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Preface

There is strong scientific evidence about the effects of climate
change on the global ocean. These changes will have a drastic
impact on almost all forms of life in the ocean with further
consequences on food security, ecosystem services in coastal
and inland communities. Despite these impacts, scientific data
and infrastructures are still lacking to better understand and
quantify the consequence of these perturbations on the marine
ecosystem.

This interdisciplinary Inria Challenge project aims at developing
new Al and mathematical modeling tools to contribute to the un-
derstanding of the structure, functioning, and underlying mech-
anisms and dynamics of the global ocean symbiome. These ac-
tions are essential to gain a better understanding of the oceans
and their role in regulating and sustaining the biosphere. This
is also an opportunity to structure Inria’s contributions to a ma-
jor topic of Al & Biodiversity, which will be a major achievement
for the sustainability of human societies on the blue part of the
planet.

Besides the support of Inria, OcéanlA already counts with the
support of the French Embassy in Chile through the French Re-
gional Cooperation with South America Program.

The spirit of this document is to serve as a work reference. We
expect it to evolve as the work in the project takes place. We also
want this communication to facilitate the dissemination of the
project focus, goals and scope to potential collaborators.

It is organized in five chapters. The first chapter (Chapter 1) out-
lines the general principles, motivations and goals thatled to the
project. After that, Chapter 2 focuses on the particular goals of
the project and how the different teams that are taking part of
it are expected to contribute to its success. Subsequently, Chap-
ter 3 details the work packages of the project listing the differ-
ent tasks, expected outcomes and the teams that take part of it.
Then, Chapter 4 focuses on how the projectis to be organized and
the interaction of the work packages and teams. Finally, Chap-
ter 5 outlines some final remarks.

This is a working document. We expect it to change frequently.
Check https://oceania.inria.cl for updates.



https://oceania.inria.cl




Introduction

The impact of the ocean in climate change is evident, not only
regulating temperature and climate but also absorbing carbon
dioxide from the atmosphere, which is one of the main respon-
sible gases for the greenhouse effect. However, oceans already
show changes and degradation as aresult of climate change, such
as acidification, deoxygenation, loss of biodiversity, and a pro-
gressive loss of capacity to buffer further increases in CO, (Pe-
sant et al. 2015).

This situation poses a substantial challenge to humanity as a
whole. Itis not only an urgent but also a scientifically demanding
task. Consequently, it is a problem that must be addressed with
ascientific cohort approach, where multi-disciplinary teams col-
laborate to bring the best of different scientific areas.

This is the spirit of this project: to address state-of-the-art ar-
tificial intelligence, machine learning, and modeling topics that
will enable us to move forward with the understanding of our
oceans and to understand, predict and -hopefully- mitigate the
consequences of climate change.

1.1 Motivation

Recent advances in computer sciences and applied mathemat-
ics, such as machine learning and numerical simulation, among
others, have produced arevolution in our capacity for understand-
ing the emergence of patterns and dynamics in complex systems
while at the same time the complexity of these problems poses
significant challenges to computer science itself.

The intertwining nature of these two challenges requires that to
address the first it is necessary to make progress on the second,
thatisthe state of the art (Rolnick et al. 2019). Also, the explosion
in the capacity to gather data in fields like biology or ecology has
opened computer sciences to challenging applications. Interest-
ingly, the virtuous relationship between computer science and
these new fields needs to go beyond the actual state of the art.
A remarkable example is bioinformatics, a scientific field that

11 Motivation

1.2 Context

Pesant, S., Not, F., Picheral, M., Kandels-
Lewis, S., Le Bescot, N., Gorsky, G., ITudi-
cone, D., Karsenti, E., Speich, S., Trouble, R.,
Dimier, C., & Searson, S. (2015). Open sci-
ence resources for the discovery and anal-
ysis of Tara Oceans data. Scientific Data,
2(1450). https://doi.org/10.1038/sdata.2015.
23

Rolnick, D., Donti, P. L., Kaack, L. H., Kochan-
ski, K., Lacoste, A., Sankaran, K., Ross, A. S,
Milojevic-Dupont, N., Jaques, N., Waldman-
Brown, A., Luccioni, A., Maharaj, T., Sher-
win, E. D., Mukkavilli, S. K., Kording, K. P.,
Gomes, C., Ng, A. Y., Hassabis, D., Platt,
J. C., .. Bengio, Y. (2019). Tackling climate
change with machine learning. arXiv: 1906.

05433.


https://doi.org/10.1038/sdata.2015.23
https://doi.org/10.1038/sdata.2015.23
https://arxiv.org/abs/1906.05433
https://arxiv.org/abs/1906.05433

2

1 Introduction

emerged prompted by the capacity of processing and analyzing
massive datasets of “omics” data using computer methods.

Today, a huge amount of problems posed to computer sciences
and applied mathematics arise from environmental challenges
caused by climate change, and specifically, those affecting bio-
diversity. The challenges are two-fold: on the one hand, we must
understand the consequences of global warming for ecological
systems, and on the other hand, we must be able to predict changes
in climate from observations of the same systems, where a key
actor is biodiversity. Moreover, our prediction abilities have di-
rect consequences on many economic systems and public poli-
cies. Essential to these efforts is our ability to make sense and
integrate heterogeneous and cross-scale data, ranging from ge-
nomics to satellite images in different environmental settings,
tasks for which machine learning and artificial intelligence at
large, and mathematical modeling, are especially suited and pow-
erful if a virtuous relationship between them is achieved.

The motivation of this interdisciplinary proposal is to develop
new Al and mathematical modeling tools to contribute to the
understanding of the structure, functioning, and underlying eco-
evolutionary mechanisms and dynamics of plankton in the global
ocean. Methods like deep representation learning, causal infer-
ence, sequential decision making, transfer learning, multi-criteria
optimization are just a few that can be applied to these kinds of
complex problems, allowing us to get reliable knowledge from
the ocean and its interactions. To do this, we will use the corpus
of (" . Expeditions datasets, which is, as far as we know,
the most comprehensive case study to develop Al and mathemat-
ical modeling methods for studying global ecology along with
otherrelated datasets. This fundamental baseline currently makes
marine plankton the best-described planetary ecosystemin terms
oftaxonomic composition, abundance, and genetic diversity, mak-
ing this project realistic.

Since many years, Inria has a formal commitment to ecology
and the environment, an interest that is shared by national,
European, and international institutions. This Inria Challenge
is a mean of producing tangible results in this direction while
also prompting a shift in the current state of the art in the area.
In particular, this Inria Challenge proposal is an opportunity
to structure Inria contributions to this major topic of ocean-
ecology modeling and for developing a quantitative theory of
global ecosystem patterning and dynamics.
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1.2 Context

There is a clear scientific consensus about the effects of climate
change on the global ocean: among others a shift of tempera-
tures, anincrease of acidification, deoxygenation of water masses,
and perturbations in nutrient availability and biomass produc-
tivity. Altogether, these abiotic changes will have a drastic im-
pact on almost all forms of life in the ocean with further conse-
quences on food security, ecosystem services and the well-being
of coastal communities. In thisregard, [/ ¢ has spearheaded
the actions directed towards sampling and understanding the
different phenomena that are taking place. Despite these numer-
ous impacts, scientific data -even with the import contribution
from (-~ -] and infrastructures are not sufficient to ade-
quately understand and quantify the consequence of these per-
turbations on the marine ecosystem. In particular, critical ecosys-
tems need extensive surveys to characterize the biological accli-
mation to climate perturbations better. Consequently, it is nec-
essary to not only gather more data but also to develop and apply
state-of-the-art mechanisms capable of turning this data into ef-
fective knowledge, policies and action. This is where artificial in-
telligence, machine learning and modeling tools are called for.
The application of these methods is not new, however, the in-
herent complexity of this problem poses important challenges
to modern computer science and applied mathematics (Rolnick
et al. 2019).

The Patagonian region is a unique ecosystem that represents an
open sky laboratory for ecological studies. This pristine region is
indeed changing more rapidly under the effects of climate change
and describes an oracle of changes to come in the next decades
for other parts of the ocean. Patagonia is fundamental to under-
stand the responses of the microbial marine life at the interface
between antarctic waters, the coastal ecosystems, and the melt-
ing glaciers. This region is also one of the most productive re-
gions in the ocean, accounting for more than 30% of sardines
stocks, among other species and one of the most important re-
gion in sequestering carbon. Patagonia is also a hot spot of aqua-
culture, with an intensive salmon production, an ecosystem that
isbothimpacting, and being impacted by, climate changes. In or-
der to understand the functioning of this large scale ecosystem,
the[- - "] Oceans initiative has decided to carry out and in-
tense sampling campaign (see Figure 1.1 for a description). The
AtlantEco project was expected to depart from France in Septem-
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Figure 1.1: Spatial representation and chronology of [:] sampling methodology events during a 24-48 h sta-
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ber 2020 but because of the COVID-19 pandemic the date has
been postponed. It is expected that it transits to the [ 0]
Magallanes expedition in December 2020 and where it will col-
lect data using the (-~ "] protocol in the unique biodiver-
sity of Chile during three months. Inria and its partners are at
a strategic and unique position for anticipating these data to
come.

The consortium will build a modeling framework dedicated to
ocean modeling, contributing to learn causal and explanatory
models; fair data models; robust models. This Inria Challenge
is an opportunity to contribute key scientific knowledge on a
global pressing problem as climate change is, capitalizing on
the experience and articulation of the teams involved and the
availability of data on a key area, as is the Patagonia, that can
provide answers that can be transferred to others parts of the
oceans.
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In order to move towards tackling the complex and multi-faceted 21 Goals . . . ... ... ... 5
problem of understanding the role and impact of oceans in cli- 211 Al, ML and modeling goals 6
mate change, it is necessary to improve the computational and  21.2 Application domain goals 7
mathematical tools at our disposal and pose a group of domain 22 Pparticipating Inriateams . 7
questions that could be answered using these improved tools. 23 External collaborating

In recent years, Al -and ML in particular- has been recognized partners . . ........ °

as a broadly powerful tool for technological progress. Despite
the growth of research applying ML and Al to problems of so-
cietal and global good, there remains the need for a concerted
effort to identify how these tools may best be applied to tackle
climate change. On the other hand, many computer scientist and
practitioners wish to act, but are uncertain how. Similarly, many
field experts have begun actively seeking input from the AI, ML
and modeling communities. Therefore, this project comes in a
timely manner to catalyze these efforts and attempt to create a
bridge between the complex problems posed by oceans and cli-
mate change and the state of the art of computer science.

2.1 Goals

Although it can be asserted that AI, ML, and modeling tools are
keyinunderstanding oceans and climate change, it must also be
pointed out that their current limitations pose important hur-
dles in their application. In the case of ML, only recently it has
started to be able to handle structured information, like the one
required to understand the networks created by interacting pop-
ulations of different species. Similarly, in spite of the important
efforts on data gathering, the current amount of data available
conform to a scenario that can be denominated as small data,
that heavily contrasts with the data-hungry methods that con-
form most of the current state of the art in ML. Yet another im-
portant issue lies the black-box approach of many ML methods
that do not allow a feasible interpretation or explanation that
can be used to articulate a better understanding of the process,
which is essential to design new mitigation policies.

Along the same lines, existing modeling tools are hard to apply in
biogeophysical contexts like the ones encountered in this project
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Figure 2.1: The OcéanlIA virtuous
cycle: Al, ML and applied math
should improve the current
results and allow oceanographers,
marine biologists, and climate
change researchers to pose
new questions. In return, this
application domain constitutes
a challenge to the current state
of the art and will provide test
cases to push that state of the art
further ahead.

Baker, R. E., Pefla, J.-M., Jayamohan, J,
& Jérusalem, A. (2018). Mechanistic mod-
els versus machine learning, a fight worth
fighting for the biological community? Bi-
ology Letters, 14(5). https://doi.org/10.1098/
rsbl.2017.0660

Sanchez-Pi, N., Marti, L., Abreu, A., Bernard,
0., de Vargas, C., Eveillard, D., Maass, A,
Marquet, P. A., Sainte-Marie, J., Salomon,
J., Schoenauer, M., & Sebag, M. (2020). Ar-
tificial intelligence, machine learning and
modeling for understanding the oceans
and climate change. In D. Dao, E. Sherwin,
P. Donti, L. Kaack, L. Kuntz, Y. Yusuf, D. Rol-
nick, C. Nakalembe, C. Monteleoni, & Y. Ben-
gio (Eds.), Tackling climate change with
machine learning workshop at neurips
2020. https : // www . climatechange . ai /

papers/neurips2020/93

catalyze novel (better) solutions
to known questions

e

new Al tools prompt
formulation of new questions

N

OCéanIA describe model predict simulate Ocean +
AL+ ML +modeling | “——"c—— | climate change

Challenge current state of the art:
small data, graph-based NN, causality, explainable Al

because of their computational complexity and high processing

requirements. This situation could be overcome either by improv-
ing the modeling methods themselves or by taking a stab at de-
veloping mechanistic approaches that also seem to be capable

of complementing Al and ML in the application domain (Baker

et al. 2018).

This leads us to the core spirit of the project, as illustrated in
Figure 2.1. On one hand, AI, ML and applied math should improve
the current results and allow oceanographers, marine biologists,
and climate change researchers to pose new questions. In re-
turn, this application domain constitutes a challenge to the cur-
rent state of the art and will provide test cases to push that state
of the art further ahead.

Consequently, the goals of the project can be stated as two sets
as stated by Sanchez-Pi et al. 2020:

1. address and advance the state of the art in areas like artifi-
cial intelligence (AI) —and, more precisely, machine learn-
ing (ML)— and mathematical modeling and simulation, and

2. focus on answering the questions from the application
domain.

211 Al, ML and modeling goals

In regard to Al and modeling, our goals are:

1. improve neural network handling of graph-structured in-
formation,

2. improve the capacity of ML methods to learn in small data
contexts,

3. understand causal relations, interpretability and explain-
ability in Al,

4. integrate model-driven and data-driven approaches, and


https://doi.org/10.1098/rsbl.2017.0660
https://doi.org/10.1098/rsbl.2017.0660
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5. develop, calibrate and validate existing mechanistic mod-
els.

2.1.2 Application domain goals

Inthe domain application area, the main questions to be addressed
are:

1. Which are the major patterns in plankton taxa and func-
tional diversity?

2. Which are the major drivers of patterns and how do they
interact?

3. How these patterns and drivers will likely change because
of climate change?

4. Howwill these changes affect the capacity of ocean ecosys-
tems to sequester carbon from the atmosphere, thatis the
biological carbon pump?

5. What relations bind communities and local conditions?

6. What are the links between biodiversity functioning and
structure?

7. How modern Al and computer vision can be applied as re-
search and discovery support tool to understand plank-
tonic communities?

2.2 Participating Inria teams

The team assembled for the project is a balanced and diverse
combination of skills, experience, and interests, something that
isnecessarytoaddress aresearch-intensive and multi-disciplinary
project such as this one.

The Inria project-teams involved and how they contribute to the
project are:

> in modeling, analysis and simulation of geophysi-
cal flows and more generally in environmental modeling.
The team has been working on the coupling of complex en-
vironmental models with observational data (data assim-
ilation) and has gradually oriented part of its research to-
ward the use of environmental data, with or without prior
modeling knowledge. Project-Team has a strong ex-
pertise on the models, on the observational data and on
the expected forecast performance required in practical

7
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applications. It brings applications with real data transfer
opportunities through operational actors that use its soft-
ware daily.

[ 2 in modeling ecosystems (from gene to ecosys-
tem) and their adaptation to climate changes, developing
strategies for model calibration from available data sets
and coupling the models with hydrodynamics.
is a joint team with the Laboratory of Oceanography of
Villefranche-sur-mer (LOV) joint endeavor between Sorbonne
University and CNRS. LOV is a multidisciplinary oceano-
graphic laboratory that studies the role of marine plank-
toninthe functioning of marine ecosystems, the response
ofbiodiversity and biogeochemical cycles to global changes
(global warming and acidification). It has a deep expertise
for assessing biodiversity by remote sensing calibrated by
analytic determination of pigments, which are seen as tracer
for phytoplanktonic groups. The PISCO team of the LOV, is
associated to has long been specialized in the
cultivation and ecophysiological study of phytoplankton
(in lab and on site). The LOV is highly involved in the lead-
ership of the [ -~ "] project.

> , ajointteam between Inria, CNRS and Université Paris-
Saclay, working in machine learning and stochastic opti-
mization for 30 years, focusing recently on causal infer-
ence and the challenges of the under-specification in big
data. In particular, in close relation to the CS questions
addressed here, is involved in the Inria Challenge Hy-

1: https://project.inria.fr/hyaiai/ brid Approaches for Interpretable AT (HYAIAI),' that started

2: https://cordis.europa.eu/ one year ago, and in the European project TRUST-AIL? start-

project/id/952060 ing next October and devoted to trustworthy Al in small
data context.

> was created on 2012 and is the first center of
Inria located outside France. It is a driving force for tech-
nological innovation and knowledge transfer, collaborat-
ing effectively with companies, universities, public insti-
tutions, and startups to meet the challenges of the digital
revolution. It aims to inspire and educate future genera-
tions of scientists and engineers to take the lead in this
transformation. Inria Chile is also a means to promote the
R&D activities of companies and startups in Chile and Latin
America. has expertise inmachine learning, evo-
lutionary computing, big data and mastering the connec-
tion with the data governance and interpretation and has
the engineering know-how to deliver robust software li-
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braries and programs.

2.3 External collaborating partners

Our external partners have developed an important experience
in the main subject of the project. They contribute with impor-
tant methods and experience both in Chile and France. In partic-
ular:

» The group led by Alejandro Maass works in under-
standing biological systems (bioinformatics, genomics and
systems biology), andis the Chilean counterpart of the CNRS
International Federation Global Ocean Systems Ecology and
Evolution (Iif5E3).

B The CNRS laboratory (2251}, at University of Nantes, has
produced the main known results relating genomics data
with the behavior of the carbon pump and is one of the re-
sponsible for handling, analyzing and modeling [:
data since the last decade.

P Theproject will establish a strategic alliance with the CNRS
effort through the Federation, to add into this ef-
fort the modernity that AT and Machine learning can pro-
pose.

» The group led by Pablo Marquet at [Jf[# is a global leader in
metabolic ecology, macroecology, and theoretical ecology
and at the forefront of interdisciplinary challenges such
as ecological networks reconstruction, invariant distribu-
tions of ecological observables, such as species, and gen
abundance distributions.

» [ - will allow access to public data and help the
consortium defining valid test cases that we will share
in this project. For this we will count with the support of

André Abreu within (- 01

Also, the resulting resources will be extremely valuable as educa-
tional tools, and we may also bring in commercial partners (e. g.,
Amazon Sustainability Data Initiative 2019 or the Challenge IA-

Amazon sustainability data initiative.

Biodiv — Recherches en Intelligence Artificielle dans le champ de , R
(2019). https://sustainability.aboutamazon.

la biodiversité 2019) who would further support hosting and dis- ., /icch for-good/asdi

semination of the data and tools. Challenge IA-Biodiv — Recherches en intelli-
gence artificielle dans le champ de la biodi-
versité. (2019). https://anr.fr/fr/agenda/
challenge - ia - biodiv - recherches - en -
intelligence - artificielle - dans - le - champ

de-la-biodiversite/


https://sustainability.aboutamazon.com/tech-for-good/asdi
https://sustainability.aboutamazon.com/tech-for-good/asdi
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/




Work Packages

Activities on the project are to be organized in three thematic
axes that are:

P Axis 1. enabling activities and shared developments,
P AxisIl.computerscience and applied math objectives, and
P Axis III. multi-disciplinary applied objectives.

Work in the axes is organized around work packages. When work
inside a work package is best described in smaller units of work,
it is then consolidated as tasks. In this chapter we focus on the
description of these axes, the work packages that are part of
each and the different tasks that we envision that will be carried
out. For each work package we provide a (sometimes not so)
brief discussion about its motivation and potential impact, the
corresponding expected outcomes, in the Inria team in charge
of the coordination of the work package and the teams that have
manifested interest on collaborating on the work package.

Axis | Enabling activities and shared
developments

This axis addresses those tasks that horizontally concern all
aspects of the project. In particular, here we meant to create
an updated roadmap for the project and a shared lexicon that
allows a fluid collaboration. Similarly, we plan to address the
technological challenges that involve the access the data and the
computing facilities.

WP |1 State of the art: Paths forward and what should
be revisited

Afirst and very relevant work to do as part of the projectis to pre-
pare an updated list of topics worth being revisited using state-
of-the-art Al, ML and applied math ‘power tools’, and what are
the limitations that need new developments on the methodolog-
ical side. In particular, we plan to identify previous works carried
outonthe( "~ . dataandresults that would clearly benefit
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Guidi, L., Chaffron, S., Bittner, L., Eveillard,
D., Larhlimi, A., Roux, S., Darzi, Y., Audic,
S., Berline, L., Brum, J. R., Coelho, L. P,
Espinoza, J. C. 1., Malviya, S., Sunagawa,

S., Dimier, C., Kandels-Lewis, S., Picheral,

M., Poulain, J., Searson, S., .. Gorsky, G.

(2016). Plankton networks driving carbon
export in the oligotrophic ocean. Nature,
532(7600). https : // doi . org /10 . 1038 /

naturel6942

Horvath, S. (2011). Weighted network anal-

ysis: Applications in genomics and systems

biology. Springer Science & Business Media

Wackett, L. P. (2020). Web Alert: Marine mi-
crobiology databases: An annotated selec-
tion of world wide web sites relevant to the
topics in environmental microbiology. En-
vironmental Microbiology, 22(5). https://
doi.org/10.1111/1462-2920.15030

1: https://power.larc.nasa.gov

2: https://www.seadatanet.org

3: https://pangaea.de

from an upgrade based on the advanced tools to be developed in
Axis I1.

For instance, —and just as an illustrative example— Guidi et al.

2016 investigate the carbon pump issue relying on the environ-

mental and metagenomic data gathered by [l ¢ ]. They have
an impressive set of results. Nevertheless, doing a careful read

from a AI/ML perspective, it is noticeable that the ML methods

applied are rather standard and far from the state of the art. For

example, the authors employ partial least square linear regres-

sion or the more modern weighted gene correlation network anal-
ysis (WGCNA, Horvath 2011).

This opens a broad range of opportunities for applying structure
and graph-based ML approaches (WPIIL.1), causal inference (WP I1.3),
etc.

The preliminary study carried out for the preparation of this
proposal has shown that there is ample space for the application
of advanced modeling and learning methods. The results of this
updated survey could also be used to update and reshape some
future tasks of the project.

Expected outcome(s) of the work package: An survey of the state
of the art in the application of mathematical modeling and nu-
merical simulations, and of artificial intelligence and machine
learning, in the context of oceanography, marine biology, biodi-
versity and climate changes. The survey will be a live document
to be revised annually and be publicly available.

Coordinating Inria team: [[l3[<E @l

Participating teams: All teams.

WP |.2 Data governance, curation and availability

One of the big technological challenges of the projectis to access
the available data in a consistent and robust form. It is there-
fore necessary to govern and curate the data. The need for defin-
ing access policies and curation processes has been clearly es-
tablished on the field (Wackett 2020), however, it remains an
open issue. The result of this process will be curated data hub —
or data lake— containing or providing transparent and homoge-
neous access to diverse set of data sources like [~ ¢ ] data,
Copernicus, NASA POWER,! NOAA’s SeaDataNet,2 PANGAEA,® etc.
Animportant feature hereis to offer the possibility of cross-reference


https://doi.org/10.1038/nature16942
https://doi.org/10.1038/nature16942
https://doi.org/10.1111/1462-2920.15030
https://doi.org/10.1111/1462-2920.15030
https://power.larc.nasa.gov
https://www.seadatanet.org
https://pangaea.de
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and geo-reference this data by providing homogeneous access
to all data and capacity of merging with other data sources, ei-
ther by storing them locally or putting links to external servers.
This would be an important asset for the research community
globally.

Itshould be noted that there are lots of metadata standards avail-
able, and several initiatives are working on interoperability. The
main source of data for the project comes from that produced by
(0= ] Ocean. It follows the M2B3 standard (ten Hoopen et
al. 2015) which was developed during H2020 project MicroB3 and
authored by EBI, PANGAEA, SeaDataNet and EMODnet. M2B3 is
the metadata standard thatis most adapted to cross-disciplinary
marine science. We will focus as a first step to revise and consol-
idate these actions.

It is particularly relevant to go beyond regular datasets and also
to join other databases that would provide more insight into the
(- . |database. For example, to ensure access to database
gathering hundreds of experiments for the response of phyto-
plankton to temperature and other environmental conditions.

If possible, we propose to develop an integral science software
stack that should be easily deployable, both at local (personal)
computers or cloud-provided virtual machines, by making use
of modern technological solutionslike Docker, Apache Spark, etc.
and being as neutral and platform-agnostic as possible.

has an important a priori experience on this set of
tasks having constructed sophisticated data processing pipelines
for astronomy and mining, as well as, in data governance and
process mining (Mufioz Garcia et al. 2019; Mufioz-Garcia et al.
2017).

Other project partners, like and[ -~ 7] have ongoing
work in these lines. We plan to coordinate with them to gener-

ate results that integrate and consolidate the value of current
solutions.

Expected outcome(s) of the work package:

P A data governance policy for marine biology and oceano-
graphic data,

P adeployed data lake that consolidates access to the data
under the policies devised, and

P ascientific computing software stack.

ten Hoopen, P, Pesant, S., Kottmann, R.,
Kopf, A., Bicak, M., Claus, S., Deneudt, K.,
Borremans, C., Thijsse, P., Dekeyzer, S.,
Schaap, D. M., Bowler, C., Glockner, F. 0.,
& Cochrane, G. (2015). Marine microbial
biodiversity, bioinformatics and biotech-
nology (M2B3) data reporting and service
standards. Standards in Genomic Sciences,
10(MAY2015). https://doi.org /10 .1186/
$40793-015-0001-5

Muioz Garcia, A., Lamolle, M., Martinez-
Béjar, R., & Espinal Santana, A. (2019).
Learning ecosystem ontology with
knowledge management as a service. N. T.
Nguyen, R. Chbeir, E. Exposito, P. Aniorté,
& B. Trawinski (Eds.), Computational col-
lective intelligence. Springer International
Publishing

Munoz-Garcia, A., Del Cioppo, J, &
Bucaram-Leverone, M. (2017). Ontology
model for the knowledge management
in the agricultural teaching at the UAE. R.
Valencia-Garcia, K. Lagos-Ortiz, G. Alcaraz-
Marmol, J. Del Cioppo, N. Vera-Lucio, &
M. Bucaram-Leverone (Eds.), Technologies
and innovation. Springer International

Publishing


https://doi.org/10.1186/s40793-015-0001-5
https://doi.org/10.1186/s40793-015-0001-5
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Coordinating Inria team: [[la[<E @)l

Participating teams: (1[5 Tara Océan.

Axis Il Computer science and applied math
objectives

This axis focuses on the computer science topics that we have
identified as relevant to the success of the project and where our
work will focus.

WP 111 Structured and graph-based neural networks

Arguably, much of the progress in machine learning in recent
years comes from being able to handle more complicated forms
of input data than pure tabular data. In particular, with the deep
learning revolution, neural networks have become able to grow
beyond vectors into n-dimensional tensors (i. e. images), graphs,
and sequences.

However, there is an increasing number of applications where
data are represented in the form of graphs. For example, in e-
commerce, a graph-based learning system can exploit the inter-
actions between users and products to make highly accurate rec-
ommendations. In chemistry, molecules are modeled as graphs,
and their bioactivity needs to be identified for drug discovery. In
a citation network, papers are linked to each other via citations,
and they need to be categorized into different groups.

The most frequent way to represent biodiversity todayis by means
of co-ocurrence graphs. These graphs have particular structures
that deserve to be analyzed using the presented techniques and
itsimprovements. Comparison of such graphs is a way to see evo-
lution of communities. So having ML methods capable to func-
tion on top of this information is essential to understand such
dynamics.

The complexity of graph data has imposed significant challenges
on existing machine learning algorithms. Recent results have
enabled neural networks to handle structured information. The
capacity of coupling complex and structured information with
powerful machine learning methods that can operate at scale
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could lead to a shift in the types of problems currently address-
able by machine learning. These new results have seen success-
ful applications in the area of natural language processing and
have been started to be extrapolated to other domains.

Furthermore, even in contexts like natural language processing
(NLP) where the information is structured as a sequence, there
is an implicit graphical internal representation, such as a syn-
tactic dependency tree. A syntactic dependency tree defines the
syntactic relations among words in a sentence. Similarly, causal-
ity and explainability, another important work package of this
project rely on dependency graphs.

Structure-based or graph-based neural networks (GNNs) have
been proposed and started to be successfully applied in differ-
ent domains, e.g., in power grid (Donon et al. 2019) or molecular
conformation simulations in {f{¥). However, there are still ques-
tions to be answered to understand how these models can be ap-
plied.

A particularly important group of GNNs are focused toward pro-
ducing metric embeddings from graphs (Narayanan et al. 2017; D.
Wang et al. 2016) or nodes in graphs (Grover and Leskovec 2016)
that transform them into alower-dimensional continuous latent
space that can be passed through to machine learning model.

Walk embedding methods (Perozzi et al. 2014) perform graph traver-
salsto preserve structure and features and aggregates these traver-

sals which can then be passed through a recurrent neural net-
work. Proximity embedding methods use Deep Learning meth-
ods and/or proximity loss functions to optimize proximity, such
that nodes that are close together in the original graph are like-
wiseinthe embedding. Other approaches use methodslike graph
coarsening to simplify the graph before applying an embedding
technique on the graph, reducing complexity while preserving
structure and information.

Spatial-temporal graph neural networks (STGNNs) (Jain et al. 2016)
aim tolearn hidden patterns from spatial-temporal graphs, which
become increasingly important in a variety of applications such
as traffic speed forecasting, driver maneuver anticipation, and
human action recognition. The keyidea of STGNNs is to consider
spatial dependency and temporal dependency at the same time.
Potential approaches integrate graph convolutions to capture
spatial dependency with RNNs or CNNs to model the temporal
dependency.

Donon, B, Donnot, B., Guyon, I., & Marot, A.
(2019). Graph neural solver for power sys-
tems. IJCNN 2019 - International Joint Con-
ference on Neural Networks. https://hal.

archives-ouvertes.fr/hal-02175989

Narayanan, A., Chandramohan, M,

Venkatesan, R., Chen, L. Liu, Y, &
Jaiswal, S. (2017). graph2vec: Learning
distributed representations of graphs.
arXiv: 1707.05005 [cs.LG].

P, & Zhu, W. (2016).

Wang, D., Cui,

Structural deep network

Proceedings of the 22nd ACM SIGKDD

embedding.

International Conference on Knowl-

edge and Data

https://doi.org/10.1145/2939672.2939753

Discovery Mining.
Grover, A., & Leskovec, J. (2016). Node2vec:
Scalable feature learning for networks. Pro-
ceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and
Data Mining, 13-17-Augu. https://doi.org/
10.1145/2939672.2939754

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014).
DeepWalk: Online learning of social repre-
sentations. Proceedings of the ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining. https://doi.
org/10.1145/2623330.2623732

Jain, A., Zamir, A. R., Savarese, S., & Saxena,
A. (2016). Structural-RNN: Deep learning on
spatio-temporal graphs. Proceedings of the
IEEE Conference on Computer Vision and

Pattern Recognition


https://hal.archives-ouvertes.fr/hal-02175989
https://hal.archives-ouvertes.fr/hal-02175989
https://arxiv.org/abs/1707.05005
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2623330.2623732
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16 | 3 Work Packages

Li, Q, Han, Z., & Wu, X.-m. (2018). Deeper

insights into graph convolutional networks

for semi-supervised learning. https://www.

aaai.org/ocs/index.php/AAAI/AAATI8 /

paper/view/16098

Task II.1.A Model depth

It is an accepted fact that the success of deep learning lies in
deep neural architectures. However, Li et al. 2018 showed that
the performance of'a convolutional GNN drops dramatically with
anincrease in the number of graph convolutional layers. As graph
convolutions push representations of adjacent nodes closer to
each other, in theory, with an infinite number of graph convolu-
tional layers, all nodes’ representations will converge to a single
point. This situation raises the question of whether going deep
is still a good strategy for learning graph data.

Task I11.1.B Models scalability

So far, the scalability of GNNs is mostly gained at the price of cor-
rupting graph completeness. However, when using sampling or
clustering, a model will lose part of the graph information. By
sampling, a node may miss its influential neighbors. However,
by performing a clustering step, a graph may be deprived of a
distinct structural pattern. How to trade-off algorithm scalabil-
ity and graph integrity is an important research direction. An-
other research direction is to explore the idea of super-gener-
alization: a GNN is trained on small graphs, and the resulting
modelis efficient for much larger graphs, as done in (Donon
et al. 2019).

Task 11.1.C Graph topological heterogeneity

The most current GNNs assume homogeneous graphs. It is dif-
ficult to directly apply current GNNs to heterogeneous graphs.
These graphs may contain different types of nodes and edges,

or different forms of node and edge inputs, such as images, text

or other features as the ones to be posed by the scientific chal-
lenges of marine biology. Therefore, we plan to develop new meth-
ods that would be capable to handle this case of graphs.

Task 11.1.D Dynamic graphs

Graphs are in nature dynamic in a way that nodes or edges may
appear or disappear, and that node/edge inputs may change time
by time. New graph convolution operators are needed to adapt
to the dynamics of graphs. Although the dynamics of graphs can


https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
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be partly addressed by STGNNs, few approaches consider how to
perform graph convolutions in the case of dynamic graphs.

Expected outcome(s) of the work package: New models of struc-
ture/graph-based neural network that address the challenges
posed by the tasks and than can be thenused in causality-related
problems and/or metabolical structure-related problems. These
methods will be contrasted w.r.t. state-of-the-art technique of
co-occurrence network that (22 is currently using, which is
based on Markov Blanket (Y. Wang and L. Wang 2020). There is
also an interest to compare co-occurrence networks. At the mo-
ment of writing, ({2 :1] is using graphlet decomposition, that
could be used as a ‘gold standard’ for GNNs.

Coordinating Inria team: [/ ZEN 8/l [=

Participating teams: [j

WP II1.2 Learning and adaptation in small data contexts

Progress in machine learning has made it feasible to address
problems in areas of computer vision or natural language pro-
cessing that only 10 years ago were deemed as intractable of just
were not even envision. Thisraise can be attributed to the progress
in three interrelated pillars:

1. the emergence of better hardware substrate to host the
operations of neural networks, in particular the emergence
of general-purpose computing on graphics processing units
(GPGPUs) and tensor processing units (TPUs),

2. the proposal and consolidation of approaches and models
like convolutional neural networks, recurrent neural net-
works, attention mechanisms, transformers, etc., and

3. the creation of datasets that posed important challenges
to the state of the art at that time.

However, the need for large annotated datasets suitable for su-
pervised learning limits the applicability and adoption of these
recent advances. Furthermore, in many practical scenarios, ob-
taining such data can be expensive or plainly impossible. Such
scenarios are close to the ones we are dealt with in the applica-
tion context of this project where. Even if the context of marine
biology and oceanography :] has gathered an impres-
sive amount of high-quality data, it is not enough for ‘regular’
machine learning approaches.

Wang, Y., & Wang, L. (2020). Causal infer-
ence in degenerate systems: An impossibil-
ity result. S. Chiappa & R. Calandra (Eds.),
Proceedings of machine learning research.
PMLR. http://proceedings.mlr.press/v108/

wang20i.html


http://proceedings.mlr.press/v108/wang20i.html
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Santana, R., Marti, L., & Zhang, M. (2019).

GP-based methods for domain adaptation:

Using brain decoding across subjects as a

test-case. Genetic Programming and Evolu-

able Machines. https://doi.org/10.1007/
$10710-019-09352-6

That is why it is crucial to address how machine learning models
are trained and adapted to meet this small data scenario. These
actions are consolidated as the work in the following directions.

Task I1.2.A Transfer learning (TL) and domain adaptation

Here we propose to study how models trained or adjusted for
one application and domain can be re-purposed for other appli-
cations with minimal impact. In our case, for example, to study
how existing models can be applied to new species, otherregions,
etc. Transfer learning addresses the issue of how to adapt and re-
purpose the internal representations of a model that has been
trained on a given task to address a similar problem.

On the other hand, domain adaptation is the capacity to cope
with changes in the environment because of the natural evolu-
tion ofthe system and/or the need to particularize a general model
to a particular instance. For instance, in a previous work (San-
tana et al. 2019) we have addressed how to apply Genetic Pro-
gramming to adapt general brain-computer interfaces to a par-
ticular user.

Task 11.2.B Active and few-shot learning

In problems with limited data and/or high uncertainty, like the
ones to be dealt here, it is necessary to apply methods that di-
rect the measurements to the areas of the domain where they
are most necessary. Guiding sampling using active learning and
Bayesian principles. However, due to the limited resources avail-
able, few-shot learning methods relying on TL must take care
of producing actionable products with minimal data. An alter-
native, to be explored by in the TRUST-AI European project,
is to combine deep learning with stochastic search approaches
like Genetic Programming.

Task 11.2.C Multi-source and multi-task learning deep neural models

It can be stated that ML methods are about optimizing a model’s
parameters with regard to a particular metric. This metric can
be a score on a certain benchmark or even a business KPI. A pro-
cess generally denominated as ‘training’ adjusts a single model
or an ensemble of models to perform our desired task. It is then


https://doi.org/10.1007/s10710-019-09352-6
https://doi.org/10.1007/s10710-019-09352-6
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possible to fine-tune and tweak these models until their perfor-
mance no longer increases.

While these methods generally achieve acceptable performance,
by beinglaser-focused on our single task, sometimes theyignore
information that might help the model to do even better on the
metric. Specifically, when this information comes from the train-
ing signals of related tasks. Sharing representations between re-
lated tasks, enable the model to generalize better on the original
task. This approach is called multi-source or multi-task learning
(MTL).

MTL effectively increases the sample size that is being used for
training. MTL also biases the model to prefer representations
that are useful for other tasks. This will also help the model
to generalize to new tasks in the future (transfer learning) as
a hypothesis space that performs well for a sufficiently large
number of training tasks will also perform well for learning
novel tasks as long as they are from the same environment.

and have been working on this class of problems.
For example, has been focusing on a multi-domain adver-
sarial approach (Schoenauer Sebaget al. 2019). On the other hand,
has been applying these principles to the prediction

of accident risk in mining facilities (Palma et al. 2021).

Expected outcome(s) of the work package: Novel machine learn-
ingmethods thatintegrate the results of the previous tasks. These
new methods should be made available as open-source tools.

Coordinating team: [[[gld=0@lE

Participating teams:

WP 1.3 Causality and explainable models in Al

Dramatic success in machine learning has led to a torrent of Al
applications. Continued advances promise to produce autonomous
systems that will perceive, learn, decide, and act on their own.
However, the effectiveness of these systems is limited by the ma-
chine’s current inability to explain their decisions and actions to
human users.

This need has spawned the interest in addressing explainability
and causality issues in the context of machine learning and Al
This task has an additional importance for the context of the
project.

Schoenauer Sebag, A., Heinrich, L., Schoe-
nauer, M., Sebag, M., Wu, L., & Altschuler,
S. (2019). Multi-domain adversarial learn-
ing. T. Sainath (Ed.), ICLR 2019 - seventh an-
nual international conference on learning
representations. https://hal.inria.fr/hal-
01968180

Palma, R., Marti, L., & Sanchez-Pi, N. (2021).
Predicting mining industry accidents with
a multitask learning approach. Proceed-
ings of the AAAI Conference on Artificial In-
telligence, 35(17). https:// ojs . aaai.org/

index.php/AAAl/article/view/17805
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Task I11.3.A Causal inference

Pearl, J. et al. (2009). Causal Inference In ) o 051 of causal inference (Pearl et al. 2009) is to estimate

the outcome changes if another a priori condition had been
applied. For example, suppose two treatments can be applied to
patients: Medicine A and Medicine B. When applying Medicine A
to the interested patient cohort, the recovery rate is 70%, while
applying Medicine B to the same cohort, the recoveryrate is 90%.
The change of recovery rate is the effect that treatment (i. e.,
medicine in this example) asserts on the recovery rate. However,

statistics: An overview. Statistics Surveys, 3

randomized control experiments as described above are rarely
possible, and the holy grail of causal learning is to infer the
causal graph between variables from available data, opening the
way to causal inference.

Causal inference has a variety of applications in real-world sce-
narios. In general, the applications of causal inference can be
categorized into three directions:

1. Decision evaluation. This is a natural application of treat-
ment effect estimation as it is consistent with the objec-
tive.

2. Counterfactual estimation. Counterfactual learning (what-
if scenarios) greatly helps the areas related to decision-
making, as it can provide the potential outcomes of differ-
ent decision choices (or policies).

3. Dealing with selection bias. In many real-world applications,
records appearing in the collected dataset are not repre-
sentative of the whole population of interest. Without ap-
propriately handling the selection bias, the generalization
of the trained model would be hurt.

The stable unit treatment value assumption (SUTVA) states that
the potential outcomes for any unit do not vary with the treat-
ment assigned to other units, and, for each unit, there are no
different forms or versions of each treatment level, which lead

to different potential outcomes. This assumption mainly focuses
ontwo aspects: (i) units are independent and identically distributed
(i.i.d.), and (ii) there only exists a single level for each treatment.
An extensive literature exists on making causal inferences un-
der SUTVA, but when considering many real-world situations, it
may not always be the case.

The assumption of independent and identically distributed sam-
ples is ubiquitous in most causal inference methods, but this
assumption cannot hold in many research areas, such as social
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media analytics (Guo et al. 2019; Shalizi and Thomas 2011), herd
immunity, and signal processing (Sutskever et al. 2014). Causal
inference in non-i.i.d. contexts is challenging due to the pres-
ence of both unobserved confounding and data dependence. For
example, in social networks, subjects are connected and influ-
enced by each other.

For such network data, SUTVA cannot hold anymore. Under this
situation, instances are inherently interconnected with each
other through the network structure and hence their features
are notindependent identically distributed samples drawn from
a certain distribution.

The dependence in data often leads to interference because some
subjects’ treatments can affect others’ outcomes (Hudgens and
Halloran 2008; Ogburn, VanderWeele, et al. 2014). This difficulty
can impede the identification of causal parameters of interest.
Extensive work has been developed onidentification and estima-
tion of causal parameters under interference (i.e. Hudgens and
Halloran 2008; Ogburn, VanderWeele, et al. 2014, Pefia 2018; Tch-
etgen and VanderWeele 2012).

For this problem, a strategy proposed by Sherman and Shpitser
2018 1is to use segregated graphs (Shpitser 2015), a generalization
of latent projection mixed graphs (Verma and Pearl 1991), to
represent causal models.

Applying graph convolutional networks into a causal inference
modelis an approach to handle the network-structured data Guo
et al. 2019. In particular, the original features of subjects and the
network structure are mapped to a representation space, to get
the representation of confounders. Furthermore, the potential
outcomes could be inferred using treatment assignments and
confounder representations.

In a similarline, causal inference can be conceptualized as a multi-
tasklearning problem with a set of shared layers for treated group
and control group together, and a set of specific layers for treated
group and control group separately. The impact of selection bias
in multi-tasklearning problem can be alleviated via a propensity-
dropout regularization scheme, in which the network is thinned
for every training example via a dropout probability that depends
on the associated propensity score.

In the context of the project, there is a particular opportunity
for applying causal inference methods in conjunction with the

Guo, R, Li, J,, & Liu, H. (2019). Learning in-
dividual treatment effects from networked
observational data. arXiv: 2004 . 07511v]
[cs.LG].

Shalizi, C. R., & Thomas, A. C. (2011). Ho-
mophily and contagion are generically con-
founded in observational social network
studies. Sociological Methods & Research,
40(2)

Sutskever, 1., Vinyals, 0., & Le, Q. V. (2014).
Sequence to sequence learning with neural
networks. Advances in Neural Information

Processing Systems

Hudgens, M. G., & Halloran, M. E. (2008).
Toward causal inference with interference.
Journal of the American Statistical Associ-
ation, 103(482)

Ogburn, E. L., VanderWeele, T. J. et al. (2014).
Causal diagrams for interference. Statisti-
cal science, 29(4)

Pena, J. M. (2018). Reasoning with alterna-
tive acyclic directed mixed graphs. Behau-
iormetrika, 45(2)

Tchetgen, E. J. T, & VanderWeele, T. J.
(2012). On causal inference in the presence
of interference. Statistical Methods in Med-
ical Research, 21(1)

Shpitser, 1. (2015). Segregated graphs and
marginals of chain graph models. Ad-
vances in Neural Information Processing
Systems

Verma, T., & Pearl, J. (1991). Equivalence
and synthesis of causal models. UCLA, Com-

puter Science Department
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Figure 3.1: Community structure
found in photic zone interactome.
Top 15 interacting taxon groups
are depicted as colored segments
in which ribbons connecting two
segments indicate co-presence
and exclusion. Links are domi-
nated by the obligate parasites
syndiniales and by Arthropoda
and Dinophyceae. Source: Lima-
Mendez et al. 2015.

Kalainathan, D., Goudet, O., Sebag, M., &
Guyon, I. (2019). Discriminant Learning Ma-
chines. I. Guyon, A. Statnikov, & B. B. Batu
(Eds.), Cause Effect Pairs in Machine Learn-
ing. Springer Verlag. https://doi.org/10.
1007/978-3-030-21810-2_4

Kalainathan, D. (2019). Generative neural
networks to infer causal mechanisms: Algo-
rithms and applications (Theses). Univer-
sité Paris Sud (Paris 11) - Université Paris
Saclay. https://hal.inria.fr/tel- 02435986
Marti, L., Sanchez-Pi, N., Molina, J. M., &
Bicharra Garcia, A. C. (2014). High-level in-
formation fusion for risk and accidents
prevention in pervasive oil industry envi-
ronments. Highlights of Practical Applica-
tions of Heterogeneous Multi-Agent Sys-
tems — The PAAMS Collection, 430. https:
//doi.org/10.1007/978-3-319-07767-3_19
Sanchez-Pi, N., Marti, L., Molina, J. M.,
& Bicharra Garcia, A. C. (2014). An in-
formation fusion framework for context-
based accidents prevention. 17th Interna-
tional Conference on Information Fusion
(FUSION). http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6916105&tag=1
Sanchez-Pi, N., Marti, L., Molina, J. M., &
Bicharra Garcia, A. C. (2015). Contextual
pattern discovery in ambient intelligent
application. International Journal of Imag-
ing and Robotics (IJIR), 15(4)

Palma, R., Marti, L., & Sanchez-Pi, N. (2021).
Predicting mining industry accidents with
a multitask learning approach. Proceed-
ings of the AAAI Conference on Artificial In-
telligence, 35(17). https:// ojs . aaai.org/
index.php/AAAl/article/view/17805
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work being carried out in WP II.1 and WP III.1. A particular case
are regulatory networks and community structures.

For example, Lima-Mendez et al. 2015 discussed the problem of
finding the community structure in the photic zone interactome
using environmental factors and organismal abundance profiles
relying on [~ ©/.°" | data, as illustrated in Figure 3.1. Causality
could be used to automatically extract and give a causality di-
rection in the graph at different levels of taxonomic resolution.
Work package WP I11.1 will centralize and coordinate work in this
direction.

Causality has been a long-time research theme at [{fNI), Isabelle

Guyon being a pioneer of the field, in particular through the orga-
nization of the cause-effect pair challenges (Kalainathan, Goudet,
Sebag, et al. 2019). Other results on this topic include a PhD thesis

by Kalainathan 2019 —along with its corresponding publications

(Goudet, Kalainathan, Caillou, et al. 2018; Goudet, Kalainathan,

Sebag, et al. 2019; Kalainathan, Goudet, Guyon, et al. 2018b)— in

which full causal models (and not only pairs of variables) are

built using the adversarial principles of deep neural networks.

has also worked on the application of causal infer-
ence to the determination of causes of accidents in the petroleum
(Marti et al. 2014; Sanchez-Pi, Marti, Molina, et al. 2014, 2015) and

mining industries (Palma et al. 2021) among others.

Task 11.3.B Explainable Al

In this task we focus on how to address the issue of explainable
Al This task aims to set up a suite of machine learning techniques
that:

p produce more explainable models, while maintaining a
high level of learning performance (prediction accuracy),


https://doi.org/10.1007/978-3-030-21810-2_4
https://doi.org/10.1007/978-3-030-21810-2_4
https://hal.inria.fr/tel-02435986
https://doi.org/10.1007/978-3-319-07767-3_19
https://doi.org/10.1007/978-3-319-07767-3_19
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6916105&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6916105&tag=1
https://ojs.aaai.org/index.php/AAAI/article/view/17805
https://ojs.aaai.org/index.php/AAAI/article/view/17805
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(a) Original Image

(b) Explaining FElectric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Figure 3.2: How different elements of an image influence each possible classification class. Source: Ribeiro et al. 2016.

p createasetofresearch supporttools that combine explain-
ability and causality to cast light into the finding of new
scientific discoveries and theories by making surrogate hu-
man-readable models, and

P enable human users to understand, appropriately trust,
and effectively manage the emerging generation of arti-
ficially intelligent partners.

Explainabilityis a core concern in Al —and computer science, for
that matter— at the moment (Barredo Arrieta et al. 2020). It is
also an essential component of the challenge as we intend to
use the models created to serve as vehicles for understanding
nature and at the same time to be a source for new theories.

Current state-of-the-art machine learning methods tend to ob-
fuscate the interpretability of their results. This has been fur-
ther aggravated by the emergence of highly complex deep learn-
ing methods. There has been an important interest on the con-
text of explainablility related to images (Vermeire and Martens
2020, April 16).

Images are particularly suitable for the application of these meth-
ods and have served to expose many of the drawbacks of cur-
rent methods. For instance, Figure 3.2 shows some results from
Ribeiro et al. 2016 where traced back the parts of the input image
(a) that are decisive when trying to classify that image under dif-
ferent classes (b)—(d).

New machine learning systems that will be proposed in this task

would have the ability to explain their rationale, characterize their

strengths and weaknesses, and convey an understanding of how
they will behave in the future. The strategy for achieving that
goal is to develop new or modified machine learning techniques
that will produce more explainable models. These models will
be combined with state-of-the-art human-computer interface

Barredo Arrieta, A., Diaz-Rodriguez, N., Del
Ser, J, Bennetot, A., Tabik, S., Barbado,
A., Garcia, S., Gil-Lopez, S., Molina, D.,
Benjamins, R., Chatila, R., & Herrera, F.
(2020). Explainable artificial intelligence
(XAI): Concepts, taxonomies, opportunities
and challenges toward responsible Al In-
formation Fusion, 58. https://doi.org/10.
1016/j.inffus.2019.12.012

Vermeire, T., & Martens, D. (2020, April
16). Explainable image classification with
evidence counterfactual (1). arXiv: 2004 .
07511v1 [cs. LG].


https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://arxiv.org/abs/2004.07511v1
https://arxiv.org/abs/2004.07511v1
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Figure 3.3: Trade-off between ac-
curacy and interpretability of ma-
chine learning methods and the
area of work of modern explain-
able Al Source: Barredo Arrieta et
al. 2020.

Escalante, H. J, Escalera, S. Guyon,
I, Bar6, X, Giglitirk, Y., Gigli, U, &
van Gerven, M. A. J. (2018). Explainable and
interpretable models in computer vision
and machine learning. Springer Verlag.
https://doi.org/10.1007/978-3-319-98131- 4
Kalainathan, D., Goudet, 0., Guyon, I,
Lopez-Paz, D., & Sebag, M. (2018a). SAM:
Structural agnostic model, causal discou-
ery and penalized adversarial learning
[working paper or preprint]. https
//hal.archives-ouvertes.fr/hal-01864239
Tubaro, P, Casilli, A. A., & Coville, M.
(2020). The trainer, the verifier, the
imitator: Three ways in which human
platform  workers support artificial
intelligence. Big Data & Society, 7(1).
https://doi.org/10.1177/2053951720919776
Baumgartner, C. F., Koch, L. M., Tezcan,
K. C, & Ang, J. X. (2018). Visual feature
attribution using Wasserstein GANs. 2018
IEEE/CVF Conference on Computer Vision
and Pattern Recognition

Charte, D., Charte, F., Garcia, S., del Jesus,
M. J,, & Herrera, F. (2018). A practical tuto-
rial on autoencoders for nonlinear feature
fusion: Taxonomy, models, software and
guidelines. Information Fusion, 44. https://

doi.org/10.1016/j.inffus.2017.12.007
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techniques capable of translating models into understandable
and useful explanation dialogues for the end user.

Our strategy is to pursue a variety of techniques to generate a
portfolio of methods that will provide future developers with a
range of design options covering the performance-versus-explain-
ability trade-off space. This trade-off can be appreciated in Fig-
ure 3.3.

Here again, there will be cross-fertilization and factorization with
the European project TRUST-AI, of which isapartner, adding
Genetic Programming in the portfolio, together with other re-
cent or on-going work at that are already disseminated (Es-
calante et al. 2018; Kalainathan, Goudet, Guyon, et al. 2018a; Tubaro
et al. 2020).

Work in this task will be organized in the following directions:

p Explainable AI and adversarial machine learning: some
recent contributions have capitalized on the possibilities
of generative adversarial networks (Baumgartner et al.
2018), variational autoencoders (Charte et al. 2018) and
other generative models towards explaining data-based
decisions. Once trained, generative models can generate
instances of what they have learned based on anoise input
vector that can be interpreted as a latent representation
of the data at hand.

This is best illustrated in Figure 3.4. In this figure it is illus-
trated how a neural network trained to classify dogs ap-
plies a combined method that segments (b) and then uses
this segments to classify the images. When the classifier
is confronted with counterfactual examples, it can be ap-
preciated what elements are the determining factors to


https://doi.org/10.1007/978-3-319-98131-4
https://hal.archives-ouvertes.fr/hal-01864239
https://hal.archives-ouvertes.fr/hal-01864239
https://doi.org/10.1177/2053951720919776
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1016/j.inffus.2017.12.007
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reach -or reject- a classification, as appreciated in (c) and

@.

p Interpretable shadow models: methods like Bayesian net-

works and, particularly, genetic programming can be con-
structed to provide human-readable models that can be
interpreted, assessed and even lead to new scientific dis-

coveries.

p Causalinference forunderstanding internal representations:
representationlearningis one of the main results that have

lead to the deep learning revolution. It can be hypothe-

sized that causal inference methods can be applied to un-
derstand the patterns of those activations and, be used
to understand what input and internal features influence

the prediction.

Expected outcome(s) of the work package: Outcome of the pack-

age will be a toolkit library consisting of machine learning and

human-computerinterface software modules that could be used
to develop future explainable Al systems. We expect this to lead
toward the concept of responsible Al, namely, a methodology for

the large-scale implementation of Al methods in real organiza-

tions with fairness, model explainability and accountability at

its core.

Coordinating Inria team:

Participating teams: [:]

Figure 3.4: Determining key fea-
tures in image classification using
adversarial methods. Source: Ver
meire and Martens 2020, April 16.
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Boittin, L., Bouchut, F., Bristeau, M.-0., Man-
geney, A., Sainte Marie, J, & Souillé, F.
(2020). The Navier-Stokes system with tem-
perature and salinity for free surface flows
Part II: Numerical scheme and validation
[working paper or preprint]. https://hal.

inria.fr/hal- 02510722

Chen, R. T., Rubanova, Y., Bettencourt, J., &
Duvenaud, D. K. (2018). Neural ordinary dif-
ferential equations. Advances in neural in-
formation processing systems

Dupont, E., Doucet, A., & Teh, Y. W. (2019).
Augmented neural ODEs. H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, & R. Garnett (Eds.), Advances in neu-
ralinformation processing systems 32. Cur-
ran Associates, Inc. http://papers.nips.cc/

paper/8577-augmented-neural-odes.pdf

Rudy, S. H., Brunton, S. L., Proctor, J. L., &
Kutz, J. N. (2017). Data-driven discovery of
partial differential equations. Science Ad-
vances, 3(4). https://doi.org/10.1126/sciadv.
1602614

Sirignano, J., & Spiliopoulos, K. (2018). DGM:
A deep learning algorithm for solving par-
tial differential equations. Journal of Com-
putational Physics, 375. https://doi.org/10.
1016/j.jcp.2018.08.029

WP Il.4 Model-driven and data-driven integration and
hybrids

Running biogeophysical models (Boittin et al. 2020) can be very
CPU time and energy consuming. The idea here is to use deep
learning approaches to reproduce the predictions of these re-
source demanding models. More precisely, to reduce complex
models (coupling Navier-Stokes with biochemical source terms)
using deep neuronal networks (DNNs).

Task Il.4.A Learning PDEs from Data

In a first stage, a database of synthetic data coming from the
numerical resolution of our PDE-based models will be generated
on a broad range of scenarios. These datasets will be used to
train deep neural networks (Chen et al. 2018; Dupont et al. 2019).
A validation data set will be used to validate and assess the
resulting accuracy.

Note that specific stability analysis and dedicated tools like CFL
condition, upwinding, etc., are usually required in the numeri-
cal processing of transport. In this context, we will build con-
ceptual analogies between DNN architectures (activation func-
tions, number of layers) and our schemes (slope limiters, time
discretization). Positivity and energy preservation will be stud-
ied as well. In this way, we will generalize our approach to vari-
ous initial conditions.

Task I1.4.B Understanding learning dynamics

There exists a huge literature on model reduction for ODEs and
PDEs. However, classical techniques often face difficulties to re-
duce systems with hyperbolic features. The study of geophysi-
cal flows is often associated with advection dominating flows
and hence, except for simple/linear systems, there is a lack of
efficient model reduction techniques available e.g. for ocean dy-
namics.

Using simple models: advection equation (2D, with varying ad-
vection velocity, etc.), shallow water equations in characteristic
regimes, we intend to understand why ML-based techniques give
interesting results. In this regard, the work of Rudy et al. 2017
and Sirignano and Spiliopoulos 2018 are good starting points.


https://hal.inria.fr/hal-02510722
https://hal.inria.fr/hal-02510722
http://papers.nips.cc/paper/8577-augmented-neural-odes.pdf
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https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
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Figure 3.5: Schematic representation of a physics-informed neural network with inputs z, y, and ¢; outputs 4 and .
Using automatic gradient calculation we can differentiate the neural network by its input variables and construct a
physics error function f(). Consequently, the loss function, ¢, involves a loss term for the data (¢,,,,) and aloss term

for the physics function (¢ ). Source: de Wolff et al. 2021b.

physics
Task 11.4.C Hybrid models: Combining PDE solvers and DNNs

Though remaining in the framework of transport models, we will

consider here a general process where a source of physical knowl-
edge under the form of a PDE is available. We will investigate

schemes for decomposing a process model into PDE and statis-
tical components which is an open problem. We will analyze for

representative cases the properties of such decompositions (ex-
istence, unicity, conditions for PDE parameters identification),
and propose a formal learning framework. Simple kinetics de-
scribing phytoplankton growth as a function of temperature and

nutrients will be embedded in the model as a case study to vali-
date the approach and assess its accuracy.

Physics-informed neural networks (PINNs) (Raissi et al. 2019) are
a hybrid approach that take into account a data-based neural
network model and a physics-informed mechanistic model which
are two different paradigms, as presented in Figure 3.5. They of-
fer a framework where existing knowledge about a physical phe-
nomenon and empirical data gathered about it. This general con-
cept has been previously explored and is known as data assim-
ilation (Vetra-Carvalho et al. 2018), but PINNs bring a novel and
sound approach to consolidate the existing models and sampled
data.

This feature makes PINNs particularly appealing for the above-
described problems and has lead to some preliminary studies
by [[aZENElE) (de Wolff et al. 2021a,b) and others (Liitjens et al.
2021).

Recently, thisinsterest was further verified during the AIMOCC’21

Raissi, M., Perdikaris, P., & Karniadakis, G.
(2019). Physics-informed neural networks:
A deep learning framework for solving for-
ward and inverse problems involving non-
linear partial differential equations. Jour-
nal of Computational Physics, 378. https://
doi.org/10.1016/j.jcp.2018.10.045
Vetra-Carvalho, S., van Leeuwen, P. J,
Nerger, L., Barth, A., Altaf, M. U,, Brasseur,
P, Kirchgessner, P., & Beckers, J.-M. (2018).
State-of-the-art stochastic data assimila-
tion methods for high-dimensional non-
Gaussian problems. Tellus A: Dynamic Me-
teorology and Oceanography, 70(1). https:
//doi.org/10.1080/16000870.2018.1445364
de Wolff, T, Carrillo, H., Marti, L., & Sanchez-
Pi, N. (2021a). Assessing physics informed
neural networks in ocean modelling and
climate change applications. N. Sanchez-Pi
& L. Marti (Eds.), AI: Modeling Oceans and
Climate Change Workshop at ICLR 202l.
https://hal.inria.fr/hal-03262684

de Wolff, T, Carrillo, H.,, Marti, L, &
Sanchez-Pi, N. (2021h).
weighted

Towards op-

timally physics-informed

neural networks in ocean modelling

[Under review]. arXiv: 2106 08747.
https://hal.inria.fr/hal-03260357
Crawford, C. H., Veillette,

(2021). PCE-PINNs:

Liitjens, B.,
M., & Newman, D.
Physics-informed neural networks for
uncertainty propagation in ocean mod-
eling. N. Sanchez-Pi & L. Marti (Eds.), AL
Modeling Oceans and Climate Change

Workshop at ICLR 2021


https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1080/16000870.2018.1445364
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Sanchez-Pi, N., & Marti, L. (Eds.). (2021).

AL Modeling Oceans and Climate Change

Workshop (AIMOCC 2021). Tenth Interna-

tional Conference on Learning Representa-

tions (ICLR 2021). https://oceania.inria.cl/

#faimocc

Baroukh, C., Mufioz-Tamayo, R., Steyer,

J.-P,, & Bernard, 0. (2015). A state of the

art of metabolic networks of unicellular mi-

croalgae and cyanobacteria for biofuel pro-

duction. Metabolic Engineering, 30. https:
//doi.org/10.1016/j.ymben.2015.03.019

Baroukh, C., Mufioz-Tamayo, R., Steyer,
J.-P,, & Bernard, 0. (2014). DRUM: A new
framework for metabolic modeling under

non-balanced growth. application to the

carbon metabolism of unicellular microal-

gae (A. Vertes, Ed.). PLoS ONE, 9(8). https:
//doi.org/10.1371/journal.pone.0104499

Baroukh, C., Turon, V., & Bernard, O.

(2017). Dynamic metabolic modeling

of  heterotrophic and mixotrophic
microalgal growth on
tive wastes (K. R. Patil, Ed.). PLOS
Computational Biology, 13(6). https

//doi.org/10.1371/journal.pcbi.1005590

fermenta-

workshop organized in conjunction with the ICLR 2021 confer-
ence (Sanchez-Pi and Marti 2021).

Expected outcome(s) of the work package: This work package will
give rise to easier methods to simulate and to handle Al-based
models that will allow to more extensively explore different sce-
nearii, including the impact of temperature changes as follow-
ing IPCC scenarii, in particular in biodiversity along ocean cur-
rents.

Coordinating Inria team: [ 2\)\€]=

Participating teams:

WP I1.5 Development, calibration and validation of
mechanistic models

Task I1.5.A Identifiability issues

The high dimension of the biogeochemical models make chal-
lenging their calibration and validation from a reduced number
of measurements. These nonlinear and dynamical systems of-
ten integrate several time scales. It results that the mathemati-
cal analysis of these models is challenging. The identifiability of
their parameters is often an open question. As a result, identifi-
cation algorithms based on minimization can converge towards
several local minima.

The objective of this work package will be to develop identifica-
tion strategies tailored to the system to limit the ineffability’s
issues and eventually to cross validate the models.

Task 11.5.B Metabolic model reduction

Most of the approaches to reduce metabolic models assume a
steady state, where no intracellular compounds can accumulate.
In the environment permanently subject to varying signals like
light, temperature, pH, etc., such hypothesis reveals to be wrong
(Baroukh, Munoz-Tamayo, et al. 2015), and the Dynamic RedUc-
tion of Metabolism (DRUM) framework (Baroukh, Mufioz-Tamayo,
et al. 2014; Baroukh, Turon, et al. 2017) has been proposed ac-
counting for the metabolic dynamics through accumulation and
reuse of internal compounds.


https://oceania.inria.cl/#aimocc
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More work remains to be done to account for the dilution due to
growth or to advection-diffusion in the natural environment and
to include the impact of temperature on metabolism.

The mathematical analysis of the metabolic fluxes within the
ecosystem still needs developments to understand the key ele-
ment driving its dynamics. More specifically, methods are lack-
ing toreduce the number of solutions while constrain the metabolic
problem. Studying all the possible intracellular fluxes and the de-
pendencies between reactions (Correlation Flux Coupling Analy-
sis) is still an open question.

Task 11.5.C Navier-Stokes equation: From Eulerian to Lagrangian

The multidisciplinary approach put forward by [N[&3 includes
hydrodynamic models that enable the simulation of Lagrangian
cell trajectories (Demory, Combe, et al. 2018). In this task, we will
tackle the inverse problem using this Lagrangian reconstruction.
More precisely, we will build up an inverse problem by compar-
ing the observed trajectories and the simulated to reconstruct
the environment parameters. A promising characteristic of this
approachisthat the number of considered trajectories (observed
and computed) can be increased to get a more accurate estimate
of the environment parameters.

Expected outcome(s) of the work package: Coupling of the Navier-
Stokes equations with biological models gives an accurate rep-
resentation of the hydrodynamics-biology coupling and of the
evolution processes but the study of the obtained models is out
of reach. Two simplification steps: metabolic reduction and La-
grangian trajectories will give rise to models of reduced com-
plexity over which ML techniques will be applied. The underlying
parameter estimation and state reconstruction algorithms will
be assessed on these simplified models.

Coordinating Inria team: [|z][0]€0)313

Participating teams: [\\[c3) C]
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We identified two main “vertical” applied scientific challenges
concerning the modeling of the ocean symbiome system and its
relation with climate change. All of them have an intrinsic need

Demory, D., Combe, C., Hartmann, P., Talec,
A., Pruvost, E., Hamouda, R., Souillé, F,,
Lamare, P.-0., Bristeau, M.-0., Sainte-Marie,
J., Rabouille, S., Mairet, F., Sciandra, A.,
& Bernard, 0. (2018). How do microalgae
perceive light in a high-rate pond? To-
wards more realistic lagrangian experi-
ments. Royal Society Open Science, 5(5).
https://doi.org/10.1098/rs0s.180523
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van der Plas, F. (2019). Biodiversity and

ecosystem functioning in naturally as-

sembled communities. Biological Reviews,

94(4). https://doi.org/10.1111/brv.12499

for the development of computer science and mathematical the-
ories, computational tools and ideas to bring us beyond the state
of the art and strengthen the accumulated area of expertise.

WP 1111 Integrating biodiversity community structures
and function along the ocean

Task I11.1.A Biodiversity and ecosystem functioning

Biodiversity supports important functions, such as primary pro-
ductivity and carbon fixation and sequestration, that are directly
or indirectly used and affected by humans. Understanding the
processes driving these functions is fundamental from a basic
science and policy perspective. One of the main drivers of changes
in ecosystems functionsis biodiversity most commonly measured
as number of species and mostly in terrestrial and freshwater
environments. The most common pattern is an increase in func-
tion like productivity and species richness with an eventual ceil-
ing.

In marine environments, these studies are comparatively scarce
and most of them restricted to deep sea and benthic ecosystems,
for which positive and negative relationships have been reported.
Data derived from Tara and other sources would allow for a com-
prehensive exploration of the relationship between ecosystem
functioning and biodiversity, for testing many of the mechanis-
tic hypotheses offered to explain them (e. g., complementarity,
selection, and sampling effects). But more importantly, for as-
sessing their relative contribution and testing new ones asso-
ciated to the integration and variability of these relationships
across different levels of biodiversity, from genes to species to
traits and functions and their interaction with other driver vari-
ables such as temperature that drives both diversity and ecosys-
tems functions, and with different levels of detail (e. g. compar-
ing the relationship between ecosystem functioning and meta-
genomes with that for meta-transcriptomes). This study will help
leverage and overcome important biases such as the underrep-
resentation of ocean studies with only five reported (van der Plas
2019).

The almost non-existence analysis at the levels of metagenomes,
meta-transcriptomes, and metabolic trait diversity, which will


https://doi.org/10.1111/brv.12499
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provide unprecedented evidence linking genes to ecosystem pro-
cesses. Finally, through AI technique we will be able to under-
stand causality and circular causality among different levels of
biodiversity, ecosystem functioning and abiotic variables such
as temperature.

Task I11..B Meta-metabolic modeling

The objective is to develop a metabolic model including the main
microbial oceanic compartments, and couple it with physics. Meta-
metabolic model is challenging due to variety in the pathways
and time scales. The current approaches for metabolic modeling
has been developed assuming that the metabolism is at steady
state, the DRUM approach (Baroukh, Munoz-Tamayo, et al. 2014)
opens new routes to tackle this challenge. It is ambitious to pro-
pose a metabolic model of the ocean microbial food web, but
with these toolsit becomes doable. The model could be calibrated
with the (7" 2" ] Oceans data. This reconstruction of meta-
metabolic models foreach [~ /- | sample (prokaryiotic frac-
tion) has already been initiated by (€2 -}, but much remain to
be done for the calibration and the validation of such models.

As a main expected result, a notion of ecological niche should
be derived from metabolic networks of key organisms (:]).
and are also active in this context in particular by
incorporating regulatory ideas.

Task I11.1.C Phytoplankton biodiversity with regard to temperature,
present and future

The main purpose is to create a computational modeling frame-
work to properly incorporate plankton complexity into ocean-
climate models, assuming the stochastic nature of this system.
There area different tasks that can be addressed in this context.

In this case, the objective is to match the V9-18s available in the
(- . |database andlocal temperature data, focusing on sen-
tinel genus (i.e. Micromonas or Synecochochocus) for which tem-
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Demory, D., Baudoux, A.-C., Monier, A., Si-

mon, N, Six, C, Ge, P, Rigaut-Jalabert,

perature response model exist (Demory, Baudoux, et al. 2019),  F, Marie, D, Sciandra, A., Bernard, 0., &

which have been used to propose phytoplankton biodiversity in-  Rabouille, S. (2019). Picoeukaryotes of the

dexes. These biodiversity models must be improved considering
a larger data set encompassing the [/ - ¢ ] measurements,
especially by relating local temperature conditions (yearly SST

org/10.1038/s41396-018-0248-0

Micromonas genus: Sentinels of a warming

ocean. The ISME Journal, 13(1). https://doi.
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evolution), local nutrient conditions and temperature response:
predicting which species can grow in a given environment.

In a first stage, the area where temperature effect is predomi-
nated by other factors must be determined and analyzed. For the
area whose biodiversity is temperature driven, the future of the
local biodiversity must be assessed within the IPCC scenarii.

Task I111.D Data assimilation in biogeochemical models: Predicting
the future

Data assimilation strategies will be developed to calibrate bio-
geochemical models using the available database. The PISCES
biogeophysical model, which is already used by (22151, will be
run for this purpose. Data assimilation with 3D biogeochemical
models, including a large number of processes and parameters,
is an active subject of research. The tools of Al combined with
other approaches from applied mathematics are opportunities
for gaining in prediction capability. The idea is to embed key fac-
tors affected by global changes such as pH (Carbonate system,
including CO,) and temperature to be able to predict the ecosys-
tem evolution at the end of the century horizon. will
focus on the phytoplankton compartment and the primary pro-
duction.

Surrogate models of the growth rate derived from the other tasks
will be used as a proxy within the PISCES model, following the
first results within the project Houmus (CNRS Prime) obtained

by (CUED.

Expected outcome(s) of the work package: The outcome of this
work package can be summarized as:

P conclusive analysis at the levels of metagenomes, meta-
transcriptomes, and metabolic trait diversity, that provide
evidence linking genes to ecosystem processes,

P anotionofecological niche should be derived from metabolic
networks of key organisms,

p original models describing biodiversityin response to tem-
perature,

P enhanced strategies for calibrating biogeochemical mod-
els.

Coordinating Inria team: [[2](0)80)3{=

RGBTV ] ANGE [ inria Chile [ComBi] cMM | G0-SEE] PUC
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Figure 3.6: Steps or layers for the application of computer vision and machine learning for understanding planktonic
populations. From satellites (A) we can obtain images and synthetic aperture radar measurements (SAR) (B). Water
properties like temperature, salinity, and presence of chlorophyll (C) may indicate the presence of certain popula-
tions (D) but the details can be either appreciated using microscope imagining (G) of DNA barcodes (E). In both cases,
Al methods like neural networks can be applied to identify in images or barcodes the presence of organisms: (E)-(F)-

(G) and (G)-(H)-(i), respectively.

WP I11.2 Understanding plankton communities using Al,

ML, and vision

(- . sampling methodology allows for an ample applica-
tion of computer vision to help the understanding of the charac-

teristics of the biome. This is particularly important as images
canbe obtained from the samples being extracted but also a cam-
era is submerged as records images of the microscopic organ-
isms found.

Traditionally, plankton is surveyed using either satellite remote
sensing, where biomass is inferred indirectly through measure-
ment of total chlorophyll concentration or with large net tows
via oceanic vesselslike [ -~ "] with subsequent microscopic
analysis of the preserved samples.

Satellite imaging methods are extremely accurate in terms of
global geographic association and very useful for broad species
characterization but may present practical challenges in terms
of accuracy of the performed counts, species preservation, and
fine-grained characterization.

Clearly, computer vision techniques are called for to help toiden-
tify individuals in an automated way. Supervised learning meth-
ods, and to a more limited degree, semi-supervised approaches
have already been started to be used (Pastore et al. 2019).

However, there is an important gap to bridge in order to produce
useful research tools. Figure 3.6 provides an illustrative outlook

Pastore, V. P, Zimmerman, T. G., Biswas,
S., & Bianco, S. (2019). Annotation-free
learning of plankton for classification and
anomaly detection. bioRxiv. https://doi.

org/10.1101/856815
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Figure 3.7: Whales movement and
feeding across different depths
makes them an essential actor in
marine biodiversity and a poten-
tial key element for carbon cap-
ture. Source: Roman and Mccarthy
2010.

Picheral, M., Colin, S., & J.-0., I. (2017). Eco-
Taxa, a tool for the taxonomic classification

of images. http://ecotaxa.obs-vlfr.fr

4: http://dataobservatory.net

Roman, J.,, & Mccarthy, J. J. (2010). The
Whale Pump: Marine mammals enhance
primary productivity in a coastal basin.
PLoS ONE, 5(10). https://doi.org/10.1371/
journal.pone.0013255

Héaussermann, V., Gutstein, C. S., Bedding-
ton, M., Cassis, D., Olavarria, C., Dale, A. C.,
Valenzuela-Toro, A. M., Perez-Alvarez, M. J.,
Sepulveda, H. H., McConnell, K. M., Horwitz,
F. E., & Forsterra, G. (2017). Largest baleen
whale mass mortality during strong El Nifio
event is likely related to harmful toxic algal
bloom. PeerJ, 2017(5). https://doi.org/10.
7717/peer;.3123

Ledn-Munoz, J., Urbina, M. A., Garreaud, R.,
& Iriarte, J. L. (2018). Hydroclimatic condi-
tions trigger record harmful algal bloom in
western Patagonia (summer 2016). Scien-
tific Reports, 8(1). https://doi.org/10.1038/
$41598-018-19461-4
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of the steps end-to-end that could be addressed, from satellite
sensing to in situ sampling, etc.

The capacity crossing data from different sources is essential for
the success of this work package. Work on WP 1.2 is essential
to this end. In particular, it should also integrate sources from
plankton images i. e. Ecotaxa (Picheral et al. 2017) and the satel-
lite images stored by the Chilean Data Observatory.*

Task I11.2.A Plankton identification from satellite images

Machine learning techniques will be designed to integrate ‘omics’
information with high-throughput/high-resolution plankton imag-
ing and environmental data. Our goal here is to address the prob-
lem as wide as possible. For example, would it be possible, rely-
ingon (-~ "] data, the detected in situ populations crossed
with satellite images be able to predict the presence of popula-
tions and provide tools to authorities and decision-makers. We
would like to verify ifit is possible to identify the presence of par-
ticular organisms based on satellite sensors.

Another approachis totake anindirect approach. Instead of quan-
tifying the presence of different microscopic organisms, it would
be possible to detect some large dimension obhjects that indicate
the presence of such organisms. For instance, it has been hy-
pothesized that whales have a big impact on the carbon capture
process (Roman and Mccarthy 2010). Whales cycle energy in the
ocean as they feed in deep waters while then leaving their feces
and urea at shallow depths (see Figure 3.7). Furthermore, recent
studies (Haussermann et al. 2017; Leon-Munoz et al. 2018) that
mass mortality events among whales have severe consequences
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https://doi.org/10.1371/journal.pone.0013255
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onthe balance of ecosystems, leading, for example, to the bloom
of highly toxic algae.

Henceforth, the problem would be ifitis possible to detect whales
from satellite images, something that has been reported to be
possible by Guirado et al. 2019 and Borowicz et al. 2019 although
it still requires further study in order to assert the possibility of
doing this with minimal supervision.

Task 111.2.B Connecting images and genomic features

The [\ ¢~ ]dataset provides an extensive overview of plank-
ton images. Both images and genomic provide a lot of diversity
to investigate. The connection between these databases via ML
techniques could (i) state biogeography of the morphological di-
versity, and (ii) identify genes responsible for plankton shapes
and morphologies.

This topic is mostly new and requires considering raw imaging
data. Similarly, ocean images from space will give access in the
near future to alot of content. ML techniques to connect the trait
of genomic diversity with the satellite images are required.

Task 111.2.C Anomaly detection and explainable Al for automatic
plankton discovery

Identifying plankton from microscope images has been already

addressed. In this case, what we would like to address is a more

general topic of how to identify unknown or out of context species
automatically and, at the same time, provide explanations of why
that organism represents an interesting specimen (sequence D-
G-H-Tin Figure 3.6). This would involve the application of trans-
fer learning and domain adaptation in order to adapt to changes

in the optics of the sensing equipment and subtle changes in the

morphology of the populations.

As part of this task, it will be required to address this problem
as object detection and instance segmentation problem. As, in
addition to indicating the class of an object as image classifica-
tion, itis alsoneeded to indicate theirlocation within a bounding
box. In this category we find two main families of architectures:
region proposals like the regions with CNN features, as for ex-
ample, R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015),
Faster R-CNN (Ren et al. 2015), mask R-CNN (He et al. 2017), and
You Only Look Once (YOLO) (Redmon and Farhadi 2017).

Guirado, E., Tabik, S., Rivas, M. L., Alcaraz-
Segura, D., & Herrera, F. (2019). Whale
counting in satellite and aerial images
with deep learning. Scientific Reports, 9(1).
https://doi.org/10.1038/s41598- 019- 50795
9

Borowicz, A., Le, H., Humphries, G., Nehls,
G., Hoschle, C., Kosarev, V., & Lynch, H. J.
(2019). Aerial-trained deep learning net-
works for surveying cetaceans from satel-
lite imagery (P. Ptawiak, Ed.). PLOS ONE,
14(10). https://doi.org/10.1371/journal.pone.

0212532

Girshick, R., Donahue, J., Darrell, T., & Ma-
lik, J. (2014). Rich feature hierarchies for ac-
curate object detection and semantic seg-
mentation. Proceedings of the IEEE confer-
ence on computer vision and pattern recog-
nition

Girshick, R. (2015). Fast R-CNN. Proceed-
ings of the IEEE international conference
on computer vision

Ren, S., He, K., Girshick, R., & Sun, J. (2015).
Faster R-CNN: Towards real-time object de-
tection with region proposal networks. Ad-
vances in Neural Information Processing
Systems

He, K., Gkioxari, G., Dollar, P., & Girshick, R.
(2017). Mask R-CNN. Proceedings of the IEEE
International Conference on Computer Vi-
sion

Redmon, J., & Farhadi, A. (2017). YOLO9000:
Better, faster, stronger. Proceedings of the
IEEE Conference on Computer Vision and

Pattern Recognition
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It will require extended use of causal inference to understand
the relative unlikeliness of a given observation. Then, the image-
based explainable AT method hint what parts of the observed or-
ganism that determining its selection. This tool could be poten-
tially be deployed to (- 0.~ ] expeditions to help them assess
on-the-fly the populations they are sampling.

Expected outcome(s) of the work package: A new wave of meth-
ods that combine causality, explainable Al, computer vision and
anomaly detection used to create new research tools for marine
biologists.

Coordinating Inria team: {[fl{=0831l(=

Participating teams: [ComBi]



Interaction and organization

The scientific organization will follow the three axes presented
in Chapter 3. Since all the proposed developments can have im-
pact on each other, communication will be a key issue. As for
many Inria Challenges, this is the opportunity to spin up fruitful
collaborations between teams.

41 Work packages interaction and integration

This project has as articulating objective the goal of producing
theoretical and practical developmentsin the intersection of ma-
chine learning, artificial intelligence, modeling, simulation, and
computational biology while yielding tangible and usable results
that could be used in the understanding, prediction, and mitiga-
tion of the current global environmental situation. As a strength,
external collaborators like have been working for years
in collaboration with and, at its time, has
started or in already active collaboration with [N\, EIRIEESTS,
and Y. It has to be said also that Marc Schoenauer is part
of the Scientific Committee of [~ ©/: "] Oceans together with

and are two strategic partners of [[IENE41E); being
(@YY the local partner of [ffifs33 federation.

A measure of success for the former will be their publication in
high-qualityjournals co-authored by partners. In order to achieve
aproper transfer to our external partners for their realistic large-
scale applications, this project should provide some mature soft-
ware along with our methodological developments.

This project will design and consolidate a pipeline of models based
on machine learning and probabilistic techniques that will be de-
veloped, when possible, using Inria software like scikit-learn (Pe-
dregosa et al. 2011). Table 4.1 shows the scientific intersection do-
mains and where the different teams will collaborate with each
other.

A way to assess the impact and success will be the adoption of
the results of OcéanlA as integrated tools to analyze the future
Chilean Ocean Data Observatory.

41 Work packages interaction
and integration. . . . .. 37

4.2 Practical organization . . 39
4.3 Dissemination actions . . 39
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management . . . . . .. 40

4.5 Attraction of further
funding
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V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay,
E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Re-

search, 12
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Table 4.1: Projection of work packages in Axis II with respect to the multi-disciplinary science actions (Axis III)
expressing how of Inria and external teams will collaborate in them.
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4.2 Practical organization

4.2 Practical organization

This project is structured with two levels of involvement. The
core partners will be actively involved in the proposed research
and developments, while the rim members will be invited to gen-
eral assemblies and targeted meetings and consulted for spe-
cific questions (-~ ¢ ] and [fif533, but, as was described,
some teams are already involved in the research tasks
ofthis project). Note that this division between core and rim part-
ners is not fix and will be reassessed at mid-term of the project.
Depending the availability and interested of rim members they
would be invited to join a more intense collaboration. In partic-
ular, they should provide a diversity of methods and principles
that would enrich the project discussion and -if possible- serve
to compare our proposals.

Long-distance collaborationis necessarybutis not trivial to make
it efficient. To ensure an effective collaboration, the project is
built on two main practices. First, we will rely on installing a
strong collaboration through the co-supervisions of all PhD stu-
dents and post-doctoral researchers (and hence co-publications)
aswell as engineers. These co-supervisions will be implemented
by regular sojourns of one or more weeks in the different loca-
tions (Paris, Saclay, Santiago de Chile, and Sophia-Antipolis). Reg-
ular video-conference meetings will also be organized between
the teams. Second, we will share the numerical code into com-
mon libraries, using Inria collaborative development tools.

This will enforce visibility of each other developments and progress,
and encourage interactions. Finally, one general meeting will be
organized per year; with the possibility to eitherinvite some other
teams to the discussion (in the early stage of the project), or to
organize an open workshop the same week (in a second phase).
More frequent meetings will be organized on specific topic, only
involving the relevant teams.

4.3 Dissemination actions

Dissemination actions, besides the publication of the scientific
results in conferences and journals are grouped in three chan-
nels:

1. academic/scientific dissemination,
2. general public reach-out, and

39
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3. open-source software contribution and dissemination.

Regarding academic/scientific dissemination, we plan to host work-
shops and special sessions in reference conferences in the ar-
eas of interest of the project. We also plan to organize annual
one-week courses by members of the project for PhD students,
researchers or engineers under the scope of the Inria Academy
and/or the [ZEN& 1 Talks. They could be organized at a differ-
ent location each year in order to widen the audience and im-
pact. Another possibility would be to organize an international
summer school.

Reaching non-academic audiences and the general-public is es-
sential to draw attention to the relevance of oceans, climate change,
and science as the means to understand them and address the
existing issues. Here we plan to create a reach-out program gen-
erating results in a form that is easy to share and modern, like
videos and websites.

Finally, we would keep as a general goal to consolidate our work
asreusable and redistributable software. Whenever possible, we
will contribute with the existing Inria open-source project and,
in cases where that option is not possible we will generate our
own.

4.4 Intellectual property management

This important aspect has been discussed with the DGD-I and it
will be strongly secured and regulated. All libraries developed in
this Inria Challenge will be distributed under an open source li-
cense, ownership belonging to Inria. Developments of libraries
will be under shared intellectual ownership of the original con-
sortium members.

4.5 Attraction of further funding

In addition to the support provided by Inria, the team members
will actively seek to attract additional funding to support more
challenging activities. We have identified some of these funding
sources. In particular, in France and Europe we plan to seek
support from:
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P Agence francaise de développement (AFD) / French Facil-
ity for Global Environment (FFEM)', 1: https://www.ffem.fr/en
» Agence nationale de la recherche (ANR)?, 2: https://anr.fr/
p Alplan, and
p ERC H2020 and subsequent plans.

Similarly, in Chile we plan to request support from:

P Agencia Nacional de Investigacion y Desarrollo (ANID),? 3: https://www.anid.cl/
p Instituto Antartico Chileno,?, and 4: https://www.inach.cl
B Corporacién de Fomento de la Produccién (Corfo).® 5: https://www.corfo.cl
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Final remarks

Solving this challenge will enable us to translate biodiversity meta
and big datainto knowledge, making sense of heterogeneous sets
of data. As a consequence, these studies will allow the develop-
ment of a complete pipeline for the functional analysis of biodi-
versity and its relation with the environment, particularly in the
Ocean but not uniquely. This will lead to the design of different
services to the environmental community.

At the oceanic level, there are crucial issues that will be possi-
ble to be addressed after this project. In particular to predict
biogeochemical cycles from ‘omics’ knowledge. Indeed, among
the more than 150 million genes cataloged by (== ¢ ] 30%
code for enzymes. These are the components of the global ocean
metabolic engine that can potentially be reconstructed and used
to go beyond the description of metabolic potential to modeling,
from this data, the quantitative metabolic responses of marine
plankton in response to environmental variations. Another im-
pact of this project is that it will be the seed to start thinking in
next-generation ocean-climate models integrating biocomplex-

ity.
Finally, this project aims to influence politicians and decision-
makers with the out-coming new ocean-climate models. As a

science-based decision tool, the complexity of the challenge is
then to mitigate the risks of the non-adoption.

In the early stage of the project, some additional funding will be
requested in local or national programs, as stated in the previ-
ous section, to compensate for the extra cost of the proposed
long-distance co-supervision. Once mature enough (at the end
of the project) our developments will offer us the possibility to
launch a wide range of larger-scale projects.
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