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Abstract

The proposed embedded strain sensor consists of six elastic rings,
placed in an icosahedral symmetry, whose measured elongations give
access to the complete 3D strain tensor in the surrounding matrix. The
linear relationship between the ring elongations and the strain tensor in
the matrix is given. From this relation it is deduced that the tensor is
isotropic, i.e. its sensitivity is independent of the rotation of the strain
tensor and that the sensor is more sensitive to hydrostatic strains than
to deviatoric strains. The additional perturbation of the strain field
in the matrix, induced by the presence of the sensor, is studied by
means of a numerical integration of the Kelvin solution and the use
two dimensionless factors relating to geometry and elasticity. From
this study we obtain, in a generic way, an evaluation of the intensity
of this additional strain field and the value of the measurement bias
due to the elasticity of the ring, which allows in practice to reduce this
bias. A draft of the realisation is proposed, for which it is verified that
the disturbance of the strain field in the matrix as well as the bias to
be corrected are small.
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1 Introduction

Undergoing exponential industrial development [5], Structural Health Mon-
itoring (SHM) aims both to improve reliability and to reduce structural
inspection costs in many fields (Civil Engineering, Aeronautics, Marine En-
gineering. . . ). Recent SHM methods, such as big-data methods, use infor-
mation of different physical types. However strain measurements remain of
primary interest due to their strong mechanical content. One of the main
challenges of SHM is to measure the strain (or stress) in the body and com-
pare it to a calculated value with respect to the shape of the structure, its
present load, its history. . .

Most strain measurements are carried out on surfaces, using strain gauges,
optical fibres or Digital Image Correlation. On the one hand, this is an ad-
vantage because the stresses are generally maximum on the surfaces but, on
the other hand, surfaces are, especially in civil engineering, the site of great
thermal variations and chemical aggression, which can lead to erroneous in-
formation. Furthermore, the data available for a surface measurement is
reduced to the 3 components of the 2D strain tensors.

Embedded sensors have been developed since the 1940s for Civil En-
gineering, with halter-shaped devices embedded in concrete. These are
nowadays available with various transducers such as vibrating wires, strain
gauges, optical wires. Such a design has many flaws: it only provides axial
strain, the rigidity of the spring body perturbs the strain field in the matrix,
which induces a bias in the measurement and a stress concentration in the
matrix. Embeddable strain gauges are also commercialised, but they still
provide 1D information, their flat shape requires a good adhesion to the
matrix and can initiate a crack. Embedded sensor (including the proposed
one) are inherently limited to materials with cold casting processes such
as concrete, polymers and composites. To our knowledge, the sole alter-
native method to measure a strain inside a body (of engineering material,
this excludes optical methods) is the 3D Digital Image Correlation method
[6] which requires both a heterogenous meso-structure (for the required 3D
speckle) and a powerful X-ray source. These two points strongly restrict its
use to laboratory testing.

The authors and colleagues have proposed a new sensor consisting of a
spherical body instrumented with six regularly spaced, radial strain trans-
ducers [11] [10]. Thanks to the Eshelby’s inclusion theory, the strain in the
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sphere is homogenous and the strain in the matrix, which would exist in the
absence of the sphere, depends linearly on the strain in the sphere (given the
elasticity of the matrix). This concept has been successfully tested during
concrete pouring and concrete compression [16]. A variant of this sensor, in
which the six transducers are no longer radial but perimetric (ring shaped),
has recently been proposed [12]. However, the use of a ball as a test body
disturbs the nearby strain field in the matrix and the exact measurement
of the strain requires, from Eshelby’s theory, the knowledge of the elasticity
of both the sphere and the matrix. In this paper we study a variant of
this concept in which the sphere is removed and only the six rings are kept.
One can also consider that the sphere is made of the matrix material, the
localization tensor being then degenerate to the identity if one neglects the
stiffness of the thin rings.

The architecture of the sensor is presented in Section 2. In Section 3,
the linear relationship between the six elongations of the rings and the six
components of the matrix strain tensor is given. In Section 4 is detailed the
internal sensitivity of the the sensor, i.e. the link between the ring strains
and the matrix strain tensor, as well as its consequence on the accuracy
of the measurement. Section 5 is devoted to the study of the perturbation
strain field generated by the presence of the ring inside the strained matrix.
In order to establish relations as general and as simple as possible, a semi-
analytical method based on the Kelvin’s point-force solution is used, as well
as dimensionless parameters. This gives access to the strain concentration
around the sensor and to the induced bias in all cases. Moreover, the expres-
sion of the bias allows a correction of the measurement in order to recover
the nominal matrix strain (the one that would exist in the absence of the
sensor). The magnitude of the perturbation strain field and of the bias are
specified in an example of a design with rings made of Constantan rings in
a concrete matrix.

2 Architecture

Figure 3 shows a sketch of proposed design. The sensor is composed of six
deformable rings, the normals of which are regularly spaced along the 6 (5th
order) axis of an icosahedron. The sensor is supposed to be embedded inside
the matrix during its casting. The six transducers, whose technology is not
fixed, measure the mean elongation of the rings. This is facilitated if the
rings are sliding in the matrix because then their deformation (and tension)
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Figure 1: Sketch of the 6-ring 3D strain sensor. Red: transducers, gray:
elastic rings.

is homogeneous. Depending upon the nature of the transducer, the elastic
ring and the transducer can be a single part (e.g a coil of resistive wire) or
two separate parts (e.g a strain gauge on a metallic ring).

Reduced to a minimum volume, this shape causes little disturbance to
the strain (or stress) field in the matrix (this is studied in Section 5). Com-
pared to the previous ball concept, it can be considered that the sphere is
made of the same matter as the matrix, reducing the Eshelby problem to a
trivial case. Wire or fibre transducers generally require a pre-tensioning in
order to avoid micro-buckling in case of compressive states [1]. As an engi-
neering formula indicates that the acceptable tension T on belt wound on a
pulley evolves as T = T0 expφβ where T0 is the tension on the slack strand
(which can be weak and obtained by gluing), φ the Coulomb’s friction and
β the winding angle, such pre-tension of is easy to maintain on the rings.

3 Relationship between the strain tensor of the
matrix and the elongation of the ring

The goal of this section is to find the most direct relationship between the
measured strains of the rings and the strain tensor of the matrix. The latter
is supposed to be homogeneous in the vicinity of the sensor (this hypothesis
is common for any device, for example strain gauges). The ring is assimi-
lated to its mean circle and is supposed (in this section) to have no volume
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thus not to affect the matrix strain.

M

O

Figure 2: Geometrical parameterisation

The local basis of the circle is (m,p,n), in which n is normal to the plane
of the circle (see Figure 2). The radius of the ring is R, the global reference
basis is (e1, e2, e3) and ε is the (homogeneous) strain tensor. Relying in the
plane defined by m and p, the circular ring is subjected to the 2D projection
P (ε) of the strain tensor, of components in the local basis:

P (ε) =

[
εI 0
0 εII

]
(m,p)

(1)

in which, without any restriction, (m,p) are chosen to coincide with the
eigenvectors of P (ε). A portion of ring at point M such that OM = Reρ,
where (eρ, eθ) are the polar coordinates (see figure 2), has the local hoop
strain:

eθ.ε.eθ = εI sin2 θ + εII cos2 θ. (2)

The global ring elongation ∆L is given by the integral of this local strain
over one turn:

∆L = πR(ε̄I + ε̄II). (3)

Because the initial length is L = 2πR, the mean strain of the ring is:

∆L

L
=
εI + εII

2
. (4)

This result can also be obtained by considering a compatible displacement
field, which leads to deform the circle into an ellipse of semi-axis RI =
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R(1 + εI) and RII = R(1 + εII), and calculating the perimeter of the ellipse

with the approximate formula L+∆L = π
√

2(R2
I +R2

II). Previous equation

refers to the trace of the tensor P (ε). Being an invariant, this expression:

2
∆L

L
= trace(P (ε)) (5)

is also true in the global basis (e1, e2, e3):

2
∆L

L
= PprPpsεrs (6)

in which the components of the projector are:

Ppq = δpq − npnq (7)

where δ is the Kronecker symbol. As a consequence:

2
∆L

L
= Prsεrs. (8)

Above equation is available for each one of the six rings, leading to the
system:

1

2



P 1
11 P 1

22 P 1
33

√
2P 1

23

√
2P 1

31

√
2P 1

12

P 2
11 · · ·

P 6
11 · · ·

 •


ε11

ε22

ε33√
2ε23√
2ε31√
2ε12

 =



∆L1/L
∆L2/L
∆L3/L
∆L4/L
∆L5/L
∆L6/L

 , (9)

where the extra indexes refer to the ring number. Such correspondence
between the εI , for I ∈ {1, . . . , 6}, and the εpq was introduced at first by
Bechterew [4] but are often called (in our opinion incorrectly) Kelvin’s nota-
tion. Anyway, it is preferred to classical Voigt’s notation for some of its later
used properties. The normals nI of the six ring correspond to the normals
to the faces of an icosahedron, whose components are chosen as:

n1 = (0, ϕ, 1)/
√

2 + ϕ,

n2 = (0, ϕ,−1)/
√

2 + ϕ,

n3 = (1, 0, ϕ)/
√

2 + ϕ,

n4 = (1, 0,−ϕ)/
√

2 + ϕ,

n5 = (ϕ, 1, 0)/
√

2 + ϕ,

n6 = (ϕ,−1, 0)/
√

2 + ϕ, (10)
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where ϕ = (1 +
√

5)/2 is the golden ratio. Gathering equations 9 and 10
gives a linear relation of the form:

MIJεJ =
∆LI
L

, (11)

in which εJ represents the Bechterew components of ε as defined by Equa-
tion 9. From equation 10 (and considering the property ϕ2 − 1 = ϕ) the
analytical expression of M is:

M =
1

2(2 + ϕ)



2 + ϕ 1 1 + ϕ −
√

2ϕ 0 0

2 + ϕ 1 1 + ϕ
√

2ϕ 0 0

1 + ϕ 2 + ϕ 1 0 −
√

2ϕ 0

1 + ϕ 2 + ϕ 1 0
√

2ϕ 0

1 1 + ϕ 2 + ϕ 0 0 −
√

2ϕ

1 1 + ϕ 2 + ϕ 0 0
√

2ϕ


(12)

whose inverse is:

M−1 =
1

2



2 2 ϕ− 1 ϕ− 1 −ϕ −ϕ
−ϕ −ϕ 2 2 ϕ− 1 ϕ− 1
ϕ− 1 ϕ− 1 −ϕ −ϕ 2 2
1−2ϕ√

2

2ϕ−1√
2

0 0 0 0

0 0 1−2ϕ√
2

2ϕ−1√
2

0 0

0 0 0 0 1−2ϕ√
2

2ϕ−1√
2


. (13)

These leads to the formula of interest for use in engineering:

ε11

ε22

ε33

ε23

ε31

ε12

 =
1

2



2 2 ϕ− 1 ϕ− 1 −ϕ −ϕ
−ϕ −ϕ 2 2 ϕ− 1 ϕ− 1
ϕ− 1 ϕ− 1 −ϕ −ϕ 2 2
1− 2ϕ 2ϕ− 1 0 0 0 0

0 0 1− 2ϕ 2ϕ− 1 0 0
0 0 0 0 1− 2ϕ 2ϕ− 1

•


∆L1/L
∆L2/L
∆L3/L
∆L4/L
∆L5/L
∆L6/L

 .
(14)

4 Internal sensitivity and its influence on accuracy

Being linear, the above relationships lead to a proportionality of the ring
mean strains ∆LI/L to the Euclidean norm ‖ε‖ of the strain tensor. Ac-
cordingly, we define internal sensitivity as :

s(ε) =

∣∣∣∆LI
L

∣∣∣
‖ε‖

(15)
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where the numerator is the Euclidean norm of the (pseudo-)vector of the
strains of the rings, proportional to their root mean square. The Bechterew
basis used in Equation 9 keeps the definition of the Euclidean norm:

∑
ij ε

2
ij =∑6

I=1 ε
2
I . From Equation 11:

‖ε‖2s(ε)2 = εJCJKεK

CJK = MT
JIMIK (16)

This matrix CJK is representative of a fourth-rank tensor which has both
the ”major” index symmetry CJK = CKJ or Cijkl = Cklij in the canonic
basis and, the ”minor” index symmetries Cijkl = Cjikl = Cijlk (intrinsic to
the Bechterew basis). As a consequence, it has the nature of an elasticity
tensor. From Equation 12, its expression is:

C =
1

5



4 3 3 0 0 0
3 4 3 0 0 0
3 3 4 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (17)

This one corresponds to an isotropic tensor [7] [9] [3] which can be decom-
posed in a sum of weighted projectors called the Kelvin’s decomposition [14]
[2] which, in this case, simply separates hydrostatic and deviatoric parts [18]:

C = 2PH + 0.2PD, (18)

PH =
1

3



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (19)

PD =
1

3



2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 , (20)

8



where PH is the projector on the hydrostatic (or spheric) subspace and PD

the projector on the deviatoric subspace. Finally, the internal sensitivity is:

s(ε) =

√
2‖εH‖2 + 0.2‖εD‖2
‖εH‖2 + ‖εD‖2

, (21)

where εH = PH : ε is the spherical part of the strain and εD = PD : ε its
deviatoric complementary part. This equation shows that the sensor has an
internal sensitivity of s =

√
2 ' 1.414 for a spherical strain, greater than

s =
√

0.2 ' 0.4472 for a deviatoric strain. For a general strain tensor, the
internal sensitivity is somewhere between the two bounds:

√
0.2 6 s 6

√
2.

In other words, a spherical strain tensor induce three times ('
√

2/
√

0.2)
more hoop strain in the rings than a deviatoric strain tensor of same norm.
This result does not affect the measure of the device which, as given by
Equation 14, is theoretically exact. However, transducers and measuring
chain are generally more accurate with strong signals that with weak signals.
Thus, the sensor should be more accurate for spherical strains than for
deviatoric strains. The isotropy of C implies that s, therefore the root
mean square of the ring strains, remains unchanged with respect to any
rotation of ε. In other words, the device has no preferred directions. This
isotropy of the sensor response is clearly an advantage and is due to the
regular tessellation chosen for the ring normals.

5 Influence of the sensor on the matrix strain field

Like any sensor, this one perturbs by its presence the quantity of interest, i.e.
the nominal (locally homogeneous) matrix strain ε that exist in the absence
of the sensor. Supposing a perfectly sliding ring, any strain puts the ring in
homogenous tension or compression. This tension induces distributed radial
forces from the ring to the matrix which generate a perturbation strain field
in the matrix. The actual strain field in the matrix is the superposition of
the nominal strain field and the perturbation strain field. In order not to
generate too much stress concentration, the latter should be as evanescent
as possible.

5.1 Estimation of the perturbation of the strain field in the
matrix

The perturbation strain field is estimated below by a semi-analytical model
in which we assimilate the ring by a circular beam whose tension T generates
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linear forces on the matrix. Furthermore, we assume that the ring elongation
∆L, thus T , are that calculated in Section 3, i.e., assuming that they depend
only on the strain of the matrix. The matrix is supposed to be isotropic and
to have a Young’s modulus E and a Poisson’s ratio ν.

Because the matter of the ring replaces that of the matrix, the tension
of the ring is:

T = (Er − E)S
∆L

L
(22)

where Er is the Young’s modulus of the ring, S its cross section and ∆L/L
its nominal strain. From the internal equilibrium of the ring, this tension
induces an uniformly distributed radial force f = T/R. By reaction, the
matrix is loaded along the circle by −f . Figure 3 shows the retained model.

2

O

P

M

Figure 3: Line force ring model

Each differential element of the circle is subject to a radial differential force
dF = −Rfdθ = −Tdθ. For an unique point-force dF, the Kelvin’s solution
in displacement [15], as expressed by [17] [8] [13] is:

dup(M) =
1

16πµ(1− ν)

(
3− 4ν

r
I +

PM⊗PM

r3

)
· dF, (23)

where p stands for perturbation, µ = E/(2(1 + ν)) is the shear modulus of
the matrix, M the point of interest, P the point where the force dF acts
and r = ‖PM‖ is the distance from P to M. Considering the contribution
of all forces of equal intensity, the problem is axisymmetric. It is therefore
possible to consider only a point M belonging to the (eρ, ez) plane. The
displacement due to the set of forces is obtained by integration along θ:
up(M) =

∫ 2π
0 dup. This integral does not have a simple analytical solution,
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so is realised numerically, except for the points along the axis for which:

up(O, z) =
RTz

8µ(1− ν) (R2 + z2)3/2
ez. (24)

The strain field εp(ρ, z) is obtained by derivation of the displacement field.
Being axisymmetric, it has only three independent components:

εp =

 ∫
θ du

p
ρ,ρ 0 1

2

∫
θ du

p
ρ,z + duz,ρ

0
∫
θ du

p
ρ/ρ 0

1
2

∫
θ du

p
ρ,z + dupz,ρ 0

∫
θ du

p
z,z

 . (25)

Annex 7.1 provides useful expressions of these derivatives. A dimensional
analysis of the above equations shows that :

up

R
= ξūp

∆L

L
, (26)

εp = ξε̄p
∆L

L
, (27)

ξ =
Er − E
E

S

R2
, (28)

where ξ is a dimensionless parameter and where ūp and ε̄p are respectively
the unitary fields of displacement and strain which depend only on the Pois-
son’s ratio ν. This unitary strain field ε̄p is shown by Figure 4 for a typical
case ν = 0.25. For this computation, the numerical integral of Kelvin’s so-
lution was realised using 2000 values of θ (with a relative difference of 10−4

from the result for 200 values) and the spatial resolution of the figure is
R/100. Equation 27 shows that the perturbation strain field εp is propor-
tional to these maps by the factor ξ (depending on the design) and the ring
strain ∆L/L.

However, in a design process, it is of interest to have a simple, dimen-
sionless, index of magnitude of the perturbation field. On the boundary
z = 2R ∪ ρ = 2R, ‖εp‖ is maximum at the point (ρ = 2R, z = 0) (bottom
right on Figure 4) for any value of ν. For this reason, a perturbation index
p is introduced as follows:

p(ν) =
‖εp(2R, 0)‖
‖ε‖

, (29)

whose general expression is given by Equations 27, 15 and 21:

p(ν) = |ξ|‖ε̄p(2R, 0)‖s. (30)
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Figure 4: Unitary perturbation strain field ε̄p in the matrix around one ring
in reduced coordinates (ρ/R, z/R), for ν = 0.25. Out-of-limit values close
to the ring at (1, 0) are clipped.

-1 -0.5 0 0.5
0

0.05

0.1

0.15

Figure 5: Dependence of ‖ε̄p(2R, 0)‖ to the Poisson’s ratio

Figure 5 shows the value of ‖ε̄p(2R,Z)‖ in any cases. A simple bound on
the intensity of the perturbation p is given by considering the last terms at
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their maximum: ‖ε̄p(2R, 0)‖ = 0.15 and (from Equation 21) s =
√

2:

p 6 0.2121
S

R2

|Er − E|
E

. (31)

For the realisation example of Section 7.2, ξ ' 0.0049 and this relation
gives p < 10−3 thus the magnitude of the perturbation strain field is negli-
gible with respect to the matrix strain field (of interest) from a distance to
the center of the sensor of twice the size of the sensor.

This relation also indicates that, in general, the strain (or stress) field
induced in the matrix by the presence of the ring will be minimised for a
ring of small section S, of large radius R, or (unsurprisingly) for rings of the
same elasticity Er as the matrix E.

5.2 Estimation of the sensor bias due to the elasticity of the
ring

The expression for the ring elongation ∆L as defined by Equation 5 was
obtained by assuming that the ring strain was imposed by the matrix strain.
However, the ring does not have the same elasticity as the matrix and this
induces a discrepancy (a perturbation) ∆Lp between its real (measured)
elongation and this theoretical elongation ∆L. The measurement bias b is:

b =
∆Lp

∆L
. (32)

In order to obtain generic results, a discrete integration of the Kelvin
solution 23 is again retained. In the same way, we will still assume that the
tension T of the ring, and thus the radial forces which result from it, is due
to the theoretical elongation ∆L: this amounts to assuming ∆Lp � ∆L.
Previously, the field was searched far from the ring, so a line force model
was sufficient. Now looking for the deformation of the ring itself, a more
accurate surface force model is used. It consists of a surface force field d2F =
−(T/h)dθdz eρ applied on a cylinder of radius R and height h, the height of
the ring along z. This description will allow us to know the influence of the
form factor:

ω =
h

R
, (33)

which conditions the thickness of the ring e, by S = eh so e = S/Rω. The
radial displacement obtained with this model is not constant according to z
(in the shape of a diabolo) so we retain in this calculation the displacement
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of the point (R, 0), at half height of the ring. The change in length of the
ring is geometrically associated with the radial displacement:

∆Lp = 2πupρ(R, 0), (34)

where upρ is the radial (and the only non-zero) component of up.
The Kelvin solution gives an infinite displacement at the point of appli-

cation of the force, regardless of its value. In order to overcome this, the
numerical integration is done with integration points homogeneously dis-
tributed according to (θ, z) and such as the point of interest (R, 0) is in the
middle of the nearest integration points. Figure 6 shows that the displace-
ment obtained stabilises as a function of the number of integration points.
The result is similar for the R discretisation and thus the calculations were

102 103 104 105
-1.3

-1.2

-1.1

-1

-0.9

Figure 6: Unitary radial displacement of the ring ūpρ(R, 0) with respect to
the number of computational points along θ, for ν = 0.25 and ω = 1/30

performed with 108 integration points. This calculation, purely analytical,
takes only a few seconds on a current computer.

The dimensional analysis (Equation 26) remains true except that ūp,
thus its component ūpρ(R, 0), depends upon both ω and ν. The result of this
calculation is shown in Figure 7. From Equations 26, 34 the measurement
bias is simply given by:

b = ξūpρ(R, 0). (35)

This analysis shows that the higher (thus thinner) the ring, the lower the
bias. If the elasticity of the matrix is known, the bias b can be calculated
once for all and used as a linear correction to recover the exact measurement
of the strain tensor. If not, a calibration procedure can also be used.

For the example of the section 7.2, with ω = 0.0333, is found ūpρ(R, 0) =
−1.36 thus a bias b = −0.665% which is acceptable in spite of the low ratio
ω chosen (square section). As assumed, the perturbation displacement field
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Figure 7: Unitary radial displacement at the middle of the ring ūpρ(R, 0)
with respect to the Poisson’s ratio ν and the relative width of the ring ω

upρ = −0.01 µm is much smaller than the nominal displacement field uρ = 15
µm.

Other analytical models could have been used for this analysis, such as
the two-dimensional fretting problem, leading to other simplifying assump-
tions. Anyway a better model, provided it remains in elasticity, will only
modify the fields ūp and εp, and leave others equations of this section, in
particular the the role of the dimensionless parameters, unchanged. In an
engineering approach, a finite element model, which requires the complete
definition of the object, will of course be used.

6 Conclusion

The 6-ring sensor concept proposed in this article is capable of measuring the
6-components of a strain tensor within a matrix. Compared to the previous
ball design proposed previously by the authors [11], its hollow shape makes it
possible to do without the knowledge of the elasticity of the matrix in which
the sensor is embedded. Moreover, the linear correspondence between the
measured ring strains and the strain tensor (Equation 14) is as direct as for
conventional rosette gauges. Its internal sensitivity has been shown to be
isotropic but higher for spherical strains states. Again because of its hollow
shape, its presence perturbs a minima the local strain field in the matrix thus
minimises the stress concentration around the sensor. The proposed semi-
analytical calculation, almost instantaneous on modern computers, allows
engineers to both optimise the design and to correct the remaining bias
induced by the presence of the sensor.

The concept can also be extended to more rings, in order to exploit
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redundancy, or to fewer rings, if certain characteristics of the stress tensor
are fixed. For example, a single ring is sufficient for a spherical stress (e.g.
a pressure measurement), two rings are sufficient for a transverse isotropic,
fixed-axis, strain state.

In this theoretical approach, the transducer type has not been fixed.
Different measuring principles, such as strain gauges, ultrasonic measure-
ments, optical fibre measurements, can be used to measure the elongation
of rings. This study did not specify the presence or not of a spring body
(for example metal rings on which the wires or fibres are folded). This one
has the disadvantage of increasing the cross-section and rigidity of the ring
(leading to an increase in both bias and disturbance field) but has the ad-
vantage, in the case of a technology with wires or fibres, to be more robust
and to allow pre-tension in order to avoid micro-buckling in compression.
Remaining technological difficulties are inherent to embedded transducers.
For example, they may be sensitive to the lateral stress. Moreover, accord-
ing to Equation 2, the hoop strain in the matrix is not constant. Thus, if it
is necessary for the transducers to have a homogenous strain, some lubricant
between the rings and the matrix should be envisaged.

This type of integrated physical sensor can only be used in cold-cast
materials such as concrete or polymers. However, this concept could also
be extended to lattice materials in which rings (or loops) could be added
during the manufacturing process.

7 Annex

7.1 Derivatives of the displacement field

The derivatives of the displacement field (equation 23) are given by:

dF = −Tdθ(c, s, 0),

PM = (ρ−Rc,−Rs, z),
r =

√
ρ2 +R2 + z2 − 2ρRc,

∂(dup)

∂ρ
= K

(
(3− 4ν)

Rc− ρ
r3

I +
1

r3

∂

∂ρ
(PM⊗PM)− 3

ρ−Rc
r5

PM⊗PM

)
· dF,

∂(dup)

∂z
= K

(
−(3− 4ν)

z

r3
I +

1

r3

∂

∂z
(PM⊗PM)− 3

z

r5
PM⊗PM

)
· dF,

K =
1

16πµ(1− ν)
, (36)

where c = cos(θ) and s = sin(θ).
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7.2 Example of possible realisation

For the sake of generality, the calculations are presented below in a dimen-
sionless form. However, we shall apply them to the following exemple of
design:

• the sensor size is defined by R = 15 mm, typical for strain gauges

• the ring is supposed to be made of Constantan for which Er = 162
GPa

• the ring section is a square of side h = 0.5 mm thus of section S = 0.25
mm2, strong enough to allow for hand manipulations

• the ring tension is T = 33 N corresponding, according to Equation 22,
to a nominal ring strain ∆L/L = 10−3, this magnitude being repre-
sentative of strain measurements

• the matrix is supposed to be made of concrete of Young’s modulus
E = 30 GPa and of Poisson’s ratio ν = 0.25
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