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ABSTRACT: 

 

In the context of the increasing anthropogenic influence on the coastal areas that are subject to high climate variability, the main 

challenge is to understand its current dynamics and to predict its future evolution. Therefore, monitoring of the shoreline kinematics 

is a key factor for the coastal erosion assessment and an essential feature for the sustainable management of these naturally 

vulnerable areas.  

This work focuses on the detection and extraction of the shoreline, basing on a specific remote sensing methodology using Very 

High Resolution (VHR) optical images. Indeed, an integrated approach based on a Deep Learning model, which is the Convolutional 

Neural Network (CNN) and Object Based Image Analysis (OBIA) has been developed. This study aims to evaluate the 

methodological contribution of this integrated approach for the (semi)-automatic extraction of the rocky shoreline, for which the 

botanical indicator has been chosen. Therefore the upper limit of black marine lichen has been detected and extracted as the target 

shoreline. It is the first indication of a (semi)-automatic detection of such a complex type of shoreline. 

The classification results derived from the combined CNN model and OBIA methods had achieved a high overall accuracy of 0.94. 

The extracted shoreline have been compared to a shoreline of reference derived from a traditional method that is a manual digitizing. 

The distances between the two shorelines has been calculated in order to assess the accuracy of the extraction method. This 

comparison revealed that 76 % of the extracted shoreline lies within 1m, and 35% lies within 0.5 m of reference one. Therefore, the 

CNN model integrated to OBIA was successfully shown to be a good method for shoreline extraction and could offer an immediate 

insight regarding rocky shoreline position, providing an alternative to its monitoring. 
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1. INTRODUCTION 

Significant investments are being made to assess and mitigate 

the risks that coastal erosion hazard pose to the public and 

ecosystem services (Westoby et al., 2018). This hazard is 

expressed by the retreat of the shoreline, which is a key 

indicator of erosion risk assessment. Therefore, coastal hazard 

monitoring acquires data acquisition related to the shoreline, 

more or less frequently, and over large area, with the main 

purpose of analyzing and informing on the shoreline kinematic 

and the coastal environment changes. 

 

The shoreline monitoring by traditional techniques is often a 

tedious and subjective task (Boak and Turner, 2005), indeed, 

automatic and reproducible techniques are needed (Bagli and 

Soille, 2003).  

 

In fact, an improved (semi)-automatic detection of the shoreline 

via remote sensed images processing could significantly 

optimize the time and costs, and reduce the subjective 

component of manual shoreline digitization. In this regard, 

many different research fields could benefit from this improved 

shoreline extraction, such as coastal vulnerability and erosion 

assessment, environmental risk analysis, land use planning, and 

coastal management and engineering (Bengoufa, et al. 2021).  

Recently, shoreline detection has received considerable 

attention basing on remotely sensed images processing. 

However, there is a multitude of choices of shoreline indicators, 

depending on the geomorphological type of the coastline. This 

variability is often not taken into consideration in previous 

shoreline detection studies, which generally consider the land-

sea boundary as a shoreline, or only focus on the accumulation 

coastline so-called sandy coasts. Thus, their developed methods 
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are often unsuitable for more complex coastline types such as 

the rocky coasts (Mallet et al. 2012).  

With the development of Very High-Resolution (VHR) and 

multispectral sensors, detailed mapping of the coastal land 

cover become possible. Recently several Machine Learning 

models (Random Forest, SVM, K-NN, etc.) have been 

successfully adopted for remote sensing applications (Niculescu 

et al., 2018) and land cover detection. In fact, with the Deep-

Learning (DL) methods, computational models composed of 

multiple processing layers can learn data representations with 

multiple levels of abstraction (LeCun et al., 2015).  

Therefore, DL methods, in particular Convolutional Neural 

Network (CNN), have achieved success for classification of 

Remote Sensed images (Zhu et al., 2017). Generally CNN 

integrates texture and spatial context of images in the analysis 

process on the pixel level. However, this cannot accurately 

detect object borders (Ghorbanzadeh et al., 2021). Thus, Object 

Based Image Analysis (OBIA) provides the ability to integrate 

shape, texture, and size parameters, as well as other topological 

features into the analysis process, along with the spectral 

information of the pixels.  

In this context of the lack of studies proposing detection 

methods of the rocky shoreline, this work attempts to use an 

integrated approach of CNN model and OBIA for automatic 

shoreline extraction from multispectral VHR images.  

 

2. STUDY AREA  

The case study is a subset of Mostaganem Province Coastline 

(west of Algeria) (Figure1), which has an interesting landscape 

and geomorphological diversity giving it touristic potential.  

 

The western part of this coastline is highly artificialized and 

built-up. Hence, there is a need for the implementation of a 

roadmap to control and predict the harmful effects of 

anthropogenic activities on the shoreline. 

 

The case study is a western-subset pilot site of a much larger 

coastal zone (Figure1) selected for further long-term analysis of 

shoreline kinematics.  This subset of a 6 km length of shoreline 

(35°51′0.55″N 0°00′42.98″E) is a micro-tidal coast with an 

insignificant tidal effect characterised by low rocky cliffs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geographic situation of the study area  

3. METHOD  

In this study, an integrated method of CNN model and an OBIA 

approach (Figure 2) was developed for the extraction of a rocky 

shoreline. Shoreline retreat in this geomorphological form of 

coast is faster in the less steep slopes and less consolidated 

profiles (topographic structure). Knowing that the rock types 

(geological structure) in rough marine areas are strongly subject 

to wave and swell action, the hardest rocks can become soft if 

they are susceptible to physical and chemical alterations. 

3.1 Identification of Shoreline Indicator 

For rocky coastline monitoring, it is necessary to define a 

shoreline indicator detectable on satellite images. Boak and 

turner, (2005) has reviewed the main shoreline indicators for 

rocky and cliff coasts (Bluff top/cliff top, Base of bluff/cliffs, 

botanical indicators, etc.). The choice of one of these indicators 

has to meet the major shoreline recognition requirements. 

Therefore, the indicator has to be recognizable on remote 

sensed images; continuous along the coast; and the across-shore 

variations in its position due to water level changes has to be at 

a minimum. These conditions can be met by "botanical" 

indicators, which are generally preferred.  

 

Information on the botanical habitat of the rocky coast is 

specified in the European Nature Information System (key B3: 

Cliff, ledges and rocky coast) (Romero et al., 2016) (Davies, et 

al. 2004). The supralittoral level of this coast is characterised by 

the presence of marine lichen (Verrucaria amphibia, V. 

Maura), which appears as a black belt on the substrate.  

In fact, the upper edge of this belt is considered a good 

shoreline indicator of the rocky coast (Bonnot-Courtois and 

Levasseur, 2002).   

  

3.2 Data acquisition 

For the automatic detection of the shoreline, the needs in 

datasets and remotely sensed images were defined depending on 

the geomorphological type of the studied coastline and the 

chosen shoreline indicator. 

Therefore, on the same day as the in-situ sampling, a special 

programming of the acquisition Pleiades satellite images was 

carried out. It is Very High Resolution scenes of 0.5m x 0.5m, 

with 4 spectral bands: visible Red, Green, Blue and Near Infra-

Red (RGB and NIR). 

 

The objective being to highlight the superior limit of black 

marine lichen, four classes were assigned: i) Water ii) Lichen 

iii) Soil, and iv) Vegetation. The sampling consisted of 

collecting Global Position System (GPS) points for each of the 

three classes except for Water class (undertaking manually on 

VHR image).  

 

In-situ data were collected using GPS with centimetric 

precision in real-time kinematics mode. It is a relative 

positioning system (differential positioning) that involves two 

GPS receivers tracking the same satellites simultaneously to 

determine their relative coordinates. One receiver is mobile and 

the other is the reference (base) that remains stationary with a 

precisely known coordinate.  
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This in-situ data performed the same day as the images 

acquisition were used for training and testing the classification 

model.  Therefore, the samples were randomly divided into two 

independent datasets: 80% for training the CNN model and 

20% for the accuracy evaluation (test datasets). 

 

3.3 Image Processing 

The remotely sensed images were processed basing on the CNN 

model. It is a deep learning model inspired from the 

architectures of biological neural networks. Therefore, CNN is a 

multi-layer feed-forward neural network model where the layers 

are interconnected to each other by a set of learnable weights 

and biases (Romero et al., 2016). 

The convolutional layers use, as inputs, image sample patches 

that capture different features by scanning the entire image.  

The principle is based on the generation of feature maps from 

each layer using the image patches in order to feed the 

subsequent layers (Figure 3). 

The main goal of this work is to purpose a shoreline extraction 

method which incorporates the image object to a CNN model. 

Therefore the model, here developed, have quite a simple and 

flexible architecture. The CNN model was designed and trained 

in eCognition software, using 4 spectral bands (RGB and NIR) 

of the Pleiades images.  

The training dataset was used to create convolutions input 

sample patches selected out of 1204 × 1204 pixels of the 

original image. To choose an adequate sample patch size we 

have taken under consideration the target class dimensions 

(Lichen class), which is a relatively narrow band. Therefore 

several sample sizes have been tested (16×16, 10×10, 8×8, 

4×4).  

After a cross-validation process, our designed CNN was fed by 

the sample size patches of 4 × 4. Considering this small size, 

the number of hidden layers was tuned to 2 (Figure 3) with a 

kernel size of 3 × 3 and 1×1 respectively. One max-pooling 

layer with a kernel size of 2 × 2 was used after the first 

convolution layer. The role of max-pooling is to merge 

semantically similar features. It is a non-linear top-down 

sampling technique that uses the maximum value of each cluster 

of the previous layer in order to reduce the information loss to 

the next convolution layers.  

Furthermore, a patch size of 50 and 5000 training steps reached 

a good performance. A cross-validation process revealed that 

the optimal learning rate could be set at 0.0006. Indeed, an 

inadequate learning rate can either increase the time of the 

learning process (at a low rate), which could block the network 

in local minima, or decrease it (at a high rate), but the network 

might not reach the minima and thus in both cases it is possible 

to obtain incorrect weights.  

The CNN model result was used as input data for the 

Geographic Object Based Image Analysis (GEOBIA) 

knowledge-based classification. GEOBIA is devoted to the 

development of automated methods for segmenting geospatial 

imagery into meaningful image objects, and valuing their 

characteristics across spectral spatial, and temporal scales.  

 

The GEOBIA consists of two main steps: a) image 

segmentation, and b) classification.  

For the Image segmentation, a Multi-Resolution (MRS) 

algorithm (Baatz and Schaepe, 2000), was used. MRS is known 

to be a popular segmentation algorithm for VHR remote sensing 

applications. It is based on the fractal net evolution approach, 

aggregating individual pixels into objects of increasing size at 

multiple levels in an iterative process. The critical problems of 

MRS are the optimization of the parameters and the evaluation 

of segmentation quality. 

This process is based on three parameters that are tuned by the 

user: a) scale, which is defined as the maximum permitted 

heterogeneity within objects; b) shape, which is a weight 

between spectral and a shape factor; and c) compactness, which 

is a regularisation factor. After cross-validation, the Scale, 

Shape and Compactness parameters were fixed as: 10, 0.9 and 

0.5 respectively. The resulting objects were trained and 

classified based on a combination of the neighbourhood, spatial 

properties and similarity in the CNN probability. 

After final classification, the resulted polygons were converted 

to polyline format in order to select and thus extract the target 

shoreline. This latter is the polyline that separates the Lichen 

and the soil classes. In fact, the extraction is made by selecting 

the Lichen class ID in the attribute table and eliminating of all 

the other class polylines. The brute extracted polyline is a step 

raw vector, therefore, a smoothing procedure was necessary in 

order to reduce the noise and simplify the jagged shape related 

to the pixel shape. The smoothing method consists in locating 

the midpoint of each step of the stepped raw vector. This 

procedure is based on a smoothing distance fixed by users. This 

distance has to remove a smaller variation, capture the shoreline 

shape well, and the variation compared to the reference 

shoreline has to be narrow (García-Rubio et al., 2015). 

Therefore, several smoothing distances from 5m to 80m have 

been tested in order to fix an adequate one.  

 

Figure 2. Methodology workflow 
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3.4 Accuracy Assessment 

The method accuracy was assessed regarding the classification 

results and the extracted shoreline. This accuracy assessment 

allows the evaluation of the reliability and pertinence of the 

integrated approach, developed in this study, for rocky 

shoreline extraction.  

Therefore, beside of the visual inspection, the accuracy of the 

classification results derived from the integrated approach, was 

assessed basing in error matrix. In fact, 20% of samples datasets 

that was collected during in-situ fields has been used to 

calculate the error matrix and the accuracy coefficients.  

For the shoreline extraction accuracy, a comparison between 

extracted and a reference digitized shoreline was performed. 

Therefore, transects were generated using Digital Shoreline 

Analysis System (DSAS), with an equidistance of 1m, in order 

to calculate distances between the two shorelines.  

 

4. RESULTS AND DISCUSSION  

The results of this study were derived from the application of an 

integrated approach that combines a CNN model and OBIA 

using Pleiades optical images.  

It is the first indication of such a (semi)-automatic detection of 

rocky shorelines. Indeed, an image classification based on a 

deep learning model has been undertaking using, as a training 

dataset, in-situ samples collected on the same day as the 

satellite images acquisition. The use of this dataset for the 

model training improved the accuracy of the results. It can be 

considered one of the key values of this work. 

The four classes assigned for the classification process were 

detected (Figure 4a) with Overall Accuracy of 94%. The 

detection accuracy of the target class (Black Lichen) has 

achieved 91%, which reveals that the values of well-classified 

data had a high probability of being correct. 

The final outcome of the combined methods was classified 

objects in polygon format. Since the shoreline indicator is the 

upper edge of the black lichen belt, a conversion of the 

classification results from polygons to polylines format is 

necessary. This edge has been selected and extracted as the 

target shoreline. Figure 4b presents the final extracted shoreline 

after the conversion of polygon into polyline format.  

As it has been highlighted above, an adequate smoothing 

distance is necessary to simplify the jagged shape of the 

extracted shoreline. The distance of 10m resulted in shorelines 

with less variation, captured the shoreline shape well, and had 

the narrowest variation compared to the reference shoreline. 

A qualitative evaluation basing on a visual inspection 

emphasized that the shape of the extracted shoreline is quite 

well corresponding to the shape of the upper limit of black 

Lichen observed on the remote sensed image (Figure 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. a) CNN-OBIA classification results, b) extracted.  

     Lichen belt  

   Vegetation 

    Soil 

    Water  
b) a) 

Figure 3. Integrated CNN and OBIA method workflow. 
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Figure 5. CNN-OBIA results. a) Classified objects b) extracted 

shoreline (upper limit of black Lichen) 

In order to assess its reliability, the shoreline resulted from the 

combined approach have been compared to a reference 

shoreline derived from a traditional method. This method 

consisted in a manual digitizing of the superior limit of Lichen 

belt. 

The quantitative assessment has been conducted by calculating 

the distances between the two shorelines using DSAS (Thieler 

et al., 2009) processed in ArcGIS software. The Net Shoreline 

Movement (NSM) that represent the metric distances between 

two shorelines are calculated. An overview of NSM (distances) 

is presented in Figure 6. The results reveal that 76 % of the 

extracted shoreline lies within 1m, and 35% lies within 0.5 m of 

the digitized one, with maximum distance of 2,3m.   

The highest distance values are observed in sectors where 

terrestrial vegetation is close to the Lichen boundary (Figure 7). 

Excluding these sectors, the distances demonstrate that the 

automatic extraction method is quite effective in detecting the 

rocky shoreline with the accuracy of <1 m over the area taken as 

a reference for the analysis.  

Therefore, the method has limitations when the vegetation is 

close to the shore, where misclassifications are committed 

(Figure 7). This is due to the high confusion between the 

terrestrial vegetation and the Lichen cover, which have similar 

spectral information. Post-processing using the NDVI index 

could resolve these classification errors.  

Furthermore, the results showed that the integrated approach 

can, also, be used to detect the shoreline of islets (Figure 8). 

The very high resolution of the Pleiades images played an 

important role in this fine-scale detection.  

The in-situ measurement stays the most relevant method for 

shoreline detection; however, it has an important time, logistical 

and human resources cost. The CNN model integrated to OBIA 

can offer an immediate insight regarding rocky shoreline 

position, providing an alternative for its monitoring.  

Even though in terms of overall accuracy, the performance of 

ML algorithms generally outperforms -shallow- machine 

learning techniques (Campos-Taberner et al., 2016; Liu et al., 

2018), the understanding of these algorithms and their 

interpretation is typically limited (Campos-Taberner et al., 

2020; Montavon et al., 2018). 

Therefore, the major point to consider is the difficulties of the 

interpretability when using these algorithms. It can be noted 

that the better the learning of an algorithm, the more difficult its 

interpretation is (Montavon et al., 2018). 

It should be noted that the CNN model here designed is quite 

simple, because the most of the investment was made in the 

methodical aspect where we combined the robustness of Deep 

Learning model and the capability of OBIA for shoreline 

extraction, in particular rocky shoreline. Indeed. Furthermore, 

complex architectures can be performed. 

Moreover, the combined methods were tested on a micro-tidal 

coast, with insignificant tidal range (0.17m) (Ali, 2016). In case 

of shoreline detection relative to macro-tidal coast, this method 

would not be suitable without including an estimation of the 

tidal range. 

 

     Lichen belt  
 

    Vegetation 
 

    Water  

        Rocky Shoreline  
         (Upper limit of Lichen) 
  

b) 

a) 

Figure 6. Distances between extracted and digitized shorelines. 
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Figure 7. The misclassification and confusion between Lichen 

and Vegetation 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Islet shoreline detection  

 

 

5. CONCLUSION 

Integrating the CNN models with the OBIA capabilities has 

proved it efficiency for rocky shoreline extraction. The result 

has been compared to a reference shoreline revealing a very 

good accuracy. 

The innovative method, here developed, can be used for a 

multi-date shoreline change assessment and therefore for coastal 

erosion studies. It can be reproduced to optimize the time/costs 

and reduce the subjective component of traditional methods 

consisting in manual digitizing or in-situ measurement. 

The most of the investment of this study was made on the 

methodical aspect where we combined the robustness of the 

Deep Learning model in the classification of remotely sensed 

images and the capability of OBIA to detect borders for the 

extraction of rocky shoreline. Indeed the designed architecture 

of the CNN model is simple but it has proven it efficiency using 

multispectral images such as Pleiades, which are characterized 

by a very high special resolution, however further more 

complex architectures can be performed according to the data 

type and the application objectives.  

In this study, CNN-OBIA methods has been tested for rocky 

shoreline of micro-tidal coasts in the western Mediterranean 

basin.  Further application of these methods on other type of 

coasts may be unsuitable without a tidal range consideration.  
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