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Preface

There is strong scientific evidence about the effects of climate
change on the global ocean. These changes will have a drastic
impact on almost all forms of life in the ocean with further
consequences on food security, ecosystem services in coastal
and inland communities. Despite these impacts, scientific data
and infrastructures are still lacking to better understand and
quantify the consequence of these perturbations on the marine
ecosystem.

This interdisciplinary Inria Challenge project aims at developing
newAI andmathematicalmodeling tools to contribute to the un-
derstanding of the structure, functioning, and underlyingmech-
anisms and dynamics of the global ocean symbiome. These ac-
tions are essential to gain a better understanding of the oceans
and their role in regulating and sustaining the biosphere. This
is also an opportunity to structure Inria’s contributions to a ma-
jor topic of AI & Biodiversity, which will be a major achievement
for the sustainability of human societies on the blue part of the
planet.

Besides the support of Inria, OcéanIA already counts with the
support of the French Embassy in Chile through the French Re-
gional Cooperation with South America Program.

The spirit of this document is to serve as a work reference. We
expect it to evolve as the work in the project takes place. We also
want this communication to facilitate the dissemination of the
project focus, goals and scope to potential collaborators.

It is organized in five chapters. The first chapter (Chapter 1) out-
lines the general principles,motivations andgoals that led to the
project. After that, Chapter 2 focuses on the particular goals of
the project and how the different teams that are taking part of
it are expected to contribute to its success. Subsequently, Chap-
ter 3 details the work packages of the project listing the differ-
ent tasks, expected outcomes and the teams that take part of it.
Then, Chapter 4 focuses onhow theproject is to beorganized and
the interaction of the work packages and teams. Finally, Chap-
ter 5 outlines some final remarks.

This is a working document. We expect it to change frequently.
Check https://oceania.inria.cl for updates.

https://oceania.inria.cl
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1.1 Motivation . . . . . . . . . 1

1.2 Context . . . . . . . . . . . 3

The impact of the ocean in climate change is evident, not only
regulating temperature and climate but also absorbing carbon
dioxide from the atmosphere, which is one of the main respon-
sible gases for the greenhouse effect. However, oceans already
showchangesanddegradationasa result of climate change, such
as acidification, deoxygenation, loss of biodiversity, and a pro-
gressive loss of capacity to buffer further increases in CO2 (Pe-
sant et al. 2015).

This situation poses a substantial challenge to humanity as a
whole. It is not only anurgent but also a scientifically demanding
task. Consequently, it is a problem that must be addressed with
a scientific cohort approach,wheremulti-disciplinary teams col-
laborate to bring the best of different scientific areas.

This is the spirit of this project: to address state-of-the-art ar-
tificial intelligence, machine learning, and modeling topics that
will enable us to move forward with the understanding of our
oceans and to understand, predict and -hopefully- mitigate the
consequences of climate change.

1.1 Motivation

Recent advances in computer sciences and applied mathemat-
ics, such asmachine learning and numerical simulation, among
others, haveproduceda revolution inour capacity forunderstand-
ing theemergenceof patternsanddynamics in complex systems
while at the same time the complexity of these problems poses
significant challenges to computer science itself.

The intertwining nature of these two challenges requires that to
address the first it is necessary to make progress on the second,
that is the state of the art (Rolnick et al. 2019). Also, the explosion
in the capacity to gather data in fields like biology or ecology has
opened computer sciences to challenging applications. Interest-
ingly, the virtuous relationship between computer science and
these new fields needs to go beyond the actual state of the art.
A remarkable example is bioinformatics, a scientific field that

https://doi.org/10.1038/sdata.2015.23
https://doi.org/10.1038/sdata.2015.23
https://arxiv.org/abs/1906.05433
https://arxiv.org/abs/1906.05433


2 1 Introduction

emerged prompted by the capacity of processing and analyzing
massive datasets of “omics” data using computer methods.

Today, a huge amount of problems posed to computer sciences
and applied mathematics arise from environmental challenges
caused by climate change, and specifically, those affecting bio-
diversity. The challenges are two-fold: on the one hand, wemust
understand the consequences of global warming for ecological
systems, andon theotherhand,wemustbeable topredict changes
in climate from observations of the same systems, where a key
actor is biodiversity. Moreover, our prediction abilities have di-
rect consequences on many economic systems and public poli-
cies. Essential to these efforts is our ability to make sense and
integrate heterogeneous and cross-scale data, ranging from ge-
nomics to satellite images in different environmental settings,
tasks for which machine learning and artificial intelligence at
large, andmathematicalmodeling, areespecially suitedandpow-
erful if a virtuous relationship between them is achieved.

The motivation of this interdisciplinary proposal is to develop
new AI and mathematical modeling tools to contribute to the
understandingof the structure, functioning, andunderlying eco-
evolutionarymechanismsanddynamicsofplankton in theglobal
ocean. Methods like deep representation learning, causal infer-
ence, sequential decisionmaking, transfer learning,multi-criteria
optimization are just a few that can be applied to these kinds of
complex problems, allowing us to get reliable knowledge from
the ocean and its interactions. To do this, we will use the corpus
of Tara Océan Expeditions datasets, which is, as far as we know,
themost comprehensive case study todevelopAI andmathemat-
ical modeling methods for studying global ecology along with
other relateddatasets. This fundamental baseline currentlymakes
marineplankton thebest-describedplanetaryecosystem in terms
of taxonomiccomposition, abundance, andgeneticdiversity,mak-
ing this project realistic.

Since many years, Inria has a formal commitment to ecology
and the environment, an interest that is shared by national,
European, and international institutions. This Inria Challenge
is a mean of producing tangible results in this direction while
also prompting a shift in the current state of the art in the area.
In particular, this Inria Challenge proposal is an opportunity
to structure Inria contributions to this major topic of ocean-
ecology modeling and for developing a quantitative theory of
global ecosystem patterning and dynamics.
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1.2 Context

There is a clear scientific consensus about the effects of climate
change on the global ocean: among others a shift of tempera-
tures, an increaseof acidification, deoxygenationofwatermasses,
and perturbations in nutrient availability and biomass produc-
tivity. Altogether, these abiotic changes will have a drastic im-
pact on almost all forms of life in the ocean with further conse-
quences on food security, ecosystem services and thewell-being
of coastal communities. In this regard, Tara Océan has spearheaded
the actions directed towards sampling and understanding the
different phenomena that are takingplace. Despite thesenumer-
ous impacts, scientific data -even with the import contribution
from Tara Océan and infrastructures are not sufficient to ade-
quately understand and quantify the consequence of these per-
turbationson themarineecosystem. Inparticular, critical ecosys-
tems need extensive surveys to characterize the biological accli-
mation to climate perturbations better. Consequently, it is nec-
essary tonot only gathermoredata but also to develop andapply
state-of-the-artmechanismscapable of turning this data into ef-
fective knowledge, policies and action. This is where artificial in-
telligence, machine learning and modeling tools are called for.
The application of these methods is not new, however, the in-
herent complexity of this problem poses important challenges
to modern computer science and applied mathematics (Rolnick
et al. 2019).

The Patagonian region is a unique ecosystem that represents an
open sky laboratory for ecological studies. This pristine region is
indeedchangingmore rapidlyunder theeffectsof climate change
and describes an oracle of changes to come in the next decades
for other parts of the ocean. Patagonia is fundamental to under-
stand the responses of themicrobial marine life at the interface
between antarctic waters, the coastal ecosystems, and themelt-
ing glaciers. This region is also one of the most productive re-
gions in the ocean, accounting for more than 30% of sardines
stocks, among other species and one of the most important re-
gion in sequestering carbon. Patagonia is also a hot spot of aqua-
culture,with an intensive salmonproduction, an ecosystem that
is both impacting, and being impacted by, climate changes. In or-
der to understand the functioning of this large scale ecosystem,
the Tara Océan Oceans initiative has decided to carry out and in-
tense sampling campaign (see Figure 1.1 for a description). The
AtlantEcoprojectwas expected to depart fromFrance in Septem-
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simple and yet fundamental sampling device. Tara Oceans data corresponding to methods described in
this section are already open to the public at PANGAEA (Data Citation 4).

[4] Properties of seawater and particulate & dissolved matter from discrete water samples
In addition to sensors mounted on the Rosette Vertical Sampling System [RVSS], seawater was collected
using Niskin bottles [NISKIN] (6× 8-L Niskins and 4× 12-L Niskins) in order to further characterise
environmental conditions in the ecosystem under study. Measurements include pigment concentrations
from HPLC analysis (10 depths per vertical profile; 25 pigments per depth), the carbonate system
(Surface and 400 m; pHT, CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon,
OmegaAragonite, OmegaCalcite, and quality Flag), nutrients (10 depths per vertical profile; NO2, PO4,
N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. More than 200 vertical profiles
of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are
available only for the Arctic Ocean and Arctic Seas (2013 campaigns). Tara Oceans data corresponding to
methods described in this section are already open to the public at PANGAEA (Data Citation 5).

[5] Environmental features and sampling stations
During the Tara Oceans Expedition (2009–2013), plankton were sampled from 5–10-m thick layers in
the water column, corresponding to specific environmental features that were characterised on-board
from sensor measurements. Environmental features are defined by controlled vocabularies in the
environmental ontology (EnvO; http://environmentontology.org/)17.

The surface water layer (ENVO:00002042), sometimes labelled in the literature and databases as
“surface”, “SRF”, “SUR”, “SURF” or “S”, was simply defined as a layer between 3 and 7 m below the sea
surface. The deep chlorophyll maximum layer (ENVO:01000326), often labelled in the literature and
databases as “DCM” or “D”, was determined from the chlorophyll fluorometer (WETLabs optical
sensors) mounted on the Rosette Vertical Sampling System [RVSS]. The presence of a DCM may indicate

Figure 4. Spatial representation and chronology of sampling events during a 24-48 h station. Coloured
markers along the route of SV Tara (yellow surface track) correspond to sampling events targeting the surface
water layer (red, ), deep chlorophyll maximum layer (green, here at 50 m), and the mesopelagic zone (blue,
here at 400 m). At some stations, an Argo drifter (10-m floating anchor and satellite positioning) was used to
follow the water mass during sampling (black surface track). White and grey markers correspond to day and
night time deployments, respectively, of plankton nets [TYPE-MESH] and rosette [RVSS] casts that covered
fixed depth layers of 0–100 m, 0–500 m or 0–1,000 m.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150023 | DOI: 10.1038/sdata.2015.23 6

Figure 1.1: Spatial representation and chronology of Tara Océan sampling methodology events during a 24–48h sta-
tion. Colored markers along the route of SV Tara Océan (yellow surface track) correspond to sampling events tar-
geting the surface water layer (in red), deep chlorophyll maximum layer (green, here at 50m), and the mesopelagic
zone (blue, here at 400m). At some stations, an Argo drifter (10mfloating anchor and satellite positioning) was used
to follow the water mass during sampling (black surface track). Source: Pesant et al. 2015, shared under a Creative
Commons Attribution 4.0 International License.

ber 2020 but because of the COVID-19 pandemic the date has
been postponed. It is expected that it transits to the Tara Océan
Magallanes expedition in December 2020 and where it will col-
lect data using the Tara Océan protocol in the unique biodiver-
sity of Chile during three months. Inria and its partners are at
a strategic and unique position for anticipating these data to
come.

The consortium will build a modeling framework dedicated to
ocean modeling, contributing to learn causal and explanatory
models; fair data models; robust models. This Inria Challenge
is an opportunity to contribute key scientific knowledge on a
global pressing problem as climate change is, capitalizing on
the experience and articulation of the teams involved and the
availability of data on a key area, as is the Patagonia, that can
provide answers that can be transferred to others parts of the
oceans.
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Inorder tomove towards tackling thecomplexandmulti-faceted
problem of understanding the role and impact of oceans in cli-
mate change, it is necessary to improve the computational and
mathematical tools at our disposal and pose a group of domain
questions that could be answered using these improved tools.

In recent years, AI -and ML in particular- has been recognized
as a broadly powerful tool for technological progress. Despite
the growth of research applying ML and AI to problems of so-
cietal and global good, there remains the need for a concerted
effort to identify how these tools may best be applied to tackle
climate change.On theotherhand,manycomputer scientist and
practitioners wish to act, but are uncertain how. Similarly,many
field experts have begun actively seeking input from the AI, ML
and modeling communities. Therefore, this project comes in a
timely manner to catalyze these efforts and attempt to create a
bridge between the complex problems posed by oceans and cli-
mate change and the state of the art of computer science.

2.1 Goals

Although it can be asserted that AI, ML, and modeling tools are
key in understanding oceans and climate change, itmust also be
pointed out that their current limitations pose important hur-
dles in their application. In the case of ML, only recently it has
started to be able to handle structured information, like the one
required to understand the networks created by interacting pop-
ulations of different species. Similarly, in spite of the important
efforts on data gathering, the current amount of data available
conform to a scenario that can be denominated as small data,
that heavily contrasts with the data-hungry methods that con-
form most of the current state of the art in ML. Yet another im-
portant issue lies the black-box approach of many ML methods
that do not allow a feasible interpretation or explanation that
can be used to articulate a better understanding of the process,
which is essential to design newmitigation policies.

Along the same lines, existingmodeling tools arehard to apply in
biogeophysical contexts like theonesencountered in thisproject
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Figure 2.1: The OcéanIA virtuous
cycle: AI, ML and applied math
should improve the current
results and allow oceanographers,
marine biologists, and climate
change researchers to pose
new questions. In return, this
application domain constitutes
a challenge to the current state
of the art and will provide test
cases to push that state of the art
further ahead.

catalyze novel (better) solutions 
to known questions

new AI tools prompt 
formulation of new questions

OcéanIA
AI + ML + modeling

Ocean + 
climate change

Challenge current state of the art:
small data, graph-based NNs, causality, explainable AI

describe model predict simulate

Baker, R. E., Peña, J.-M., Jayamohan, J.,

& Jérusalem, A. (2018). Mechanistic mod-

els versus machine learning, a fight worth

fighting for the biological community? Bi-

ology Letters, 14(5). https://doi.org/10.1098/

rsbl.2017.0660

Sánchez-Pi, N., Martí, L., Abreu, A., Bernard,

O., de Vargas, C., Eveillard, D., Maass, A.,

Marquet, P. A., Sainte-Marie, J., Salomon,

J., Schoenauer, M., & Sebag, M. (2020). Ar-

tificial intelligence, machine learning and

modeling for understanding the oceans

and climate change. In D. Dao, E. Sherwin,

P. Donti, L. Kaack, L. Kuntz, Y. Yusuf, D. Rol-

nick, C. Nakalembe, C. Monteleoni, & Y. Ben-

gio (Eds.), Tackling climate change with

machine learning workshop at neurips

2020. https : / / www . climatechange . ai /

papers/neurips2020/93

because of their computational complexity and high processing
requirements. This situationcouldbeovercomeeitherby improv-
ing the modeling methods themselves or by taking a stab at de-
veloping mechanistic approaches that also seem to be capable
of complementing AI and ML in the application domain (Baker
et al. 2018).

This leads us to the core spirit of the project, as illustrated in
Figure 2.1. On one hand, AI, ML and appliedmath should improve
the current results andallowoceanographers,marinebiologists,
and climate change researchers to pose new questions. In re-
turn, this application domain constitutes a challenge to the cur-
rent state of the art andwill provide test cases to push that state
of the art further ahead.

Consequently, the goals of the project can be stated as two sets
as stated by Sánchez-Pi et al. 2020:

1. address and advance the state of the art in areas like artifi-
cial intelligence (AI) —and,more precisely, machine learn-
ing (ML)—andmathematicalmodelingandsimulation, and

2. focus on answering the questions from the application
domain.

2.1.1 AI, ML andmodeling goals

In regard to AI and modeling, our goals are:

1. improve neural network handling of graph-structured in-
formation,

2. improve the capacity ofMLmethods to learn in small data
contexts,

3. understand causal relations, interpretability and explain-
ability in AI,

4. integrate model-driven and data-driven approaches, and

https://doi.org/10.1098/rsbl.2017.0660
https://doi.org/10.1098/rsbl.2017.0660
https://www.climatechange.ai/papers/neurips2020/93
https://www.climatechange.ai/papers/neurips2020/93
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5. develop, calibrate and validate existing mechanistic mod-
els.

2.1.2 Application domain goals

In thedomainapplicationarea, themainquestions tobeaddressed
are:

1. Which are the major patterns in plankton taxa and func-
tional diversity?

2. Which are the major drivers of patterns and how do they
interact?

3. How these patterns and drivers will likely change because
of climate change?

4. Howwill thesechangesaffect thecapacityof oceanecosys-
tems to sequester carbon fromtheatmosphere, that is the
biological carbon pump?

5. What relations bind communities and local conditions?
6. What are the links between biodiversity functioning and

structure?
7. Howmodern AI and computer vision can be applied as re-

search and discovery support tool to understand plank-
tonic communities?

2.2 Participating Inria teams

The team assembled for the project is a balanced and diverse
combination of skills, experience, and interests, something that
isnecessary toaddressa research-intensiveandmulti-disciplinary
project such as this one.

The Inria project-teams involved and how they contribute to the
project are:

▶ ANGE in modeling, analysis and simulation of geophysi-
cal flows and more generally in environmental modeling.
The teamhas beenworking on the coupling of complex en-
vironmental models with observational data (data assim-
ilation) and has gradually oriented part of its research to-
ward the use of environmental data, with or without prior
modeling knowledge. ANGE Project-Teamhas a strong ex-
pertise on the models, on the observational data and on
the expected forecast performance required in practical
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1: https://project.inria.fr/hyaiai/

2: https://cordis.europa.eu/
project/id/952060

applications. It brings applications with real data transfer
opportunities through operational actors that use its soft-
ware daily.

▶ BIOCORE in modeling ecosystems (from gene to ecosys-
tem) and their adaptation to climate changes, developing
strategies for model calibration from available data sets
and coupling the models with hydrodynamics. BIOCORE
is a joint team with the Laboratory of Oceanography of
Villefranche-sur-mer (LOV) joint endeavorbetweenSorbonne
University and CNRS. LOV is a multidisciplinary oceano-
graphic laboratory that studies the role of marine plank-
ton in the functioningofmarine ecosystems, the response
ofbiodiversity andbiogeochemical cycles toglobal changes
(global warming and acidification). It has a deep expertise
for assessing biodiversity by remote sensing calibrated by
analyticdeterminationofpigments,whichare seenas tracer
for phytoplanktonic groups. The PISCO team of the LOV, is
associated to BIOCORE has long been specialized in the
cultivation and ecophysiological study of phytoplankton
(in lab and on site). The LOV is highly involved in the lead-
ership of the Tara Océan project.

▶ TAU , a joint teambetween Inria, CNRSandUniversitéParis-
Saclay, working in machine learning and stochastic opti-
mization for 30 years, focusing recently on causal infer-
ence and the challenges of the under-specification in big
data. In particular, in close relation to the CS questions
addressed here, TAU is involved in the Inria Challenge Hy-
bridApproaches for InterpretableAI (HYAIAI),1 that started
one year ago, and in the Europeanproject TRUST-AI,2 start-
ing next October and devoted to trustworthy AI in small
data context.

▶ Inria Chile was created on 2012 and is the first center of
Inria located outside France. It is a driving force for tech-
nological innovation and knowledge transfer, collaborat-
ing effectively with companies, universities, public insti-
tutions, and startups to meet the challenges of the digital
revolution. It aims to inspire and educate future genera-
tions of scientists and engineers to take the lead in this
transformation. Inria Chile is also ameans to promote the
R&Dactivitiesof companiesandstartups inChile andLatin
America. Inria Chile hasexpertise inmachine learning, evo-
lutionary computing, big data and mastering the connec-
tion with the data governance and interpretation and has
the engineering know-how to deliver robust software li-

https://project.inria.fr/hyaiai/
https://cordis.europa.eu/project/id/952060
https://cordis.europa.eu/project/id/952060
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Amazon sustainability data initiative.
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braries and programs.

2.3 External collaborating partners

Our external partners have developed an important experience
in the main subject of the project. They contribute with impor-
tantmethods and experience both in Chile and France. In partic-
ular:

▶ The CMM group led by Alejandro Maass works in under-
standingbiological systems (bioinformatics, genomicsand
systemsbiology), and is theChileancounterpart of theCNRS
International FederationGlobalOceanSystemsEcologyand
Evolution ( GO-SEE ).

▶ The CNRS laboratory ComBi , at University of Nantes, has
produced the main known results relating genomics data
with the behavior of the carbon pump and is one of the re-
sponsible forhandling, analyzingandmodeling Tara Océan
data since the last decade.

▶ Theprojectwill establisha strategic alliancewith theCNRS
effort through the GO-SEE Federation, to add into this ef-
fort the modernity that AI and Machine learning can pro-
pose.

▶ Thegroup ledbyPabloMarquet at PUC is a global leader in
metabolic ecology, macroecology, and theoretical ecology
and at the forefront of interdisciplinary challenges such
as ecological networks reconstruction, invariant distribu-
tions of ecological observables, such as species, and gen
abundance distributions.

▶ Tara Océan will allow access to public data and help the
consortium defining valid test cases that we will share
in this project. For this we will count with the support of
André Abreu within Tara Océan .

Also, the resulting resourceswill be extremely valuable as educa-
tional tools, and wemay also bring in commercial partners (e. g.,
Amazon Sustainability Data Initiative 2019 or the Challenge IA-
Biodiv – Recherches en Intelligence Artificielle dans le champ de
la biodiversité 2019) who would further support hosting and dis-
semination of the data and tools.

https://sustainability.aboutamazon.com/tech-for-good/asdi
https://sustainability.aboutamazon.com/tech-for-good/asdi
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/
https://anr.fr/fr/agenda/challenge-ia-biodiv-recherches-en-intelligence-artificielle-dans-le-champ-de-la-biodiversite/




Work Packages 3
Activities on the project are to be organized in three thematic
axes that are:

▶ Axis I. enabling activities and shared developments,
▶ Axis II. computer scienceandappliedmathobjectives, and
▶ Axis III.multi-disciplinary applied objectives.

Work in the axes is organized aroundwork packages.Whenwork
inside a work package is best described in smaller units of work,
it is then consolidated as tasks. In this chapter we focus on the
description of these axes, the work packages that are part of
each and the different tasks that we envision that will be carried
out. For each work package we provide a (sometimes not so)
brief discussion about its motivation and potential impact, the
corresponding expected outcomes, in the Inria team in charge
of the coordination of thework package and the teams that have
manifested interest on collaborating on the work package.

Axis I Enabling activities and shared

developments

This axis addresses those tasks that horizontally concern all
aspects of the project. In particular, here we meant to create
an updated roadmap for the project and a shared lexicon that
allows a fluid collaboration. Similarly, we plan to address the
technological challenges that involve theaccess thedata and the
computing facilities.

WP I.1 State of the art: Paths forward and what should

be revisited

Afirst and very relevantwork to do as part of the project is to pre-
pare an updated list of topics worth being revisited using state-
of-the-art AI, ML and applied math ‘power tools’, and what are
the limitations that need new developments on themethodolog-
ical side. In particular,weplan to identify previousworks carried
out on the Tara Océan data and results thatwould clearly benefit
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biology. Springer Science&BusinessMedia
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2: https://www.seadatanet.org

3: https://pangaea.de

from an upgrade based on the advanced tools to be developed in
Axis II.

For instance, —and just as an illustrative example— Guidi et al.
2016 investigate the carbon pump issue relying on the environ-
mental andmetagenomicdatagatheredby Tara Océan . Theyhave
an impressive set of results. Nevertheless, doing a careful read
from a AI/ML perspective, it is noticeable that the ML methods
applied are rather standard and far from the state of the art. For
example, the authors employ partial least square linear regres-
sionor themoremodernweightedgenecorrelationnetworkanal-
ysis (WGCNA, Horvath 2011).

This opens a broad range of opportunities for applying structure
andgraph-basedMLapproaches (WP II.1), causal inference (WP II.3),
etc.

The preliminary study carried out for the preparation of this
proposal has shown that there is ample space for the application
of advanced modeling and learning methods. The results of this
updated survey could also be used to update and reshape some
future tasks of the project.

Expected outcome(s) of the work package: An survey of the state
of the art in the application of mathematical modeling and nu-
merical simulations, and of artificial intelligence and machine
learning, in the context of oceanography, marine biology, biodi-
versity and climate changes. The survey will be a live document
to be revised annually and be publicly available.

Coordinating Inria team: Inria Chile

Participating teams: All teams.

WP I.2 Data governance, curation and availability

One of the big technological challenges of the project is to access
the available data in a consistent and robust form. It is there-
fore necessary to govern and curate the data. The need for defin-
ing access policies and curation processes has been clearly es-
tablished on the field (Wackett 2020), however, it remains an
open issue. The result of this process will be curated data hub —
or data lake— containing or providing transparent and homoge-
neous access to diverse set of data sources like Tara Océan data,
Copernicus, NASA POWER,1 NOAA’s SeaDataNet,2 PANGAEA,3 etc.
An important featurehere is tooffer thepossibility of cross-reference

https://doi.org/10.1038/nature16942
https://doi.org/10.1038/nature16942
https://doi.org/10.1111/1462-2920.15030
https://doi.org/10.1111/1462-2920.15030
https://power.larc.nasa.gov
https://www.seadatanet.org
https://pangaea.de
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and geo-reference this data by providing homogeneous access
to all data and capacity of merging with other data sources, ei-
ther by storing them locally or putting links to external servers.
This would be an important asset for the research community
globally.

It shouldbenoted that thereare lotsofmetadata standardsavail-
able, and several initiatives are working on interoperability. The
main source of data for the project comes from that produced by
Tara Océan Ocean. It follows the M2B3 standard (ten Hoopen et
al. 2015)whichwas developed duringH2020projectMicroB3 and
authored by EBI, PANGAEA, SeaDataNet and EMODnet. M2B3 is
themetadata standard that ismost adapted tocross-disciplinary
marine science. We will focus as a first step to revise and consol-
idate these actions.

It is particularly relevant to go beyond regular datasets and also
to join other databases that would providemore insight into the
Tara Océan database. For example, to ensure access to database
gathering hundreds of experiments for the response of phyto-
plankton to temperature and other environmental conditions.

If possible, we propose to develop an integral science software
stack that should be easily deployable, both at local (personal)
computers or cloud-provided virtual machines, by making use
ofmodern technological solutions likeDocker, ApacheSpark, etc.
and being as neutral and platform-agnostic as possible.

Inria Chile has an important a priori experience on this set of
taskshavingconstructed sophisticateddataprocessingpipelines
for astronomy and mining, as well as, in data governance and
process mining (Muñoz García et al. 2019; Muñoz-García et al.
2017).

Other project partners, like CMM and Tara Océan , have ongoing
work in these lines. We plan to coordinate with them to gener-
ate results that integrate and consolidate the value of current
solutions.

Expected outcome(s) of the work package:

▶ A data governance policy for marine biology and oceano-
graphic data,

▶ a deployed data lake that consolidates access to the data
under the policies devised, and

▶ a scientific computing software stack.

https://doi.org/10.1186/s40793-015-0001-5
https://doi.org/10.1186/s40793-015-0001-5
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Coordinating Inria team: Inria Chile

Participating teams: ANGE BIOCORE Tara Océan GO-SEE CMM
PUC

Axis II Computer science and appliedmath

objectives

This axis focuses on the computer science topics that we have
identified as relevant to the success of the project andwhere our
work will focus.

WP II.1 Structured and graph-based neural networks

Arguably, much of the progress in machine learning in recent
years comes from being able to handle more complicated forms
of input data than pure tabular data. In particular, with the deep
learning revolution, neural networks have become able to grow
beyond vectors into𝑛-dimensional tensors (i. e. images), graphs,
and sequences.

However, there is an increasing number of applications where
data are represented in the form of graphs. For example, in e-
commerce, a graph-based learning system can exploit the inter-
actionsbetweenusers andproducts tomakehighly accurate rec-
ommendations. In chemistry, molecules are modeled as graphs,
and their bioactivity needs to be identified for drug discovery. In
a citation network, papers are linked to each other via citations,
and they need to be categorized into different groups.

Themost frequentway to representbiodiversity today isbymeans
of co-ocurrence graphs. These graphshaveparticular structures
that deserve to be analyzed using the presented techniques and
its improvements. Comparisonof suchgraphs is away to see evo-
lution of communities. So having ML methods capable to func-
tion on top of this information is essential to understand such
dynamics.

The complexity of graphdatahas imposed significant challenges
on existing machine learning algorithms. Recent results have
enabled neural networks to handle structured information. The
capacity of coupling complex and structured information with
powerful machine learning methods that can operate at scale
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could lead to a shift in the types of problems currently address-
able by machine learning. These new results have seen success-
ful applications in the area of natural language processing and
have been started to be extrapolated to other domains.

Furthermore, even in contexts like natural language processing
(NLP) where the information is structured as a sequence, there
is an implicit graphical internal representation, such as a syn-
tactic dependency tree. A syntactic dependency tree defines the
syntactic relations amongwords in a sentence. Similarly, causal-
ity and explainability, another important work package of this
project rely on dependency graphs.

Structure-based or graph-based neural networks (GNNs) have
been proposed and started to be successfully applied in differ-
ent domains, e.g., in power grid (Donon et al. 2019) or molecular
conformation simulations in TAU . However, there are still ques-
tions to be answered to understand how thesemodels can be ap-
plied.

A particularly important group of GNNs are focused toward pro-
ducingmetric embeddings fromgraphs (Narayanan et al. 2017; D.
Wang et al. 2016) or nodes in graphs (Grover and Leskovec 2016)
that transformthemintoa lower-dimensional continuous latent
space that can be passed through to machine learning model.
Walkembeddingmethods (Perozzi et al. 2014) performgraph traver-
sals topreserve structureand featuresandaggregates these traver-
sals which can then be passed through a recurrent neural net-
work. Proximity embedding methods use Deep Learning meth-
ods and/or proximity loss functions to optimize proximity, such
that nodes that are close together in the original graph are like-
wise in theembedding.Otherapproachesusemethods likegraph
coarsening to simplify the graph before applying an embedding
technique on the graph, reducing complexity while preserving
structure and information.

Spatial-temporal graphneuralnetworks (STGNNs) (Jainet al. 2016)
aimto learnhiddenpatterns fromspatial-temporal graphs,which
become increasingly important in a variety of applications such
as traffic speed forecasting, driver maneuver anticipation, and
human action recognition. The key idea of STGNNs is to consider
spatial dependency and temporal dependency at the same time.
Potential approaches integrate graph convolutions to capture
spatial dependency with RNNs or CNNs to model the temporal
dependency.

https://hal.archives-ouvertes.fr/hal-02175989
https://hal.archives-ouvertes.fr/hal-02175989
https://arxiv.org/abs/1707.05005
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
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Task II.1.A Model depth

It is an accepted fact that the success of deep learning lies in
deep neural architectures. However, Li et al. 2018 showed that
theperformanceof a convolutional GNNdropsdramaticallywith
an increase in thenumberof graphconvolutional layers. Asgraph
convolutions push representations of adjacent nodes closer to
each other, in theory, with an infinite number of graph convolu-
tional layers, all nodes’ representations will converge to a single
point. This situation raises the question of whether going deep
is still a good strategy for learning graph data.

Task II.1.B Models scalability

So far, the scalability of GNNs ismostly gained at the price of cor-
rupting graph completeness. However, when using sampling or
clustering, a model will lose part of the graph information. By
sampling, a node may miss its influential neighbors. However,
by performing a clustering step, a graph may be deprived of a
distinct structural pattern. How to trade-off algorithm scalabil-
ity and graph integrity is an important research direction. An-
other research direction is to explore the idea of super-gener-
alization: a GNN is trained on small graphs, and the resulting
model is efficient formuch larger graphs, as done in TAU (Donon
et al. 2019).

Task II.1.C Graph topological heterogeneity

The most current GNNs assume homogeneous graphs. It is dif-
ficult to directly apply current GNNs to heterogeneous graphs.
These graphs may contain different types of nodes and edges,
or different forms of node and edge inputs, such as images, text
or other features as the ones to be posed by the scientific chal-
lengesofmarinebiology. Therefore,weplan todevelopnewmeth-
ods that would be capable to handle this case of graphs.

Task II.1.D Dynamic graphs

Graphs are in nature dynamic in a way that nodes or edges may
appearordisappear, and thatnode/edge inputsmaychange time
by time. New graph convolution operators are needed to adapt
to the dynamics of graphs. Although the dynamics of graphs can

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
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be partly addressed by STGNNs, few approaches consider how to
perform graph convolutions in the case of dynamic graphs.

Expected outcome(s) of the work package: New models of struc-
ture/graph-based neural network that address the challenges
posedby the tasksand thancanbe thenused incausality-related
problems and/ormetabolical structure-related problems. These
methods will be contrasted w.r.t. state-of-the-art technique of
co-occurrence network that ComBi is currently using, which is
based on Markov Blanket (Y. Wang and L. Wang 2020). There is
also an interest to compare co-occurrence networks. At the mo-
ment of writing, ComBi is using graphlet decomposition, that
could be used as a ‘gold standard’ for GNNs.

Coordinating Inria team: Inria Chile

Participating teams: TAU CMM ComBi PUC

WP II.2 Learning and adaptation in small data contexts

Progress in machine learning has made it feasible to address
problems in areas of computer vision or natural language pro-
cessing that only 10 years agowere deemed as intractable of just
werenot evenenvision. This raise canbeattributed to theprogress
in three interrelated pillars:

1. the emergence of better hardware substrate to host the
operationsofneuralnetworks, inparticular theemergence
of general-purposecomputingongraphicsprocessingunits
(GPGPUs) and tensor processing units (TPUs),

2. the proposal and consolidation of approaches andmodels
like convolutional neural networks, recurrent neural net-
works, attention mechanisms, transformers, etc., and

3. the creation of datasets that posed important challenges
to the state of the art at that time.

However, the need for large annotated datasets suitable for su-
pervised learning limits the applicability and adoption of these
recent advances. Furthermore, in many practical scenarios, ob-
taining such data can be expensive or plainly impossible. Such
scenarios are close to the ones we are dealt with in the applica-
tion context of this project where. Even if the context of marine
biology and oceanography Tara Océan has gathered an impres-
sive amount of high-quality data, it is not enough for ‘regular’
machine learning approaches.

http://proceedings.mlr.press/v108/wang20i.html
http://proceedings.mlr.press/v108/wang20i.html
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That is why it is crucial to address howmachine learningmodels
are trained and adapted to meet this small data scenario. These
actionsareconsolidatedas thework in the followingdirections.

Task II.2.A Transfer learning (TL) and domain adaptation

Here we propose to study how models trained or adjusted for
one application and domain can be re-purposed for other appli-
cations with minimal impact. In our case, for example, to study
howexistingmodels canbeapplied tonewspecies, other regions,
etc. Transfer learning addresses the issue of how to adapt and re-
purpose the internal representations of a model that has been
trained on a given task to address a similar problem.

On the other hand, domain adaptation is the capacity to cope
with changes in the environment because of the natural evolu-
tionof the systemand/or theneed toparticularize ageneralmodel
to a particular instance. For instance, in a previous work (San-
tana et al. 2019) we have addressed how to apply Genetic Pro-
gramming to adapt general brain-computer interfaces to a par-
ticular user.

Task II.2.B Active and few-shot learning

In problems with limited data and/or high uncertainty, like the
ones to be dealt here, it is necessary to apply methods that di-
rect the measurements to the areas of the domain where they
are most necessary. Guiding sampling using active learning and
Bayesian principles. However, due to the limited resources avail-
able, few-shot learning methods relying on TL must take care
of producing actionable products with minimal data. An alter-
native, to be explored by TAU in the TRUST-AI European project,
is to combine deep learning with stochastic search approaches
like Genetic Programming.

Task II.2.C Multi-source andmulti-task learning deep neural models

It can be stated that MLmethods are about optimizing amodel’s
parameters with regard to a particular metric. This metric can
be a score on a certain benchmark or even a business KPI. A pro-
cess generally denominated as ‘training’ adjusts a single model
or an ensemble of models to perform our desired task. It is then

https://doi.org/10.1007/s10710-019-09352-6
https://doi.org/10.1007/s10710-019-09352-6
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possible to fine-tune and tweak these models until their perfor-
mance no longer increases.

While thesemethods generally achieve acceptable performance,
bybeing laser-focusedonour single task, sometimes they ignore
information that might help the model to do even better on the
metric. Specifically,when this information comes fromthe train-
ing signals of related tasks. Sharing representations between re-
lated tasks, enable themodel to generalize better on the original
task. This approach is calledmulti-source ormulti-task learning
(MTL).

MTL effectively increases the sample size that is being used for
training. MTL also biases the model to prefer representations
that are useful for other tasks. This will also help the model
to generalize to new tasks in the future (transfer learning) as
a hypothesis space that performs well for a sufficiently large
number of training tasks will also perform well for learning
novel tasks as long as they are from the same environment.

TAU and Inria Chile have beenworking on this class of problems.
For example, TAU has been focusing on a multi-domain adver-
sarial approach (SchoenauerSebaget al. 2019). On theotherhand,
Inria Chile has been applying these principles to the prediction
of accident risk in mining facilities (Palma et al. 2021).

Expected outcome(s) of the work package: Novel machine learn-
ingmethods that integrate the results of theprevious tasks. These
newmethods should be made available as open-source tools.

Coordinating team: Inria Chile

Participating teams: TAU CMM

WP II.3 Causality and explainablemodels in AI

Dramatic success in machine learning has led to a torrent of AI
applications. Continuedadvancespromise toproduceautonomous
systems that will perceive, learn, decide, and act on their own.
However, the effectiveness of these systems is limited by thema-
chine’s current inability to explain their decisions and actions to
human users.

This need has spawned the interest in addressing explainability
and causality issues in the context of machine learning and AI.
This task has an additional importance for the context of the
project.

https://hal.inria.fr/hal-01968180
https://hal.inria.fr/hal-01968180
https://ojs.aaai.org/index.php/AAAI/article/view/17805
https://ojs.aaai.org/index.php/AAAI/article/view/17805
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Pearl, J. et al. (2009). Causal inference in

statistics: Anoverview.Statistics Surveys,3

Task II.3.A Causal inference

The task of causal inference (Pearl et al. 2009) is to estimate
the outcome changes if another a priori condition had been
applied. For example, suppose two treatments can be applied to
patients: Medicine A and Medicine B. When applying Medicine A
to the interested patient cohort, the recovery rate is 70%, while
applyingMedicine B to the same cohort, the recovery rate is 90%.
The change of recovery rate is the effect that treatment (i. e.,
medicine in this example) asserts on the recovery rate. However,
randomized control experiments as described above are rarely
possible, and the holy grail of causal learning is to infer the
causal graph between variables fromavailable data, opening the
way to causal inference.

Causal inference has a variety of applications in real-world sce-
narios. In general, the applications of causal inference can be
categorized into three directions:

1. Decision evaluation. This is a natural application of treat-
ment effect estimation as it is consistent with the objec-
tive.

2. Counterfactual estimation.Counterfactual learning (what-
if scenarios) greatly helps the areas related to decision-
making, as it can provide the potential outcomes of differ-
ent decision choices (or policies).

3. Dealingwith selectionbias. Inmanyreal-worldapplications,
records appearing in the collected dataset are not repre-
sentative of the whole population of interest. Without ap-
propriately handling the selection bias, the generalization
of the trained model would be hurt.

The stable unit treatment value assumption (SUTVA) states that
the potential outcomes for any unit do not vary with the treat-
ment assigned to other units, and, for each unit, there are no
different forms or versions of each treatment level, which lead
todifferent potential outcomes. This assumptionmainly focuses
on twoaspects: (i) units are independentand identicallydistributed
(i.i.d.), and (ii) there only exists a single level for each treatment.
An extensive literature exists on making causal inferences un-
der SUTVA, but when considering many real-world situations, it
may not always be the case.

The assumption of independent and identically distributed sam-
ples is ubiquitous in most causal inference methods, but this
assumption cannot hold in many research areas, such as social
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media analytics (Guo et al. 2019; Shalizi and Thomas 2011), herd
immunity, and signal processing (Sutskever et al. 2014). Causal
inference in non-i.i.d. contexts is challenging due to the pres-
ence of both unobserved confounding and data dependence. For
example, in social networks, subjects are connected and influ-
enced by each other.

For such network data, SUTVA cannot hold anymore. Under this
situation, instances are inherently interconnected with each
other through the network structure and hence their features
are not independent identically distributed samples drawn from
a certain distribution.

Thedependence indataoften leads to interferencebecause some
subjects’ treatments can affect others’ outcomes (Hudgens and
Halloran 2008; Ogburn, VanderWeele, et al. 2014). This difficulty
can impede the identification of causal parameters of interest.
Extensivework has been developed on identification and estima-
tion of causal parameters under interference (i.e. Hudgens and
Halloran 2008; Ogburn, VanderWeele, et al. 2014, Peña 2018; Tch-
etgen and VanderWeele 2012).

For this problem, a strategy proposed by Sherman and Shpitser
2018 is to use segregated graphs (Shpitser 2015), a generalization
of latent projection mixed graphs (Verma and Pearl 1991), to
represent causal models.

Applying graph convolutional networks into a causal inference
model is anapproach tohandle thenetwork-structureddataGuo
et al. 2019. In particular, the original features of subjects and the
network structure are mapped to a representation space, to get
the representation of confounders. Furthermore, the potential
outcomes could be inferred using treatment assignments and
confounder representations.

Ina similar line, causal inferencecanbeconceptualizedasamulti-
task learningproblemwithaset of shared layers for treatedgroup
andcontrol group together, andasetof specific layers for treated
group and control group separately. The impact of selection bias
inmulti-task learningproblemcanbealleviatedviaapropensity-
dropout regularization scheme, in which the network is thinned
for every trainingexampleviaadropoutprobability thatdepends
on the associated propensity score.

In the context of the project, there is a particular opportunity
for applying causal inference methods in conjunction with the

https://arxiv.org/abs/2004.07511v1
https://arxiv.org/abs/2004.07511v1
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Figure 3.1: Community structure
found in photic zone interactome.
Top 15 interacting taxon groups
are depicted as colored segments
in which ribbons connecting two
segments indicate co-presence
and exclusion. Links are domi-
nated by the obligate parasites
syndiniales and by Arthropoda
and Dinophyceae. Source: Lima-
Mendez et al. 2015.

Fig. 3A), and exclusions involving arthropods.
Certain combinations of phylogenetic groups
are overrepresented (39). For instance, we found
a clade of syndiniales [theMALV-II Clade 1 belong-
ing to Amoebophrya (3)] enriched in positive
associations with tintinnids (P = 2–4), which
are among the most abundant ciliates in ma-
rine plankton (40). The tintinnid Xystonella
lohmani was described in 1964 to be infected

by Amoebophrya tintinnis (41), and tintinnids
can feed on Amoebophrya free-living stages (42).
Other found host-parasite associations included
the copepod parasites Blastodinium, Ellobiopsis,
and Vampyrophrya (41, 43–45).
Ontheotherhand,Maxillopoda,Bacillariophyceae,

and collodarians, three groups of relatively large
sized organisms whose biomass can dominate
planktonic ecosystems, are rich in negative as-

sociations among them (33). Collodarians and
copepods are abundant in, respectively, the oli-
gotrophic tropical and eutrophic andmesotrophic
temperate systems (10, 46). The decoupling of
phyto- and zooplankton in open oceans by dia-
toms anticorrelating to copepods (47, 48) is
attributed to growth rate differences and to the
diatom production of compounds harmful to
their grazers (49). The combination of these

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1262073-3

Fig. 2. Taxonomic and geographic patterns within the co-occurrence
network. (A) Top 15 interacting taxon groups depicted as colored segments
in a CIRCOS plot, in which ribbons connecting two segments indicate co-
presence and exclusion links, on the left and right, respectively. Size of the
ribbon is proportional to the number of links (copresences and exclusions)
between the OTUs assigned to the respective segments, and color is seg-
ment (of the two involved) with the more total links. Links are dominated by
the obligate parasites syndiniales and by Arthropoda and Dinophyceae. (B)
TaraOceans sampling stations grouped by oceanic provinces. (C) Frequency of
local co-occurrence patterns across the oceanic provinces, showing that most

local patterns are located in MS. (D to G) Taxonomic patterns of co-
occurrences acrossMS (D), SPO (E), IO (F), and RS (G). Edges are represented
as ribbons between barcodes grouped into their taxonomic order as in (A).
Links sharing the same segment are affiliated to the same taxon (Order),
showing that the connectivity patterns across taxa are conserved at high
taxonomic ranks. The local specificity of interactions at higher resolution
(OTUs) is apparent by thin ribbons (edge resolution), with different starts, and
end positions (different OTUs) within the shared (taxon) segment, section
color, and ordering correspond to those in (A). SO-specific associations are
mainly driven by bacterial interactions (53).
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work being carried out in WP II.1 and WP III.1. A particular case
are regulatory networks and community structures.

For example, Lima-Mendez et al. 2015 discussed the problem of
finding the community structure in the photic zone interactome
using environmental factors andorganismal abundanceprofiles
relying on Tara Océan data, as illustrated in Figure 3.1. Causality
could be used to automatically extract and give a causality di-
rection in the graph at different levels of taxonomic resolution.
Work packageWP III.1 will centralize and coordinatework in this
direction.

Causality has been a long-time research theme at TAU , Isabelle
Guyonbeing apioneer of thefield, in particular through the orga-
nizationof thecause-effectpair challenges (Kalainathan,Goudet,
Sebag, et al. 2019). Other results on this topic includeaPhD thesis
by Kalainathan 2019—alongwith its corresponding publications
(Goudet, Kalainathan, Caillou, et al. 2018; Goudet, Kalainathan,
Sebag, et al. 2019; Kalainathan, Goudet, Guyon, et al. 2018b)— in
which full causal models (and not only pairs of variables) are
built using the adversarial principles of deep neural networks.

Inria Chile has also worked on the application of causal infer-
ence to thedeterminationof causesof accidents in thepetroleum
(Martí et al. 2014; Sanchez-Pi, Martí, Molina, et al. 2014, 2015) and
mining industries (Palma et al. 2021) among others.

Task II.3.B Explainable AI

In this task we focus on how to address the issue of explainable
AI. This taskaims to setupasuiteofmachine learning techniques
that:

▶ produce more explainable models, while maintaining a
high level of learning performance (prediction accuracy),

https://doi.org/10.1007/978-3-030-21810-2_4
https://doi.org/10.1007/978-3-030-21810-2_4
https://hal.inria.fr/tel-02435986
https://doi.org/10.1007/978-3-319-07767-3_19
https://doi.org/10.1007/978-3-319-07767-3_19
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6916105&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6916105&tag=1
https://ojs.aaai.org/index.php/AAAI/article/view/17805
https://ojs.aaai.org/index.php/AAAI/article/view/17805
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(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top

3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.
Even though explanations of multiple instances can be

insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

I� I� I� I� I�

Figure 5: Toy example W. Rows represent in-

stances (documents) and columns represent features

(words). Feature f2 (dotted blue) has the highest im-

portance. Rows 2 and 5 (in red) would be selected

by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for

for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for

V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i},W, I)
end while

return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .

Figure 3.2:Howdifferent elements of an image influence each possible classification class. Source: Ribeiro et al. 2016.
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▶ createa set of researchsupport tools that combineexplain-
ability and causality to cast light into the finding of new
scientificdiscoveriesand theoriesbymaking surrogatehu-
man-readable models, and

▶ enable human users to understand, appropriately trust,
and effectively manage the emerging generation of arti-
ficially intelligent partners.

Explainability is a core concern in AI—and computer science, for
that matter— at the moment (Barredo Arrieta et al. 2020). It is
also an essential component of the challenge as we intend to
use the models created to serve as vehicles for understanding
nature and at the same time to be a source for new theories.

Current state-of-the-art machine learning methods tend to ob-
fuscate the interpretability of their results. This has been fur-
ther aggravated by the emergence of highly complex deep learn-
ing methods. There has been an important interest on the con-
text of explainablility related to images (Vermeire and Martens
2020, April 16).

Imagesareparticularly suitable for theapplicationof thesemeth-
ods and have served to expose many of the drawbacks of cur-
rent methods. For instance, Figure 3.2 shows some results from
Ribeiro et al. 2016where traced back the parts of the input image
(a) that are decisive when trying to classify that image under dif-
ferent classes (b)–(d).

Newmachine learning systems that will be proposed in this task
wouldhave theability toexplain their rationale, characterize their
strengths andweaknesses, and convey an understanding of how
they will behave in the future. The strategy for achieving that
goal is to develop new or modifiedmachine learning techniques
that will produce more explainable models. These models will
be combined with state-of-the-art human-computer interface

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://arxiv.org/abs/2004.07511v1
https://arxiv.org/abs/2004.07511v1
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Figure 3.3: Trade-off between ac-
curacy and interpretability of ma-
chine learning methods and the
area of work of modern explain-
able AI. Source: Barredo Arrieta et
al. 2020.

A. Barredo Arrieta, N. Díaz-Rodríguez and J. Del Ser et al. Information Fusion 58 (2020) 82–115 
Fig. 12. Trade-off between model inter- 
pretability and performance, and a represen- 
tation of the area of improvement where the 
potential of XAI techniques and tools resides. 

As perfectly stated in [347] , it is not necessarily true that models 
that are more complex are inherently more accurate. This statement is 
false in cases in which the data is well structured and features at our 
disposal are of great quality and value. This case is somewhat common 
in some industry environments, since features being analyzed are con- 
strained within very controlled physical problems, in which all of the 
features are highly correlated, and not much of the possible landscape 
of values can be explored in the data [348] . What can be hold as true, is 
that more complex models enjoy much more flexibility than their sim- 
pler counterparts, allowing for more complex functions to be approxi- 
mated. Now, returning to the statement “models that are more complex are 
more accurate ”, given the premise that the function to be approximated 
entails certain complexity, that the data available for study is greatly 
widespread among the world of suitable values for each variable and 
that there is enough data to harness a complex model, the statement 
presents itself as a true statement. It is in this situation that the trade- 
off between performance and interpretability can be observed. It should 
be noted that the attempt at solving problems that do not respect the 
aforementioned premises will fall on the trap of attempting to solve a 
problem that does not provide enough data diversity (variance). Hence, 
the added complexity of the model will only fight against the task of 
accurately solving the problem. 

In this path toward performance, when the performance comes hand 
in hand with complexity, interpretability encounters itself on a down- 
wards slope that until now appeared unavoidable. However, the appari- 
tion of more sophisticated methods for explainability could invert or 
at least cancel that slope. Fig. 12 shows a tentative representation in- 
spired by previous works [7] , in which XAI shows its power to improve 
the common trade-off between model interpretability and performance. 
Another aspect worth mentioning at this point due to its close link to 
model interpretability and performance is the approximation dilemma : 
explanations made for a ML model must be made drastic and approxi- 
mate enough to match the requirements of the audience for which they 
are sought, ensuring that explanations are representative of the studied 
model and do not oversimplify its essential features. 
5.2. On the concept and metrics 

The literature clearly asks for an unified concept of explainability. In 
order for the field to thrive, it is imperative to place a common ground 
upon which the community is enabled to contribute new techniques 
and methods. A common concept must convey the needs expressed in 
the field. It should propose a common structure for every XAI system. 
This paper attempted a new proposition of a concept of explainability 

that is built upon that from Gunning [7] . In that proposition and the 
following strokes to complete it ( Section 2.2 ), explainability is defined 
as the ability a model has to make its functioning clearer to an audience. 
To address it, post-hoc type methods exist. The concept portrayed in 
this survey might not be complete but as it stands, allows for a first 
common ground and reference point to sustain a profitable discussion in 
this matter. It is paramount that the field of XAI reaches an agreement in 
this respect combining the shattered efforts of a widespread field behind 
the same banner. 

Another key feature needed to relate a certain model to this con- 
crete concept is the existence of a metric. A metric, or group of them 
should allow for a meaningful comparison of how well a model fits the 
definition of explainable. Without such tool, any claim in this respect 
dilutes among the literature, not providing a solid ground on which to 
stand. These metrics, as the classic ones (accuracy, F1, sensitivity...), 
should express how well the model performs in a certain aspect of ex- 
plainability. Some attempts have been done recently around the mea- 
surement of XAI, as reviewed thoroughly in [349,350] . In general, XAI 
measurements should evaluate the goodness, usefulness and satisfaction 
of explanations, the improvement of the mental model of the audience 
induced by model explanations, and the impact of explanations on the 
performance of the model and on the trust and reliance of the audience. 
Measurement techniques surveyed in [349] and [350] (e.g., goodness 
checklist, explanation satisfaction scale, elicitation methods for men- 
tal models, computational measures for explainer fidelity, explanation 
trustworthiness and model reliability) seem to be a good push in the di- 
rection of evaluating XAI techniques. Unfortunately, conclusions drawn 
from these overviews are aligned with our prospects on the field: more 
quantifiable, general XAI metrics are really needed to support the exist- 
ing measurement procedures and tools proposed by the community. 

This survey does not tackle the problem of designing such a suite of 
metrics, since such a task should be approached by the community as a 
whole prior acceptance of the broader concept of explainability, which 
on the other hand, is one of the aims of the current work. Nevertheless, 
we advocate for further efforts towards new proposals to evaluate the 
performance of XAI techniques, as well as comparison methodologies 
among XAI approaches that allow contrasting them quantitatively under 
different application context, models and purposes. 
5.3. Challenges to achieve explainable deep learning 

While many efforts are currently being made in the area of XAI, there 
are still many challenges to be faced before being able to obtain explain- 
ability in DL models. First, as explained in Section 2.2 , there is a lack of 
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techniques capable of translating models into understandable
and useful explanation dialogues for the end user.

Our strategy is to pursue a variety of techniques to generate a
portfolio of methods that will provide future developers with a
rangeofdesignoptionscovering theperformance-versus-explain-
ability trade-off space. This trade-off can be appreciated in Fig-
ure 3.3.

Hereagain, therewill be cross-fertilizationand factorizationwith
theEuropeanproject TRUST-AI, ofwhich TAU is apartner, adding
Genetic Programming in the portfolio, together with other re-
cent or on-going work at TAU that are already disseminated (Es-
calanteet al. 2018;Kalainathan,Goudet, Guyon, et al. 2018a; Tubaro
et al. 2020).

Work in this task will be organized in the following directions:

▶ Explainable AI and adversarial machine learning: some
recent contributions have capitalized on the possibilities
of generative adversarial networks (Baumgartner et al.
2018), variational autoencoders (Charte et al. 2018) and
other generative models towards explaining data-based
decisions. Once trained, generative models can generate
instancesofwhat theyhave learnedbasedonanoise input
vector that can be interpreted as a latent representation
of the data at hand.
This is best illustrated in Figure 3.4. In this figure it is illus-
trated how a neural network trained to classify dogs ap-
plies a combinedmethod that segments (b) and then uses
this segments to classify the images. When the classifier
is confronted with counterfactual examples, it can be ap-
preciated what elements are the determining factors to

https://doi.org/10.1007/978-3-319-98131-4
https://hal.archives-ouvertes.fr/hal-01864239
https://hal.archives-ouvertes.fr/hal-01864239
https://doi.org/10.1177/2053951720919776
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1016/j.inffus.2017.12.007
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Figure 3.4: Determining key fea-
tures in image classification using
adversarial methods. Source: Ver-
meire and Martens 2020, April 16.

reach -or reject- a classification, as appreciated in (c) and
(d).

▶ Interpretable shadow models: methods like Bayesian net-
works and, particularly, genetic programming can be con-
structed to provide human-readable models that can be
interpreted, assessed and even lead to new scientific dis-
coveries.

▶ Causal inference forunderstanding internal representations:
representation learning is oneof themain results thathave
lead to the deep learning revolution. It can be hypothe-
sized that causal inference methods can be applied to un-
derstand the patterns of those activations and, be used
to understand what input and internal features influence
the prediction.

Expected outcome(s) of the work package: Outcome of the pack-
age will be a toolkit library consisting of machine learning and
human-computer interface softwaremodules that couldbeused
to develop future explainable AI systems. We expect this to lead
toward the concept of responsible AI, namely, amethodology for
the large-scale implementation of AI methods in real organiza-
tions with fairness, model explainability and accountability at
its core.

Coordinating Inria team: TAU

Participating teams: Inria Chile
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Boittin, L., Bouchut, F., Bristeau,M.-O.,Man-

geney, A., Sainte Marie, J., & Souillé, F.

(2020). The Navier-Stokes systemwith tem-

perature and salinity for free surface flows

Part II: Numerical scheme and validation

[working paper or preprint]. https : / / hal .

inria.fr/hal-02510722

Chen, R. T., Rubanova, Y., Bettencourt, J., &

Duvenaud, D. K. (2018). Neural ordinary dif-

ferential equations. Advances in neural in-

formation processing systems

Dupont, E., Doucet, A., & Teh, Y. W. (2019).

Augmented neural ODEs. H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc,

E. Fox, & R. Garnett (Eds.), Advances in neu-

ral informationprocessing systems32. Cur-

ran Associates, Inc. http://papers.nips.cc/

paper/8577-augmented-neural-odes.pdf

Rudy, S. H., Brunton, S. L., Proctor, J. L., &

Kutz, J. N. (2017). Data-driven discovery of

partial differential equations. Science Ad-

vances, 3(4). https://doi.org/10.1126/sciadv.

1602614

Sirignano, J., & Spiliopoulos, K. (2018). DGM:

A deep learning algorithm for solving par-

tial differential equations. Journal of Com-

putational Physics, 375. https://doi.org/10.

1016/j.jcp.2018.08.029

WP II.4 Model-driven and data-driven integration and

hybrids

Running biogeophysical models (Boittin et al. 2020) can be very
CPU time and energy consuming. The idea here is to use deep
learning approaches to reproduce the predictions of these re-
source demanding models. More precisely, to reduce complex
models (coupling Navier-Stokes with biochemical source terms)
using deep neuronal networks (DNNs).

Task II.4.A Learning PDEs from Data

In a first stage, a database of synthetic data coming from the
numerical resolution of our PDE-basedmodels will be generated
on a broad range of scenarios. These datasets will be used to
train deep neural networks (Chen et al. 2018; Dupont et al. 2019).
A validation data set will be used to validate and assess the
resulting accuracy.

Note that specific stability analysis and dedicated tools like CFL
condition, upwinding, etc., are usually required in the numeri-
cal processing of transport. In this context, we will build con-
ceptual analogies between DNN architectures (activation func-
tions, number of layers) and our schemes (slope limiters, time
discretization). Positivity and energy preservation will be stud-
ied as well. In this way, we will generalize our approach to vari-
ous initial conditions.

Task II.4.B Understanding learning dynamics

There exists a huge literature on model reduction for ODEs and
PDEs. However, classical techniques often face difficulties to re-
duce systems with hyperbolic features. The study of geophysi-
cal flows is often associated with advection dominating flows
and hence, except for simple/linear systems, there is a lack of
efficient model reduction techniques available e.g. for ocean dy-
namics.

Using simple models: advection equation (2D, with varying ad-
vection velocity, etc.), shallow water equations in characteristic
regimes,we intend to understandwhyML-based techniques give
interesting results. In this regard, the work of Rudy et al. 2017
and Sirignano and Spiliopoulos 2018 are good starting points.

https://hal.inria.fr/hal-02510722
https://hal.inria.fr/hal-02510722
http://papers.nips.cc/paper/8577-augmented-neural-odes.pdf
http://papers.nips.cc/paper/8577-augmented-neural-odes.pdf
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
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Neural network Physics information
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Figure 3.5: Schematic representation of a physics-informed neural network with inputs𝑥, 𝑦, and 𝑡; outputs 𝑢̂ and ̂𝑣.
Using automatic gradient calculation we can differentiate the neural network by its input variables and construct a
physics error function 𝑓(). Consequently, the loss function, ℓ, involves a loss term for the data (ℓdata) and a loss term
for the physics function (ℓphysics). Source: de Wolff et al. 2021b.

Raissi, M., Perdikaris, P., & Karniadakis, G.

(2019). Physics-informed neural networks:

A deep learning framework for solving for-

ward and inverse problems involving non-

linear partial differential equations. Jour-

nal of Computational Physics, 378. https://

doi.org/10.1016/j.jcp.2018.10.045

Vetra-Carvalho, S., van Leeuwen, P. J.,

Nerger, L., Barth, A., Altaf, M. U., Brasseur,

P., Kirchgessner, P., & Beckers, J.-M. (2018).

State-of-the-art stochastic data assimila-

tion methods for high-dimensional non-

Gaussian problems. Tellus A: Dynamic Me-

teorology and Oceanography, 70(1). https :

//doi.org/10.1080/16000870.2018.1445364

deWolff, T., Carrillo, H., Martí, L., & Sanchez-

Pi, N. (2021a). Assessing physics informed

neural networks in ocean modelling and

climate change applications. N. Sanchez-Pi

& L. Martí (Eds.), AI: Modeling Oceans and

Climate Change Workshop at ICLR 2021.

https://hal.inria.fr/hal-03262684

de Wolff, T., Carrillo, H., Martí, L., &

Sanchez-Pi, N. (2021b). Towards op-

timally weighted physics-informed

neural networks in ocean modelling

[Under review]. arXiv: 2106 . 08747.

https://hal.inria.fr/hal-03260357

Lütjens, B., Crawford, C. H., Veillette,

M., & Newman, D. (2021). PCE-PINNs:

Physics-informed neural networks for

uncertainty propagation in ocean mod-

eling. N. Sanchez-Pi & L. Martí (Eds.), AI:

Modeling Oceans and Climate Change

Workshop at ICLR 2021

Task II.4.C Hybridmodels: Combining PDE solvers and DNNs

Though remaining in the framework of transportmodels,wewill
considerhereageneral processwherea sourceofphysical knowl-
edge under the form of a PDE is available. We will investigate
schemes for decomposing a process model into PDE and statis-
tical components which is an open problem. We will analyze for
representative cases the properties of such decompositions (ex-
istence, unicity, conditions for PDE parameters identification),
and propose a formal learning framework. Simple kinetics de-
scribingphytoplanktongrowthas a function of temperature and
nutrients will be embedded in the model as a case study to vali-
date the approach and assess its accuracy.

Physics-informedneural networks (PINNs) (Raissi et al. 2019) are
a hybrid approach that take into account a data-based neural
networkmodel andaphysics-informedmechanisticmodelwhich
are two different paradigms, as presented in Figure 3.5. They of-
fer a framework where existing knowledge about a physical phe-
nomenonand empirical data gathered about it. This general con-
cept has been previously explored and is known as data assim-
ilation (Vetra-Carvalho et al. 2018), but PINNs bring a novel and
sound approach to consolidate the existingmodels and sampled
data.

This feature makes PINNs particularly appealing for the above-
described problems and has lead to some preliminary studies
by Inria Chile (de Wolff et al. 2021a,b) and others (Lütjens et al.
2021).

Recently, this insterestwas furtherverifiedduring theAIMOCC’21

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1080/16000870.2018.1445364
https://doi.org/10.1080/16000870.2018.1445364
https://hal.inria.fr/hal-03262684
https://arxiv.org/abs/2106.08747
https://hal.inria.fr/hal-03260357
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Baroukh, C., Muñoz-Tamayo, R., Steyer,
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workshop organized in conjunction with the ICLR 2021 confer-
ence (Sanchez-Pi and Martí 2021).

Expected outcome(s) of theworkpackage: Thiswork packagewill
give rise to easier methods to simulate and to handle AI-based
models that will allow to more extensively explore different sce-
nearii, including the impact of temperature changes as follow-
ing IPCC scenarii, in particular in biodiversity along ocean cur-
rents.

Coordinating Inria team: ANGE

Participating teams: BIOCORE TAU Inria Chile CMM PUC

WP II.5 Development, calibration and validation of

mechanistic models

Task II.5.A Identifiability issues

The high dimension of the biogeochemical models make chal-
lenging their calibration and validation from a reduced number
of measurements. These nonlinear and dynamical systems of-
ten integrate several time scales. It results that the mathemati-
cal analysis of these models is challenging. The identifiability of
their parameters is often an open question. As a result, identifi-
cation algorithms based onminimization can converge towards
several local minima.

The objective of this work package will be to develop identifica-
tion strategies tailored to the system to limit the ineffability’s
issues and eventually to cross validate the models.

Task II.5.B Metabolic model reduction

Most of the approaches to reduce metabolic models assume a
steady state, where no intracellular compounds can accumulate.
In the environment permanently subject to varying signals like
light, temperature, pH, etc., such hypothesis reveals to bewrong
(Baroukh, Muñoz-Tamayo, et al. 2015), and the Dynamic RedUc-
tionofMetabolism (DRUM) framework (Baroukh,Muñoz-Tamayo,
et al. 2014; Baroukh, Turon, et al. 2017) has been proposed ac-
counting for themetabolic dynamics through accumulation and
reuse of internal compounds.

https://oceania.inria.cl/#aimocc
https://oceania.inria.cl/#aimocc
https://doi.org/10.1016/j.ymben.2015.03.019
https://doi.org/10.1016/j.ymben.2015.03.019
https://doi.org/10.1371/journal.pone.0104499
https://doi.org/10.1371/journal.pone.0104499
https://doi.org/10.1371/journal.pcbi.1005590
https://doi.org/10.1371/journal.pcbi.1005590
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More work remains to be done to account for the dilution due to
growthor to advection-diffusion in thenatural environment and
to include the impact of temperature on metabolism.

The mathematical analysis of the metabolic fluxes within the
ecosystem still needs developments to understand the key ele-
ment driving its dynamics. More specifically, methods are lack-
ing to reduce thenumberof solutionswhile constrain themetabolic
problem. Studyingall thepossible intracellularfluxesand thede-
pendencies between reactions (Correlation Flux Coupling Analy-
sis) is still an open question.

Task II.5.C Navier-Stokes equation: From Eulerian to Lagrangian

The multidisciplinary approach put forward by ANGE includes
hydrodynamic models that enable the simulation of Lagrangian
cell trajectories (Demory, Combe, et al. 2018). In this task, wewill
tackle the inverseproblemusing this Lagrangian reconstruction.
More precisely, we will build up an inverse problem by compar-
ing the observed trajectories and the simulated to reconstruct
the environment parameters. A promising characteristic of this
approach is that thenumberof considered trajectories (observed
and computed) canbe increased to get amore accurate estimate
of the environment parameters.

Expected outcome(s) of thework package: Coupling of theNavier-
Stokes equations with biological models gives an accurate rep-
resentation of the hydrodynamics-biology coupling and of the
evolution processes but the study of the obtained models is out
of reach. Two simplification steps: metabolic reduction and La-
grangian trajectories will give rise to models of reduced com-
plexity overwhichML techniqueswill be applied. The underlying
parameter estimation and state reconstruction algorithms will
be assessed on these simplified models.

Coordinating Inria team: BIOCORE

Participating teams: ANGE CMM ComBi PUC

Axis III Multi-disciplinary applied objectives

We identified two main “vertical” applied scientific challenges
concerning themodeling of the ocean symbiome system and its
relation with climate change. All of them have an intrinsic need

https://doi.org/10.1098/rsos.180523
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van der Plas, F. (2019). Biodiversity and

ecosystem functioning in naturally as-

sembled communities. Biological Reviews,

94(4). https://doi.org/10.1111/brv.12499

for the development of computer science andmathematical the-
ories, computational tools and ideas to bring us beyond the state
of the art and strengthen the accumulated area of expertise.

WP III.1 Integrating biodiversity community structures

and function along the ocean

Task III.1.A Biodiversity and ecosystem functioning

Biodiversity supports important functions, such as primary pro-
ductivity andcarbonfixationandsequestration, that aredirectly
or indirectly used and affected by humans. Understanding the
processes driving these functions is fundamental from a basic
scienceandpolicyperspective.Oneof themaindriversof changes
inecosystems functions isbiodiversitymost commonlymeasured
as number of species and mostly in terrestrial and freshwater
environments. Themost common pattern is an increase in func-
tion like productivity and species richness with an eventual ceil-
ing.

Inmarine environments, these studies are comparatively scarce
andmost of themrestricted to deep sea and benthic ecosystems,
forwhichpositiveandnegative relationshipshavebeenreported.
Data derived from Tara and other sources would allow for a com-
prehensive exploration of the relationship between ecosystem
functioning and biodiversity, for testing many of the mechanis-
tic hypotheses offered to explain them (e. g., complementarity,
selection, and sampling effects). But more importantly, for as-
sessing their relative contribution and testing new ones asso-
ciated to the integration and variability of these relationships
across different levels of biodiversity, from genes to species to
traits and functions and their interaction with other driver vari-
ables such as temperature that drives both diversity and ecosys-
tems functions, and with different levels of detail (e. g. compar-
ing the relationship between ecosystem functioning and meta-
genomeswith that formeta-transcriptomes). This studywill help
leverage and overcome important biases such as the underrep-
resentationof ocean studieswith only five reported (vander Plas
2019).

The almost non-existence analysis at the levels ofmetagenomes,
meta-transcriptomes, and metabolic trait diversity, which will

https://doi.org/10.1111/brv.12499
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provideunprecedentedevidence linkinggenes toecosystempro-
cesses. Finally, through AI technique we will be able to under-
stand causality and circular causality among different levels of
biodiversity, ecosystem functioning and abiotic variables such
as temperature.

Task III.1.B Meta-metabolic modeling

The objective is to develop ametabolicmodel including themain
microbial oceanic compartments, andcouple itwithphysics.Meta-
metabolic model is challenging due to variety in the pathways
and time scales. The current approaches formetabolicmodeling
has been developed assuming that the metabolism is at steady
state, the DRUM approach (Baroukh, Muñoz-Tamayo, et al. 2014)
opens new routes to tackle this challenge. It is ambitious to pro-
pose a metabolic model of the ocean microbial food web, but
with these tools it becomesdoable. Themodel couldbecalibrated
with the Tara Océan Oceans data. This reconstruction of meta-
metabolicmodels for each Tara Océan sample (prokaryiotic frac-
tion) has already been initiated by ComBi , but much remain to
be done for the calibration and the validation of such models.

As a main expected result, a notion of ecological niche should
be derived from metabolic networks of key organisms ( ComBi ).
CMM and PUC are also active in this context in particular by
incorporating regulatory ideas.

Task III.1.C Phytoplankton biodiversity with regard to temperature,
present and future

The main purpose is to create a computational modeling frame-
work to properly incorporate plankton complexity into ocean-
climate models, assuming the stochastic nature of this system.
Thereareadifferent tasks that canbeaddressed in this context.

In this case, the objective is to match the V9-18s available in the
Tara Océan databaseand local temperaturedata, focusingonsen-
tinel genus (i.e.MicromonasorSynecochochocus) forwhich tem-
perature response model exist (Demory, Baudoux, et al. 2019),
which have been used to propose phytoplankton biodiversity in-
dexes. These biodiversity models must be improved considering
a larger data set encompassing the Tara Océan measurements,
especially by relating local temperature conditions (yearly SST

https://doi.org/10.1038/s41396-018-0248-0
https://doi.org/10.1038/s41396-018-0248-0
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evolution), local nutrient conditions and temperature response:
predicting which species can grow in a given environment.

In a first stage, the area where temperature effect is predomi-
natedby other factorsmust be determined andanalyzed. For the
area whose biodiversity is temperature driven, the future of the
local biodiversity must be assessed within the IPCC scenarii.

Task III.1.D Data assimilation in biogeochemical models: Predicting
the future

Data assimilation strategies will be developed to calibrate bio-
geochemical models using the available database. The PISCES
biogeophysical model, which is already used by ComBi , will be
run for this purpose. Data assimilation with 3D biogeochemical
models, including a large number of processes and parameters,
is an active subject of research. The tools of AI combined with
other approaches from applied mathematics are opportunities
for gaining in prediction capability. The idea is to embed key fac-
tors affected by global changes such as pH (Carbonate system,
including CO2) and temperature to be able to predict the ecosys-
tem evolution at the end of the century horizon. BIOCORE will
focus on the phytoplankton compartment and the primary pro-
duction.

Surrogatemodelsof thegrowthratederived fromtheother tasks
will be used as a proxy within the PISCES model, following the
first results within the project Houmus (CNRS Prime) obtained
by ComBi .

Expected outcome(s) of the work package: The outcome of this
work package can be summarized as:

▶ conclusive analysis at the levels of metagenomes, meta-
transcriptomes, andmetabolic trait diversity, thatprovide
evidence linking genes to ecosystem processes,

▶ anotionof ecologicalniche shouldbederived frommetabolic
networks of key organisms,

▶ originalmodelsdescribingbiodiversity in response to tem-
perature,

▶ enhanced strategies for calibrating biogeochemical mod-
els.

Coordinating Inria team: BIOCORE

Participating teams: ANGE Inria Chile ComBi CMM GO-SEE PUC
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Figure 3.6: Steps or layers for the application of computer vision andmachine learning for understanding planktonic
populations. From satellites (A) we can obtain images and synthetic aperture radar measurements (SAR) (B). Water
properties like temperature, salinity, and presence of chlorophyll (C) may indicate the presence of certain popula-
tions (D) but the details can be either appreciated usingmicroscope imagining (G) of DNA barcodes (E). In both cases,
AI methods like neural networks can be applied to identify in images or barcodes the presence of organisms: (E)-(F)-
(G) and (G)-(H)-(i), respectively.

Pastore, V. P., Zimmerman, T. G., Biswas,

S., & Bianco, S. (2019). Annotation-free

learning of plankton for classification and

anomaly detection. bioRxiv. https : / / doi .

org/10.1101/856815

WP III.2 Understanding plankton communities using AI,

ML, and vision

Tara Océan sampling methodology allows for an ample applica-
tion of computer vision to help the understanding of the charac-
teristics of the biome. This is particularly important as images
canbeobtained fromthesamplesbeingextractedbutalsoacam-
era is submerged as records images of the microscopic organ-
isms found.

Traditionally, plankton is surveyed using either satellite remote
sensing, where biomass is inferred indirectly through measure-
ment of total chlorophyll concentration or with large net tows
viaoceanic vessels like Tara Océan ,with subsequentmicroscopic
analysis of the preserved samples.

Satellite imaging methods are extremely accurate in terms of
global geographic association and very useful for broad species
characterization but may present practical challenges in terms
of accuracy of the performed counts, species preservation, and
fine-grained characterization.

Clearly, computer vision techniques are called for to help to iden-
tify individuals in an automated way. Supervised learning meth-
ods, and to a more limited degree, semi-supervised approaches
have already been started to be used (Pastore et al. 2019).

However, there is an important gap to bridge in order to produce
useful research tools. Figure 3.6 provides an illustrative outlook

https://doi.org/10.1101/856815
https://doi.org/10.1101/856815
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Figure 3.7: Whales movement and
feeding across different depths
makes them an essential actor in
marine biodiversity and a poten-
tial key element for carbon cap-
ture. Source: RomanandMccarthy
2010.

deep and adjacent waters could not sustain primary production in
this basin, noting that the ‘‘construction of carbon and nitrogen
budgets that consider only fluxes into and out of the Gulf, and not
internal recycling, will be in error’’ [18].

Results and Discussion

Field Measurements
We collected and analyzed 16 fecal plume samples during two

whale-tagging cruises on Stellwagen Bank. PON concentrations of
the humpback fecal plume samples were elevated by as much as
two orders of magnitude above typical mixed-layer concentrations
for summer in this area [19]. Concentrations of NH4

+ in fecal
plumes ranged from 0.4 to 55.5 mmol kg21. All reference samples
collected away from visible fecal plumes had concentrations
,0.1 mmol kg21 (the nominal limit of detection), which is typical
for summer surface waters [19]. Hence, nearly all of the samples
taken near whale fecal plumes had dramatically elevated NH4

+.
The results of shipboard incubation time-course experiments are
plotted in Figures 2a and 2b. These fecal plume samples contain
phytoplankton and microbes capable of utilizing NH4

+. Thus any
change over time would be the net difference between what was
produced by microbial activity associated with the feces (presum-
ably gut flora) and the constituent microbial plankton minus the
consumption of NH4

+ by plankton and microbes. No samples
showed a net loss of NH4

+ during these experiments.
The measured NH4

+ production rates in incubated samples
were strongly correlated with sample PON concentration
(Figure 2a), which implicates fecal particulate material as the

source of this nitrogen. The highest observed production rate was
equivalent to about 50 times a typical plankton assimilation rate
during summer in Massachusetts Bay [19]. Rates of increase in
NH4

+ show no relationship to initial NH4
+ concentrations

(Figure 2b), suggesting that the source is the fecal particulate
material rather than another dissolved compound (amino-N or
urea) that was co-released with NH4

+.

Ecosystem Effects
We propose that marine mammals play an important role in the

delivery of recycled nitrogen to surface waters (Table 1). Over the
course of a year, marine mammals release approximately 2.36104

metric tons (1.76109 mol N) per year to the surface of the Gulf of
Maine, more than all rivers combined and approximately the same
as current coastal point sources (Figure 3a, Table 2, [20]).
Although atmospheric deposition delivers more nitrogen to the
Gulf than rivers or marine mammals, it is important to note that
the atmospheric source is currently much higher than the
estimated preindustrial levels (Figure 3b) [21].

The release of nutrients at the ocean surface is a pattern common
to many air-breathing vertebrates, however, in the Gulf of Maine,
and presumably in many other systems, it is dominated by whales,
especially baleen whales. Currently cetaceans deliver approximately
77% of the nutrients released to the gulf by mammals and birds
(Table 2); their biomass in the North Pacific and Southern Oceans
indicate that they also play a dominant role in these systems [22,23].
For some marine ecosystems it may be appropriate to expand this
term beyond one that emphasizes whales to acknowledge greater
importance of pinnipeds or seabirds. In the gulf, the whale pump

Figure 1. A conceptual model of the whale pump. In the common concept of the biological pump, zooplankton feed in the euphotic zone and
export nutrients via sinking fecal pellets, and vertical migration. Fish typically release nutrients at the same depth at which they feed. Excretion for
marine mammals, tethered to the surface for respiration, is expected to be shallower in the water column than where they feed.
doi:10.1371/journal.pone.0013255.g001
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of the steps end-to-end that could be addressed, from satellite
sensing to in situ sampling, etc.

The capacity crossing data fromdifferent sources is essential for
the success of this work package. Work on WP I.2 is essential
to this end. In particular, it should also integrate sources from
plankton images i. e. Ecotaxa (Picheral et al. 2017) and the satel-
lite images stored by the Chilean Data Observatory.4

Task III.2.A Plankton identification from satellite images

Machine learning techniqueswill bedesigned to integrate ‘omics’
informationwithhigh-throughput/high-resolutionplankton imag-
ing and environmental data. Our goal here is to address the prob-
lem as wide as possible. For example, would it be possible, rely-
ing on Tara Océan data, the detected in situ populations crossed
with satellite images be able to predict the presence of popula-
tions and provide tools to authorities and decision-makers. We
would like to verify if it is possible to identify the presence of par-
ticular organisms based on satellite sensors.

Anotherapproach is to takean indirect approach. Insteadofquan-
tifying thepresenceof differentmicroscopic organisms, itwould
be possible to detect some large dimension objects that indicate
the presence of such organisms. For instance, it has been hy-
pothesized that whales have a big impact on the carbon capture
process (Roman andMccarthy 2010). Whales cycle energy in the
ocean as they feed in deep waters while then leaving their feces
and urea at shallow depths (see Figure 3.7). Furthermore, recent
studies (Häussermann et al. 2017; León-Muñoz et al. 2018) that
massmortality events amongwhales have severe consequences
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on the balance of ecosystems, leading, for example, to the bloom
of highly toxic algae.

Henceforth, theproblemwouldbe if it is possible todetectwhales
from satellite images, something that has been reported to be
possible by Guirado et al. 2019 and Borowicz et al. 2019 although
it still requires further study in order to assert the possibility of
doing this with minimal supervision.

Task III.2.B Connecting images and genomic features

The Tara Océan dataset provides an extensive overview of plank-
ton images. Both images and genomic provide a lot of diversity
to investigate. The connection between these databases via ML
techniques could (i) state biogeography of the morphological di-
versity, and (ii) identify genes responsible for plankton shapes
and morphologies.

This topic is mostly new and requires considering raw imaging
data. Similarly, ocean images from space will give access in the
near future to a lot of content.ML techniques to connect the trait
of genomic diversity with the satellite images are required.

Task III.2.C Anomaly detection and explainable AI for automatic
plankton discovery

Identifying plankton frommicroscope images has been already
addressed. In this case, what we would like to address is a more
general topicofhowto identifyunknownoroutof context species
automatically and, at the sametime, provideexplanationsofwhy
that organism represents an interesting specimen (sequence D-
G-H-I in Figure 3.6). This would involve the application of trans-
fer learning and domain adaptation in order to adapt to changes
in the optics of the sensing equipment and subtle changes in the
morphology of the populations.

As part of this task, it will be required to address this problem
as object detection and instance segmentation problem. As, in
addition to indicating the class of an object as image classifica-
tion, it is alsoneeded to indicate their locationwithinabounding
box. In this category we find two main families of architectures:
region proposals like the regions with CNN features, as for ex-
ample, R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015),
Faster R-CNN (Ren et al. 2015), mask R-CNN (He et al. 2017), and
You Only Look Once (YOLO) (Redmon and Farhadi 2017).

https://doi.org/10.1038/s41598-019-50795-9
https://doi.org/10.1038/s41598-019-50795-9
https://doi.org/10.1371/journal.pone.0212532
https://doi.org/10.1371/journal.pone.0212532
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It will require extended use of causal inference to understand
the relative unlikeliness of a given observation. Then, the image-
based explainable AI method hint what parts of the observed or-
ganism that determining its selection. This tool could be poten-
tially be deployed to Tara Océan expeditions to help them assess
on-the-fly the populations they are sampling.

Expected outcome(s) of the work package: A new wave of meth-
ods that combine causality, explainable AI, computer vision and
anomaly detection used to create new research tools formarine
biologists.

Coordinating Inria team: Inria Chile

Participating teams: GO-SEE ComBi CMM PUC
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The scientific organization will follow the three axes presented
in Chapter 3. Since all the proposed developments can have im-
pact on each other, communication will be a key issue. As for
many Inria Challenges, this is the opportunity to spin up fruitful
collaborations between teams.

4.1 Work packages interaction and integration

This project has as articulating objective the goal of producing
theoretical andpractical developments in the intersectionofma-
chine learning, artificial intelligence, modeling, simulation, and
computational biologywhile yielding tangible andusable results
that could be used in the understanding, prediction, andmitiga-
tion of the current global environmental situation. As a strength,
external collaborators like CMM have been working for years
in collaboration with Inria Chile and, at its time, Inria Chile has
started or in already active collaboration with ANGE , BIOCORE ,
and TAU . It has to be said also that Marc Schoenauer is part
of the Scientific Committee of Tara Océan Oceans together with
PUC and CMM are two strategic partners of Inria Chile ; being
CMM the local partner of GO-SEE federation.

A measure of success for the former will be their publication in
high-quality journals co-authoredbypartners. Inorder toachieve
aproper transfer toourexternal partners for their realistic large-
scale applications, this project should provide somemature soft-
ware along with our methodological developments.

Thisprojectwill designandconsolidateapipelineofmodelsbased
onmachine learningandprobabilistic techniques thatwill bede-
veloped, when possible, using Inria software like scikit-learn (Pe-
dregosa et al. 2011). Table 4.1 shows the scientific intersection do-
mains and where the different teams will collaborate with each
other.

A way to assess the impact and success will be the adoption of
the results of OcéanIA as integrated tools to analyze the future
Chilean Ocean Data Observatory.
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Figure 4.1: Interaction between the
basic and applied science axes.
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based NNs
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Table 4.1: Projection of work packages in Axis II with respect to the multi-disciplinary science actions (Axis III)
expressing how of Inria and external teams will collaborate in them.

Integrating biodiversity
community structures and
function along the ocean

Understanding plankton
communities using AI, ML

and vision

Structured and
graph-based neural
networks

Inria Chile TAU CMM Inria Chile TAU CMM

Learning and adaptation Inria Chile TAU Inria Chile TAU PUC CMM

Causal learning and
explainable AI

Inria Chile TAU PUC Inria Chile TAU ComBi
CMM

Model-driven and
data-driven integration and
hybrids

ANGE BIOCORE Inria Chile
TAU CMM PUC ComBi

N/A

Development, calibration
and validation of
mechanistic models

ANGE BIOCORE Inria Chile
CMM ComBi

N/A
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4.2 Practical organization

This project is structured with two levels of involvement. The
core partners will be actively involved in the proposed research
and developments, while the rimmemberswill be invited to gen-
eral assemblies and targeted meetings and consulted for spe-
cific questions ( Tara Océan and GO-SEE , but, as was described,
some GO-SEE teams are already involved in the research tasks
of thisproject).Note that thisdivisionbetweencoreandrimpart-
ners is not fix and will be reassessed at mid-term of the project.
Depending the availability and interested of rim members they
would be invited to join a more intense collaboration. In partic-
ular, they should provide a diversity of methods and principles
that would enrich the project discussion and -if possible- serve
to compare our proposals.

Long-distancecollaboration isnecessarybut isnot trivial tomake
it efficient. To ensure an effective collaboration, the project is
built on two main practices. First, we will rely on installing a
strong collaboration through the co-supervisions of all PhD stu-
dentsandpost-doctoral researchers (andhenceco-publications)
aswell as engineers. These co-supervisionswill be implemented
by regular sojourns of one or more weeks in the different loca-
tions (Paris, Saclay, Santiago de Chile, and Sophia-Antipolis). Reg-
ular video-conference meetings will also be organized between
the teams. Second, we will share the numerical code into com-
mon libraries, using Inria collaborative development tools.

Thiswill enforcevisibility of eachotherdevelopmentsandprogress,
and encourage interactions. Finally, one general meeting will be
organizedperyear;with thepossibility toeither invite someother
teams to the discussion (in the early stage of the project), or to
organize an open workshop the same week (in a second phase).
More frequent meetings will be organized on specific topic, only
involving the relevant teams.

4.3 Dissemination actions

Dissemination actions, besides the publication of the scientific
results in conferences and journals are grouped in three chan-
nels:

1. academic/scientific dissemination,
2. general public reach-out, and
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3. open-source software contribution and dissemination.

Regardingacademic/scientificdissemination,weplan tohostwork-
shops and special sessions in reference conferences in the ar-
eas of interest of the project. We also plan to organize annual
one-week courses by members of the project for PhD students,
researchers or engineers under the scope of the Inria Academy
and/or the Inria Chile Talks. They could be organized at a differ-
ent location each year in order to widen the audience and im-
pact. Another possibility would be to organize an international
summer school.

Reaching non-academic audiences and the general-public is es-
sential todrawattention to the relevanceofoceans, climatechange,
and science as the means to understand them and address the
existing issues. Here we plan to create a reach-out program gen-
erating results in a form that is easy to share and modern, like
videos and websites.

Finally, we would keep as a general goal to consolidate our work
as reusable and redistributable software.Whenever possible, we
will contribute with the existing Inria open-source project and,
in cases where that option is not possible we will generate our
own.

4.4 Intellectual propertymanagement

This important aspect has been discussed with the DGD-I and it
will be strongly secured and regulated. All libraries developed in
this Inria Challenge will be distributed under an open source li-
cense, ownership belonging to Inria. Developments of libraries
will be under shared intellectual ownership of the original con-
sortiummembers.

4.5 Attraction of further funding

In addition to the support provided by Inria, the teammembers
will actively seek to attract additional funding to support more
challenging activities. We have identified some of these funding
sources. In particular, in France and Europe we plan to seek
support from:
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1: https://www.ffem.fr/en

2: https://anr.fr/

3: https://www.anid.cl/

4: https://www.inach.cl

5: https://www.corfo.cl

▶ Agence française de développement (AFD) / French Facil-
ity for Global Environment (FFEM)1,

▶ Agence nationale de la recherche (ANR)2,
▶ AI plan, and
▶ ERC H2020 and subsequent plans.

Similarly, in Chile we plan to request support from:

▶ Agencia Nacional de Investigación y Desarrollo (ANID),3

▶ Instituto Antártico Chileno,4, and
▶ Corporación de Fomento de la Producción (Corfo).5

https://www.ffem.fr/en
https://anr.fr/
https://www.anid.cl/
https://www.inach.cl
https://www.corfo.cl




Final remarks 5
Solving this challengewill enableus to translatebiodiversitymeta
andbigdata intoknowledge,making senseofheterogeneous sets
of data. As a consequence, these studies will allow the develop-
ment of a complete pipeline for the functional analysis of biodi-
versity and its relationwith the environment, particularly in the
Ocean but not uniquely. This will lead to the design of different
services to the environmental community.

At the oceanic level, there are crucial issues that will be possi-
ble to be addressed after this project. In particular to predict
biogeochemical cycles from ‘omics’ knowledge. Indeed, among
the more than 150 million genes cataloged by Tara Océan , 30%
code for enzymes. These are the components of the global ocean
metabolic engine that canpotentially be reconstructed andused
to go beyond the description of metabolic potential tomodeling,
from this data, the quantitative metabolic responses of marine
plankton in response to environmental variations. Another im-
pact of this project is that it will be the seed to start thinking in
next-generation ocean-climate models integrating biocomplex-
ity.

Finally, this project aims to influence politicians and decision-
makers with the out-coming new ocean-climate models. As a
science-based decision tool, the complexity of the challenge is
then to mitigate the risks of the non-adoption.

In the early stage of the project, some additional funding will be
requested in local or national programs, as stated in the previ-
ous section, to compensate for the extra cost of the proposed
long-distance co-supervision. Once mature enough (at the end
of the project) our developments will offer us the possibility to
launch a wide range of larger-scale projects.
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