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Abstract. This paper presents a decoupled control of a twin hull-based Un-
manned Surface Vehicle EDSON-J, using the H.. approach for Linear Parameter
Varying (LPV) polytopic systems. This method was adapted in order to guaran-
tee robust stability and performance regarding the important non-linearities and
the uncertainties on the hydrodynamics parameters. After the presentation of the
nonlinear model and the decoupled model of the USV considered for the study,
an LPV model was built, regarding the mass of the vehicle as unique varying
parameter. Then the methodology of the control law applied is exposed and sim-
ulation results are presented. A comparison with the LTI/H., approach will show
the interest of the method in terms of performance.

Keywords: Linear parameter varying (LPV), H., robust control, Unmanned sur-
face vehicle (USV), Decoupled control.

1 Introduction

Since two thirds of the Earth’s surface is covered by the oceans, the development of
water vehicles has been seeing an increasing interest [3]. Over the past decades, several
works on Unmanned Maritime Vehicles (UMVs) have been developed comprising un-
manned surface vehicles (USVs) and unmanned undersea vehicles (UUVs). As global
positioning systems have become more compact, the use of unmanned surface vehicles
(USVs), also known as autonomous surface crafts (ASCs), in performing complex tasks
has become more and more popular [9]. Applications in which USVs are used include
mine counter measures (MCM), inspections for inshore environmental monitoring [10].
An overview on the research and applications of USVs is presented in [7].

Due to cross-coupled dynamics and the presence of hydro-dynamic forces, the de-
sign of efficient control systems for UM Vs is generally challenging. In [13], a nonlinear
gain-scheduling control was proposed to control the INFANTE AUV. A diving-control
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design, based on Lyapunov theory and backstepping techniques, is proposed to control
an AUV in [5]. In [2], arobust H. control approach, based on a two-degrees-of-freedom
controller, was developed for the control of AUV. Recently, a nonlinear control scheme
based on the energy-shaping (ES) principle and state error port-controlled Hamilto-
nian (PCH) systems has been proposed in [8]. The design of robust adaptive steering
controllers was proposed in [15] to deal with the control of USVs in the presence of
uncertainties, unknown control direction, and input saturation.

For systems with predominant nonlinear behaviors and large parameter uncertain-
ties, the use of robust control techniques, such as H. control, may not be sufficient to
achieve good performance over the full range of parameter variation. In this setting, a
possible approach to guarantee robustness and performance consists of relying on Lin-
ear Parameter Varying (LPV) polytopic models and H.. control; see, e.g., [11]. In the
last years, the use of LPV controllers has shown to be effective in the control of au-
tonomous surface craft. In [6], the authors presented an LPV controller with adaptive
parameter estimation and adaptation capabilities. More recently, in [12] an LPV robust
control system for a twin hull-based unmanned surface vehicle, named EDSON-J, was
developed to account for mass variation considering a set of controllers generated by
using the so-called grid-based approach.

In this paper, we aim to extend the design of LPV controllers for EDSON-J model
by considering a decoupled control approach. In particular, due to the inherent com-
plexity in embedding the LPV controller proposed [12] on a low-cost platform, the
major contribution of this paper consists of designing two independent controllers for
both lateral motion and longitudinal motion guaranteeing performance and robustness.
This leads to controllers that can be easily implemented in low-cost embedded systems,
thereby making our results more appealing in practice.

The paper is organised as follows. Section 2 presents the EDSON-J architecture.
The decoupled model into surge-yaw of the USV is considered in Section 3. Section
4 presents the proposed H../LTI surge-yaw decoupled control. The LPV surge-yaw de-
coupled control is developed in Section 5. Section 6 discusses the obtained simulation
results followed by conclusions in section 7.

2 EDSON-J architecture

The EDSON-] is a twin hull-based Unmanned Surface Vehicle that has been developed
at the University of San Agustin de Arequipa, Peru in 2019. This autonomous vessel is
designed to perform inspection and monitoring tasks in the Pacific sea coastal and la-
goons of Arequipa. Table 1 summarizes the main mechanical specifications of this USV.
The vehicle design consists of two slender bodies propelled by two electric motors in
differential mode n; and common mode n.. The EDSON-I’s operating speed is 1.5 m/s
with a maximum speed of 2.5 m/s. The vessel power supply is provided by two 100
Ah AGM batteries. The navigation system of the USV is based on a dual GNSS/INS
system in order to ensure the position accuracy, velocity and acceleration measures.The
communication system is provided by RF transceivers, with a range of 96.56 km in the
900 MHz spectrum. The control architecture of the vehicle is consisting of an embed-
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Parameter Value
Length 3.00 m
Breadth 1.60 m
Mass 250 kg
Payload 100 kg

Hull breadth 0.30 m
Draft 0.20 m
Moment of inertia 201.1 kg/m?
Location of mass center 0.11m
Electric motor power (each) 600 W

Table 1: EDSON-J USV dimensions

earth-frame

u, surge

w, heave

Fig. 1: coordinate frames of the EDSON-J [12]

ded computing board with an operative robotic system (ROS) running on GNU/Linux
for the implementation of the control algorithms.

2.1 Nonlinear model of the EDSON-]

According to the nomenclature given in [4], the mathematical model of the surface vehi-
cle has been developed by considering the interaction between the rigid body dynamics
(hull structure) and hydrodynamics forces interaction (the fluid). The Figl presents the
earth-frame and the rigid body-frame fixed at the centroid of the USV. The inertial frame
is represented by the position vector = [x y l//] " Where x is the surge position, y is the
sway position and y is the yaw position. The body-frame is represented by the velocity
vector V = [u v r] " Where u is the linear velocity of the surge, v is the linear velocity
of the sway and r is the angular velocity of the yaw. Then the nonlinear model of the
EDSON-J can be represented by the kinematic and dynamic equations, respectively (1)
and (2):

n=Jmv &)

Mv+C(v)v+D(v)v=1 (2)
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where 1 stands for the derivative of the position vector 11 and J(1)Vv the coordinate
transformation matrix from the earth-frame to the body-frame defined as:

cos(y) —sin(y) 0
J(n) = |sin(y) cos(y) 0O 3)
0 0 1

Ti= [X YN ] " is the vector of the generalized input forces originated by the propeller
actuators. X is the force in surge direction, Y is the force in sway direction and N is the
moment in yaw direction. The dynamic equation is defined by its inertia matrix M, the
C matrix containing Coriolis and centrifugal forces, and the damping matrix D. These
matrices are expressed as follows:

M= 0 m-Y, mx,—Y; 4
0 nmxe —N\; IZ —Ny
0 —mr —mxgr +Y;v+Yir
C= mr 0 —X;u ®)
mxgr — Yy —Yer Xuu 0
Xy +X\u\u ‘Ml 0 0
D= 0 Yv—&-YMV|v| 0 (6)
0 0 Nr‘f’N\r\r |r\

where m is the USV mass, x, the position of center of mass and I, the moment of inertia
around the z axis, Xy, ¥y, Y, N; and N; are the hydrodynamic terms related to added
masses. The terms X,,, Y and N, represent the linear drag coefficients, while X, ¥},
and N, are the quadratic drag coefficients [12].

2.2 Hydrodynamic coefficients

The vehicle parameters can be obtained through either empirical relations or numeri-
cal/computational methods using the slender-body theory and the rigid body dynamics.
The parameters of the USV nonlinear model are reported in Table 2. More details about
the hydrodynamic coefficients can be found in [12].

3 Decoupled models of the EDSON-]J

This section presents the decoupled model of the EDSON-J into two subsystems: the
surge and the sway/yaw. From the nonlinear model of the EDSON-J expressed by (1)
and (2), we derive a linearized model of the following form:

Jx=Ax+By
G: {y:Cx—&-D)( )
x=[uvr] T is the state vector, X = [ne na T is the control input vector, and y = [u r]| T
is the output vector. Matrices A, B, C and D are obtained by Jacobian linearization
around the cruise speed up=2 m/s and a rotational speed ng=14 rps.
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Parameter |Value Unit Parameter |Value Unit

X, 2471 Kg X, 02912 [Kg/s

X 27,626  |Kg/m Xun, -3.682 Kg

Xrn, 2.762 Kg Xoon, 1.052 Kg/m?
Xugng 1.052 Kg/m? Yy -247.065 |Kg

Y; -370.597 |Kg.m/rad Y, -16471  |Kgfs

Yy -38.928  |Kg/m Yin, -0.359 Kg

Yin, -0.538 Kg.m N; -748.310  |Kg.m?/rad
Ny -370.597 |Kg.m N, -988.260 |Kg.m?/rad.s?
Ny 262791 |Kgm?.rad*>  ||Nun, 2.762 Kg.m

Nyn, -2.855 Kg.m? Nueny -1.578 Kg.m?
Nyp, -0.538 Kg.m

Table 2: EDSON-J USV parameters

3.1 Surge and Sway/Yaw LTI models

Surge LTI model The surge system corresponds to the dynamics of the state u in (7),
with control input n, and measured output y; = u. A state space representation of this
system is given next, with x; = u:

X, =Ax, +Bn,
S: s sXs sHe 8
{ys = Csxs + Dyn, ®
A, = —Xu _X;ncn() — 2X, 10 . B, = _2Xn£ncn0 — XunoUo 9)
n—m Xu —m
Ci=1, Dy=0 (10)

Sway/Yaw LTI model The sway/Yaw system corresponds to the dynamics of the state

T, .
VECHOT Xy = [v r] in (7), the control input n; and the measured output vector yy, = r.
It can be represented by the following state space equations:

SY xsy :Asyxsy +Bsynd (11)
Ysy = Csyxsy + Dsync

3.2 Surge and Sway/Yaw LPV models

The above models are LTI models if the mass m is known and fixed. As opposed, when
the mass takes value in [#in, Mmay], those models can be represented as LPV systems;
see, e.g., [12], wherein a similar approach is pursued.

Surge LPV model As seen in (9), the matrices A; and B depend on m in a nonlinear
fashion. To obtain a control-oriented LPV model we can set

py= (12)

Xu—m
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which enable to obtain the following LPV model for the surge dynamics:

S(ps) : {xs = As(ps)xs +Bs(ps)nc (13)

¥s = CsXs + Dsne

note that Ay and By are affine in p;. Such a model can be easily written in a polytopic
form, thereby allowing to simplify the design of a controller as detailed next.

Sway/Yaw LPV model The matrices Ay, and By, also depend on m in a nonlinear
fashion. However, since the mass appears both in the numerator and denominator of the
entries of the matrices Ay, and By, to get an LPV representation, one needs to introduce
two parameters. In particular, we define

1

pl = (14)

Y (LYs +m2x2 — NiYy — ml+mN; + Y2 — 2mx.Y;)

2 m

5= 15
Psy (I.Ys +m2x2 — N;iYy — mI + mN; + Y2 — 2mx,Y;) (1)

Following this approach, the Sway/Yaw LPV model writes:
sy (psy) : Xsy i Asy (psy)xsy + By (psy)nd (16)
ysy — CSnyy + D_yynd

where Ay, and By, are affine in py, € R2.

4 H./LTI surge-yaw decoupled control

The H.. control problem consists in finding a control that aims at minimizing the H..
norm of the closed-loop system [14]. Defining w the exogenous input vector, and e the
controlled output vector, the H., suboptimal control problem is, given ¥ a predefined
attenuation level, to design a controller that internally stabilizes the closed-loop system
and ensures:

1 Tewll <¥ a7

where T,,, is the closed-loop transfer matrix from w to e. The minimal value ¥, is then
approached by a bisection algorithm. The considered H.. control scheme for the two
problems is chosen as in Fig. 2.

Such an H., control problem can be efficiently solved by relying either on Riccati equa-
tions or linear matrix inequalities. This leads to the design of the control law ug that
solves the suboptimal problem (17) (or optimal when 7y is minimized); (see [14]).

4.1 Surge-Yaw decoupled H.. control

In this section, we present the structure and weighting functions selected for each de-
coupled subsystem.
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» ld(t)

Wa(s)

di(t)
“ &
C’:(’)

Fig. 2: Structure chosen for the Surge/Yaw controller design

Performance specifications for the Surge-Yaw The weights on the sensitivity func-
tion W,, in surge velocity u and W,, yaw rate r are expressed by:

1 _S+wbu81u 1 _S+wbr8]r

b
Weu Miu + py Wer Mser + py

(18)

— For the surge :
M,,= 2 to ensure good robustness margin, €;,= 0.001 to ensure a tracking error less
then 1%,wy,= 0.46 to ensure a fast closed-loop tracking response and rejection of
disturbances.

— For the yaw :
M., =2, €, = 0.001 and w,,=0.5.

The weights on the controller sensitivity function W, in surge velocity u and W, yaw
rate r are expressed by:

1 EuS + Wy, 1 &S + Wpe,
—— =" , = (19)
W, s+ ﬁ W, s+ 5

7 ur

— For the surge:

M,,,=16 in order to account for actuator limitations, @p.,=250 and &, = 0.001
— For the yaw:

M,,;=80  @p,=250 and &, = 0.001

Finally the weighting function W; is set to 0.2 for the surge motion, this enables to
handle the coupling with the surge dynamics, while it is set to O for the yaw control.
Indeed, the yaw dynamics are practically decoupled from the surge.

Solving the above H.. control problems leads to Y, = 0.77 for the surge motion,
and Y, = 0.88 for the yaw motion. This allows to conclude that both LTI controllers
satisfy the performance requirements in the nominal case. Moreover, it may be shown
that, using a p-analysis, both controllers keep stability considering some mass uncer-
tainty, mainly due to pay load variations, i.e. when m € [250,400]. However they do not
achieve robust performance, which emphasizes the need for an LPV controller to ensure
the satisfaction of the performance requirements for large mass variations, in particular
for the yaw controller. This is the objective of the following section.
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5 LPV surge-yaw decoupled control of the EDSON-J

In this section, we develop LPV mass-dependent controllers for the surge and yaw dy-
namics. This is enabled by the use of the LPV models presented in Section 3. The
formulation of the LPV control problem follows closely the one presented for the LTI
case, using the same weighting functions for performance requirements.

5.1 LPV control problem

The considered LPV control problem for the surge and yaw dynamics are a direct exten-
sion of the ones proposed for the LTI control problems, yet applied on the LPV models.
The control scheme is as in Fig 3.

d
et) l ©

.

Wa
di(t)
el g (o | ¥
G(p) —
esxt)

Fig.3: LPV Surge/Yaw control design scheme.

As mentioned earlier, it is worth noting that the weighting functions are the same for
the LPV control problem than for the LTI one. This allows a fair comparison between
both methodologies.

As explained in Section 3, the LPV surge and yaw models are affine with respect to
the chosen parameters vector. This means that we can apply the polytopic approach to
design both LPV controllers. This is the objective of the next section.

5.2 LPV polytopic controller

The LPV controller is designed using the polytopic approach presented in [1]. The
applicability of the so-called polytopic method is restricted to LPV systems whose ma-
trices depend in an affine fashion on the vector of parameters. More precisely

p
A(p) =Ao+ Y Aipi (20)
i=

In this case, the LPV system can be written as a polytopic system with 2”7 vertices,
where 7, is the number of the varying parameters.
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In the LPV/H., framework, the control synthesis problem is addressed off-line by
solving a set of LMIs at each vertex of the polytope using convex optimization. The pa-
rameter dependent LPV output-feedback controller is designed to guarantee the quadratic
stability of the closed-loop system, together with a minimal .%%-induced gain from the
external input w to the controlled output vector e, i.e., to ensure that ||, || .2, — o < ¥
(where 7 is to be minimized). The solution of the problem are the vertex LTI controllers,

Ci D;
line as the convex combination of the vertex controllers K;.

Ki = {Ai B’} , where 1 <i < 2" The polytopic LPV controller K(p) is computed on-

2"p 2"

K(p) =Y ai(p)Ki, with ) a;(p) =1 Q1)
i=1

i=1
p
[Tlp;—C (@)l
_
= —

[1(®i-r))

j=1

pj if wi=p;

. (22)
pj otherwise

ai(p) >0, with C(ay); = {

Pj, p;j are the upper and lower bounds of the ;' I element of the varying parameter vector
respectively and pj is its instantaneous measured value.

5.3 LPYV design for surge and yaw motion

First let us recall the the LPV surge model has one parameter while the yaw one has
2 parameters. Considering the polytopic approach, the LPV surge control problem in-
cludes a polytope of 2 vertices, while the LPV yaw control problem handles a polytope
of 4 vertices, as can be seen later in the frequency-domain plots of the sensitivity func-
tions.

Solving the LPV/H., control problems leads to find the minimal attenuation level y
for both problems. Table 3 summarizes these results for the LPV controllers, compared
with the solution of the corresponding LTI problems.

Ymin LTI case|Ynin LPV case
Surge control 0.77 0.91
Yaw control 0.88 1.22

Table 3: H., performances of the LTI and LPV closed-loop systems

This result means that, solving the LPV yaw control problem induces some conser-
vatism. This is due to the problem solution using a single Lyapunov function for the 4
vertices of the polytope. This problem can be overcome as in [12] using the gridding
approach, but the latter generates a large set of controllers to be implemented, which is
much more complicated to embed in a real system.
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6 Simulation results

In this section time-domain simulation have been performed using the complete non-
linear model of the EDSON-J USV presented in [12]. Two scenario are presented to
show the impact of the mass variations on the performances on both LTI and LPV
control strategies.

6.1 Initial Evaluation
This first test is a basic step-response of the surge and yaw motion, here performed for

the nominal (m = 250kg) and worst (m = 400kg) mass parameter value. As can be seen

Mass variation Mass variation

251 401
250 400
249 309
0 50 100 150 0 50 100 150
3 Surge 3 Surge
1 ——]
2 p— 2|~ ——LTI
4 —LPV. 1 ——LPV
o 0
0 50 1 150 0 50 100 150
15 Surge Control Inputs 20 Surge Control Inputs
—LTI —LTI
10 — —
LPV 10 LPV
5 P
0 0
0 50 100 150 0 50 100 150
0.2 Yaw 02 Yaw
- — [ i
0.1 f 0.1 ——LTI
—LTI ——LPV
—LPV.
o 0
0 50 100 150 0 50 100 150
yaw control inputs yaw control inputs
10F
— LTI —LTI
PV 0 —LPV
10 -10
0 50 100 150 0 50 100 150

Fig. 4: Steps responses of LTI vs LPV surge/yaw controllers for the nominal (left) and
maximal (right) mass value

on Fig 4, the surge motion is few affected by the difference of mass and performs well
for the LTI and LPV control. However, while the yaw motion is few affected in the LPV
case, it is deteriorated a lot in the LTI case for the maximal mass. This is coherent with
the Robust Performance analysis carried out in section 3 where we showed that the LTI
yaw controller is not robust in performance.
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Mass variation
~ass variath

100 150 200 250 300
S
urge

0 50
3
) | o |-
LTI
1 ——LPV| 1
0
0 50

100 150 200 250 300

Surge Control Inputs

——LTI I
——LPV yaw control inputs

o 50 100 150 200 250 300

yaw control inputs

o 50 100 150 200 250 300 “o 50 100 150

Fig.5: LTI vs LPV decoupled control : scenario 1 (left) and scenario 2 (right)

6.2 Scenario 1

In this scenario, the surge and yaw and motion are following a series of step references.
This allows to evaluate the performances of the controllers, in particular due to the
coupling between longitudinal and lateral motions. As we can see on Fig 5, the surge
variable is controlled efficiently by both LTI and LPV controllers, even when the mass
is varying.

However, concerning the yaw motion, it can be seen then the LTI controller is more
affected by the change of mass than the LPV controller. Indeed if we compute the Root
Mean Square error between the yaw and its reference, from t = 150sec (when the mass
starts to change), then we get

RMSE(}”— rref)va =0.0130 RMSE(I‘— rref)LTl =0.0172

So the LPV method improves the yaw performance by 24.4% in this scenario.

6.3 Scenario 2

In this scenario the mass is assumed to be constant for the worst case (m = 400kg),
the speed motion is kept constant at uy = 2m/s and the yaw is following a sinusoidal
reference between —0.25 and 0.25rad/s. In this case, if we compute the Root Mean
Square error between the yaw and its reference then we get

RMSE (r— rref)LPV =0.0389 RMSE(r— rref)Lw = 0.0659

So the LPV method improves the yaw performance by 40.97% in this scenario.
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7 Conclusion

This paper studied the problem of robust control of the Unmanned Surface Vehicle
EDSON-J. LPV mass-dependent controllers were designed in the framework of H.
control to fulfill performance requirements over a wide range of mass variations. The
approach is deployed on a simplified model in which longitudinal and lateral dynamics
are assumed to be decoupled.

Numerical simulations performed on the actual nonlinear system showed the effec-
tiveness of the LPV control to achieve the desired performance despite the coupling
between longitudinal and lateral dynamics. Comparisons with LTI controllers showed
that the proposed LPV decoupled control yields better performance.

Future works may concern the design of LPV controllers to account for other param-
eter variations (as the hydrodynamic ones), the comparison with the global approach in
[12], and the experimental validation on the real USV.
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