality we have used that each index of the level L, _
in the tree contributes to the amount of 2" leaves. Then, we obtain

) vz o, 1/2
Do leh@y)| <2 walal+ | D0 D (2 Km)? Yoo lwl
jeLr m=04eL?_ m=0iely_
I 1/2 (6.8)
= 2"kp|x| + (Z 2”_’”(27"/%)2) [yl
m=0

< 2"knla] + V2272, I,

for any y,, € R2(2"-Dd_ \where in the first line we have used the Cauchy-Schwarz inequality on the joint

sum over indices m and 4, in the second line we have used the definition ||y, || = (3;crn [5]?)"/? of the
l5 norm (c¢f. Tablell]), and in the last line we have used that

n

n—1 n—1 0o
2
n—mj g om 2 n mi.2m n m1.2m n+1
g 2 2Mkm)* <2 E 2ME™ <2 E 2M k7 _1—2kf§2 .

m=0 m=0 m=0
Above, we have used that k, < k; for all n € N by virtue of Lemma [5.3{i) and also that
1 144a+2a? 2(1+ a?)

1-2k2  2(1+a«)? (14 a)? 4+ 2a + o2
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e STEP 2: Derivative of log F,,.
Taking derivatives on (6.1]), using the second property in (6.5) along with entails

E[(S)er 1V 108 F(@) (55 Y ))]) Tljern P(® (2 Y0)]
E[[Ter F(@h(:Y0))]
E[(Sjen (04193, YD) T F(®3 (3 Y0)] (6.9)
E [[Tcr F(Ph(:Y0))]
< 2%k + 2R2 || 4 2™ %K, Ry (2),

[Viog En(z)] < kn

S Fn

for every x € R?, where the remainder R,, reads
E 1Yo | Terr F(@(2: )]
E | [jerr F(®h(a: Y.)]

This estimation provides a first insight about the ergodicity property. Indeed the correlations, as measured
by kn, decreases faster than 27" (¢f. Lemma , meaning that the contribution 2"k, decays fast to
zero. It is also the case of the other contributions locally in z, but the last one, namely 2"/2k,, R, (x),
requires more work. Consider any v/2 < ¢ < f TR , which exists because 2k, < 1 for a € R%, and split

R, (z) = R.(x) + R?(z) in terms of the functions

, zeR%

1 : _
R, (2) = / Iyall TT F(@h @5y ,)e o) dy,, (6.10)
n(2) Jiy, I<q Pt
1 : _
R = o= [yl T] @iy, e @0y, (6.11)
"(x) Iy, lI>qm jEL™
and the normalization factor
Zn(x) = / I F(@)(x;y,))e 90 dy,. (6.12)
R2(2™—1)d

jeLr

e STEP 3: Lower bound for Z,.
Using the above lower bound by a Gaussian in along with the upper bound for @,, in Lemma
implies the following estimate of Z,, in (6.12):

Zn(x)z@"/2(2 L, 5P *BE |97 (z;y,) % | exp(—Bmax|| ¥ II°) dyn
R n !
JjeL™

n _92n+41,2 2
> 2" o2 wy Bl / exp (—(2n+2ﬁ + Bmax)ll Yn ||2) dyn
R2(2"—1)d

n __o2n+1 .2
20262 m

+oo
2n—1)d71‘/ F2(2"—1)d—1 exp (—(2"+25+ﬁmax)7"2) dr
0

02"6*2%“"&5@\2 oo
_ ‘82(2"71)@1’ / §(2"—1)d—1,=s g
2225 + B D ;

2" 6*22"+1H2ﬁ|w\2
_ 2(2"—-1)d—1 n
= g e 5 | pe - ),

where in the last step we have used the Gamma function, that is defined by

+oo
I(a) := / s le7%ds, a>0.
0

Recall that area of the hypersphere is [S¢71| = Q’Ed/) Then, we obtain
2

C2n/7T(2n71)d 92n+1, 2 2
— K, Blz
Z’n(x) 2 (2n+25 _|_ ﬂmax)(Qn_l)de I ‘ I (613)

for every x € R
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e STEP 4: Upper bound for R} and R2.
On the one hand, notice that
Ry(z) <", (6.14)
for all x € R? by definition of RL in (6.10). On the other hand, using the lower bound of Q,, in Lemma
we can estimate R2 in (6.11]) by

c?" o 2
S / [y 2e™Pminllyn ™ gy,
0" Zn(x) Jy, |>q"

c* n oo on >
- — ( S22 71)d71‘/ P22 =D)d+1 = Buinr? .
q x "

Ry ()

- 2 |s2e"-Dd- ‘7/ o
ann(x) ’ 2Brr?1n R Pming
C¥' 72" =Dd T ((2" —1)d + 1, Bming®") (6.15)
nﬁnin_l)d—i_lz (.’E) F((Qn — 1>d) ’ .

for all z € R?, where we have used again the incomplete Gamma function (6.2)) in Lemma Putting
the lower estimate (6.13) for Z, into (6.15) yields

622n+1ﬁ2 ﬁ\z|2 02" (2n+2ﬂ + Bmax)@n_l)d F (( 1)d + 17 Bminq2n)
gre2n g I((2" —1)d) ’

min

R%(z) < (6.16)

for all x € RY. Now, take a = (2" — 1)d and & = Buing®>" and notice that the constraints (6.4) in Lemma
hold true for large enough n € N as long as we choose ¢ > /2. Hence, we obtain the estimate
r ((2n - 1)d + 17Bminq2n) S 2e”

for all n > n. = n.(Bmin, d, q). Using Stirling’s formula for the remaining Gamma function in (6.16)), we
conclude the estimate

Bmin ,2n
2

q

n__ __ Bmin ,2n
R (z) < 2 s O (2’”25 - Pae) 71 e (6.17)
n om a(27—1)d " (2" —1)d’ :
" Brin (2n — 1)1/2 ((2 1)d>
for every x € R? and each n > n,.
e STEP 5: Final conclusion.
Let us put the preceding estimates and ( into ) to achieve
M2 n
IV log B (2)] < 27k + 27/2¢" Ky + 2762 || + 2 R Blel? (6.18)

Bmin ,2n
e 2 9

for every x € R? and each n > n.,., where M = M(C, ¢, 3, Bmin, Bmax, d, q) is a universal constant that we
have introduced to absorb all the double exponential factors of the form a2” with a > 0 in the fourth
term along with any further lower order factor. On the one hand, choosing ¢ > /2 sufficiently close to
V2 and using in Lemma we obtain the following asymptotics for the factors in the first three

terms of :
2"k < C(2ky +2)7,
22"k < Co(2kq +€),
2"k2 < Co(2(ko +€)%)" < Ce(ry +e)",
for arbitrarily small € € R} and sufficiently large C,. € R% . Note that in the last identity we have used
the relation r,, = 2 k:i On the other hand, since ¢ has been taken larger than v/2 and arbitrarily close to

/2, then the double exponential in the denominator of the last term in (6.18)) kills the double exponential
on the numerator independently on the explicit value of M. Therefore, we obtain

M2 _4a”
<Cee” T,

eﬁlgin g2n

by appropriately increasing C. if necessary. Similarly, we infer the following control for the remaining
z-dependent exponential factor in the fourth term of (6.18))

2 TIRLBlRl? < oOc(dlha +0)") al* < (Cc(@ra +e) ol
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which yields the announced estimate (6.6)). O

Remark 6.4. Under the assumptions in Lemma notice that the above result implies in particular
that for every e € R and R € R, there erists a large enough constant C. r € R such that

sup |Vlieg &, [F)(z)| < Ce.r (2ka)™,
[z|<R

for any n € N. In particular, Vlog E,[F| converge to zero as n — oo uniformly on compact sets.
The above observation is the cornerstone to prove the following local version of our main Theorem [1.1

Corollary 6.5 (Local convergence result). Assume that o € R, set any initial datum Fy € M4 (R?) and
consider the solution {Fy,}nen to the time-discrete problem (1.1). Then, for every e € R and R € R,
there exists a large enough constant C, g € RY such that

sup 7Fn(‘r)
o<k | 1 Fnll L1 ey

for any n € N, where F is the Gaussian profile (1.12). In particular, Fy,/||Fy,| 11y converge to Fy, as
n — oo uniformly on compact sets.

— Fo(2)| < Cor (2ka)", (6.19)

In the proof of Corollary we will require a careful control of the asymptotic behavior of the ratios
F.(0)/[|Fyll 1 (ray as m — oo, which we provide below. First, note that if {F),},en is the solution (3.4)
of the time-discrete problem (|1.1)) issued at a Gaussian initial datum Fjy like in Proposition we have

£, (0) 1
———— =G, ,2(0) = F,0) = ———=,
Pl et @2 Fa0) = oo
as n — oo explicitly, where p,, and o2 are determined by the recursive relations (3.5) and we have used
that g, — 0 and 02 — @2 according to Lemma In the following lemma, we provide a similar

[e3
quantitative result with convergence rates for generic initial data Fy € M (R?).

Lemma 6.6. Assume that o € R, set any initial datum Fy € M (RY) and consider the solution
{Fy}nen to the time-discrete problem (L.1). For any ¢ € R there exists C. € R sufficiently large with

F,
O g o) < .@ka ey, (6.20)
[ FnllLt (ra)

for any n € N.

Proof. Let us fix any ¢ € RY arbitrarily small so that 2k, +¢ < 1. Again, this is possible because
2k, <1 for a € R%. For simplicity of notation, we shall define the following sequence of coefficients:
F(0)

Cpi=——"——, meN.
[Fnll 21 (ra)

Our goal then reduces to studying the asymptotic behavior of {c,},en and obtaining quantitative con-
vergence rates. Note that by formula (5.20]) in Proposition for the recursion, we obtain

1+a—kn |2 — _
1 fpee R (R () da :/ ozt 2 £l (@) dx+i/ Ful@)
Cn En[Fo](0) | <Rn En[F0](0) cn Jzi> R, 1Fnlloi@ay

where we set the sequence of radii {R,, }nen as follows

1
Rn ==, n e N, (621)
(2 ka)2m+1

for a fixed value m € N, which we take large enough so that

2m

(2ka) T < 2k, +%. (6.22)

Whilst our choice of R, is not justified at first glance, we claim that it has been taken as to minimize
the decay rate on the error terms FE,, and E, below. By solving the implicit equation on ¢, we infer

1-E,

: 6.23
(27‘( o.g)d/? + En ( )

Cp =
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for every n € N, where the error terms E, and E,, take the form

- F,
Boe [ RO,
>R 1FnllLrma)

_ (6.24)
Jo— / e_wlmf (‘:n[F:O](x) d (27T0' )d/Q
|x|<Rn gn [FO](O)
Additionally, we can split the second error term as E,, = E,, 1 — E, 2 + E, 3 with
B (2 (2
’ 1+a—k, 14+a—k,
E,2:= / e el dx, (6.25)
|z|>R

Fing = /a:|<R S <m - 1) o

where we have used the relationship a2 (1 + a — ko) = 1, which results from and -, and
therefore the decomposition of E,, becomes clear since E,, ; can be reformulated as

E,1= / e= Tl gy (2mo2)?/2.
Rd

On the one hand, given any fixed value § € RT with 6 < § (for instance § = §) the propagation of
exponential moments in Corollary [4.8] implies that

F,
FEy = sup/ eelxﬁi dr < oc.
neN Jrd [ Fnll L1 ey

By expanding the exponential in power series, one obtains in particular uniformly bounded moments of
any order, and in particular, of order 2m, namely

F, E,
M, = sup/ |$\2mﬂ dr < o1
neN Jra 1l £ (may o™
Hence, we infer the following control on the first error term in ((6.24)

- 1 / 9 F,(x) 1
B, < —— z|“™ dr < , 6.26
B S TRl ey ©F R (620

for any n € N. On the other hand, by Lemma we have that E, 1 in (6.25) can be bounded by
|Enil Sk —ka ST5 - (6.27)

|
< o0

By direct calculation we also obtain

teo Lto—kn 1 - 1 -
En,Q — |Sd—1|/ ’/‘d_ _lta—kn,2 dr < r (d + « k‘ Ri) 5 exp | — + « in 7 (628)
R, 2’ 2 4(2 ka)27n+l

where I'(a, ) is the incomplete Gamma function and we have used estimate in Lemma
Note that the constraint lb is trivially satisfied since R,, — oo by our choice . Finally, we control
the error term E, 3 in under the addition assumption that F, satisfies the hypothesis in
Lemmal6.3] Whllst this is not always true, we show at the end of the proof that we can always assume so
without loss of generality by replacing the argument on Fy by an advance enough time step F,, so that
selection has properly shaped the Gaussian tails. Under this condition, Lemma implies that given
any &’ € RY there is C. € R% so that, for |z| < R,, we have

/Ol(V log £,)[Fo)(0x) 'mdﬁ‘

S (2ka+e)"Ry + (1o +€')"R2 + e~ — GET O (arate! V'RLR.

n n
S P B T I
(2ky)zmFT 2 (2ky)zmFT 2

S (@ka) ™ +2)" S 2k +e)"

2r, € " 1
Co | ——+ - ) | ————
(2kg)ZmFT 2 (2ky)7m1

In the second inequality above we have taken €’ small enough compared with €. In the third inequality
we have used the relation r, = 2k2, which guarantees that all the contributions in the third line are
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dominated by the first term ((2 ks ) AT 5)". Finally, in the last inequality we have used our choice of
m € N large enough so that (6.22]) holds. Therefore, the mean value theorem implies

EnFo)(x) ‘ (/1 -
—————= —1| = |exp ViogEn[Fo))(0x) -xdf ) — 1] < (2kq +e)™.
2,70 (0) ; ( [Fo])(0) ( )
Hence, E,, 3 in (6.25) can be controlled by
_l4a—kp (.2 En[Fo](x)
T2 g/ L < <t SO R PRSP Ry (6.29)
2| <R, En[F0](0)
Putting (6.27)), (6.28) and (6.29) together yields
|E,| S (2kq +2)™. (6.30)
Thereby, using the mean value theorem on ([6.23)) along with the bounds (6.26]) and (6.30)) concludes that
1 .
_ < < n
Cn Gro?)iz| E,+ |E,| S (2ko+e)".

To end the proof, we show that we can always assume that the hypothesis (6.5) in Lemma is
satisfied wrthout loss of generality. Indeed, note that after two iterations F» already satrsﬁes .2 thanks
to Corollary |4.2, but only two iterations are not enough to guarantee (6.5, in general. Nevertheless,
applying Corollary leads to the following upper bound on the normalized profiles:

Fole) <G, b (ath-oh )IaP

)

}men defined by the recurrence (4.5)), i.e.,

for appropriate C,, € R* , with variances {72,

1
27 =a+ T 520 m € N,
Om+1 1+ -5
and with initial datum &3 = 1 / a. The boundedness condition 2 is then satisfied by F,, if we can
show that the prefactor a + 5 — =3 in the above exponential bound becomes non-positive for large enough

m. This is Where the precrse ch01ce of normalization in Definition [5.1| plays a role. Specifically, recall
that so defined 72, — o2 and we have precise relaxation rates by Lemma Hence,

L1 DRSS S S B U WS SN I D
at-—==|a+z-= — - = a+ - — — r
2 72 2 o2 o2 &2 )~ 2 o2 v

for any m € N. Since we chose a normalization F,, of the profiles by a Gaussian Gy ,2 with variance
o strictly larger that the variance o of the equilibrium F, (more specifically 5 = % = o+ 3), we
can guarantee that the right hand side above is non-positive if m > n, for a sufficiently large n, > 2

(depending only on «). This justifies that F),  satisfies both conditions in (6.5)).

O
We are now in position to prove the above local convergence result in Corollary
Proof of Corollary[6.5. By formula (5.20)) in Proposition and Definition we obtain
Vg F (7)) = —(14+ a — k,)z + Vlog &, [Fo)(z),
for any = € R? and every n € N. Using the mean value theorem we then achieve
Fo(z) F.(z) ! 1 2
1 —1 = log F,)(0x) - x dO
o8 T~ 8 T | (Viog Fu)(6a) a0 + so7le
1+a—k, ! _ 9
= —fm + [ Vlegé&,[Fyl(0x) - xdb + 272|x| (6.31)
0

n ka ! -
== || —|—/ Vlog &, [Fol(0x) - x db,
0

where we have used the relation 1/ 02 =1+ a — k,. On the one hand, the first term in the right hand
side of converges to zero thanks to Lemma On the other hand, for the second terrn we shall
apply Lemma To do so we need to guarantee again that Fy verifies the hypothesis (6.5]) of such a
lemma. Recall that we can always assume the condition (6.5 without loss of generality (cf last step in
the proof of Lemma. Therefore, we can apply Remar with F' = Fyy and obtain that Vlog &, [Fp)



42 VINCENT CALVEZ, THOMAS LEPOUTRE, AND DAVID POYATO

converges to zero uniformly over compact sets with explicit convergence rates. Putting it into (6.31]) we
obtain more explicitly

sup |log (@) — log Fa(z) < Cer(2ka)",

i<k |  Fn(0) F.(0)
for any R € R, any n € N and a large enough C; r € R7. This, together with the above control on the
asymptotics of ||F, |1 (re)/Fn(0) in Lemma allow proving (6.19). O

In particular, note that the above Corollary is enough to prove the uniqueness of solutions to the

eigenproblem (|1.11)), as stated in Corollary

Proof of Corollary[1.9. Let (A, F') be any solution of the eigenproblem (1.11). Then, the ansatz (1.10)
defines a solution F,, = A™F' of the time-discrete problem (1.1)). By Corollary we obtain that

A F(x)
lim sup —F,(x)| =0,
for any R € R%. Hence, F' = F, and thus A = A,. O

Whilst the above local convergence result is enough to identify asymptotically the profile F', a global
result with quantitative convergence rates is still missing. In particular, note that the constants C. g
above blow up when R — 0o as we see explicitly in Lemma[6.3] A second drawback of this we are unable
to characterize the long-time behavior of the mass [[F},[|z1(gn) in terms of the eigenvalue A, via this
method. In the following section, we give an answer to both questions by better exploiting the previous
fundamental Lemma and using the propagation of quadratic and exponential moments in Section

6.2. Global convergence result. We are now ready to prove our main result. Let us emphasize that
our final convergence result in Theorem is presented using the Kullback-Leibler divergence, which is
a very different metric from the log-Lipschitz type metrics used in the previous Section [6.1] for the local
convergence results. As anticipated in Remark[I.4] this decision does not obey aesthetic reasons only, but
we actually need to move from uniform norms (like the log-Lipschitz norm) to averaged norms (like the
Kullback-Leibler divergence) in order to address the deficiency encountered in Lemma Specifically,
recall that for generic initial data Fy € M (R?), the log-Lipschitz norms of the high-dimensional integral
E,[Fp)] cannot be controlled uniformly due to additional exponentially growing terms.

Proof of Theorem[1.1}

e STEP 1: Convergence of the profiles F, /|| F, || L1 (-
Since F, is Gaussian (thus strongly log-concave), then the logarithmic-Sobolev inequality holds true and
therefore we obtain the following control of the relative entropy by the relative Fisher information

F, o2 / <Fn(x)) > Fu(z)
D F,| <=2 V log
KL<| ) 2 Jga Fo(@) )| TFullz e

see Corollary 5.7.2 and Section 9.3.1 in [2] for details. By the reformulation of F,, in formula (5.20) of
Proposition [5.9] and using the notation in Definition [6.1] we have that

dx,

V log (?:(((i))) = (kp — ko) x + Viog &, [Fo)(z).

Therefore, we obtain the following upper bound

F,
DKL(|

F ) S Dija+ Do, (6.32)

where each factor takes the form

Dy = |kn — kg \2/ |x|2F”7(:”) dz,
’ | Fnll L1 ey

_ F,(x
Dy, o 32/ ‘Vlogé'n[Fo](xﬂ ”F”()dx.
Re L1(RY)

On the one hand, for D, ; we can use the propagation of quadratic moments in Corollary [4.6| - together
with the explicit relaxation rates of {k;, }nen to ko in Lemman 5.3| to show that

Dyq S, (6.33)



ERGODICITY OF THE FISHER INFINITESIMAL MODEL WITH QUADRATIC SELECTION 43

On the other hand, for Dy, » we shall refine the argument in the proof of Corollary Specifically, recall
again that we can assume that Fy satisfies the hypothesis (6.5) without loss of generality (cf. proof of
Corollary . Then, applying Lemma in order to control V log &,[Fp] with fixed e € R% yields

n n Fn
Do S (ke o) [ (1 Jaft 4 e2Ceerarerien) _TlE)
9 ol e

9

for some sufficiently large C. € R. Above we have used that (2k,)" is the decay rate that controls all
the others in formula . Take n > n. sufficiently large such that

0. := sup 2C. (27, +&)" < &
n>ne 2

Then, Corollaries [£.6] and [£-8] imply that the above quadratic and exponential moments are uniformly
bounded with respect to n for n > n.. Therefore, we have

Dyo S ((2ka)? +2)™ (6.34)
Finally, putting the estimates (6.33) and (6.34]) into the split (6.32), and noticing that r2 < (2k,)?
thanks to the relation r, = 2 ki, ends this part of the proof.

e STEP 2: Convergence of the growth rates ||Fy[[ 11 ray/|[ Fn-1llL1 ®e)-
For simplicity of notation we shall define the following sequence of coefficients:
F,ll 1
Ap = 7” Iz (R , neN.
| Frn—1ll 21 (me)

Our goal then reduces to studying the asymptotic behavior of {\, },en and obtaining quantitative con-
vergence rates. By definition of operator 7 in ([1.2]) we obtain that

F,_ F,_
P / e_m(””)/ G <x _nt $2> (1) 1(22) dxridzo dx.
R R2d 2 [Fn—1llprwey 1Fn—1l1 (ra)
By direct computation of the integral with respect to = as it was done in (4.11]) we find that
Fo1(z1) Fo_1(x)

)\n = H T1,T2 dxl dl‘g, 6.35
O Ty A g (6.5
where the function H(x1,x2) takes the form
2
1 Q T+ X9 d
H = - R®. 6.36
(@1,22) 2= gy &P ( (I+a)| 2 ) - (enm) € (6.36)

In addition, recalling the explicit form of the eigen-pair (As, F) in (1.12)) implies

)\a = H(zl,xg)Fa(zl)Fa(xz)dxl d$2. (637)
R2d
Therefore, taking the difference of (6.35)) and (6.37]) and noticing that H in (6.36) is bounded yields
Fy F,
An = Aa| S H ® —-F,®F, , (6.38)
”Fn”Ll(Rd) ”Fn”Ll(Rd) L1(R24)

for any n € N, where P ® @ denotes the Kronecker product of two measures P, Q € M(R?), namely

/de p(z,y) (P © Q)(dx, dy) =/ (/R o(@,y) P(d:c)) Q(dy).

Rd

for all ¢ € C.(R?) (¢f. Table . We do not have a direct convergence result of F,,/||F,| 11 ga) in L'
norms, but we do have convergence of the Kullback-Leibler divergence thanks to STEP 1. By Pinsker’s
inequality, the latter metric controls the former, namely

E, F,
’ ® - F,®F,
”Fn”Ll(Rd) ||Fn||L1(Rd) L1(R24)
1 F, o
< — Dk ( = ® n F, ®Fa> 6.39
2 IEullorn  TFallos e (6.39)

1 F
2\/ | Full 21 (ray
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where in last step we have used the tensorization property of the Kullback-Leilber divergence. The
result then follows from (6.38)-(6.39) and the above explicit convergence rates of the normalized profiles
Fn/HFn”Ll(Rd) in STEP 1. O

7. NUMERICAL EXPERIMENTS

For our numerical simulation, we have restricted to one-dimensional traits (i.e., d = 1) and we have
considered a step function of the following form as initial datum:

1
Fy = 2(30 T_7 3] + 20175 12.5) + 50 Ly30 40] + 30 Li52,5,57,5)), (7.1)

where Z € R is a normalizing factor so that Fy € P(R). Let {F,}nen be the solution to the time-
discrete problem starting at Fy. Our numerical simulation is performed with PYTHON on the finite
computation domain [—15, 60] for the trait variable z, which contains the support of the previous initial
datum Fp and all the mass of each F,, (except for a negligible Gaussian tail). In our simulation, we set
Ax = 0.001 as the step for the discretization of our computational domain. In particular, with such a
step we compute numerical integrals with respect to = according to the left rectangle rule.

In the following, we explore numerically two different scenarios: weak selection and strong selection.
Specifically, we obtain numerical approximations for the profiles F}, in both regimes and we illustrate
numerically the convergence of the growth rates || Fy,|| 11 (ray/|| Frn—1|L1(re) towards the eigenvalue A,, and
the relaxation of the normalized profiles F}, /|| I}, || 1 (ra) towards the eigenfunction F',. As a consequence,
we derive numerical approximations of the convergence rates to be compared with the theoretical results
in this paper. More specifically, we note that the theoretical convergence rates in Theorem are sharp,
except a mismatch for the rates of growth of mass, which was discussed previously in Remark (see
also Figure @ Indeed, we actually attain numerically the same convergence rates as in Corollary
which were sharp for Gaussian initial data.

7.1. Weak selection. In this part, we consider a small value « = 0.015. This leads to the following
numerical values of the features of the equilibrium:

Ao~ 09857, o2 ~ 1.8897.

characterizing the eigenpair (A, F), according to and . Note that since the selection
parameter has been taken very small, then the eigenvalue and the variance of the eigenfunction are close
to those at linkage equilibrium, namely, Ao—o = 1 and o2_, = 2 (see Remark and Figure |4)).

In Figure We observe the relaxation of the normalized profiles F}, /|| F}, || 11 (ray towards the eigenfunc-
tion F', along the time iterations n = 0,1,2,3,4,7,150. We remark on the strong contraction of the
variance during the first few iterations leading to a well-identified Gaussian-shaped profile at time n = 3.
At time n = 7 the variance of the profile is already close to that of the equilibrium F',, but its mean is still
substantially shifted to the right. Thereafter, we observe the gradual motion of the profiles towards the
left at a much lower speed. After 150 iterations, the approximate mean and variance of F,/||Fy 11 (ra)
are given by ~ 0.0474 and ~ 1.8897 respectively, where the latter agrees with the above exact value o2
up to 5 digits.

In Figure |§| we represent the convergence of the growth rates || Fy, | p1(ra)/||Fr—1l/11(rey towards the
eigenvalue A,. After 150 iterations we obtain that the growth rate takes the approximate value ~ 0.9857,
which again agrees with the exact value A, above up to 5 digits.

In Figure |[10| we have represented the errors

F,
[ Enll L1 (ma)

x|

rof ,_
82 = DKL (

) mass | IFnlliwe
als €n = |l
[ Fn-1llL1®e)

in semi-log plots so that the horizontal axis appears in the natural scale and represents each time it-
eration, and the vertical axis contains the logarithm of the errors. As observed, both plots reduce to
essentially straight lines, suggesting exponential relaxation. Interestingly, the numerical rate of conver-
gence in the Kullback-Leibler divergence measured in Figure [I0a] is approximately 0.9441. It coincides
numerically with the rate of relaxation among the subclass of Gaussian solutions (see Corollary [3.9)),
namely, A2 ~ 0.9441, which in turns is identical to the theoretical rate (2 k)? obtained in Theoremﬁ
These results are in perfect agreement with the other convergence results in Figure the numerical
rate of convergence in the rate of growth of mass is approximately 0.9442, which is close to the one among
the class of Gaussian solutions /\i ~ 0.9441, in contrast with the theoretical upper bound obtained in
Theorem [I.I] namely 2 k,, = 0.9717. Moreover, the numerical rate of convergence of the variance of the

normalized profiles F, /|| Fy,| 11 (rey is much faster: it is approximately ~ 0.4721 < 0.5, again close to
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FIGURE 8. Relaxation of the normalized profiles 5, /|| Fy,|| 11 (ray towards the eigenfunc-
tion F, along the time iterations n = 0,1,2,3,4,7 and 150 for a step function as
initial datum and weak selection parameter @ = 0.015. The vertical dotted line repre-
sents the location of the mean of the equilibrium profile F',.

the expected value for Gaussian solutions, namely, r, ~ 0.472. These numerical results illustrate the
two-step process arising in the relaxation dynamics: convergence towards a Gaussian profile occurs much
faster than relaxation of the mean towards the origin due to (weak) selection. Alternatively speaking,
the equilibrium variance builds up much faster than the center of the distribution gets to the origin.

7.2. Strong selection. In this part, we consider a larger value of a. We opted for a = 0.4. Indeed, if «
is taken too large then there is no visual difference between the solution and the equilibrium configuration
after one single iteration. This time, the numerical values of the features of the equilibrium are:

Ao ~0.7944, o2 ~0.9221.
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FIGURE 9. Relaxation of the growth rates ||Fy,|| 11 (ray/|[Frn—1llL1®e) towards the eigen-
value A, along time iterations 0 < n < 150 for a step function (7.1]) as initial datum and
weak selection parameter o = 0.015.
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F1GURE 10. Numerical computation of the rates of convergence of the normalized profiles
and the growth rates: (a) semi-log plot of the errors eP™! := Dy, (F, /|| Fpllz: || Fa), and
(b) semi-log plot of the errors e := ||| Fp,|| 1/ || Fr-1llnt — Aal-

The latter substantially differs from the value at linkage equilibrium (i.e., 62_, = 2). In Figure
we note that the solution resembles a Gaussian distribution after a couple of iterations. After 15 it-
erations we obtain that the normalized profile F,/||Fy| 11 (rsy has approximate mean and variance re-
spectively given by ~ 0.0017 and =~ 0.9221. In Figure we observe the convergence of the growth
rates ||Fy L1 ay/|| Fn-1ll1(re) towards the eigenvalue A,. After 15 iterations the growth rate becomes
~ 0.7944, which again agrees with the exact value A, above up to 5 digits.

Similar computations as in the previous Figure [10] allow finding numerical approximations for the rate
of convergence of the normalized profiles and the growth rates. Specifically, we obtain an approximation
0.3966 for the rate of convergence of the Kullback-Leibler divergence. Once again, such a value is close
to the rate of relaxation among the subclass of Gaussian solutions, namely, /\i ~ 0.3983, which in
turns agrees with the theoretical rate (2 k,)? obtained in Theorem Similarly, the numerical rate of
convergence of the growth rates is approximately 0.3901, which is close to the one among the class of
Gaussian solutions Xé ~ 0.3983, in contrast with the upper bound 2k, =~ 0.6311 in Theorem 1.1

8. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proven asynchronous exponential growth in a quantitative genetics model for the
evolution of the distribution of traits in a population governed by sexual reproduction and multiplicative
effect of selection. Our model assumes time-discrete non-overlapping generations, which rule out an
eventual mixing with previous generations of ancestors. In addition, our non-linear sexual reproduction
operator is set in agreement with Fisher’s infinitesimal model, and we have chosen selection to act on
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FIGURE 11. (a) Zoom near the origin of the relaxation of the normalized profiles
Fro /|| Fnll 1 (rey towards the eigenfunction F',, along the time iterations n = 0,1,2 and 15
for the step function as initial datum and strong selection parameter o = 0.4. The
vertical dotted line represents the location of the mean of the equilibrium profile F,.
(b) Relaxation of the growth rates || F}, [ 1 (ra) /|| Fn—1ll 11 (re) towards the eigenvalue A,.

the survival probability of individuals. Our main result provides quantitative convergence rates of the
renormalized distributions towards a unique stationary profile. Indeed, rates are exponential, which can
be interpreted loosely as a spectral gap in this non-linear context.

It is noticeable that the sexual reproduction operator is contractive under the Wasserstein distance (see
Lemma . However, the generic incompatibility of multiplicative selection with transport distances
becomes an apparent obstruction to the use of a direct perturbative approach in the regime of weak
selection (see Example . This obstacle was circumvented by G. RAouL [21], assuming that selection
is restricted to a compact support. We follow a different route in a purely non-perturbative setting. To
this end, we restrict to the specific choice of a quadratic selection function of the trait, for the sake of
simplicity. Our alternative approach relies on an appropriate study of the propagation of information
along large binary trees of ancestors, by a suitable reformulation of high-dimensional integrals, inspired
by the changes of variables performed in [I0] in the regime of small variance. This reveals an ergodicity
property where the exact shape of the initial distribution is quickly forgotten across generations.

We remark that the above heuristic arguments indicate that the quadratic Wasserstein metric is not
fully appropriate for dealing with the problem at hand. However, we could not identify yet a proper
metric that extends the contraction property of the neutral case to the quadratic selection case.

Several perspectives are envisaged. First, there is an apparent price to pay with our method, in which
we fully exploit the Gaussian structure induced by quadratic selection in order to perform tractable
computations within the high-dimensional integrals. We believe though that the restriction to quadratic
selection might be overcome in future works to allow for more general selection functions. Second, as
studied in [10], the case of multiple minima on the selection function leads to non-uniqueness of stable
equilibria. Then, uncovering the hidden metastability and quantifying the relaxation towards a specific
equilibrium is of great interest for its applications in quantitative genetics. Finally, a major problem is to
transcend non-overlapping generations and tackle the full time-continuous model as presented in previous
literature.

APPENDIX A. NONDIMENSIONALIZATION AND DERIVATION OF THE TIME-DISCRETE VERSION

In this section, we shall nondimensionalize the time-continuous model — with Gaussian mixing
kernel G and quadratic selection function m. By time discretization on the Duhamel formulation, we will
derive the time-discrete version which has been central in this paper. Indeed, we shall show that
we can reduce parameters into only one, namely, parameter & € R in the quadratic selection function
(1.5). Bearing in mind all the biological parameters and dimensions, our evolution problem reads:

{ of =—rmm(x)f +reBoz|f],
f(07x) = fo(l’),

t>0, rcR?

x € R4, (A1)
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Here, 7,75 € Ry represent the mortality and birth rates and have frequency units, whilst the dimen-
sionless corrections of m and B take the form

_ =P

m(x) = dxi dxa,

_ x1+ 22\ f(t,21)f(t, x2)
B [f] (t’ SU) a R2d GO,U2 (x - 2 ) f]Rd f(t7 x/) dx’

for each € R%. Here, Go,»2 represents the Gaussian centered at 0 with variance 0?2, and o,, and o have
the same units as the quantitative trait. On the one hand, o,, can be regarded as a characteristic unit
quantifying the effective range of selection. Namely, if || > o,,, then m(x) > 1. On the other hand, o2 is
the genetic variance and 202 represents the variance at linkage equilibrium often denoted by o2 j, := 20>
(¢f. [9]). We nondimensionalize our system by appropriately scaling our variables as follows

2
0.77L

~ 1 T ~
t=—, T=-=, t.7) = Lif(t, x).
L =1, JER) =)
Here, T' and L are characteristic units for time and trait. For simplicity, we set them as follows in terms
of the parameters of the system:

In other words, we scale time according to the mortality rate 7, and the trait variable according to the
genetic variance o2. Dropping hats for simplicity yields the following dimensionless form of the equation

O f = =%’ f +BB[f], t>0,zeRY,
f(ovx):fO(‘r)v :ZTGRd,

where B = B; involves again unit genetic variance thanks to our scaling assumption. This reduces the
amount of free parameters to only two of them «, 8 € R, defined as follows:

(A.2)

In the sequel, we justify our time-discrete version ((1.11)). Specifically, let us integrate equation (A.2)),
for t € [tn,tny1] where {t, }neny C Ry is any increasing sequence. Then, we recover Duhamel’s formula

tn 5
fltn o) = e Bl tta) p1 ) 4 5/ e BB f (s, )] () ds,
tn—1

for any n € N and each = € R%. Using the rectangle rule for the integral in the right hand side leads to
the approximations F,,(z) >~ f(t,,z) of the the above time-continuous problem for f = f(¢,x):

Fo(z) = e 5P F, 1 (2) + Be 2177 B[F,_1](2), (A.3)

for any n € N and each z € R%. Here, we have set unitary time steps ¢, — t,—1 = 1 for simplicity
and ty = 0. We emphasize that the right hand side of consists of two different terms. On the
one hand, the first term describes the amount of old individuals from the previously generation n — 1
having resisted the effect of selection in generation n. On the other hand, the second term computes
the amount of offspring conceived by individuals in the previous generation n — 1, where an eventual
decline due to selection has also been taken into account. Let us emphasize that in individuals
from generation n — 1 can merge (after breeding) with their offspring to form next generation n. This is
typical in most biological populations, which have overlapping generations (e.g., some multivoltine flies
like Drosophila melanogaster). However, some other systems have non-overlapping generations so that
the full generation n — 1 gets extinct after breeding and only their offspring survive at generation n (e.g.,
some univoltine insects like the Dawson’s burrowing bee). We refer to [I7] for a discussion on the various
types of voltinism and the role of diapause. In that case, by canceling the first term (A.3)) reduces to

Fo(x) = Be~ 317 BIE, 1] (x), (A.4)

for any n € N and each € R. We remark that two different parameters o and [ are still present in
(A.4). However, given that F' — e*%‘z‘zB[F] is a 1-homogeneous operator we can kill the parameter 3
by rescaling the trait distributions F,,. Specifically, define ﬁn = [~ "F,, and note that reduces to
our time-discrete problem with only one parameter .
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