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Let's define δ(x) = ( q≤x 1 qlog log x -B), where B ≈ 0.2614972128 is the Meissel-Mertens constant. The Robin theorem states that δ(x) changes sign infinitely often. Let's also define S (x) = θ(x)x, where θ(x) is the Chebyshev function. It is known that S (x) changes sign infinitely often. We define the another function (x) = q≤x 1 qlog log θ(x) -B . We prove that when the inequality (x) ≤ 0 is satisfied for some number x ≥ 3, then the Riemann hypothesis should be false. The Riemann hypothesis is also false when the inequalities δ(x) ≤ 0 and S (x) ≥ 0 are satisfied for some number x ≥ 3 or when 3×log x+5 8×π× √

x+1.2×log x+2 + log x log θ(x) ≤ 1 is satisfied for some number x ≥ 13.1.

Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 [START_REF] Borwein | The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike[END_REF]. Let N n = 2 × 3 × 5 × 7 × 11 × • • • × p n denotes a primorial number of order n such that p n is the n th prime number. Say Nicolas(p n ) holds provided q|N n q q -1 > e γ × log log N n .

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm, and q | N n means the prime number q divides to N n . The importance of this property is:

Theorem 1.1. [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. Nicolas(p n ) holds for all prime numbers p n > 2 if and only if the Riemann hypothesis is true.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = p≤x log p
where p ≤ x means all the prime numbers p that are less than or equal to x. We know this property for this function:

Theorem 1.2. [START_REF] Grönwall | Some asymptotic expressions in the theory of numbers[END_REF].

lim x→∞ θ(x) x = 1.
Let's define S (x) = θ(x)x. It is a known result that:

Theorem 1.3. [START_REF] Platt | On the first sign change of θ(x)x[END_REF]. S (x) changes sign infinitely often.

We also know that Theorem 1.4. [START_REF] Rosser | Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x)[END_REF]. If the Riemann hypothesis holds, then

        e -γ log x × q≤x q q -1 -1         < 3 × log x + 5 8 × π × √ x
for all numbers x ≥ 13.1.

Let's define H = γ -B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF]. We know from the constant H, the following formula:

Theorem 1.5. [7]. q log( q q -1 ) - 1 q = γ -B = H.
For x ≥ 2, the function u(x) is defined as follows

u(x) = q>x log( q q -1
) -1 q .

Nicolas showed that Theorem 1.6. [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. For x ≥ 2:

0 < u(x) ≤ 1 2 × (x -1)
.

Let's define:

δ(x) =         q≤x 1 q -log log x -B         .
Robin theorem states the following result:

Theorem 1.7. [START_REF] Robin | Sur l'ordre maximum de la fonction somme des diviseurs[END_REF]. δ(x) changes sign infinitely often.

In addition, the Mertens second theorem states that:

Theorem 1.8. [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF].

lim x→∞ δ(x) = 0.
Besides, we use the following theorems:

Theorem 1.9. [START_REF] Kozma | Useful Inequalities[END_REF]. For x > -1:

x x + 1 ≤ log(1 + x). 2 
Theorem 1.10. [START_REF] Ghosh | An Asymptotic Formula for the Chebyshev Theta Function[END_REF]. For x ≥ 1:

log(1 + 1 x ) < 1 x + 0.4 .
We define another function:

(x) =         q≤x 1 q -log log θ(x) -B         .
Putting all together yields the proof that the inequality (x) > u(x) is satisfied for a number x ≥ 3 if and only if Nicolas(p) holds, where p is the greatest prime number such that p ≤ x. In this way, we introduce another criterion for the Riemann hypothesis based on the Nicolas criterion and deduce some of its consequences.

Results

Theorem 2.1. The inequality (x) > u(x) is satisfied for a number x ≥ 3 if and only if Nicolas(p) holds, where p is the greatest prime number such that p ≤ x.

Proof. We start from the inequality:

(x) > u(x)
which is equivalent to

        q≤x 1 q -log log θ(x) -B         > q>x log( q q -1 ) - 1 q .
Let's add the following formula to the both sides of the inequality, q≤x log( q q -1 ) -1 q and due to the theorem 1.5, we obtain that

q≤x log( q q -1 ) -log log θ(x) -B > H because of H = q≤x log( q q -1 ) - 1 q + q>x log( q q -1 ) - 1 q and q≤x log( q q -1 ) = q≤x 1 q + q≤x log( q q -1 ) - 1 q .
Let's distribute it and remove B from the both sides:

q≤x log( q q -1 ) > γ + log log θ(x) since H = γ -B.
If we apply the exponentiation to the both sides of the inequality, then we have that

q≤x q q -1 > e γ × log θ(x)
which means that Nicolas(p) holds, where p is the greatest prime number such that p ≤ x. The same happens in the reverse implication.

Theorem 2.2. The Riemann hypothesis is true if and only if the inequality (x) > u(x) is satisfied for all numbers x ≥ 3.

Proof. This is a direct consequence of theorems 1.1 and 2.1.

Theorem 2.3. If the inequality (x) ≤ 0 is satisfied for some number x ≥ 3, then the Riemann hypothesis should be false.

Proof. This is an implication of theorems 1.6, 2.1 and 2.2.

Theorem 2.4. If the inequalities δ(x) ≤ 0 and S (x) ≥ 0 are satisfied for some number x ≥ 3, then the Riemann hypothesis should be false.

Proof. If the inequalities δ(x) ≤ 0 and S (x) ≥ 0 are satisfied for some number x ≥ 3, then we obtain that (x) ≤ 0 is also satisfied, which means that the Riemann hypothesis should be false according to the theorem 2.3.

Theorem 2.5.

lim x→∞ (x) = 0.
Proof. We know that lim x→∞ (x) = 0 for the limits lim x→∞ δ(x) = 0 and lim x→∞ θ(x)

x = 1. In this way, this is a consequence from the theorems 1.8 and 1.2.

Theorem 2.6. If the Riemann hypothesis holds, then

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 + log x log θ(x) > 1
for all numbers x ≥ 13.1.

Proof. Under the assumption that the Riemann hypothesis is true, then we would have

q≤x q q -1 < e γ × log x × 1 + 3 × log x + 5 8 × π × √ x
after of distributing the terms based on the theorem 1.4 for all numbers x ≥ 13.1. If we apply the logarithm to the both sides of the previous inequality, then we obtain that

q≤x log( q q -1 ) < γ + log log x + log 1 + 3 × log x + 5 8 × π × √ x .
That would be equivalent to

q≤x 1 q + q≤x log( q q -1 ) - 1 q < γ + log log x + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2
where we know that

log 1 + 3 × log x + 5 8 × π × √ x < 1 8×π× √ x 3×log x+5 + 0.4 = 3 × log x + 5 8 × π × √ x + 0.4 × (3 × log x + 5) = 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2
according to theorem 1.10 since 8×π× √ x 3×log x+5 ≥ 1 for all numbers x ≥ 13.1. We use the theorems 1.5 and 1.6 to show that q≤x log( q q -1 ) -

1 q = H -u(x)
and γ = H + B. So,

H -u(x) < H + B + log log x - q≤x 1 q + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2
which is the same as

H -u(x) < H -δ(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 .
We eliminate the value of H and thus,

-u(x) < -δ(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2
which is equal to

u(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > δ(x).
We know from the theorem 2.1 that (x) > u(x) for all numbers x ≥ 13.1 and therefore,

(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > δ(x).
Hence,

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > log log θ(x) -log log x. Suppose that θ(x) = × x for some constant > 1. Then, log log θ(x) -log log x = log log( × x) -log log x = log log x + log -log log x = log log x × (1 + log log x ) -log log x = log log x + log(1 + log log x ) -log log x = log(1 + log log x ).
In addition, we know that log(1 + log log x ) ≥ log log θ(x) using the theorem 1.9 since log log x > -1 when > 1. Certainly, we will have that

log(1 + log log x ) ≥ log log x log log x + 1 = log log + log x = log log θ(x) . Thus, 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > log log θ(x)
.

If we add the following value of log x log θ(x) to the both sides of the inequality, then We know this inequality is satisfied when 0 < ≤ 1 since we would obtain that log x log θ(x) ≥ 1. Therefore, the proof is done. Proof. This is a direct consequence of theorem 2.6.
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 27 If the inequality3×log x+5 8×π× √ x+1.2×log x+2 + log x log θ(x)≤ 1 is satisfied for some number x ≥ 13.1, then the Riemann hypothesis should be false.