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Interpolation for analytic families of multilinear
operators on metric measure spaces

Loukas Grafakos and El Maati Ouhabaz

Abstract

Let (Xj , dj , µj), j = 0, 1, . . . ,m be metric measure spaces. Given 0 < pκ ≤ ∞ for
κ = 1, . . . ,m and an analytic family of multilinear operators

Tz : L
p1(X1)× · · ·Lp

m
(Xm)→ L1

loc(X0),

for z in the complex unit strip, we prove a theorem in the spirit of Stein’s complex
interpolation for analytic families. Analyticity and our admissibility condition are
defined in the weak (integral) sense and relax the pointwise definitions given in [9].
Continuous functions with compact support are natural dense subspaces of Lebesgue
spaces over metric measure spaces and we assume the operators Tz are initially de-
fined on them. Our main lemma concerns the approximation of continuous functions
with compact support by similar functions that depend analytically in an auxiliary
parameter z. An application of the main theorem concerning bilinear estimates for
Schrödinger operators on Lp is included.

Keywords: multilinear operators, analytic families of operators, interpolation, bilinear
estimates for Schrödinger operators.
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1 Introduction
Interpolation between function spaces plays a fundamental role in many areas of analysis
such as harmonic, complex, and functional analysis, as well as in PDE. The most common
interpolation theorems are the ones of Riesz-Thorin, Marcinkiewicz, and Stein. Unlike the

1



first two results which concern a single linear operator, Stein’s interpolation theorem for
analytic families of linear operators is formulated for families which vary analytically in an
auxiliary parameter. In this way it covers and supersedes the case of a single operator, it
is more flexible, and finds a variety of applications.

In recent years, there is an increasing interest for multilinear analysis. In this setting,
it is of interest to have interpolation theorems analogous to those for linear operators. The
primary purpose of this article is to prove a version of Stein’s interpolation theorem for
multilinear operators. Our interpolation result is given in the context of Lebesgue spaces
over metric measure spaces (Xj, dj, µj), j = 0, 1, . . . ,m in which balls have finite measure.
Such spaces have nice subspace of dense functions such as the spaces of continuous functions
with compact support Cc(Xj). We consider a family of multilinear operators Tz for z in
the unit strip S = {z ∈ C : 0 ≤ Re z ≤ 1}. This family is analytic in an appropriate sense
which will be made precise in the sequel. Namely, for every f j in Cc(Xj), j = 1, . . . ,m and
w bounded function with compact support on X0 the mapping

z 7→
∫
X0

Tz(f
1, . . . , fm)w dµ0 (1.1)

is analytic in S and continuous on its closure. The operators Tz are taking values in the
space of locally integrable functions on X0 and satisfy the admissibility condition: there
exists a constant γ with 0 ≤ γ < π and an s ∈ [1,∞] such that for any f j in Cc(Xj) and
every compact subset K of X0 there is a constant C(f 1, . . . , fm, K) such that

log

[ ∫
K

|Tz(f 1, . . . , fm)|sdµ0

]1/s
≤ C(f 1, . . . , fm, K) eγ|Im z|, z ∈ S. (1.2)

The initial estimates are of the form

∥∥Tj+iy(f 1, . . . , fm)
∥∥
Lqj (X0)

≤ BjMj(y)
m∏
κ=1

‖fκ‖
L
pκ
j (Xj)

, j ∈ {0, 1}, y ∈ R,

where Bj > 0 and 0 < pκj ≤ ∞. Then we prove that for θ ∈ (0, 1) and

1

pκ
=

1− θ
pκ0

+
θ

pκ1
and

1

q
=

1− θ
q0

+
θ

q1
,

the multilinear operator

Tθ : Lp
1

(X1)× · · · × Lp
m

(Xm)→ Lq(X0)

is bounded with an appropriate estimate on its norm. We refer to Theorem 3.2 for the full
statement. The reader easily recognizes the resemblance to the Stein’s complex interpola-
tion in the linear context.

In the multilinear setting, this type of results already appeared in the work of Grafakos
and Mastyło [9]. The theorem in [9] was proved in the more general setting of quasi-Banach
spaces. However the analyticity and admissibility required there were in the pointwise
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sense. The admissibility used there is that for every (f 1, . . . , fm) ∈ Lp1(X1)×· · ·×Lp
m

(Xm)
and a.e. y ∈ X0, the mapping

z 7→ Tz(ϕ1, . . . , ϕm)(y)

is of admissible growth. Unlike the integral condition (1.2), the pointwise admissibility
is not easy to check when the operators are not explicit. The extension to more general
rearrangement invariant spaces over Xj is not important in our applications and is not
pursued here.

Section 4 is devoted to some bilinear estimates for Schrödinger operators. We consider
L = −div(A∇) + V , where A = (akl)1≤k,l≤n is a symmetric matrix with real-valued and
bounded measurable entries and V is a nonnegative locally integrable potential on Rn. We
prove that for every p ∈ (1,∞) and α, β ∈ [0,∞), there exists a constant C(α, β, γ, p),
independent of the dimension n, such that∫ ∞

0

∫
Rn
|ΓLαe−tLf(x) · ΓLβe−tLg(x)| dx tα+βdt ≤ C(α, β, γ, p)‖f‖Lp‖g‖Lp′ .

Here Γ is either ∇ or multiplication by
√
V . The result for α = β = 0 is due to Dragicevic

and Volberg [8]. Our proof relies heavily on their result as well as the interpolation theorem
applied to an appropriate analytic family of bilinear operators.

Finally, we provide the reader with some useful results on log-subharmonic functions
in the Section 5 (Appendix).

Acknowledgements. The research of L. Grafakos is partially supported by the Simons
Foundation Grant 624733 and by the Simons Fellows award 819503. The research of E. M.
Ouhabaz is partly supported by the ANR project RAGE, ANR-18-CE-0012-01.

2 Some preliminary facts
Throughout this section, (X, d, µ) will be a metric space equipped with a metric d and
with a positive measure µ on a σ-algebra A of subsets of X. Let x ∈ X and r > 0. A ball
B(x, r) is the set of points B(x, r) = {y ∈ X : d(x, y) < r}. We assume the following mild
assumptions on (X, d, µ):

(i) µ(B(x, r)) <∞ for any x ∈ X and r > 0,

(ii) µ is a regular measure with respect to the topology of X, i.e., for any A ∈ A with
µ(A) <∞ one has

µ(A) = sup{µ(K) : K is compact subset of A
}

µ(A) = inf{µ(U) : U is open subset of X and contains A
}
.

Simple functions on X have the form:
∑N

j=1 λjχAj , where λj are complex numbers and
Aj ∈ A are pairwise disjoint and satisfy µ(Aj) <∞. Simple functions are dense in Lp(X)
for any 0 < p < ∞ (as (X,µ) is σ-finite). Moreover, as the sets Aj can be approximated
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from below by compact sets, simple functions with Aj being compact sets are dense in
Lp(X) for 0 < p < ∞. We denote by L1

loc(X) the space of all measurable functions on X
that are integrable over any compact subset of X. We also denote by Cc(X) the space of
all continuous functions with compact support in X. The subsequent lemma guarantees
the abundance of such functions.

Lemma 2.1. Given K compact and U open subsets of X such that K ⊂ U , there exists
h ∈ Cc(X) such that

χK ≤ h ≤ χU .

Proof. The sets K and X \ U are closed and disjoint, so by Urysohn’s lemma (which is
applicable on metric spaces) there is a continuous function h : X → [0, 1] that is equal to
1 on K and 0 on X \ U . This function h satisfies the claim.

The following result, inspired by [1], allows us to approximate Cc(X) functions by
functions that are analytic in a new auxiliary variable z.

Lemma 2.2. Let 0 < p0 ≤ p1 ≤ ∞ satisfy p0 <∞, and define p via 1/p = (1−θ)/p0+θ/p1,
where 0 < θ < 1. Given f ∈ Cc(X) and ε > 0, there exist Nε and hεj ∈ Cc(X) supported in
pairwise disjoint open sets U ε

j , j = 1, . . . , Nε, and there exist nonzero complex constants cεj
such that the functions

f εz =
Nε∑
j=1

|cεj|
p
p0

(1−z)+ p
p1
z
hεj (2.1)

satisfy ∥∥f εθ − f∥∥Lp0 ≤ ε,


∥∥f εθ − f∥∥Lp1 ≤ ε if p1 <∞

∥∥f εθ∥∥L∞ ≤
∥∥f∥∥

L∞ + ε if p1 =∞,
(2.2)

and ∥∥f εit∥∥p0Lp0 ≤ ∥∥f∥∥pLp + ε′ ,
∥∥f ε1+it∥∥Lp1 ≤ (∥∥f∥∥pLp + ε′

) 1
p1 , (2.3)

where ε′ depends on ε, p, ‖f‖Lp and tends to zero as ε→ 0.

Proof. Given f ∈ Cc(X) and ε > 0, let E = suppf . Let E ′ =
⋃
x∈E B(x, 1) and notice that

in view of the compactness of E, the set E ′ has finite measure. By the uniform continuity
of f there is a δ in (0, 1) such that

x, y ∈ X, d(x, y) < δ =⇒ |f(x)− f(y)| < ε

2
max(1, 1

p0
)

(
1

1 + µ(E ′)

) 1
p0

.

Then we cover the support of f by finitely many balls B1, . . . , BN ′
ε
of radius δ/2. We find

pairwise disjoint measurable subsets Aj of Bj that satisfy B1 ∪ · · · ∪BN ′
ε

= A1 ∪ · · · ∪ANε ;
notice that this union contains E and is contained in E ′. Suppose that Nε of the Aj
are nonempty, without loss of generality assume these are the first Nε; this way we have
Aj 6= ∅ for all j ≤ Nε ≤ N ′ε. We now let cεj = f(xj), where xj is any fixed point in Aj. As
a consequence of these choices one has∥∥f − Nε∑

j=1

cεjχAj
∥∥
L∞ ≤

ε

2
max(1, 1

p0
)

(
1

1 + µ(E ′)

) 1
p0

.
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It follows from this that if p1 =∞ then

sup
1≤j≤Nε

|cεj| =
∥∥ Nε∑
j=1

cεjχAj
∥∥
L∞ ≤

∥∥f∥∥
L∞ + ε, (2.4)

while if p1 <∞ then

∥∥f − Nε∑
j=1

cεjχAj
∥∥min(1,pκ)

Lpκ
≤
[ ε

2
max(1, 1

p0
)

(
1

1 + µ(E ′)

) 1
p0

µ
( Nε⋃
j=1

Aj

) 1
pκ
]min(1,pκ)

≤ εmin(1,pκ)

2
,

where pκ ∈ {p0, p1, p}.
By the regularity of µ we pick compact setsKj contained in Aj such that µ(Aj\Kj) <

η
2
,

for some η > 0 chosen to satisfy

max
κ∈{0,1}

( Nε∑
j=1

|2cεj|min(1,pκ)

)
ηmin(1, 1

pκ
) <

εmin(1,pκ)

2
.

Then the compact sets Kj are pairwise disjoint, so

min
j 6=k

(
dist(Kj, Kk)

)
= ρ > 0.

Now let
U ′j =

⋃
x∈Kj

B
(
x,
ρ

3

)
and choose U ′′j open such that Aj ⊂ U ′′j and µ(U ′′j \ Aj) <

η
2
by the regularity of µ. Then

define
U ε
j = U ′j ∩ U ′′j , j = 1, 2, . . . , Nε.

The sets U ε
j are open and pairwise disjoint. Also each U ε

j contains the compact set Kj.
By Lemma 2.1 we pick gεj ∈ Cc(X) with values in [0, 1] satisfying χKj ≤ gεj ≤ χUεj . Then if
p1 <∞ by the subadditivity of ‖ · ‖min(1,p)

p we write

∥∥∥f − Nε∑
j=1

cεjg
ε
j

∥∥∥min(1,pκ)

Lpκ
≤

∥∥∥f − Nε∑
j=1

cεjχAj

∥∥∥min(1,pκ)

Lpκ
+
∥∥∥ Nε∑
j=1

cεj(χAj − gεj )
∥∥∥min(1,pκ)

Lpκ

≤ εmin(1,pκ)

2
+

Nε∑
j=1

|2cεj|min(1,pκ)ηmin(1, 1
pκ

)

≤ εmin(1,pκ),

as the χAj − gεj is bounded by 2 and supported in U ε
j \Kj which has measure at most η.

This proves (2.2) when p1 <∞. Note that the same argument shows that

∥∥∥f − Nε∑
j=1

cεjχUεj

∥∥∥
Lpκ
≤ ε, κ ∈ {0, 1}. (2.5)
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We set hεj = eiφ
ε
jgεj , where φεj is the argument of the complex number cεj . Then hεj is that

function claimed in (2.1). Observe that

f εθ =
Nε∑
j=1

|cεj|hεj =
Nε∑
j=1

cεjg
ε
j

satisfies (2.2) when p1 <∞; in the case p1 =∞ we have

|f εθ | ≤
Nε∑
j=1

|cεj|χUεj ≤ sup
j
|cεj| ≤

∥∥f∥∥
L∞ + ε

by (2.4). Thus (2.2) holds when p1 =∞. We now write

∥∥f εit∥∥p0Lp0 ≤ Nε∑
j=1

|cεj|pµ(U ε
j ) =

∥∥∥∥ Nε∑
j=1

cεjχUεj

∥∥∥∥p
Lp
≤
(
εmin(1,p) +

∥∥f∥∥min(1,p)

Lp

) p
min(1,p)

,

having used (2.5).
We set ε′ = εp if p ≤ 1 and ε′ = (ε + ‖f‖Lp)p − ‖f‖pLp when 1 < p < ∞. Then ε′ → 0

as ε→ 0 and this proves (2.3) for p0 and analogously for p1 when p1 <∞; now if p1 =∞
then ‖f ε1+it‖L∞ ≤ 1 and the right hand side of the second inequality in (2.3) is equal to 1,
so the inequality is still valid.

Throughout this paper S will denote the open unit strip S = {z ∈ C : 0 < Re z < 1}
and S its closure, i.e., the closed unit strip. As the boundary of S has two disjoint pieces
and integration over each piece will be written separately, we introduce the “half” Poisson
kernel Ω on S \ {1} via:

Ω(x, y) =
1

2

sin(πx)

cosh(πy) + cos(πx)
(2.6)

where 0 ≤ x ≤ 1 and −∞ < y < ∞ but (x, y) 6= (1, 0). This function is nonnegative and
satisfies ∫ +∞

−∞
Ω(x, t) dt = x for all 0 ≤ x < 1. (2.7)

The next result due to Hirschman [11, Lemma 1] is fundamental in complex interpolation.

Proposition 2.3. Let F be a continuous function on the closed unit strip S such that
log |F | is subharmonic in S that satisfies

sup
0≤x≤1

log |F (x+ iy)| ≤ C ea |y|, −∞ < y <∞, (2.8)

for some fixed C, a > 0 with a < π. If N0, N1 are continuous functions on the line that
satisfy N0(y) ≥ log |F (iy)| and N1(y) ≥ log |F (1 + iy)| for all y ∈ (−∞,∞), then for any
θ ∈ (0, 1) we have

log |F (θ)| ≤
∫ +∞

−∞
Ω(1− θ, t)N0(t) dt+

∫ +∞

−∞
Ω(θ, t)N1(t) dt. (2.9)
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3 Interpolation for analytic families of multilinear op-
erators

Throughout this section (Xj, dj, µj), 0 ≤ j ≤ m, are metric measure spaces that satisfy
assumptions (i) and (ii).

Definition 3.1. Suppose that for every z ∈ S there is an associated m-linear operator Tz
defined on Cc(X1)×· · ·×Cc(Xm) and taking values in L1

loc(X0). We call {Tz}z an analytic
family if for all (ϕ1, . . . , ϕm) in Cc(X1)×· · ·×Cc(Xm) and w bounded function with compact
support on X0 the mapping

z 7→
∫
X0

Tz(ϕ1, . . . , ϕm)w dµ0 (3.1)

is analytic in the open strip S and continuous on its closure. The analytic family {Tz}z
is called of admissible growth if there is a constant γ with 0 ≤ γ < π and an s satisfying
1 ≤ s ≤ ∞, such that for any (ϕ1, . . . , ϕm) in Cc(X1) × · · · × Cc(Xm) and every compact
subset K of X0 there is a constant C(ϕ1, . . . , ϕm, K) such that

log

[ ∫
K

|Tz(ϕ1, . . . , ϕm)|sdµ0

]1/s
≤ C(ϕ1, . . . , ϕm, K) eγ|Im z|, for all z ∈ S. (3.2)

Now we state the main result on interpolation of analytic multilinear operators. In
Theorem 3.2 below we assume that (Xj, dj, µj), 0 ≤ j ≤ m, are metric measured spaces
with regular measures and balls having finite measure [i.e., satisfying conditions (i) and
(ii)].

Theorem 3.2. For z ∈ S, let Tz be an m-linear operator on Cc(X1) × · · · × Cc(Xm) with
values in L1

loc(X0) that form an analytic family of admissible growth. For κ ∈ {1, . . . ,m}
let 0 < pκ0 , p

κ
1 ≤ ∞, 0 < q0, q1 ≤ ∞, fix 0 < θ < 1, and define pκ, q by the equations

1

pκ
=

1− θ
pκ0

+
θ

pκ1
and

1

q
=

1− θ
q0

+
θ

q1
. (3.3)

Suppose that for all (f 1, . . . , fm) ∈ Cc(X1)× · · · × Cc(Xm) we have∥∥Tiy(f 1, . . . , fm)
∥∥
Lq0 (X0)

≤ B0M0(y)
m∏
κ=1

‖fκ‖
Lp
κ
0 (Xκ)

, (3.4)

∥∥T1+iy(f 1, . . . , fm)
∥∥
Lq1 (X0)

≤ B1M1(y)
m∏
κ=1

‖fκ‖
Lp
κ
1 (Xκ)

, (3.5)

where M0 and M1 are nonnegative continuous functions on the real line that satisfy

M0(y) ≤ ec e
τ |y|
, M1(y) ≤ ec e

τ |y|
(3.6)

for some c, τ ≥ 0 with τ < π, and B0, B1 > 0. Then for all f j in Cc(Xj), 1 ≤ j ≤ m, we
have ∥∥Tθ(f 1, . . . , fm)

∥∥
Lq(X0)

≤ B1−θ
0 Bθ

1M(θ)
m∏
κ=1

∥∥fκ∥∥
Lpκ (Xκ)

, (3.7)
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where
M(θ) = exp

{∫ ∞
−∞

[
Ω(1− θ, y) logM0(y) + Ω(θ, y) logM1(y)

]
dy

}
.

Proof. Case I: min(q0, q1) > 1.
This assumption forces q′0, q′1 <∞ and so q′ <∞ as well. Given Tz as in the statement

of the theorem, for f j ∈ Cc(Xj), 1 ≤ j ≤ m, and g ∈ Cc(X0) one may be tempted to
consider the family of operators

H(z) =

∫
X0

Tz(f
1, . . . , fm) g dµ0

which is analytic in S, continuous and bounded in S and satisfies the hypotheses of Propo-
sition 2.3 with bounds

|H(iy)| ≤M0(y)
m∏
κ=1

‖fκ‖
Lp
κ
0
‖g‖

Lq
′
0
, |H(1 + iy)| ≤M1(y)

m∏
κ=1

‖fκ‖
Lp
κ
1
‖g‖

Lq
′
1

for all real y. Applying the result of Proposition 2.3 and identity (2.7) (with x = 1− θ and
x = θ) yields for all f 1, . . . , fm ∈ Cc(X) and g ∈ Cc(X0)∣∣∣∣∫

X0

Tθ(f
1, . . . , fm) g dµ0

∣∣∣∣ ≤M(θ)
(
B0

m∏
κ=1

‖fκ‖Lp0‖g‖Lq′0
)1−θ(

B1

m∏
κ=1

‖fκ‖Lp1‖g‖Lq′1
)θ
. (3.8)

Unfortunately this bound does not provide the claimed assertion; it supplies, however, a
useful continuity estimate for the operator Tθ.

To improve (3.8), let us first consider the situation where min(pκ0 , p
κ
1) < ∞ for some

κ ∈ {1, . . . ,m}, which forces pκ < ∞ for the same κ. Fix f j ∈ Cc(Xj), g ∈ Cc(X0) and
ε > 0. By Lemma 2.2 we can find f 1,ε

z , . . . , fm,εz and gεz such that

fκ,εz =

Nκ
ε∑

jκ=1

|cκ,εjκ |
pκ

pκ0
(1−z)+ pκ

pκ1
z
uκ,εjκ , 1 ≤ κ ≤ m, gεz =

Mε∑
k=1

|dεk|
q′
q′0

(1−z)+ q′
q′1
z
vεk,

where (u1,εj1 , . . . , u
m,ε
jm

) lies in Cc(X1)× · · · × Cc(Xm), vεk in Cc(X0), and

‖fκ,εθ − f
κ‖Lp0 < ε, ‖gεθ − g‖Lq′0 < ε, ‖fκ,εθ − f

κ‖Lp1 < ε, ‖gεθ − g‖Lq′1 < ε (3.9)

‖fκ,εit ‖Lp0 ≤
(
‖fκ‖Lp + ε′

) p
p0 , ‖gεit‖Lq′0 ≤

(
‖g‖Lq′ + ε′

) q′
q′0 , (3.10)

‖fκ,ε1+it‖Lp1 ≤
(
‖fκ‖Lp + ε′

) p
p1 , ‖gε1+it‖Lq′1 ≤

(
‖g‖q′ + ε′

) q′
q′1 , (3.11)

where ‖fκ,εθ − fκ‖Lpκ1 < ε in (3.9) is replaced by ‖fκ,εθ ‖L∞ ≤ ‖fκ‖L∞ + ε, if pκ1 = ∞ and
analogously if pκ0 =∞.

Now consider the function defined on the closure of the unit strip

F (z) =

∫
X0

Tz(f
κ,ε
z , . . . , fκ,εz ) gεz dµ0

8



=
∑

1≤j1≤N1
ε

...
1≤jm≤Nm

ε

Mε∑
k=1

{[ m∏
κ=1

|cκ,εjκ |
pκ

pκ0
(1−z)+ pκ

pκ1
z|dεk|

q′
q′0

(1−z)+ q′
q′1
z
] ∫

X0

Tz(u
1,ε
j1
, . . . , um,εjm

)vεk dµ0

}
,

Applying Hölder’s inequality with exponents s and s′ to
∫
X0
Tz(u

1,ε
j1
, . . . , um,εjm

)vεk dµ0 and
using condition (3.2) we obtain for any z in S

|F (z)| ≤

[
m∏
κ=1

Nκ
ε∑

jκ=1

|cκ,εjκ |
pκ

pκ0
+ pκ

pκ1

Mε∑
k=1

|dεk|
q′
q′0

+ q′
q′1 ‖vεk‖Ls′

]
e
[ max
j1,...,jm,k

C(u1,εj1
,...,um,εjm

,supp vεk)]e
γ|Im z|

≤ eC
′eγ|Im z|

,

where C ′ equals maxj1,...,jm,k C(u1,εj1 , . . . , u
m,ε
jm
, supp vεk) plus the logarithm of the double sum

in the square brackets. Thus F satisfies the hypothesis of Proposition 2.3, as γ < π.
Hölder’s inequality, hypothesis (3.4) and (3.10) give for y real

|F (iy)| ≤M0(y)
m∏
κ=1

∥∥fκ,εiy

∥∥
Lp
κ
0

∥∥gεiy∥∥Lq′0 ≤M0(y)
m∏
κ=1

(
‖fκ‖Lp + ε′

) pκ
pκ0

(
‖g‖Lq′ + ε′

) q′
q′0 .

Likewise, Hölder’s inequality, the hypothesis (3.4) and (3.11) imply for y real

|F (1 + iy)| ≤M1(y)
m∏
κ=1

∥∥fκ,ε1+iy

∥∥
Lp
κ
1

∥∥gε1+iy∥∥Lq′1 ≤M1(y)
m∏
κ=1

(
‖fκ‖Lpκ + ε′

) pκ
pκ1

(
‖g‖Lq′ + ε′

) q′
q′1 .

As log |F | is subharmonic in S, applying Proposition 2.3 we obtain

log |F (θ)| ≤
∫ +∞

−∞
Ω(1− θ, t) log[M0(t)Q0] dt+

∫ +∞

−∞
Ω(θ, t) log[M1(t)Q1] dt,

where Ω is the Poisson kernel on the strip [defined in (2.6)] and

Q0 =
m∏
κ=1

(
‖fκ‖Lp + ε′

) pκ
pκ0

(
‖g‖Lq′ + ε′

) q′
q′0 , Q1 =

m∏
κ=1

(
‖fκ‖Lp + ε′

) pκ
pκ1

(
‖g‖Lq′ + ε′

) q′
q′1 .

Using identity (2.7) (with x = 1− θ and x = θ) and the fact that

Q1−θ
0 Qθ

1 =
m∏
κ=1

(
‖fκ‖Lp + ε′

)(
‖g‖Lq′ + ε′

)
we obtain (with M(θ) as in the statement of the theorem) that∣∣∣∣ ∫

X0

Tθ(f
1,ε
θ , . . . , fm,εθ )gεθ dµ0

∣∣∣∣ = |F (θ)| ≤M(θ)B1−θ
0 Bθ

1

m∏
κ=1

(
‖fκ‖Lp+ε′

)(
‖g‖Lq′ +ε′

)
. (3.12)
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An application of the triangle inequality gives∣∣∣∣ ∫
X0

Tθ(f
1, . . . , fm) g dµ0 −

∫
X0

Tθ(f
1,ε
θ , . . . , fm,εθ ) gεθ dµ0

∣∣∣∣ (3.13)

≤
m∑
κ=1

∣∣∣∣ ∫
X0

Tθ(f
1
θ , . . . , f

κ−1
θ , fκ − fκθ , fκ+1, . . . , fm) g dµ0

∣∣∣∣
+

∣∣∣∣ ∫
X0

Tθ(f
1,ε
θ , . . . , fm,εθ ) (g − gεθ) dµ0

∣∣∣∣.
We now apply (3.8) in each of the terms on the right side of the inequality and we use
(3.9). We deduce that (3.13) tends to zero as ε→ 0. We conclude∣∣∣∣ ∫

X0

Tθ(f
1, . . . , fm) g dµ0

∣∣∣∣ ≤M(θ)B1−θ
0 Bθ

1

m∏
κ=1

‖fκ‖Lp‖g‖Lq′ . (3.14)

Finally we obtain (3.7) by taking the supremum in (3.14) over all g in Cc(X0) with Lq
′

norm equal to 1.
Suppose now that pκ0 = pκ1 = ∞ for some κ. This forces pκ = ∞ for these κ. Without

loss of generality assume that pκ0 = pκ1 = ∞ for all κ ≤ λ and min(pκ0 , p
κ
1) < ∞ for all

κ ∈ {λ+ 1, . . . ,m}. We repeat the preceding argument working with the analytic function

F (z) =

∫
X0

Tz(f
1, . . . , fλ, fλ+1,ε

z , . . . , fm,εz ) gεz dµ0

on S which is multilinear of a lower degree and satisfies the initial estimates

∣∣F (iy)
∣∣ ≤ B0

( λ∏
κ=1

∥∥fκ∥∥
L∞

)( m∏
κ=λ+1

∥∥fκ∥∥
Lp
κ
0

)∥∥g∥∥
Lq′
.

and ∣∣F (1 + iy)
∣∣ ≤ B1

( λ∏
κ=1

∥∥fκ∥∥
L∞

)( m∏
κ=λ+1

∥∥fκ∥∥
Lp
κ
1

)∥∥g∥∥
Lq′
.

The argument in the previous case using Proposition 2.3 yields∣∣∣∣ ∫
X0

Tθ(f
1, . . . , fm) g dµ0

∣∣∣∣ ≤ B1−θ
0 Bθ

1

( λ∏
κ=1

∥∥fκ∥∥
L∞

)
M(θ)

( m∏
κ=λ+1

∥∥fκ∥∥
Lpκ

)∥∥g∥∥
Lq′
.

Finally we take the supremum of the integrals over all g in Cc(X) with Lq′ norm equal to
1, to deduce (3.7).

Case II: min(q0, q1) ≤ 1.
Assume first that min(pκ0 , p

κ
1) <∞ for all κ. Choose r > 1 such that r min(q0, q1) > q.

Let us fix a nonnegative step function g with ‖g‖Lr′ (X0)
= 1. Assume that g =

∑K
k=1 akχEk ,

where ak > 0 and Ek are pairwise measurable compact subsets of X0 (hence of finite
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measure). It suffices to work with such dense subsets of Lr′(X0) in view of the assumption
that X0 is a σ-finite metric space. For z ∈ C set

gz =
K∑
k=1

a
R(z)
k χEk ,

where we set
R(z) = r′

[
1− q

rq0
(1− z)− q

rq1
z
]
.

Notice that R(θ) = 1. We fix fκ ∈ Cc(X) and ε > 0. Let fκ,εz be as in Case I obtained by
Lemma 2.2. Define the function

G(z) =

∫
X0

∣∣Tz(f 1,ε
z , . . . , fm,εz )

∣∣ qr |gz| dµ0 =
K∑
k=1

∫
Ek

∣∣Fk(z, x)
∣∣ qr dµ0(x). (3.15)

where

Fk(x, z) = a
r
q
R(z)

k

∑
1≤j1≤N1

ε

...
1≤jm≤Nm

ε

[
m∏
κ=1

(
|cκ,εjκ |

pκ

pκ0
(1−z)+ pκ

pκ1
z
)
Tz(u

1,ε
j1
, . . . , um,εjm

)(x)

]
.

If we knew that each term of the sum on the right in (3.15) is log-subharmonic, it would
follow from Lemma 5.1 that so is G. To achieve this we use Lemma 5.3, which requires
knowing that for each k, the mapping z 7→ Fk(·, z) is analytic from S to L1(Ek). To show
this, in view of Theorem 5.2, it suffices to show that for any bounded function w supported
in Ek the function z 7→

∫
Ek
Fk(z, x)w(x) dµ0(x) is analytic in S and continuous on its

closure; but this condition is guaranteed by the definition of analytic families.
We plan to apply Proposition 2.3 to G and we verify its hypotheses. Using Hölder’s

inequality with indices rq0
q

and
(
rq0
q

)′, (3.4), and the fact ‖g‖Lr′ = 1 we obtain

G(it) ≤
{∫

X0

∣∣Tit(f 1,ε
it , . . . , f

m,ε
it )

∣∣q0 dµ0

} q
rq0 ∥∥git∥∥

L
(
rq0
q )′ ≤

[
M0(t)

m∏
κ=1

(∥∥fκ∥∥pκ
Lpκ

+ ε′
) 1
pκ

] q
r

.

Similarly, we obtain the estimate

G(1+it) ≤

[
M1(t)

m∏
κ=1

(∥∥fκ∥∥pκ
Lpκ

+ ε′
) 1
pκ

] q
r

.

Finally we verify condition (2.8) for G. Let E be a compact set that contains all Ek. We

11



apply Hölder’s inequality with indices rs
q
and

(
rs
q

)′ to obtain for z ∈ S

G(z)

≤
∥∥Tz(f εz )χE

∥∥ qr
Ls

∥∥gz∥∥
L
( rsq )′

≤
[ ∑

1≤j1≤N1
ε

...
1≤jm≤Nm

ε

m∏
κ=1

|cκ,εjκ |
pκ

pκ0
+ pκ

pκ1

∥∥Tz(u1,εj1 , . . . , um,εjm
)
∥∥
Ls(E)

] q
r
[ K∑
k=1

|dk|r
′[1+ q

r
( 1
q0

+ 1
q1

)]∥∥χEk∥∥L( rsq )′

]

≤ e
q
r

sup
j1,...,jm

C(u1,εj1
,...,um,εjm

,E)eγ|Im z|[ ∑
1≤j1≤N1

ε

...
1≤jm≤Nm

ε

m∏
κ=1

|cκ,εjκ |
pκ

pκ0
+ pκ

pκ1

]q
r
[ K∑
k=1

|ak|r
′[1+ q

r
( 1
q0

+ 1
q1

)]∥∥χEk∥∥L( rsq )′

]

having used (3.2). Taking the logarithm we deduce condition (2.8) for G.
As gθ = g, by Proposition 2.3 we conclude∫
X0

∣∣Tθ(f ε1,θ, . . . , f εm,θ)∣∣ qr g dµ0 = G(θ) ≤
(
B1−θ

0 Bθ
1M(θ)

m∏
κ=1

(∥∥fκ∥∥pκ
Lpκ

+ ε′
) 1
pκ
)q
r
. (3.16)

Inequality (3.16) implies that∥∥Tθ(f 1,ε
θ , . . . , fm,εθ )

∥∥
Lq

=

∥∥∥∥ ∣∣Tθ(f 1,ε
θ , . . . , fm,εθ )

∣∣ qr ∥∥∥∥ rq
Lr

= sup

{∫
X0

∣∣Tθ(f 1,ε
θ , . . . , fm,εθ )

∣∣ qr gdµ0 : g =
∑K

k=1 akχEk , ak > 0, Ek compact, ‖g‖Lr′ = 1

} r
q

≤ B1−θ
0 Bθ

1M(θ)
m∏
κ=1

(∥∥fκ∥∥pκ
Lpκ

+ ε′
) 1
pκ

. (3.17)

We also note that a similar argument applied to the log-subharmonic function

H(z) =

∫
X0

|Tz(f1, . . . , fm)|
q
r |gz| dµ0

yields the estimate

|H(θ)| =
∣∣∣∣ ∫

X0

|Tθ(f1, . . . , fm)|
q
r g dµ0

∣∣∣∣ ≤ (B1−θ
0 Bθ

1M(θ)
m∏
κ=1

∥∥fκ∥∥1−θ
Lp
κ
0

∥∥fκ∥∥θ
Lp
κ
1

)q
r
,

from which it follows that∥∥Tθ(f 1, . . . , fm)
∥∥
Lq
≤ B1−θ

0 Bθ
1M(θ)

m∏
κ=1

∥∥fκ∥∥1−θ
Lp
κ
0

∥∥fκ∥∥θ
Lp
κ
1
, (3.18)
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via a duality argument similar to that leading to (3.17).
We now make use of the triangle inequality

‖Tθ(f 1, . . . , fm)‖min(1,q)
Lq ≤

m∑
κ=1

‖Tθ(. . . , fκ − fκ,εθ , . . . )‖min(1,q)
Lq + ‖Tθ(f 1,ε

θ , . . . , fm,εθ )‖min(1,q)
Lq .

For the second term on the right above we use (3.17), while the first term is bounded by
a constant multiple of (ε1−θ)min(1,q) in view of (3.18), and hence it tends to zero as ε→ 0.
We deduce (3.7) by letting ε→ 0.

Finally, if pκ0 = pκ1 = ∞ for certain κ we factor these κ’s and we consider another
multilinear operator of lower degree. For instance if pκ0 = pκ1 =∞ exactly when κ ≤ λ, we
consider the operator

(fλ+1, . . . , fm) 7→ Tz(f
1, . . . , fλ, fλ+1, . . . , fm)

which satisfies the initial assumptions with constants B0 and B1 replaced by the original
ones multiplied by

∏λ
κ=1 ‖fκ‖L∞ .

Remark 3.3. As we already mentioned in the introduction, an interpolation theorem for
analytic families of multilinear operators was proved in [9]. The main difference between
these results is that in [9] the concepts of analyticity and admissibility condition are in
the pointwise while ours are in the integral sense, as mandated by applications (see next
section). Unlike (3.2) this pointwise admissibility condition is not easy to check in general,
especially when the operators involved do not have explicit formulae.

4 A bilinear estimate for Schrödinger operators
We consider the self-adjoint operator

L = −div(A∇) + V

on L2(Rn) where A = (akl) is a symmetric matrix with real-valued and bounded measurable
entries. It is assumed to be elliptic with ellipticity constant γ > 0, that is∑

k,l

akl(x)ξkξl ≥ γ|ξ|2, a.e. x ∈ Rn, ∀ξ = (ξ1, ..., ξn) ∈ Rn.

The potential V is assumed to be nonnegative and locally integrable.
By the standard sesquilinear form technique, one construct a self-adjoint realization of L.
The following theorem was proved by Dragicevic and Volberg [8].

Theorem 4.1. Let Γ be either ∇ or multiplication by
√
V . Let p ∈ (1,∞) and p′ its

conjugate number. Then there exists a constant Cγ, independent of the dimension n, such
that ∫ ∞

0

∫
Rn
|Γe−tLf(x)||Γe−tLg(x)| dx dt ≤ Cγ max(p, p′)‖f‖Lp‖g‖Lp′ . (4.1)
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The constant Cγ can be taken to be C max(1, 1
γ
) with C an absolute constant.

The aim of this section is to prove, under the same assumptions as before, the following
result.

Proposition 4.2. Let α, β ∈ [0,∞) and 1 < p < ∞. Then there exists a constant
C(α, β, γ, p), independent of n, such that∫ ∞

0

∫
Rn
|ΓLαe−tLf(x) · ΓLβe−tLg(x)| dx tα+βdt ≤ C(α, β, γ, p)‖f‖Lp‖g‖Lp′ . (4.2)

This proposition can be viewed as a weighted version of the bilinear estimate stated in
the previous theorem. More precisely, let ω : (0,∞)→ (0,∞) such that ω(t) ∼ tη for some
η > 0. Then (4.2) can be rewritten as∫ ∞

0

∫
Rn
|Γe−tLf(x) · Γe−tLg(x)| dxω(t) dt ≤ C(α, η, γ, p)‖L−αf‖Lp‖L−(η−α)g‖Lp′ (4.3)

for α ∈ [0, η].

Proof of Proposition 4.2. Define

Tα,β(f, g)(x, t) = Γ(tL)αe−tLf(x) · Γ(tL)βe−tLg(x).

The above proposition can be rephrased as

Tα,β : Lp(Rn)× Lp′(Rn)→ L1(Rn × (0,∞), dxdt)

is a bounded bilinear operator with norm estimated by C(α, β, γ, p).
For complex z, we define the bilinear operator

Tz(f, g)(x, t) = Γ(tL)α
′ze−tLf(x) · Γ(tL)β

′ze−tLg(x),

where α′, β′ ∈ [0,∞) will be specified later.
We show that the family (Tz) is analytic in the sense of Definition 3.1. Let f, g ∈ Cc(Rn)

and w ∈ L∞(Rn × (0,∞)) a bounded function with compact support K. We prove that

z 7→
∫ ∞
0

∫
Rn
Tz(f, g)(x, t)w(x, t) dx dt (4.4)

is analytic on S and continuous on S.
Note that there exist a compact set K0 of Rn and 0 < a < b <∞ such that K ⊂ K0×

[a, b]. This can be seen by taking K0 = p1(K) and [a, b] = p2(K) where p1 : Rn× (0,∞)→
Rn and p2 : Rn× (0,∞)→ (0,∞) are the first and second projections. These functions are
continuous and hence p1(K) and p2(K) are compact sets of Rn and (0,∞), respectively.
By arguing by contradiction, it is easy to see that a > 0. In particular, the function in
(4.4) coincides with

z 7→
∫ b

a

〈
Γ(tL)α

′ze−tLf, w(·, t)Γ(tL)β
′ze−tLg

〉
L2
dt.
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Note that by ellipticity and the fact that V is nonnegative,

‖∇u‖2L2 ≤
1

γ

∫
Rn
Lu u dx =

1

γ

∥∥L1/2u
∥∥2
L2 and

∥∥√V u∥∥2
L2 ≤

∥∥L1/2u
∥∥2
L2 .

Hence
‖Γu‖2L2 ≤ max

(
1,

1

γ

)∥∥L1/2u
∥∥2
L2 . (4.5)

Recall that for every h ∈ D(L), the function z 7→ Lzh is analytic on S and continuous
on S (see e.g. [10], Proposition 3.1.1, b)). Since the operator Γe−tL is bounded on L2(Rn)
for every t > 0 (see (4.5)), it follows that the function

z 7→
〈
Γ(tL)α

′ze−tLf, w(·, t)Γ(tL)β
′ze−tLg

〉
L2

is analytic on S and continuous on S. It remains to bound in a neighborhood of each
z0 ∈ S this function by some function ψ(t) which is integrable on [a, b] and then obtain the
desired conclusion for the function in (4.4).

By the Cauchy-Schwarz inequality and (4.5) we write∣∣∣〈Γ(tL)α
′ze−tLf, w(·, t)Γ(tL)β

′ze−tLg
〉
L2

∣∣∣ (4.6)

≤ ‖w‖L∞

∥∥∥Γ(tL)α
′Re ze−tL(tL)iα

′Im zf
∥∥∥
L2

∥∥∥Γ(tL)β
′Re ze−tL(tL)iβ

′Im zg
∥∥∥
L2

≤ ‖w‖L∞ max
(

1,
1

γ

)∥∥∥L1/2(tL)α
′Re ze−tL(tL)iα

′Im zf
∥∥∥
L2

∥∥∥L1/2(tL)β
′Re ze−tL(tL)iβ

′Im zg
∥∥∥
L2
.

The standard functional calculus for self-adjoint operators, i.e.,

‖φ(L)h‖L2 ≤ sup
λ>0
|φ(λ)|‖h‖L2 ,

gives
‖(tL)α

′Re ze−tLh‖L2 ≤ eα
′Re z(log(α′Re z)−1)‖h‖L2 . (4.7)

Clearly the term on the right hand side of (4.7) is uniformly bounded in z in a bounded
neighborhood W0 of a fixed z0 ∈ S. It follows from this and the estimates in (4.6) that∣∣∣〈Γ(tL)α

′ze−tLf, w(·, t)Γ(tL)β
′ze−tLg

〉
L2

∣∣∣ ≤ C‖w‖L∞

t
‖f‖L2‖g‖L2 , z ∈ W0.

This function is integrable on [a, b] and hence by the dominated convergence theorem we
obtain that the function in (4.4) is analytic at z0 ∈ S and continuous at z0 ∈ S.

Next, we prove the admissibility condition. For f, g ∈ L2(Rn) and z = r + is ∈ S,

‖Tz(f, g)‖L1(Rn×(0,∞))

=

∫ ∞
0

∫
Rn
|Γ(tL)α

′ze−tLf(x) · Γ(tL)β
′ze−tLg(x)| dx dt

=

∫ ∞
0

∫
Rn
|Γ(tL)α

′re−tLLisα
′
f · Γ(tL)rβ

′
e−tLLisβ

′
g| dx dt

≤

∥∥∥∥∥
(∫ ∞

0

|Γ(tL)α
′re−tLLisα

′
f |2 dt

)1/2
∥∥∥∥∥
L2

∥∥∥∥∥
(∫ ∞

0

|Γ(tL)β
′re−tLLisβ

′
f |2 dt

)1/2
∥∥∥∥∥
L2

.
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We estimate the latest terms using the standard functional calculus for the self-adjoint
operator L on L2(Rn). Using (4.5) we have∥∥∥∥∥

(∫ ∞
0

|Γ(tL)α
′re−tLLisα

′
f |2 dt

)1/2
∥∥∥∥∥
2

L2

=

∫ ∞
0

∥∥∥Γ(tL)α
′re−tLLisα

′
f
∥∥∥2
L2
dt

≤ max
(

1,
1

γ

)∫ ∞
0

∥∥∥L1/2(tL)α
′re−tLLisα

′
f
∥∥∥2
L2
dt

= max
(

1,
1

γ

)∫ ∞
0

〈
L1/2(tL)α

′re−tLLisα
′
f, L1/2(tL)α

′re−tLLisα
′
f
〉
L2
dt

= max
(

1,
1

γ

)∫ ∞
0

〈
(tL)2α

′r+1e−2tLLisα
′
f, Lisα

′
f
〉
L2

dt

t

= max
(

1,
1

γ

)〈∫ ∞
0

(tL)2α
′r+1e−2tLLisα

′
f
dt

t
, Lisα

′
f

〉
L2

≤ max
(

1,
1

γ

)∥∥∥∥∫ ∞
0

(tL)2α
′r+1e−2tLLisα

′
f
dt

t

∥∥∥∥
L2

∥∥∥Lisα′
f
∥∥∥
L2
.

Using again the functional calculus, we have ‖Lisα′
f‖2 = ‖f‖2 and∥∥∥∥∫ ∞

0

(tL)2α
′r+1e−2tLLisα

′
f
dt

t

∥∥∥∥
L2

≤ sup
λ>0

∣∣∣∣∫ ∞
0

(tλ)2α
′r+1e−2tλ

dt

t

∣∣∣∣ ‖Lisα′
f‖L2

=

∫ ∞
0

t2α
′re−2t dt ‖f‖L2

= 2−2α
′r−1Γ(2α′r + 1) ‖f‖L2 .

Thus we obtain for all z = r + is ∈ S

‖Tz(f, g)‖L1(Rn×(0,∞)) ≤
max(1, 1

γ
)

2(α′+β′)r+1

√
Γ(2α′r + 1)Γ(2β′r + 1) ‖f‖L2‖g‖L2 . (4.8)

In particular,

‖Tz(f, g)‖L1(Rn×(0,∞)) ≤ max
(

1,
1

γ

)√
Γ(2α′ + 1)Γ(2β′ + 1) ‖f‖L2‖g‖L2 (4.9)

for all f, g ∈ L2(Rn) and all z ∈ S. This proves that the analytic family of bilinear
operators Tz is of admissible growth in the sense of Definition 3.1.

The particular case of (4.8) for z = 1 + is yields

‖T1+is(f, g)‖L1(Rn×(0,∞)) ≤
max(1, 1

γ
)

2(α′+β′)+1

√
Γ(2α′ + 1)Γ(2β′ + 1) ‖f‖L2‖g‖L2 . (4.10)

Next, we estimate the L1-norm of Tis(f, g). Let p1 ∈ (1, 2) be a fixed number and let
f ∈ Lp1(Rn) and g ∈ Lp′1(Rn). By Theorem 4.1 we obtain

‖Tis(f, g)‖L1(Rn×(0,∞)) =

∫ ∞
0

∫
Rn
|Γe−tLLisα′

f(x) · Γe−tLLisβ′
g(x)| dx dt

≤ Cγp
′
1‖Lisα

′
f‖Lp1‖Lisβ

′
g‖

Lp
′
1
.
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Since the semigroup (e−tL) is sub-Markovian and symmetric, L has a holomorphic func-
tional calculus on Lq(Rn) for all q ∈ (1,∞) (cf. [6], or [2]). For imaginary powers, it follows
from these last two references that there exists a constant C(p1), independent of n, such
that for all s ∈ R,

‖Lisα′
f‖Lp1 ≤ C(p1)e

π
2
|s|α′‖f‖Lp1 . (4.11)

Therefore,
‖Tis(f, g)‖L1(Rn×(0,∞)) ≤ C(γ, p1)e

π
2
(α′+β′)|s|‖f‖Lp1‖g‖Lp′1 . (4.12)

We are now in the position to apply Theorem 3.2. It follows from (4.10) and (4.12)
that for θ ∈ (0, 1) and 1

pθ
= θ

2
+ 1−θ

p1
we have

‖Tθ(f, g)‖L1(Rn×(0,∞)) ≤ cθM(θ)‖f‖Lpθ‖g‖Lp′θ (4.13)

with

cθ =

(
max

(
1,

1

γ

)
2−α

′−β′−1
√

Γ(2α′ + 1)Γ(2β′ + 1)

)θ
C(γ, p1)

1−θ

and

M(θ) = exp

{
sin(πθ)

2

π

2
(α′ + β′)

∫ +∞

−∞

|s|
cosh(πs) + cos(πθ)

ds

}
.

Finally, for any p ∈ (1, 2) we choose p1 < p, α′ = α
θ
, β′ = β

θ
and set θ = p−p1

2−p1
2
p
so that

pθ = p and Tθ = Tα,β. The proposition follows from (4.13).

Remark 4.3. It is an interesting question to understand for which functions F and G one
has ∫ ∞

0

∫
Rn
|ΓF (tL)f(x) · ΓG(tL)g(x)| dx dt ≤ C(F,G, p)‖f‖Lp‖g‖Lp′ .

Note that the term on the left hand side is bounded by the product∥∥∥∥∥
(∫ ∞

0

|ΓF (tL)f |2 dt
)1/2

∥∥∥∥∥
Lp

∥∥∥∥∥
(∫ ∞

0

|ΓG(tL)g|2 dt
)1/2

∥∥∥∥∥
Lp′

.

The Littlewood-Paley-Stein functional
(∫∞

0
|ΓF (tL)f |2 dt

)1/2 is bounded on Lp(Rn) for p ∈
(1, 2] as soon as F is holomorphic in a certain sector (with angle depending on p) and
decays faster that 1√

|z|
at ∞ (see [4]). Thus the first term in the above product is fine for

p ∈ (1, 2]. However the second term could be unbounded on Lp
′
(Rn) even if L = ∆ + V

(V 6= 0) and G(z) = e−z. See again [4].

5 Appendix: Log-subharmonic functions on the plane
A locally integrable function f on an open subset O of the complex plane with values in
[−∞,∞) is called subharmonic if it is upper semicontinuous, i.e., lim supw→z f(w) ≤ f(z)
for every z ∈ O and satisfies

f(z) ≤ 1

|B(z, r)|

∫
B(z,r)

f(w) dw (5.1)

17



for any z ∈ O and every r > 0 such that B(z, r) ⊂ O. If f ∈ C2, then the above condition
is equivalent to ∆f ≥ 0. A function is called log-subharmonic if it is nonnegative and its
logarithm is subharmonic.

Lemma 5.1. The sum of two log-subharmonic functions is log-subharmonic.

Proof. Let ϕ(x, y) = log(ex + ey) defined on R2. Then ϕ is obviously increasing in each
variable and is a convex function of both variables

Suppose that F,G are subharmonic functions on an open subset of the complex plane.
Then the fact that ϕ is increasing in each variable and Jensen’s inequality (which can be
used since ϕ is convex) gives

ϕ(F (z), G(z)) ≤ ϕ

(
1

|B(z, r)|

∫
B(z,r)

F (w) dw ,
1

|B(z, r)|

∫
B(z,r)

G(w) dw

)
≤ 1

|B(z, r)|

∫
B(z,r)

ϕ(F (w), G(w)) dw ,

which implies that ϕ(F (z), G(z)) is subharmonic. Now let f, g be log-subharmonic func-
tions. Writing f = eF and g = eG, then log(f + g) = ϕ(F,G). But ϕ(F,G) was shown to
be subharmonic, thus log(f + g) is also subharmonic.

We review a couple of facts from the theory of analytic functions with values in Banach
spaces. Let B be a Banach space and let f be a mapping from an open subset U of C to
B. We say that f is analytic if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exits in the norm of B.

Theorem 5.2. Let f be a mapping from an open subset U of C to a Banach space B. Then
f is analytic if and only if for every bounded linear functional Λ in B we have

lim
z→z0

Λ

(
f(z)− f(z0)

z − z0

)
exists in C.

Log-subharmonic can be generated from L1(X)-valued analytic functions in terms of
the subsequent lemma.

Lemma 5.3. [15, Lemma 2] Let (X,µ) be a measure space with µ(X) < ∞ and let V be
a complex-valued function defined on X × S such that the mapping z 7→ V (·, z) from S to
L1(X) is a Banach-valued analytic function. Then the function

z 7→ F (z) =

∫
X

|V (x, z)|q dµ(x)

is log-subharmonic for any 0 < q ≤ 1.
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