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Capsules, composed of a liquid core protected by a thin deformable membrane, offer
high-potential applications in many fields of industry such as bioengineering. One of their
limitations comes from the absence of models of capsule damage and/or rupture when
they are subjected to an external flow. To assess when rupture is initiated, we develop a
fluid-structure interaction (FSI) numerical model of a capsule in Stokes flow that accounts
for potential damage of the capsule membrane. We consider the framework of Continuum
Damage Mechanics and model the membrane with an isotropic brittle damage model, in
which the membrane damage state depends on the history of loading. The FSI problem
is solved by coupling the finite element method, to solve for the membrane deformation,
with the boundary integral method, to solve for the inner and outer fluid flows. The
model is applied to an initially spherical capsule subjected to a simple shear flow. Damage
initiates at a critical value of the capillary number, ratio of the fluid viscous forces to
the membrane elastic forces, and rupture at a higher capillary number, when it reaches
a threshold value. The material parameters introduced in the damage model do not
influence the mode of damage but only the values of the critical and threshold capillary
numbers. When the capillary number is larger than the critical value, damage develops
in the two symmetric central regions containing the vorticity axis. It is indeed in these
regions that the internal tensions are the highest on the membrane.

1. Introduction

Capsules consisting of a liquid droplet enclosed by a thin elastic membrane are
commonly encountered in nature in the form of red blood cells, fish eggs and vesicles, and
in numerous industrial processes. The protection and controlled release of active agents
is of great importance for diverse applications in the food, cosmetic, bioengineering and
medical engineering industries, among others. In medicine, encapsulation has opened the
way to new treatment techniques like targeted drug/gene therapy (Bhujbal et al. 2014).
New-generation bioartificial organs/cells are being developed, for instance, by encapsu-
lating islets of Langerhans to treat diabetic patients (Su et al. 2010) or hemoglobin to
create artificial blood (Li et al. 2005).

But when placed in suspension, capsules are subjected to intense stresses from the
surrounding flow, which may cause the mechanical degradation of the membrane. In
vivo tests have shown that artificial blood cells could be easily damaged in circulation
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depending on the particle shape and deformability (Li et al. 2005): this example illustrates
the importance to control rupture. Depending on the applications, capsule damage is to
be prevented to preserve the inner substance, or, on the contrary, fostered and directed
to allow a targeted release of the encapsulated substance. This necessitates to gain a
good understanding of the capsule damage mechanisms under low-inertia flow conditions
and of the parameters that control the initiation of rupture.

Very few studies have been conducted on the rupture of capsules subjected to hydrody-
namic stresses. The only results that currently exist are experimental. Early experimental
studies showed the possibility of wrinkling formation at low shear rates (Walter et al.
2001), which could lead to fatigue mechanisms, and of capsule burst at high shear (Chang
& Olbricht 1993). The results by Chang and Olbricht (Chang & Olbricht 1993) were
obtained on macroscopic spherical capsules, produced through interfacial polymerization.
Flow-induced rupture initiated from one of the major axis tips of the deformed ellipsoidal
shape of the capsule, which corresponds to the point of minimum thickness. The crack
then propagated in the shear plane. Rupture of microcapsules under simple shear flow
was observed by Koleva & Rehage (2012) on thin polysiloxane capsules having a high
degree of crosslinking. It was reached at small deformations indicating a brittle behaviour
of the capsule membrane. Increasing the shear rate, rupture typically occurred in the
central region, close to the tips of the flow vorticity axis, which correspond to the zones
of maximum tension. This study corroborated the results by Husmann et al. (2005),
who showed that spherical and non-spherical polysiloxane microcapsules bursted at the
points of maximum elastic tensions, when placed in a spinning-drop apparatus. A similar
breakup mechanism has been obtained in confined environments by Abkarian et al. (2008)
for red blood cells flowing through a 5-pm wide channel, and by Le Goff et al. (2017) for
artificial millimetric capsules and fish eggs trapped at a constriction within a cylindrical
channel under a set pressure difference. In both studies, rupture initiated at the front of
the capsule, where the tensile tension is the highest. Note that, in Le Goff et al. (2017),
rupture could also occur at the point of contact between the capsule and the constriction,
but this mode of rupture is different, as it is induced by contact and not by deformation
under flow.

What is currently lacking is a model of capsule deformation under flow, capable of
assessing when and where the initiation of rupture occurs. The objective of the present
study is to develop the first fluid-structure interaction model accounting for membrane
damage induced on a liquid-core microcapsule subjected to a simple shear flow. We
will use Continuum Damage Mechanics (CDM) to model the initiation and growth of
microdiscontinuities (microcavities and microcracks), which lead to the local initiation
of macrocracking as they accumulate and coalesce. Contrary to fracture mechanics,
which accounts explicitly for the inherent geometrical discontinuity and the associated
boundary conditions, the microdiscontinuities are not geometrically modelled in CDM.
The local average damage state due to the microdiscontinuities is instead represented
by a continuum variable: the damage variable. CDM has benefited from numerous
contributions to its theoretical development (e.g. Kachanov (1986); Lemaitre & Desmorat
(2005)) since the pioneering work of Kachanov (1958). It is based on the thermodynamics
of irreversible processes with internal variables (Coleman & Gurtin 1967), and has
been applied to model the damage mechanisms of a large spectrum of materials, from
engineering materials (an overview of applications is presented in Lemaitre & Desmorat
(2005)) to biological tissues (Holzapfel & Fereidoonnezhad 2017; Hokanson & Yazdani
1997; Natali et al. 2005). We propose to incorporate a CDM model into a fluid-structure
interaction framework, in order to investigate the time-evolution of damage as the capsule
deforms under flow.
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Figure 1: Capsule suspended in the unbounded simple shear flow.

In this study, we focus on the damage process of a capsule under intense hydrodynamic
stresses induced by an external flow over a relatively short time. Due to the short time
scale of the phenomena, fatigue or creep damage models are thus not presently relevant.
Previous studies have shown that microcapsules may experience ductile (Ghaemi et al.
2016) or brittle (Koleva & Rehage 2012; Le Goff et al. 2017) damage depending on the
material and history of loading (external thermo-mechanical stresses). We derive the
damage model assuming a quasi-brittle behaviour of the capsule membrane, for which
dissipation prior to cracking occurs with negligible irreversible strains (i.e. negligible
plasticity). However, CDM provides a general framework: the present model will thus be
straightforwardly extended to the other damage behaviours (ductile material, creep or
fatigue).

After having detailed the formulation of the damage model of a capsule in infinite shear
flow in Section 2, we present the model discretization and numerical solver in Section 3.
We first investigate damage of a spherical capsule under isotropic inflation in Section 4,
as it provides insight on capsule damage and allows us to validate the numerical method
by comparison of the results with the corresponding analytical solution. We then study
damage in simple shear flow in section 5, and assess the effect that the dimensionless
parameters of the model have on damage evolution and rupture initiation. We finally
discuss the model and results in Section 6 and analyze the potential of the model to
identify the capsule membrane limit of elasticity by comparison with experiments.

2. Formulation of the problem

We consider a spherical microcapsule of radius a enclosed in an elastic envelope of
very small thickness with respect to its radius. The capsule is thus modelled as a two-
dimensional incompressible membrane with surface shear elastic modulus G. It is placed
in an infinite shear flow of shear rate 7. The problem is studied in the reference frame of
center O and Cartesian basis (e, ey, €;) corresponding to the barycentric reference frame
of the capsule oriented such that the unperturbed velocity field is given by v™*(z) = Yzeg
(Figure 1). The inner and outer fluids are the same incompressible Newtonian fluids of
dynamic viscosity p and density p. Gravitational and inertial effects being negligible due
to the microscopic capsule size, the fluid-structure interaction problem is governed by
only one non-dimensional parameter: the capillary number Ca = pya/Gs, ratio of the
viscous to the elastic characteristic forces.
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Internal and external flows

Inertial effects being neglected, the fluid problem is governed by the Stokes equations:
div (o) =0, div(v) =0, (2.1)

where ¢ designates the Cauchy stress tensor, v is the velocity vector and div(.) is the
divergence operator. At a given point z of the membrane S, the boundary integral
formulation of the Stokes equations gives the relationship between the velocity vector
v and the stress tensor g (Pozrikidis 1992):

Vee S, wv(x)=v"()—— | Ly - 2] nly) dS,, (2.2)

where n is the unit vector normal to S pointing towards the external fluid and [g] - n =
(gext — gmt) -1 is the stress jump across the membrane. We denote as J the second order
Oseen-Burgers tensor defined by:

1

1
J(z,y) = 1+ Fror, (2.3)

where r = 2 —y, r = ||r|| and 1 is the identity tensor.

Wall mechanics

The capsule wall is modelled as a membrane of mid-surface S. The curvilinear coor-
dinates (&1, &2) describe the position z(&1,&2,t) on S in the configuration at time t. The
position z(&1,&2,0) on the initial configuration Sy of S is noted X. It is convenient to
write the membrane equations in local tangent bases. In what follows, if not specified,
indices written with Latin letters take values in {1, 2, 3}, while indices written with Greek
letters are in {1,2}. The covariant basis (a;) attached to S is defined by:

ox a; X ay

a :—’ Q = — 24
% Fer B o x ol @4

The contravariant basis (a') is defined by a, -a/ = (53 , where 5{ designates the Kronecker
symbol. On Sy, the covariant and contravariant bases are denoted (4;) and (4"), re-
spectively. The metric tensor is g on S and G on Sp. The contravariant and covariant

components of g are a®P = g ~QE and aqp = a,, “ag, respectively (similar definitions for
the components A*? and Aap of G).

The wall inertia being negligible (Walter et al. 2010), the motion of the membrane is
governed by the local mechanical equilibrium:

where ¢ is the surface external load, T is the tension (resultant of the internal Cauchy
stress over the thickness), V- is the surface divergence operator. The dynamic boundary

condition imposes that:
VeeS, q=][c] n (2.6)
The weak form of the membrane equilibrium equation is obtained applying the principle
of virtual work:
For any virtual displacement @ € H(S),

L@ 445 = Li 1£(@)dS, (2.7)
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Table 1: Summary of the key ingredients of the present associated damage model.

State / Associated variables | Green Lagrange strain e / Second Piola-Kirchhoff tension iy

Damage variable d / Energy release rate Y

State potential Free energy ¢(¢e,d) = (1 — d)pnu(e)

with ¢z the isochore neo-Hookean potential

Damage threshold function | f =Y — k(d)
with k(d) = Yp + Ycd,

Yp and Yc¢ being the model constants

where H'(S) designates the Sobolev space associated to the Lebesgue space L?(S) and
(@) is the symmetric part of g - V4, the tensor V@ being the gradient of @.

In terms of kinematics, the no-slip boundary condition holds on S and gives the
relationship between the fluid velocity and the position z of the corresponding point
of the membrane:

v=—. (2.8)

Material behaviour

The model of the capsule wall behaviour is developed in the standard framework of
CDM (Lemaitre & Desmorat 2005) to account for the progressive degradation of the
membrane while staying in the field of continuum mechanics. More specifically, CDM
is a branch of the thermodynamics of irreversible processes with internal variables, the
focus of which is to model irreversible transformations associated with damage. The
development of a damage model is thus based on four key concepts inherited from
the thermodynamics of irreversible processes: state variables, state potential, damage
criterion and damage evolution law. A short review of these concepts together with the
details of how we developed the model are given hereafter. We specify them in the case of
quasi-brittle damage which corresponds to the membrane deformation until the initiation
of rupture without irreversible strains (see Table 1 for a summary).

State variables

We assume that the transformations of the capsule wall correspond to isothermal
elastic deformation and damage. The damage variable represents the irreversible growth
of microdefects in a representative volume element (RVE) (Figure 2).

To illustrate the definition of the damage variable, we consider a deformed RVE of
the capsule wall containing microdefects in the form of microcavities and microcracks
(Figure 2). We define damage in direction k as the surface ratio §Sp/d.S, with §Sp the
maximum intersection of microdefects in a cross-section 4S of normal k of the RVE. The
stresses on this cross-section are thus transmitted on 65 = 65 — §Sp. We assume that
the microdefects have no preferential orientation: the §Sp/d.S ratio is thus independent
of the direction k£ and corresponds to isotropic damage. The state variable is then the
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Figure 2: Representation of a microcapsule of mid-surface S placed in an infinite shear
flow (left). Zoom on a representative volume element (RVE) containing microcavities
and microcracks (middle). Decomposition of the cross-section ¢S of normal vector k into
the effective load-bearing cross-section 85 and the total surface of the microdefects 6Sp
(right).

scalar damage variable d defined as

0Sp 0S
d=—g =1- . (2.9)
It ranges from 0, for the local sound (undamaged) state of the material, to 1, when a
crack initiates having the size of the RVE.

The other state variable is the standard elastic deformation, used in all the mechanical
models. The capsule incompressible wall being modelled as a membrane, the in-plane
deformation tensor on the mid-surface S is given by the Green-Lagrange strain tensor e

e= —(ET~£*§)' (2.10)
The tensor F is the gradient of the transformation of S

ox o
£=E_Q ®@ A,

[~

(2.11)

in which, as in what follows, we adopt the convention of summation over repeated indices.
In conclusion, the state variables are d and ¢, which both depend only on z € S.

State potential

Following the standard framework of CDM, the constitutive law of the membrane and
the definition of the variable controlling d are derived from a unique state potential
function of the state variables. We note ¢(e,d) the specific membrane free energy per
unit surface of Sy. Knowing ¢, one can derive the associated variables dual to e and d,
using the state laws B

¢

oe’
< (2.12)

—a 7

1B

>~<
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Figure 3: Illustration of the homogenization principle on a representative volume element
(RVE) under an uniaxial traction of intensity Fi.q. and of the associated elongation
A. The heterogeneous damaged material (real RVE) is modelled as a homogeneous
domain (equivalent RVE) with the same cross-section 65 and subjected to the same
loading/elongation. The force equilibrium leads to o = §5/6S6 = (1 — d)&, where the
effective stress & is the stress transmitted through the load-bearing cross-section 85 and
determined with the constitutive law of the undamaged material.

where & is the second Piola-Kirchhoff tension tensor and Y the specific elastic energy
release rate. The Cauchy tension tensor T is related to & through

1
J
The undamaged wall is chosen to follow the neo-Hookean (NH) law, which was shown
to model well the elastic behaviour of thin artificial proteic membranes (Chu et al. 2011,

Gubspun et al. 2016). The corresponding specific free energy ¢np (Barthes-Biesel et al.
2002) is

I~
I~

- FT (2.13)

dnE(e) = % <11 —1+ A i 1) : (2.14)

where the two invariants of the transformation I; and I, are defined by:
L=tr(E" - F)—2=A%a,3 — 2,

= 2.1
I = det(E" - F) — 1 = det(A*?)det(anp) — 1. (2.15)

What is classical in CDM is to obtain the free energy ¢ in the damage state using
homogenization, which is based on the principle of strain equivalence. We propose to
illustrate this concept on the 3D RVE shown in Figure 2, in the case of a uniaxial
traction of intensity 0F}.q. which induces an elongation A (Figure 3). We look for the
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equivalent RVE (right) having the same cross-section 4.5, and being subjected to the

same elongation A\ and loading § Fy,.. as the real RVE. The stress in the eq}livalent RVE

is thus 0 = §Firqc/dS, which is related to the effective stress & = §Fyq0/dS through:
58

o\ d) = 525(N) = (1= d)5(N). (2.16)

where & is computed from the constitutive law of the undamaged material.
The concept of equation (2.16) can be translated to our 2D membrane and generalized
to any in-plane stress state with:

29
o¢

(e,d) = (1—d) (2.17)

We thus choose to express the specific free energy ¢ as:
o1, Iz, d) = (1 = d)on (11, I2). (2.18)

Note that the present homogenization process preserves the membrane properties ob-
served in the undamaged case. The state laws defined by equations (2.12) and (2.13)
then have the following expressions:

7% = (1 - d)G, (%Aaﬁ - iaa5>

J3 (2.19)

Y = ¢nH,
where the Cauchy tension tensor is given through its contravariant components.

Damage criterion and damage evolution law

The last ingredients of the model are the damage criterion and the damage evolution
law. We choose to adopt an associated model (Besson et al. 2010), which is numerically
robust. It only requires the introduction of the damage threshold function f(Y;d) (d
acts as a parameter) to derive the damage criterion and the evolution law through the
admissibility condition (i) and the principle of maximum dissipation (ii).

(i) Admissibility condition
To be admissible, the associated variable Y must satisfy the standard admissibility
condition

f(Y:d) <0. (2.20)

It defines a bounded domain for Y, illustrated in Figure 4a.

(ii) Principle of maximum dissipation
The damage evolution is accompanied by dissipation. The associated governing laws are
based on the principle of maximum dissipation

- .
D(Y, d) _f(yngk%@{p(y ,d)}, (2.21)

where D(Y, d) = Yd, and d designates the material temporal derivative of d.

The solution of the maximization problem under constrain (2.21) is provided by the
Kuhn-Tucker conditions

.0f
~ oy (2.22)
f<0,m=0,nf=0.

d
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Table 2: Loading case possibilities as a function of the values of f, f and 7). An illustration
is given in Figure 4 for a loading/unloading cycle.

@ elastic loading/unloading f<o0 =0
@ elastic unloading f=0 f <0 n=0
@ neutral loading f=0 f=o0 =0
@ loading with damage f=0 f =0 n>0

n=20 n>0 H=0

Figure 4: Illustration in 2D of (a) the admissible domain of the associated variable Y,
defined by f(Y) < 0, (b) the case of damage evolution (7 > 0) where the yield surface
f = 0 moves due to hardening and where the rate of damage d is along the normal to
the yield surface (normality rule), and (¢) the case when damage ceases (1 = 0). The
thick black lines represent one example of loading cycle, which successively contains all
the phases given in table 2: (a) elastic loading @, (b) loading with damage @, (¢) neutral
loading @ followed by elastic unloading @ + @.

the four of which constitute the evolution law of damage, where n acts as a Lagrange
multiplier.

The three conditions within equation (2.22)s are known as the loading/unloading
conditions. They provide the damage criterion

{f(Y)<O=>7'7=O

JY)=0=1n=>0. (2.23)

The interior of the admissible domain corresponding to f(Y) < 0 (Figure 4a) is thus
the elastic domain, in which damage remains constant (d = 0). The domain boundary
corresponds to f(Y) = 0 and thus to cases where damage evolves. The damage evolution
follows equation (2.22); which can be interpreted geometrically as d being along the
normal to the yield surface f = 0 (Figure 4b). It is thus referred to as the normality rule.

Together, the admissibility condition (2.20) and the damage criterion (2.23) lead to
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the consistency condition
if =0 (2.24)
Different cases of loading may exist (see Table 2 and Figure 4). When 7 = 0, no damage
occurs regardless the values of f and f . Damage only occurs when 1 # 0, the value of
which is obtained by solving f(Y;d) = 0 (imposed by equation (2.24)).
Note that from the inequality of Clausius-Duhem D > 0, and given that Y > 0, the
damage variable d can only grow in time

d=>o0. (2.25)
Thus, during damage (f = 0)
af
= > .
P 0, (2.26)

which restrains the choice of f.
Since most artificial and natural microcapsules have been shown to be brittle, we
choose to follow the model developed by Marigo (1981) for quasi-brittle damage:

FVid) =Y — k(d) <O0. (2.27)

We presently define k as a function of two parameters, the damage threshold Yp > 0
and the hardening modulus Yo > 0, such that:

k(d) = Yp + Yed. (2.28)

The size of the domain of admissible states f < 0 increases with damage (Figure 4b). It
is due to the hardening of the material and is controlled by the parameter Y¢.
The damage evolution law eq. (2.22) can be written equivalently in an explicit form:

d=<((ymer)y >+t (2.29)

where < . >T designates the Macaulay brackets defined by

R
{<x> =zifz>=0 (2.30)

< x >T= 0 otherwise.

The function {(Y) = (Y —Yp)/Yc designates the reciprocal of the bijection &, and Y™%*
is defined by
Ye®(t) = max {Y (1)} . (2.31)

Tt

3. Numerical method

Knowing the current position of the material points of the membrane, we perform a
Lagrangian tracking of the nodes of the capsule to solve the fluid-structure interaction
problem (eq. (2.2), (2.6), (2.7), (2.8), (2.29)). We use the strategy proposed by Walter
et al. (2010) coupling the Finite Element Method to solve for the solid and the Boundary
Integral Method to solve for the fluid (Figure 5). The problem is solved using the
dimensionless forms of the equations, in which the lengths are non-dimensionalized by
a, time by 1/4 and tensions by G. The two parameters Yp and Yo are thus also non-
dimensionalized by Gs.

The originality of our work consists in introducing a damage model in the solid problem.
At the material level, the evolution of the damage variable d is determined for each
integration point using the explicit equation (2.29). The external load ¢ is then obtained
by solving the global problem (2.7) and transferred to the fluid problem. The velocity
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Dynamical coupling

(iz1-n),

Find ([[g] ﬂ)n using eq. (2.6)

Fluid solver
Boundary Integral
Method

Ly

—>

Initial position

Find v,, solving eq. (2.2)
at the nodes.

[S3

g, dn

n

Solid solver
Finite Element Method

1) Find d,, solving eq. (2.29)
at the integration points.

2) Find g at the nodes
solving eq. (2.7)

Kinematical coupling

Find the position z,,

at the next time step

solving eq. (2.8) at the nodes
using an explicit scheme

Zn “n+1

Figure 5: Numerical method to solve the fluid-structure interaction problem over a time

step.
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Figure 6: Projection on the shear plane of the mesh of a damaged capsule captured (a)
in the initial configuration and (b) at a steady deformed state. P2 elements, Ng=1280,

Nn=2562.

is computed explicitly at each node from eq. (2.2). Finally, eq. (2.8) is integrated with

a second-order explicit Runge-Kutta scheme to solve for
nodes at the next time step.

Mesh

the position of the membrane

A conform mesh is used, the nodes on the capsule S being shared by the fluid and the
solid problems. The mesh is composed of curved triangular elements containing six nodes
with quadratic shape functions (P2 elements). The mesh is generated on the spherical
shape corresponding to the initial configuration (Figure 6). Following a previous study
(Walter et al. 2010), the mesh contains Ng = 1280 P2 elements corresponding to a total

of Ny = 2562 nodes.
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Solid solver

For a given deformed configuration of the capsule, the discrete solid problem consists
in finding the external load ¢ € L? and the damage d € L? that satisfy eq. (2.7) and
eq. (2.29), where the subscript h indicates the finite element space. The position z and
the virtual displacement @ are searched in H}. Using isoparametric elements, we restrict
the solution for ¢ in H}. A field v(z,t) € H} writes: v(z,t) = NP (2)v®(t),p e [1, Nn],
where N®) and v(®) are the shape function and the nodal coordinates of v associated to
the node p, respectively. Noting v(p) the coordinates of v(®) in a Cartesian basis (eX])
the left-hand side of the dlscretlzed form of eq. (2.7) writes:

(10) f N dS q(Q) {u(iv) }T[ ]{q(il’)}’ (3.1)
and the right—hand side writes:
ZJ TaB 6 d) (P)XJ ds u(il’) {U(p)»}T{R}(g, d), (3.2)

where {q(p)} and {u(p)} are the vectors of size 3Ny of the nodal coordinates, and X(p)XJ

is defined by

W)Xj _ 1 ON (@) ON (P
EEIC A

Eq. (2.7) being satisfied for any virtual displacement, the discrete solid problem writes:

Find ¢ and d, such that, {[M] ta} = {R}Eg, d) (3.4a)
) d =<K (Yimaz) >* (3.4b)

).QX]., pe[l, Nyl (3.3)

The square and column matrices [M] and {R} are, respectively, computed at each time
step by using 6 Hammer points on each element (Hammer et al. 1956). The new value of
the damage variable is obtained from eq. (3.4b), solved locally at each integration point
while computing { R}. Knowing the deformation, the variable d is computed explicitly as
Y™e* depends only on the deformation. The computation of d ensures the admissibility
condition (eq. 2.27) at each time step. Finally, ¢ is computed by solving eq. (3.4a) with
the Pardiso solver (Schenk & Girtner 2004).

Fluid solver

For a given deformed configuration of the capsule and knowing the stress exerted
by the membrane on the fluid, the velocity field v is given explicitly by eq. (2.2). The
velocity field v is computed at each node. The integral on the right-hand side of eq. (2.2)
is computed with 12 Hammer points per element. To handle the singularity of the tensor
J at node z, we use polar coordinates centred on z when integrating on the elements
sharing this node (for more details see e.g. Lac et al. (2004)). We do not use penalty
methods to impose the conservation of the volume of the fluids. Still, the maximum
relative variation of the capsule volume is limited to 0.1% of the initial volume.

Coupling
Using a conform mesh with isoparametric elements, the loads [g] -n and q are in the

same space H}. Hence the dynamic coupling between the fluid and the solid (eq. 2.6) is
verified in its strong form in this space. Considering the kinematic coupling, the no-slip



Capsule damage in simple shear flow 13

condition (eq. 2.8) is solved at the nodes with an explicit second order Runge-Kutta
scheme to find the position of the nodes at the next temporal increment. Since the local
problem of damage is solved in the solid problem with an implicit scheme, the condition of
stability of the scheme of temporal integration of the fluid-structure interaction problem
is the same as the one initially developed by Walter et al. (2010).

4. Capsule damage under isotropic inflation

We first analyse the damage of a spherical capsule under osmotic inflation. We impose
radial displacements inflating the capsule from radius a to radius a(1 + «(t)), where the
inflation ratio « is such that o = 0. We will study two cases: a monotonic increase of «
and cyclic variations of @ with successive increase and decrease of the capsule diameter.
We compare the solution given by the solid solver to the analytical solution.

The problem consists in finding the damage variable d and the external load ¢ that
satisfy the evolution law of damage (eq. 2.29) and the equilibrium of the membrane
(eq. 2.7). An analytical solution of the problem exists. We look for it in the form of
uniform fields that satisfy the spherical symmetry of the problem. The stretch ratio of
the membrane, which is the square root of the isotropic principal value of the dilatation
tensor E1 - F, is simply A = 1 4+ . The corresponding isotropic principal value T of the
tension is:

1
T= (17d)Gs(17F)a (4.1)
and the elastic energy release rate Y:
Gs .9 1
Y = 7(2)\ + N 3). (4.2)
As Y increases monotonically with «, the evolution law for damage (2.29) writes:
d=<r Y (a™*)) >+, (4.3)

where a™** is defined similarly to Y"™%* in eq. (2.31). Hence, the condition for d to
increase is that « is larger than any of its previous values.

The external load is ¢ = pn, where p > 0 is the difference between the internal and
external pressures. Choosing test functions of the form & = 4z in the equilibrium equation
(2.7), we obtain the Laplace relation between T' and p:

T a(l J2r a)p'

(4.4)
We prescribe the radial displacements to the nodes and impose z(™ = (1+ oz)ﬁ(m), VYm €
[0, Nny]. The pressure difference and damage variable d are obtained analytically using
eq. (4.1)-(4.4), and numerically using the solid solver presented in section 3. For the
numerical solution, we compute p and d as surface averages, the pressure difference p
being given by ¢ - n. Between the numerical and analytical solutions, we always find
relative errors lower than 1072% for the pressure difference p and 107*% for damage d.

We first compare how ap/G, (the dimensionless value of p) and d evolve with the
inflation ratio « in the case of a monotonic inflation of the capsule (Figure 7). The nu-
merical and analytical curves are perfectly superimposed (Figures 7 b-c) and comparison
with the analytical solution of the undamaged capsule (d = 0) shows a clear effect of
damage on the pressure difference (Figure 7 b). Damage is initiated at the critical value
a = o, which corresponds to Y (a.) = Yp. The loss in elastic properties of the damaged
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Figure 7: Case of a monotonic inflation: for the stretch ratio o shown in (a), corresponding
curves of the dimensionless pressure difference (b) and of the damage variable (c),
computed for Yp = 0.2, Yo = 2.0.

capsule leads to a reduction in pressure difference as compared to the undamaged case.
The pressure difference returns to zero when d = 1, which occurs when a = «y.

We then compare the evolution of ap/G and d with « in the case of a capsule subjected
to cyclic inflations and deflations with increasing maximum sizes (Figure 8). During the
first cycle corresponding to the inflation of the capsule until point A, the value of «
does not exceed the critical value a.. Hence damage does not initiate and the curves of
ap/Gs for the damaged and undamaged capsules coincide during inflation and deflation.
For the second cycle (inflation until point B), the curves of d and ap/G, coincide with
the corresponding curves obtained for the monotonic size increase (Figures 7b-c). During
deflation from point B, damage remains constant and the curve of pressure difference
ap/Gy stays below the inflation curve when « decreases back to 0. For the third cycle, the
inflation curves of ap/Gs and d overlap the corresponding curves of the previous deflation
until point B. But, between points B and C, damage increases during inflation, and the
curve of ap/G again coincides with the corresponding curve obtained for the monotonic
size increase. The deflation from point C' is then similar to that of the second cycle with
constant damage and an ap/G¢-curve below the inflation one. During the last inflation,
capsule rupture occurs, when « reaches the limit value oy (corresponding to d = 1).

The case of the capsule under isotropic inflation illustrates the effects of damage on the
behaviour of the capsule. For a given value of the inflation ratio «, the more the membrane
is damaged, the lower the pressure difference (Figure 8b), in other words damage reduces
the loading capacity of the membrane. For increasing d, the slope at the origin for the
curve ap/Gs(a) decreases (Figure 8b), which means that damage reduces the stiffness
of the structure. It is interesting to see how the values of a. and ay depend on the
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for the stretch ratio o shown in (a), corresponding curves of the dimensionless pressure
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parameter values Yp and Ye. Following equation (4.3), the values of « initiating damage
and rupture are given respectively by the equations Y (a.) = Yp and Y (ay) = Yp + Yo,
where the expression of Y () is obtained using equation (4.2). The critical inflation ratio
a. thus depends solely on Yp, but the limit inflation ratio ay depends on both Yp and
Y. Furthermore, the higher the parameter values, the higher the two threshold inflation
ratios.

5. Capsule damage under simple shear flow

We now study the damage of a capsule in simple shear flow. We first show the typical
motion and evolution of damage of a capsule in a reference case and then study the
influence of the capillary number on the capsule behaviour. We will see that, when the
capillary number is increased, three different regimes are found. The capsule is first
undamaged until a critical capillary number Ca, is reached, corresponding to the onset
of damage. Above this value, the capsule reaches a steady-state deformed shape in which
it is partly damaged. When the limit capillary number Cay is reached, rupture initiates
putting a limit to the damage regime. In the last part of this section, we will finally study
the influence of the material parameters Yp and Yo on the three identified regimes and
on the values of Ca. and Cay.

5.1. Coupled kinetics of motion and damage on a reference case (Ca = 0.7)

As reference case, we choose Yp = 0.2, Yo = 2.0 and Ca = 0.7. The value of Ca is
such that Ca. < Ca < Cay. Hence the capsule is damaged but the damage stabilizes and
a steady state is reached.
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Figure 9: Two principal ellipses of the ellipsoid of inertia of the capsule.
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Figure 10: Map of damage at the instant of initiation of damage t., at an intermediary
instant between . and the instant of maximum elongation t;, at time ¢1, and at steady
state (t*). The map of damage is represented on the current and reference configurations.
The current configuration is observed in the shear plane (O, ez, e.) and in the plane
(O, e1,ey) which is defined in Figure 9. The reference configuration of the capsule is
observed in the shear plane (O, e, ;). The points P and P’ correspond to the intersection
of the membrane with the vorticity axis e,. The results are obtained for Ca = 0.7,
Yp = 0.2 and Y = 2.0. All the pictures are at the same scale. The capsule is delimited
by a black line.

Upon the start of the shear flow at ¢ = 0, the initially spherical capsule rotates and
takes an ellipsoidal deformed shape. It gets flattened while inclining towards the direction
of the flow e, (Figure 9). Figure 10 shows the evolution of the capsule state over time
until steady state. Note that the membrane rotates around the vorticity axis e, and
has a so-called tank-treading motion. We choose to show the capsule shape and damage
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Figure 11: Time evolution of different state quantities: elastic energy release rate Y (first
row), maximum principal tension 7} (second row), normal load g-n to visualize wrinkling
(third row) and negative part of principal tension T (fourth row). The results are shown
in the shear plane (O, e;, e;) at the same instants as in Figure 10, for Ca = 0.7, Yp = 0.2
and Yo = 2.0.

distribution at different stages: at the onset of damage (¢ = t.), at an intermediate instant
while damage develops, at maximum elongation (¢ = ¢1) and at steady state (t = ts). The
capsule states are shown in the current configuration from two view points in the shear
plane and in the transverse inclined plane containing the maximum principal direction
e1 (Figure 9). Damage is initiated, at time t., at the points P and P’ which are on the
vorticity axis (O, e,). As the capsule elongates, two symmetric disjoint damaged areas
form around poinEP and P’, which correspond to the locations of maximum damage
dmaz at each instant. Due to the irreversibility of damage, the maximum values d;° .. are
found at P and P’ at steady state (¢t = ts). In order to see whether preferential direction
of damage exists, we plotted the damage distributions on the initial capsule configuration
(last row of Figure 10). Damage initially develops preferentially along the direction of
maximum elongation e; but the anisotropy decreases after time ¢; to reach a quasi-
isotropic damage distribution at steady state. This may be induced by the tank-treading
of the capsule membrane around the vorticity axis.

Figure 11 gives complementary information on the evolution of the state of the capsule
over time until the steady damaged state. The localisation of the energy release rate
Y, and hence of damage, in the regions around the points P and P’ (see Figure 10)
is correlated with the maximum of the principal tension T; (first and second rows of
Figure 11). Damage has no visible consequences on membrane wrinkling: the wrinkles
visible on the normal load maps in the third row of Figure 11 are the same as in Walter
et al. (2010) in the case without damage. They are induced by the presence of negative
T, tensions transverse to the direction of the wrinkles (fourth row of Figure 11). The
capsule wall being presently modelled as a membrane devoid of bending stiffness, the
wrinkle amplitude and wavelength are purely numerical. But the small amplitude of the
negative part of T, tensions indicates that they hardly contribute to the energy release
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Figure 12: Temporal evolution of (a) the lengths of the axes of the ellipsoid of inertia,
(b) the Taylor parameter D12, (c) the inclination angle 8, and (d) the global surface
expansion Ag. Computed for Ca = 0.7, Yp = 0.2 and Yo = 2.0.

rate Y and thus to damage. Consequently, they do not lead to any numerical artefact
and damage is well predicted by the present model.

We now investigate how the capsule shape and deformation is influenced by damage. In
Figure 12, we compare the time evolution of geometric parameters to the case of a capsule
without damage. Since the shape of the capsule can be approximated by an ellipsoid of
inertia, we define the principal lengths L; and Ly of the major and minor axes (directions
e1 and e3) in the shear plane (O, es, e;) and L3, the length along the vorticity axis e, (see
Figure 9). The capsule indeed elongates along the directions e; and e, (L; > L3 > 2a)
and shrinks along the direction of the minor axis (Ls < 2a) (Figure 12a). We quantify the
deformation of the capsule with the Taylor parameter D15 = (L1 — La)/(L1 + Lo) which
measures the distortion of the profile of the ellipsoid in the shear plane (Figure 12b).
The inclination of the capsule is measured by the angle 5 between the flow direction e,
and the direction of the major axis e;. Figure 12c represents the temporal evolution of
B showing that the inclination angle decreases from the first measurable value near /4.
Figure 12d shows the evolution of the global surface expansion ratio Ag = (S — Sp)/So.

Figure 12 globally shows that a steady deformed shape is reached. All the quantities
tend towards a plateau value which will be denoted with the symbol co hereafter. It is
interesting to notice in Figure 12a that the onset of damage (¢t = ¢.) is not visible on the
L; curves. It is only close to ¢t = ¢; that the curves slightly diverge from the case without
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Figure 13: Maximum damage value at steady state d;-,. with respect to Ca for Yp = 0.2
and Yo = 2. The inserted images represent the map of damage in the shear plane at
steady state for Ca = 0.6 (a), for Ca = 0.7 (b) and at the instant of initiation of rupture

t =ty for Ca = 0.8 (¢). The colormap for d is saturated for values of d larger than 0.2.

damage. But only small differences are observed on the principal lengths L; (Figure 12a),
D15 (Figure 12b) and g (Figure 12¢) hereafter. In this reference case, we find that damage
has no significant effects on the motion and deformation of the capsule, suggesting that
damage will be very difficult to detect experimentally. The geometrical parameter that is
the most affected by damage ends up being the global surface expansion ratio A\g (Figure
12d). Nevertheless, the difference at steady state is only of a few percent.

5.2. Effect of Ca

We now study the effect of Ca for the same values of parameters (Yp = 0.2, Yo =
2.0) as in the reference case. The corresponding critical and limit capillary numbers are
Ca. = 0.37 and Cay = 0.73. The maximum value of damage at steady state dy,. is
shown as a function of the capillary number Ca in Figure 13. For Ca > Ca,, it increases
almost linearly with Ca until Ca ~ 0.6. Above, di- . increases more rapidly with Ca

until d,, = 0.4. Around Ca = Cay, it finally reaches the value of 1 at points P and
P’ very sharply, with a slope close to infinity. It is for this reason that it is classical in
damage mechanics to relax the criterion for rupture to d = 0.9 or even d = 0.8. Figure
13 indeed shows that they provide the same value for Ca = Cay.

The inserted images in Figure 13 show that the damage maxima always lie at points P
and P’. They also provide an indication of the extent of the damaged zone for increasing
values of C'a. Note that for Ca = 0.8 the damage distribution is given at the instant of
initiation of rupture ¢ = t;, and not at steady state, as it no longer exists. In these cases,
the capillary number influences mainly the values of damage in the vicinity of points P
and P’ and marginally the damaged surface.

The capsule deformation and inclination at steady state are compared in Figure 14 with
the non-damaged case for Ca < Cay. No results are shown above Cay, since no steady
deformed shape exists any longer (D12 diverges to infinity). Despite the large effect of
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Figure 14: Evolution of the values (a) D35 and (b) 5%, respectively the values of Dy
and 3 at steady state, in relation to Ca. Computed for Yp = 0.2 and Yo = 2.0.
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Figure 15: Influence of the parameters Yo and Yp on the evolution of the damage value
d® .. at points P and P’ at steady state with Ca: (a) Yo = 2.0 and Yp = 0.1,0.2,0.3,
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(b) Yo = 1.0,2.0,3.0 and Y, = 0.2.

Ca on d .. for Ca. < Ca < Cay, the D{3 and S* curves initially remain superimposed
to the non-damaged case, and it is only close to Cay that small differences become
visible. No significant influence of damage is, thus, found on these global quantities. It
is a consequence of the localisation of damage around points P and P’ that occurs in
the case of a shear flow. Although the evolution curve of D15 with C'a does not provide
information on when damage is initiated (i.e. on the value of Ca.), it directly provides
the value of Caf, which corresponding to when Do diverges to infinity (initiation of

breakup).

5.3. Effect of Yp and Y¢

We finally study the influence of the material parameters Yp and Yo on the damage
of the capsule. The evolution of d,.(Ca) is represented for different values of Yp and
Y¢ in Figure 15. We observe the same trend as in the reference case (Figure 13).

For a fixed value of Yo, Ca. and Cay increase with Yp (Figure 15a). However, when
Yp is fixed (Figure 15b), increasing Yo does not impact when damage initiates (constant
Ca.) but delays when the capsule breaks up (increasing value of Cay). This relates to

the facts that the criterion of initiation of damage is only a function of Yp, whereas the
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Figure 16: Evolution of the critical and limit capillary numbers C'a. and Cay with Yp.
The solid lines represent the limit curves of Ca. and Cay for Yo = 0.2. They delimit
three domains corresponding to three states of the capsule: undamaged, damaged and
ruptured. We also show the limit curves of Cay, for Yo = 1.0, 3.0 as dotted lines to show
how the three domains evolve with the parameters.

criterion of initiation of rupture is controlled by Yp + Y¢, as already shown at the end
of section 4.

The results are synthesized in Figure 16, which provides a phase-diagram of the capsule
states for a range of values of Yp and Y¢. For a given Y, the curves Ca.(Yp) and
Ca¢(Yp;Ye) delimit three domains in the parametric space (Ca,Yp): undamaged for
Ca < Ca,, damaged for Ca. < Ca < Cay, ruptured for Ca > Cay. The only effect of
Yc is to shift the Cay delimiting curve to higher C'a values as the capsule is then more
resistant. This is what is shown by the dotted lines in Figure 16, which complete the
base case (Yo = 2.0).

6. Discussion and conclusion

In response to the current need for a damage model of microcapsules in flow, we
have developed the first fluid-structure interaction (FSI) numerical model accounting for
the degradation of the capsule membrane till the onset of rupture, when it is deformed
by hydrodynamic forces. We have placed ourselves within the framework of continuum
damage mechanics, and simulated microdefect development by degrading the elastic
material parameters through the introduction of a damage variable d. We have used an
isotropic brittle damage model, in which the damage evolution of the membrane depends
on the history of loading. We have integrated it in a Finite Element method that solves
for the membrane deformation, which we have coupled to a Boundary Integral method
to solve for the Stokes flows inside and outside the capsule.
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Figure 17: The RVE consists of a bundle of elastic initially unbroken fibres of specific
elastic energy ¢nym and probability of rupture Py (eq. (6.3)). It is subjected to an
elongation A\ up to the maximum elongation ratio A”**. The zone where the microdefects
have appeared upon the rupture of the fibres are represented in grey.

6.1. Interpretation of the damage evolution law

We have explained the physical meaning of the damage model in section 2, but propose
to further detail the interpretation of the damage evolution law eq. (2.29). The capsule
membrane being assumed to have a quasi-brittle behaviour, damage evolution is driven
by Y™ As an illustration, we propose to introduce a toy model (Figure 17), consisting
of a bundle of parallel elastic fibres under uniaxial traction (Krajcinovic 1989; Lemaitre
& Desmorat 2005). The RVE consists of N parallel elastic fibres initially unbroken and
subjected to an elongation ratio A.

Each fibre is associated to the specific elastic energy ¢ and has a brittle behaviour
given by the classical energetic criterion of rupture

{cf)NH()\mam) < ¢, = sound fibre (6.1)

oNag(AT) = ¢, = broken fibre,

where ¢, is a specific energy at rupture and A" is defined similarly to Y™" in eq.
(2.31). The key ingredient of this model is to consider ¢, as a random variable with
probability density p(¢,) given by the following band-limited and uniform probability
density

p(¢u) _ Y_C v¢u € [YD;YD + YC]
0  Vou¢[Yp,Yp+ Yol

(6.2)

where Yp and Yo are the parameters of the damage model introduced in eq. (2.28).
Hence, from egs. (6.1) and (6.2), the probability of rupture of a fibre is given by

¢NH(Amaz)

Pp(Amar) = f p(6u)dds (6.3)

0

Consistent with eq. (2.9), the damage variable d corresponds to the ratio n,/N, where
np is the number of broken fibres. For a large number of fibres, we can postulate n, =
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Py(A™*")N, and thus d = Pr(A™*7). From eq. (6.3), we obtain

0 1f (ZSNH(Amaa:) g YD
)\maa: _ Y
d dnH( = ) Dy Yp < onp (M) < Yp + Yo (6.4)
c
1 if Yp + Yo < o (A7)

where ¢y (A7) = Y™ (see eq. (2.19)2). We thus retrieve the damage evolution law
(2.29).

This toy model thus shows that the damage evolution law (2.29) is dictated by local
phenomena: each fibre has a binary state broken/unbroken (eq. (6.1)), for which the
transition is randomly triggered. By integrating the function of rupture probability over
all the fibres, we obtain a deterministic damage model for the RVE, where d ranges from
0 (all the fibres are unbroken) to 1 (all the fibres are broken). Eq. (6.2) shows that the
model parameters Yp and Yo delimit the range of dispersion of the specific energy at
rupture in the microstructure.

6.2. Capsule inflation test

We have first applied the model to a capsule under isotropic inflation, case for which we
derived an analytical solution. This has allowed us to validate the numerical simulations
and to show the consequences of damage on the pressure difference p between the internal
and external fluids. The main findings are that a given capsule remains sound up to a
critical value of the inflation ratio a., at which damage initiates. As the capsule further
inflates above this critical value, the isotropic tension first increases with the isotropic
strain, reaches a maximum and then decreases: it corresponds to what is generally defined
as a softening behaviour. As damage builds up, the pressure difference decreases, as the
global stiffness of the capsule is proportional to the local effective surface shear modulus
(1—d)Gs. The pressure difference finally returns to p = 0, which occurs when the damage
variable reaches d = 1: it corresponds to the moment when the membrane ruptures. A
given capsule is thus characterized by a limit inflation ration o, at which it breaks up.

The inflation capsule test has shown how excellent the agreement is between the
theoretical solution and the one obtained with the FSI damage model. If the problem
had been solved in displacement (imposed pressure) as classically done in finite element
numerical codes, the material softening behaviour resulting from damage would have
induced a loss of stability of the uniform solution at the beginning of the regime of
strain localization (Rice 1976; Benallal et al. 1993). In this regime, a small perturbation
from the uniform solution would have localized damage and strain in a band of width
of one element: the solution would have been strongly mesh-dependent. To solve this
issue, classical solid solvers require additional methods, called localization limiters, to
obtain more objective solutions (Bazant & Pijaudier-Cabot 1988; Simo et al. 1993).
However, it is interesting to notice that even for the case of a capsule in simple shear
flow discussed below, where the solution is non-uniform, we did not observe the effect
of strain localization by changing the mesh size (results not shown). This shows how
advantageous it is to implement the damage model within an explicit FSI solver, where
the node displacements are imposed by the fluid and the corresponding external loads
exerted by the fluids on the membrane are solved for in the solid problem. Furthermore,
the present FSI scheme is particularly robust and stable, thanks to the fact that the
quantities are integrated over the surface in both the fluid and solid solvers.
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6.3. Capsule under simple shear flow

We have then considered a capsule under simple shear flow and similarly seen that there
exist a critical value of the capillary number Ca,., at which damage initiates, and a limit
capillary number Cag, at which capsule rupture occurs. In the model, we have chosen to
base the criterion for damage on the elastic energy release rate Y of the membrane and
to use the evolution law developed by Marigo (1981) for quasi-brittle materials, in which
damage evolves when Y = Yp + Yod. The initiation of damage is then solely dictated by
the threshold modulus Yp, to which Ca, is proportional. As for the hardening modulus
Ye, it governs the rate at which damage occurs: the lower Y, the faster rupture occurs.
The initiation of rupture (d = 1) and the corresponding limit capillary number Cay are
thus controlled by Yo + Yp.

For Ca, < Ca < Cay, irreversible damage appears on the flanks of the capsule at the
points P and P’ located on the flow vorticity axis: it is at these locations that the internal
membrane tension is the highest. As the capsule tank-treads, the two damaged zones grow
around these points, but remain confined in their vicinity, the maximum values remaining
at P and P’. The most striking results in this range of capillary numbers are that the
capsule still reaches a steady deformed shape like in the case without damage, and that
the effect of damage remains non-visible on the capsule deformed shape, inclination and
dynamics. Indeed, damage concentrates around the capsule poles P and P’ in the case of
a simple shear flow, without propagating to the entire capsule. Note that such would not
be the case under other flows conditions with three-dimensional vorticity effects, as the
capsule rotation would lead to an isotropic distribution of damage all over the capsule
membrane. Still, at present, differences in shape and inclination with the no-damage case
start to be visible, when Ca gets close to Cay. At Ca = Cay, rupture finally occurs at
points P and P’, and no steady deformed shape exists thereafter for the capsule.

6.4. Comparison with experiments of capsule damage

Damage models are phenomenological and require confrontation with experimental
data to assess the relevance of choice of damage evolution law. It is interesting to observe
that the present findings corroborate well the results of the few experimental studies
present in the literature, which showed that rupture is initiated at the points of maximum
elastic tension (Husmann et al. 2005; Abkarian et al. 2008; Koleva & Rehage 2012;
Unverfehrt et al. 2015; Le Goff et al. 2017). The damage model assumptions are thus
relevant to study the dynamics of microcapsules in flow.

Comparing the results of the model with experiments also serves the purpose of
identifying the values of the model parameters, namely Yp and Y¢ in the present model.
We propose to look more closely at the results obtained by the group of Prof. H. Rehage
on thin polysiloxane microcapsules subjected to a simple shear flow until breakup in a
counter-rotating rheometer cell (Koleva & Rehage 2012; Unverfehrt et al. 2015). They
followed a given capsule under increasing values of shear rate and found that wrinkles
form on the capsule membrane (Figure 18b) similarly to what was predicted by numerical
models (Lac et al. 2004; Walter et al. 2010). Polysiloxane being very brittle and resistant
to deformation, only a small increase in capsule deformation was observed as Ca increased
(Figure 18a), and rupture occurred at only 3% of deformation. The crack formed in the
region near the vorticity axis (Figure 18c), in agreement with the prediction given by our
model. Similarly to what we have shown in section 5.2, no influence of damage effects
could be observed on the Taylor parameter curve (Figure 18a). But, even though simple
shear flow experiments do not allow to identify the value of Ca. (and thus Yp), Cay is
easily identified from the point of divergence of the Taylor parameter curve. Note that
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Figure 18: Experimental results obtained by Koleva & Rehage (2012) on polysiloxane
microcapsules: (a)Evolution of the Taylor parameter D12 with the capillary number Ca,
(b) Formation of wrinkles at Ca = 0.0042 , (¢) Formation of a crack at Ca = 0.01 , (d)
Divergence of the capsule shape for Ca larger than Ca = 0.01 . Numerical predictions
given by the present damage FSI model for Yp/Gs =5 x 1074 and Yo /G = 3.1 x 1073:
(e) At Ca = 0.005, 3D rendering showing the presence of wrinkles. (f) At Ca = 0.01,
map of damage at ¢t = ¢, when rupture initiates (d = 1). (¢g) At Ca = 0.012, map of
damage at an instant of time after ¢ = t, while the capsule shape diverges due to infinite
elongation, this is a case where damage initiates at the points on the vorticity axis but not
rupture, which occurs in the nearby region. Pictures (a-d) are reproduced from (Koleva
& Rehage 2012) with permission of The Royal Society of Chemistry.

in Koleva & Rehage (2012) the capillary number is based on the surface Young modulus
instead of the surface shear modulus as in the present study. However, for the capsules
of Figure 18, the authors estimated that the two moduli had practically the same values,
indicating that the Poisson ratio of the membrane was negative. The polysiloxane capsules
of Figure 18 are thus found to have a limit capillary number Ca,(Yp, Yo) = 0.01, which
provides an implicit relationship between Yp and Y. Since we know from Figure 16 that
the damaged domain is delimited by the curves Ca = Ca. and Ca = 0.01, we deduce
that Yp € [0;1 x 1073] and Yo € [0;4.6 x 1073]. We have run simulations assuming
Yp/Gs =5x107% and Y /G, = 3.1 x 1073, for which Ca,(Yp, Yc) = 0.01, and found a
good fit between the numerical predictions (Figure 18e-g) and the experimental results
(Figure 18b-d). For Ca > Cay, we have continued the simulations after the critical instant
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t = ty, where rupture initiates, and found that the totally damaged state d = 1 of the
membrane propagates in the plane perpendicular to the major axis (O, e1) and that the
capsule elongates indefinitely along its major axis (Figure 18g). The divergence of the
capsule shape in the simulations (Figure 18g) is similar to what is observed experimentally
(Figure 18d).

In retrospect, it is surprising that the experiments by Chang & Olbricht (1993) did not
fit those by the group of Prof. Rehage. Chang & Olbricht (1993), who were the first to
study the rupture of polyamide capsules using a counter-rotating rheometer cell, found
that rupture initiated at the apex of the major axis, where the capsule is the thinnest.
Although these results contradict what all the other studies of the literature have found,
it could be interesting to use the damage FSI model to investigate for which damage
threshold function (eq. (2.27)) the model would predict an initiation of rupture at that
location.

This study, based on an associated damage model with three ingredients (Table 1),
could be generalized to include other dissipative phenomena, such as irreversible strains.
These have for instance been taken into account by Ghaemi et al. (2016), in the case
of a capsule under compression. The model, however, does not include the gradual
degradation of the membrane and information on rupture is obtained by post-processing
the stress-strain results. The modularity of the framework that we are proposing rep-
resents a real advantage if one wants to generalize the use of the damage FSI model
for crack nucleation prediction and damage property identification. Predicting crack
propagation is, however, outside the scope of the model, as it would require the use
of another approach. The eXtended Finite Element Method (Sukumar et al. 2000; Moés
& Belytschko 2002) could then be one option among others to provide answers on the
subsequent events following crack nucleation.
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