A Preliminary Study on the Usefulness of Physiological Assessment for the ATCO Selection

Mouratille D., Amadieu F. & Matton M.
Air Traffic Controllers

General Aspect:
• Air Traffic Controllers are responsible for the organization of air traffic to ensure its:
 – Safety
 – Efficiency

• Cognitively demanding and stressful
• Work for an Air Navigation Service Provider (ANSP)
• Plural positions: en-route, approach and tower

Cognitive Aspect:
• Create a mental image of the environment by:
 • perceiving situation,
 • anticipating the future
 • and taking decisions.

• Mental image built from multiple sources of information:
 • long-term memory such as regulations and maps,
 • radio communications,
 • radar displays,
 • decision support tools,
 • colleagues and/or outside the tower
Importance of selection

• Training:
 – Duration of training = around 3 years
 – Cost of training = between 100k and 1M by student
 – Success rate: between 50% and 80%
 – Attrition = a real burden

• In France:
 – Initial training + On-The-Job training = between 42 and 84 months
 – ATCO are public servants even during training
Selection process

• Methods used by the majority of ANSP:
 – Cognitive ability assessment
 – Knowledge test
 – Biographic data
 – Personality test
 – Motivational interview
 – Etc.

• Rarely only one method is used, a combination of several is made

• France: two years of undergraduate education and only knowledge tests are used
Validity of selection process

• Latest meta-analysis (Martinussen, 2000)
 – Cognitive predictors: Correlation low-to-medium
 – Personality predictors: non-significant
• Others predictive validity studies:
 – Correlations similar
 – Never more than 10% of variance explained

• A new meta-analysis is underway ...

Figure 1: Meta-analysis results from Martinussen & Hunter (2017)
Identification of student difficulties

• One of the recurrent training difficulties: stress resistance
 – Based on interviews with instructors (4) and psychologists (3)
 – Lots of definitions
 – Distinction not always done between stress resistance and stress resilience
 – Stress resistance as the mechanisms involved in preventing a “tipping point” from adaptive to maladaptive responses (Miller, Seals and Hamilton, 2017)
Stress Resistance

• Difficult to measure with subjective and behavioral data
• Physiological measures: electrocardiogram, cortisol, galvanic skin resistance (Arza et al, 2019)
• Closest study: Cosic, et al. (2019) without predictivity analysis

• Theory of neurovisceral integration (Thayer & Lane, 2000; 2009; Smith et al., 2017): cardiac vagal tone, indexed by heart rate variability (HRV), can indicate the functional integrity of the neural networks implicated in emotion–cognition interactions
Question

• *Can stress resistance provide incremental validity in controller success?*
Protocol

• Pilot study: 16 French ATCO students (7 women)
• Longitudinal aspect
• Time 1: Assessment of cognitive abilities one month after the beginning of academic training:
 – Spatial ability, numerical ability, multiple task performance
 – Computation of composite score based on these abilities
• Time 2 (28 months after T1): Assessment of performance during two high-fidelity air traffic scenarios:
 – Easy level: Heart Rate Variability (HRV: log-transformed RMSSD) acquired by electrocardiogram
 – Difficult level: success (0 or 1 error) or failure
 – Counterbalanced
Statistical analysis

• Step-wise logistic regression
• Predictors :
 – Cognitive composite score at T1
 – HRV at T2-Easy
• Criterion :
 – Performance at T2-Difficult
Manipulation Check

Behavioral

Number of errors by difficulty level. ***p < .001

Subjective

Number of errors by difficulty level. ***p < .001
Results

- Step-wise logistic regression:
 - Step 1: Composite score ($p = .05$, Nagelkerke $R^2 = .23$)
 - Step 2: Composite score + HRV feature ($p = .02$, Nagelkerke $R^2 = .36$)

- Improvement of model is significant: $p < .01$
Results

- The higher HRV is in easy level, the higher probabilities of high performance in difficult level will be (OR = 1.04).

Figure 4: Relation between HRV in easy level and probability of success in difficult level
Conclusion

• Heart Rate Variability (HRV) is low in cognitively simple situations ➔ when in difficult situations, maladaptive responses ➔ impaired cognitive performance + bottom-up defensive responses enhanced (Spangler et al., 2018)

• HRV is high in cognitively simple situations ➔ when in difficult situations, adaptative responses ➔ good stress resistance and cognitive performance

• In accordance with the Theory of neurovisceral integration

• Stress resistance measured by HRV can provide additional explained variance
Limits

- Number of participants
- Predictor side:
 - Using physiological measures at the beginning of training
 - A more suitable protocol: stress induction (TSST)
 - Other physiological measures
- Criterion side:
 - Predict pass-fail criterion
Thank you for your listening
A Preliminary Study on the Usefulness of Physiological Assessment for the ATCO Selection

Mouratille D., Amadieu F. & Matton M.
damien.mouratille@enac.fr

