
HAL Id: hal-03274478
https://hal.science/hal-03274478

Submitted on 30 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Generation of Interoperability Connectors
using Software Product Line Engineering

Boubou T Niang, Giacomo Kahn, Nawel Amokrane, Yacine Ouzrout,
Mustapha Derras, Jannik Laval

To cite this version:
Boubou T Niang, Giacomo Kahn, Nawel Amokrane, Yacine Ouzrout, Mustapha Derras, et al.. To-
wards the Generation of Interoperability Connectors using Software Product Line Engineering. Con-
férence en IngénieriE du Logiciel, Jun 2021, Online, France. �hal-03274478�

https://hal.science/hal-03274478
https://hal.archives-ouvertes.fr


Towards the Generation of Interoperability Connectors

using Software Product Line Engineering

Boubou T. Niang12, Giacomo Kahn1, Nawel Amokrane2, Yacine Ouzrout1,
Mustapha Derras2, and Jannik Laval1

1 Univ Lyon, Univ Lumière Lyon 2, INSA Lyon, Université Claude Bernard Lyon 1, DISP, EA4570,
69676 Bron, France prenom.nom@univ-lyon2.fr

2 Berger-Levrault prenom.nom@berger-levrault.com

Abstract

Information Systems (IS) of modern companies must be reactive and capable to com-
municate with third-party IS and within their subsystems. However, systems and applica-
tions are independently designed and conform to different technical and domain standards
that are continuously evolving. In this heterogeneous context, the communication between
systems is ensured by interoperability connectors whose properties vary according to the
communication needs. Thus, development and maintenance of the connectors can there-
fore be tedious. This paper presents an ongoing research project to automatically generate
all or a part of interoperability connectors. To do this, we combine a software product line
approach and model-driven engineering techniques.

Abstract

Les systèmes d’information (SI) des entreprises modernes doivent être réactifs et ca-
pables de communiquer avec des SI tiers tout en guaratissant la communication entre les
applications internes. Cependant, les systèmes et les applications sont conçus de façon
independante et sont conformes à différentes normes en constante évolution. Dans ce con-
texte d’hétérogénéité, la communication entre les systèmes est assurée par des connecteurs
d’interoperabilité dont les propriétés varient en fonction des besoins de communication.
Ainsi, le développement et la maintenance des connecteurs peuvent être fastidieux. Cet
article présente une recherche en cours pour la génération automatique de tout ou d’une
partie des connecteurs d’interoperabilité. Pour ce faire, nous combinons l’approche des
lignes de produits logiciels et des méthodes d’ingénierie dirigée par les modèles.

1 Introduction

The Information System (IS) occupies an important place in the proper functioning of modern
companies. Indeed, companies need to collaborate with many partners, which are structurally
diversified and operate in various business sectors. Despite this diversity, the IS of the various
stakeholders and their internal software must be able to communicate and work together in a
natural way as if they were one system of Information Systems (SoIS) [13] to enable a success-
ful collaboration. For this, it is necessary to enable interoperability between subsystems, at
least for data exchanges. These exchanges are ensured by architectural elements that manage
constituent interactions, called connectors. Connectors are first-class entities of the architecture
that describe communication semantics between heterogeneous constituents. It can also acti-
vate the behavior of the provided interfaces at runtime [10]. The development and updating
of connectors can be tedious and very time consuming as they have characteristics depending
on the need for interoperability, e.g. communication protocol, data format, data type. To
facilitate the evolution of interoperable systems, several studies have been carried out for the



Automatic Generation of Interoperability Connectors Niang, Kahn, Amokrane, Ouzrout, Derras and Laval

rapid implementation of interoperability connectors [12] [16] [4]. These works on connectors
consider them as independent constituents of business applications. This exogenous view of
the connector favors the decoupling of the information system components. The decoupling of
business applications of the SoIS enable to delegate the choice of requested external service to
the connector and to make it configurable. Another interest of decoupling is that the evolution
of exchange formats is supported by the connectors not by the communicating applications,
avoiding this way to impact the latter. Moreover, decoupling has the advantage of avoiding the
direct connection and direct call between business applications, as these types of communication
are sometimes unsecured or impossible. We therefore consider connectors as separate yet inte-
gral constituents of the IS. Their characteristics and function as the carriers of data exchanges
can be generalised to a certain extent allowing as to examine the possibility to automatically
generate all or a part of their code.

This paper presents an ongoing research project that aims at facilitating the scalability of
the ISs by acting on the exchange system to enable configuration and automatic generation
of all or a part of the interoperability connectors. For this purpose, the set of connectors is
considered as a software product line (SPL) [5] to easily manage variability. The approach will
also exploit the model-driven engineering (MDE) [15] approach to better manage complexity
of the connectors’ generation system.

2 The SPL and MDE combination approach

A Software Product Line (SPL) is defined as ”a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market segmentor
mission and that are developed from a common set of core assets in a prescribed way” [5].
The SPL engineering process consist in two phases: Domain Engineering (DE) and Application
Engineering (AE). The DE sub-process consists in specifying artefacts for reuse and the AE
sub-process consists in deriving one product by reuse [15]. The proposed approach is based on
this same mechanism.

In the DE sub-process, the specifications and source codes of the existing connectors are
analyzed. Through this analysis, we extract the connectors’ characteristics and represent their
commonalities and variability in a feature model (FM) that represents the configurability aspect
of reusable software at an abstract level [8]. Then, the FM is used to build artefacts for reuse
: APIs related artifacts such us provided resources or client calls, code support for exchanged
data serialisation (model or domain classes), or connection configuration to a queuing system.

The AE sub-process consist first in configuring the FM according to the specification of a
desired connector. Thus, the configured FM is transformed into a connector model using a
model-to-model transformation techniques. To finish, the model-to-text transformation meth-
ods is applied to the resulting model to generate the source code of the specified connector.
Figure 1 shows the process.

The proposal combines a SPL approach and model-driven engineering (MDE) methods.
While SPL allows to manage variability, MDE helps to reduce the gap between problem and
implementation domain. Thus, The transition from FM to source code goes through an inter-
mediate model. This enable flexibility and makes the generation system platform independent.
In the DE sub-process, various tasks are performed manually once, but may change occasion-
ally if the requirements of the domain change. Except the specification step, each stages in AE
phase are performed automatically to generate a desired connector.

To implement the process, we have to face some existing obstacles encountered in SPL en-
gineering. Some approaches have tackled these different barriers [7] [1] [2] [6] [11]. In [7] the

2



Automatic Generation of Interoperability Connectors Niang, Kahn, Amokrane, Ouzrout, Derras and Laval

Figure 1: Overview of the proposed SPL approach consisting in two sub-processes DE and AE.

authors proposes a staged configuration where each step is tailored for a specific stakeholder.
Reference [2] develop an automated approach for selecting a set of features that would sat-
isfy both the stakeholder functional and non-functional requirements. Authors in [1] introduce
FAMILIAR, a textual and executable DSL to facilitate large-scale FM management. Authors
in [6] propose a template-based approach for mapping FM to concise representations of vari-
ability in different kinds of other model. In [11] the authors proposes an approach based on
Feature-architecture mapping for automating the derivation by generating some java sources
code using Acceleo and ATLAS Transformation Language.

These works highlights various obstacles we will face when implementing the process: man-
aging a large-scale FM, configuring and deriving the FM based on a specification, transforming
the FM to create reusable artefacts. Before that, the following sections summarize the studies
that have been conducted to date.

Analysis and feature modeling : The SPL engineering proposes three approaches to an-
alyze commonalities and variability: proactive, reactive, and extractive [3]. In the proactive
approach, products are planed first and feature model (FM) are designed before software de-
velopment. In the reactive approach, analysis and modeling are iteratively performed during
the software development. Regarding the extractive approach, SPL re-engineering, the core
assets are built from an existing product which is not initially built with a SPL method. Our
industrial context, which already implements some interoperability mechanisms, led us to opt
for the extractive technique.

For this purpose, we start by listing the existing connectors currently in use.

Industrial Case : In order to identify the variability of the connectors, we conducted a study
on the existing data exchange techniques practiced at Berger-Levrault (BL)1, our industrial
partner. Currently, BL operates four types of communication, namely APIs interaction, APIs
interaction based on central bus, file transfer and a publish/subscribe middleware API called
BL-MOM. The APIs communication allows two APIs to communicate through the network.
Services expose APIs that can be accessed by others services. APIs communication through bus
is similar to simple APIs interaction. In the second case, the APIs don’t communicate directly,
but sent requests to an intermediate bus and receive responses from it. For the file transfer,
an application produces files containing information and deposit it in a place where other must

1Berger-Levrault is a software provider specialized in the fields of education, health, sanitary, social and
territorial management.

3



Automatic Generation of Interoperability Connectors Niang, Kahn, Amokrane, Ouzrout, Derras and Laval

consume. BL-MOM connectors establishes routes between communicating programs following
the AMQP protocol. The exchange of messages is handled according to publish/subscribe
or asynchronous request/response patterns, consequently allowing the programs to be loosely
coupled. BL-MOM uses RabbitMQ2, a reliable open source communication mediator, as the
underlying message broker and provides helpers to facilitate creating messages schema and
connectors (publishers or consumers) with messaging operations over this broker.

Variability modeling of the existing connectors : Thanks to the specification of existing
connectors combined with the analysis of their code, we represent the variability of the con-
nectors in a FM which is a tree-like representation. The proposed model is read from top to
bottom and can be read freely from left to right or vice versa without priority order. Features
are described with labelled boxes and can have several child features. At each level, the feature
represents the commonality and is considered a root for its child features which correspond to
the variability. There are a number of constraints between the features presented in Figure 2.
There are different ways to represent the variability [14]. In this paper, we opted for Feature
Oriented Domain Analysis (FODA) [9]. At this stage, the FODA notation is suffucient to rep-
resent the variable aspects of existing connectors in order to support the idea that it is possible
to consider them as a products line.

Figure 2: FM representing variability of the existing connectors. Considering the yellow boxes,
we obtain an example of FM configured for the BL-MOM connector.

3 Conclusion and Future works

We analyzed existing connectors in service for our industrial partner BL. This first study allowed
us to propose a FM based on the analysis of specification and source codes of connectors. The
results of the variability analysis supported the idea of considering connectors as a product
line. Thus, this paper presented a process for generating interoperability connectors using SPL
techniques with the support of the MDE approach. This article also presents some barriers
that we will have to tackle to make this approach a reality. Future works will mainly focus
on the achievement of the proposed approach. To do this, we will first consider a case study
corresponding to a precise type of connector, for example the BL-MOM connector presented
in the Figure 2 in yellow color. Thus, we will propose a method to configure a FM in order to

2https://www.rabbitmq.com/

4

https://www.rabbitmq.com/


Automatic Generation of Interoperability Connectors Niang, Kahn, Amokrane, Ouzrout, Derras and Laval

obtain the FM of a desired connector. Then, we will work on transforming the FM into reusable
artifacts. We will explore the product configuration using other variability modeling techniques
such as text variability modeling or domain specific language, which will be compared to the
the feature model representation.

References

[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. Familiar: A domain-
specific language for large scale management of feature models. Science of Computer Programming,
78(6):657–681, 2013.

[2] Mohsen Asadi, Samaneh Soltani, Dragan Gasevic, Marek Hatala, and Ebrahim Bagheri. Toward
automated feature model configuration with optimizing non-functional requirements. Information
and Software Technology, 56(9):1144–1165, 2014.

[3] Noor Hasrina Bakar, Zarinah M Kasirun, and Norsaremah Salleh. Feature extraction approaches
from natural language requirements for reuse in software product lines: A systematic literature
review. Journal of Systems and Software, 106:132–149, 2015.

[4] Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon Blair, and Valérie Issarny. The role of
models@ run. time in supporting on-the-fly interoperability. Computing, 95(3):167–190, 2013.

[5] Paul C Clements and Linda M Northrop. Salion, inc.: A software product line case study. Technical
report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 2002.

[6] Krzysztof Czarnecki and Micha l Antkiewicz. Mapping features to models: A template approach
based on superimposed variants. In International conference on generative programming and com-
ponent engineering, pages 422–437. Springer, 2005.

[7] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration using feature
models. In International conference on software product lines, pages 266–283. Springer, 2004.

[8] Krzysztof Czarnecki, Kasper Østerbye, and Markus Völter. Generative programming. In European
Conference on Object-Oriented Programming, pages 15–29. Springer, 2002.

[9] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst, 1990.

[10] Ralf Kutsche, Nikola Milanovic, Gregor Bauhoff, Timo Baum, Mario Cartsburg, Daniel Kumpe,
and Jürgen Widiker. Bizycle: Model-based interoperability platform for software and data inte-
gration. Proceedings of the MDTPI at ECMDA, 430, 2008.

[11] Nesrine Lahiani, Djamal Bennouar, et al. A dsl-based approach to product derivation for software
product line. Acta Informatica Pragensia, 5(2):138–143, 2017.

[12] Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang. Exogenous connectors for software
components. In International Symposium on Component-Based Software Engineering, pages 90–
106. Springer, 2005.

[13] Saleh Majd, Abel Marie-Hélène, Misséri Véronique, Moulin Claude, and Versailles David. Inte-
gration of brainstorming platform in a system of information systems. In Proceedings of the 8th
International Conference on Management of Digital EcoSystems, pages 166–173, 2016.

[14] Raúl Mazo, Camille Salinesi, Daniel Diaz, Olfa Djebbi, and Alberto Lora-Michiels. Constraints:
The heart of domain and application engineering in the product lines engineering strategy. Inter-
national Journal of Information System Modeling and Design (IJISMD), 3(2):33–68, 2012.

[15] Parastoo Mohagheghi and Jan Aagedal. Evaluating quality in model-driven engineering. In Inter-
national Workshop on Modeling in Software Engineering (MISE’07: ICSE Workshop 2007), pages
6–6. IEEE, 2007.

[16] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio Schiavoni, and Jean-
Bernard Stefani. A component-based middleware platform for reconfigurable service-oriented ar-
chitectures. Software: Practice and Experience, 42(5):559–583, 2012.

5


	Introduction
	The SPL and MDE combination approach
	Conclusion and Future works 

