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(a) Rendering of fluorescent materials using a re-
radiation matrix (27 552 B for the 3 pure re-
radiation spectra).

(b) Rendering of fluorescent materials using the
proposed Gaussian Mixture Model representation
(529 B for all 3 pure re-radiation spectra).
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(c) ∆E∗
00 between (a) and (b).

Figure 1: In this scene, we use a near monochromatic light for illumination. While non-fluorescent materials only reflect shades of the light
colour, fluorescent surfaces also reflect other wavelengths leading to the colourful appearance of the three fluorescent spheres in this scene.
In daylight environment, fluorescent effects are generally responsible for brighter and more vivid colours: weakly visible radiation are re-
emitted to wavelength our eyes are more sensitive to. To handle such spectra, we commonly use a re-radiation matrix (a). These triangular
matrices have an important memory overhead. We propose to represent this data more efficiently with a Gaussian Mixture Model (b). While
being compact, this representation is also precise with limited difference compared with using the full re-radiation matrix (c).

Abstract
We propose a technique to efficiently importance sample and store fluorescent spectral data. Fluorescence behaviour is properly
represented as a re-radiation matrix: for a given input wavelength, this matrix indicates how much energy is re-emitted at all
other wavelengths. However, such a 2D representation has a significant memory footprint, especially when a scene contains a
high number of fluorescent objects, or fluorescent textures. We propose to use Gaussian Mixture Domain to model re-radiation,
which allows us to significantly reduce the memory footprint. Instead of storing the full matrix, we work with a set of Gaussian
parameters that also allow direct importance sampling. When accuracy is a concern, one can still use the re-radiation matrix
data, and just benefit from importance sampling provided by the Gaussian Mixture. Our method is useful when numerous
fluorescent materials are present in a scene, an in particular for textures with fluorescent components.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Fluorescence is a common phenomenon both in natural elements
and in chemical compounds. It has an important impact on how we
perceive a scene, both in terms of hue, saturation, and luminance:
a part of non-visible or near visible light is transferred into a dif-
ferent part of the visible range, so that the effect is widely used to
enhance material brightness. In addition to this, it can also have the

effect of making colour appear more vivid than reflective colour
can normally look. While the importance of this effect for appear-
ance modelling in computer graphics has been known for years, it
has not been used in practice much yet, as adding it to graphics
workflows – both on the side of user interfaces, as well as within
rendering software proper – is a demanding problem.

One of the issues standing in the way of widespread adoption
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is that representing fluorescent effects consumes significant mem-
ory, and causes non-negligible computational overhead. To fully
describe fluorescent spectra, one normally uses re-radiation matri-
ces [Don54]: these represent emission and reemission efficiency for
a given set of wavelengths. This requires storing a densely sampled
2-dimensional dataset for each fluorophore used in a scene. While
explicitly storing this data is manageable for few fluorescent ele-
ments, this does not scale for fine-grained material definitions such
as fluorescent textures.

In recent years, there has been an increasing interest in the effect
in the research community. In one recent example, it was used to
enlarge the colour gamut during spectral uplifting [JWH*19], in a
fashion analogous to the use of optical brighteners in real materials.
However, for lack of better alternatives, the method presented in
that paper had to store a full re-radiation matrix for all pixels in a
texture: which in turn made it incapable of working with more than
a single fairly low-resolution input image.

In this paper, we propose to efficiently represent re-radiation ma-
trix by using a Gaussian Mixture Model (GMM) to represent the
re-radiation mechanism. This allows not only a low memory foot-
print, but also enables efficient importance sampling of wavelength
shifting events.

2. Previous work

Spectral rendering Many rendering pipelines still rely on RGB
or tristimulus values to compute light transport. This allows a com-
pact representation for reflectance and illuminants, and fast compu-
tation. However, the resulting colours are not accurate and cannot
be used for predictive rendering applications. Also, this type of ren-
dering cannot simulate wavelength dependent effects such as dis-
persion or fluorescence. With the increasing computational power
and the efficient multiplexing approach proposed by [WND*14],
spectral rendering is becoming increasingly popular.

Bi-spectral rendering While not widely used, the concept of flu-
orescence in computer graphics is not new. Glassner [Gla95] intro-
duced fluorescence and phosphorescence to the computer graphics
community and proposed a method to support those effects in a
Whitted ray tracer. Wilkie et al. [WTP01] proposed a combination
of rendering fluorescent and polarisation effects. Despite using a
path tracer, they relied on a defined number of spectral bands, the
wavelength not being a part of the Monte-Carlo integration. Mo-
jzík et al. [MFW18] introduced a method for both handling fluo-
rescent medium in a Monte Carlo path tracer and making the wave-
length domain a part of the integrand, and adapting Hero Wave-
length Spectral Sampling [WND*14] to support fluorescence.

Color gamut enlargement One of the challenges when using a
spectral renderer is the need to have spectrally defined assets. As-
sets are commonly defined in a tristimulus space (RGB, XYZ, etc.)
and cannot be used directly as the input of a spectral renderer.
To allow usage of RGB assets in a spectral renderer, one needs
to “uplift” the original RGB data to a spectral form. There is pre-
vious work dealing with non-fluorescent spectral uplifting [OYH;
JH19; MSHD15]. Recently Jung et al. [JWH*19] proposed an up-
lifting pipeline that additionally also uses fluorescent spectra to en-
hance the colour gamut. An important drawback of this bi-spectral

uplifting method is its memory requirement: when dealing with
texture uplifting, each pixel potentially needed to store a full re-
radiation matrix. However, this was not an intrinsic drawback of
their method, but an indicator that this part of fluorescent rendering
technology needed improvement.

Bi-spectral material models Wilkie et al. [WWLP06] proposed
one of the early bi-spectral models adapted to current rendering
techniques. This model uses a layered BRDF with a diffuse flu-
orescent component. Later, Hullin et al. [HHA*10] proposed an
efficient acquisition setup to capture Bi-spectral Bidirectional Re-
flectance and Re-radiation Distribution Functions (BRRDF). They
guided their acquisition by a Principle Component Analysis to
lower the acquisition time.

Gaussian representations in rendering The general idea of using
Gaussian distributions in rendering is very powerful, as they can
approximate the distribution of samples in any shape, given a large
amount of sample numbers. A number of papers have experimented
with Gaussian representations in the area of physically-based ren-
dering. Jakob et al. [JRJ11] introduced how to represent radiance
using Gaussian mixture and apply for volumetric media. Herholz et
al. [HEV*] and Vorba et al. [VKŠ*14] showed how Gaussian mix-
ture can help with importance sampling in the path guiding frame-
work. Herholz et al. [HES*18] used the Gaussian Mixture to sam-
ple analytic BRDF models and measured BRDF data.

3. Background

In this section, we introduce the core mathematical and physical
context used in the remainder of this article. We present the fluores-
cent effect, its necessity in physically-based rendering, and the typ-
ical representation of fluorescent data in a fluorescent capable ren-
derer. We also review the basic notation of Gaussian mixture model
and the formal framework of expectation maximisation, which is
one of the most effective methods to train GMM in the machine
learning field.

3.1. Fluorescence

Fluorescence is the effect where a “fluorophore” absorbs photons
and re-emits those at a lower energy state. In the context of render-
ing, this means a colour shift when light is interacting with such
a molecule. In contrast to phosphorescence, fluorescent effects oc-
cur within a very short period of time, and can be considered as
instantaneous in the context of computer graphics.

Fluorescence produces interesting visual effects: as the human
vision system is only sensitive to a comparatively narrow range of
wavelengths, fluorescent materials often are used to increase visi-
bility and colourfulness. Energy from the ultra-violet region, which
is at best barely visible for the human eyes, is transferred to a band-
width with much higher sensitivity. Such fluorescent elements ap-
pear brighter than the environment despite the decrease of energy
between the absorption and the reemission that still happens.

A fluorescent element is sometimes characterised by an absorp-
tion and a reemission spectrum (see Fig. 2a). The first defines which
wavelenghts lead to a reemission event and the amplitude define
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(a) A fluorescent element is of-
ten characterised by its absorp-
tion spectrum and its reemission
spectrum. The offset between the
two spectra is called the Stokes
shift.
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(b) Example of a re-radiation ma-
trix. This matrix gives the reemis-
sion spectra for every radiating λi
wavelength. We removed the diag-
onal (λi = λo) to emphasise on the
fluorescent effect.

Figure 2: (a) The synthetic representation of the average absorp-
tion and reemission spectra is often used to characterise a fluo-
rophore. It assumes the shape of the reemission is similar regard-
less of the radiating wavelenght but scaled in intensity. However,
Kasha’s rule does not hold for may fluorophore hence the use of re-
radiation matrices (b). Such matrix provides precise information
about the reemitted spectra given a radiating wavelength but have
a significant memory footprint.

the intensity of the reemission. The reemission spectrum defines
the average reemission accross all radiating wavelengths. The shift
between the two central frequencies of those spectra is the Stokes’
shift. These spectra then only scale in intensity depending on the
radiating wavelength according to Kasha’s rule.

When following the Kasha’s rule, this reemission spectrum is
considered of the same shape regardless of the radiating wavelength
but scaled in intensity. Kasha’s rule does not always strictly hold,
however. This leads to the need for re-radiation matrices, which
characterise, for each radiating wavelength, a distribution of ree-
mission wavelengths (see Fig. 2a). While more flexible and suited
for compute graphics application, this representation has an impor-
tant memory overhead.

In the context of path tracing, a renormalised reemission spectra
can be seen as the PDF of wavelength shifting for a given incoming
radiation λi. In reverse, a renormalised absorption can be seen as
the PDF of absorbing a wavelength λi for a given outgoing radiation
λo.

3.2. Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric probabilistic
model representing a dataset by a linear superposition of Gaussian
functions. This linear superposition is represented by:

p(x) =
K

∑
k=1

πkN (x | µk,Σk) (1)

where:
p(x) is the density of mixture of Gaussians,
N (x | µk,Σk) is a single Gaussian density,
πk is the mixing coefficient (weight) of each

Gaussian,
K is the number of Gaussians.
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Figure 3: Representation of our pipeline. We model the input re-
radiation with a GMM in the fitting phase and then use it in the
renderer. In the rendering phase, we importance sample the new
wavelength according to the GMM.

In this article, we use a 2-dimensional multivariate Gaussian dis-
tributions for each component:

N (x | µ,Σ) = 1
2π
√
|Σ|

e−
1
2 (x−µ)T

Σ
−1(x−µ) (2)

where:
µ is the mean,
Σ is the covariance matrix.

We model our fluorescent dataset as a mixture of Gaussian and
determine their individual parameters to most accurately represent
the input data.

Expectation Maximisation (EM) is a two-stage iterative algo-
rithm to estimate the mixture model parameters. It tries to max-
imise likelihoods for parametric models. The E-step (expectation)
performs estimation of the expected log-likelihood for complete-
data set. M-step (maximisation) maximses the expected complete
log-likelihood. The E-step and M-step are run iteratively until the
expectation converges. EM and its variants are widely used to fit
parametric models. As detailed introduction of EM is beyond the
scope of our work, we only review briefly the sketch of EM, for de-
tailed study on EM please refer to [Bis06]. Vorba et al. [VKŠ*14]
also show a detailed version of how to adapt EM to the rendering
context.

4. Method overview

Our pipeline consists of two main stages (see Fig. 3):

A fitting phase were we use the Expectation Maximisation algo-
rithm to represent the input re-radiation dataset as a Gaussian
Mixture Model. We describe this part in Sec. 5.

A rendering phase were we reconstruct the re-radiation on the fly
and perform importance sampling based on the fitted model. We
describe this part in Sec. 6.

The pipeline starts from a 2-dimensional fluorescent measure-
ment dataset. To get a clearer representation for fitting, we first fil-
ter this dataset. Then we perform weighted Expectation Maximisi-
ation to get a compacted representation of the distribution. We then
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load the fitted GMM representation in the renderer. For each fluo-
rescent sampling event, we use conditional GMM sampling on the
given wavelength. Depending on the path direction, we either sam-
ple an excitation wavelength or reemission wavelength. The sam-
pled wavelength will then shift to reproduce the fluorescent effect.

Using a GMM to represent the original dataset drastically re-
duces the memory footprint. Instead of relying on a tabulated tri-
angular matrix, we only need to store few parameters representing
parameters of the mixture, the re-radiation is then evaluated analyt-
ically. This reduction of memory footprint is even more prominent
when the rendering technique rely on random sampling, as this also
removes the need for additional tabulated CDFs used to sample the
re-radiation matrix.

5. Fitting phase

In the fitting phase, we apply parametric density estimation to our
fluorescence data. Later, we show that we can reconstruct the re-
radiation matrix from the GMM on the fly with high accuracy, in-
stead of using the raw tabulated data.

5.1. Filtering

Very often, measured re-radiation data contains high frequency
noise. In our pipeline, we remove all data under a certain threshold
to pre-filter the data prior to the fitting phase. We found this sim-
ple approach appropriate for all the datasets we have analysed. For
more challenging cases, e.g., lower signal-to-noise with less pro-
nounced fluorescence or less precise measurement device, a more
advanced method such as Fourier analysis may be used to anal-
yse and remove the noise without impacting the other steps of the
pipeline.

5.2. Weighted Expectation Maximisation

The re-radiation matrix is a 2-dimensional dataset where each entry
corresponds to an attenuation. When each value is divided by the
integral of the matrix, it represents a tabulated probability distribu-
tion function, each entry is a weight of this distribution.

In the standard EM-algorithm, each element corresponds to an
observation. To emulate this, we could repeat each entry accord-
ing to its weight in the re-radiation matrix. From our experiments,
this strategy works well for fitting the data with different weights.
However, this technique requires multiplying the weight by a large
number to accurately represent the original data. This implies deal-
ing with huge observation sets and consequently, a high memory
footprint.

A more suitable approach is to use the weighted EM-
algorithm [GAFH16; VKŠ*14]. All non-null elements of the ma-
trix are used as observation outcomes and weighted according to
their respective values.

We apply the weighted EM algorithm to fit Gaussian Mix-
ture Model with our datasets using the pomegranate Python li-
brary [Sch]. Each data entry is associated with the normalized re-
radiation weights. The details of the derivation on weighted EM
can be found in appendix.

5.3. Re-radiation reconstruction

We can reconstruct the re-radiation matrix from the Gaussian Mix-
ture Model found previously. However, the Gaussian Mixture gives
a probability density function, hence its integral is unity. The re-
radiation integral does not hold this property. So, we scale the
Gaussian mixture to reconstruct the re-radiation later on:

Φ(λi,λo) = S · p(λi,λo) (3)

where:
S is the scaling factor to apply,
Φ(λi,λo) is the re-radiation function represented by a matrix

in its tabulated form,
p(λi,λo) is the probability density function of the GMM de-

fined in Eqn. 1,
λi,λo are the wavelengths at a given radiating and re-

emitting event.

There are different valid strategies to retrieve the scaling factor
S. In this paper, we propose two solutions.

Error minimisation The first strategy consists in a minimisation
process. S is set as a parameter to minimise the error between the
reference dataset and the reconstructed mixture.

S = argmin
S

∑
Λi

∑
Λo

‖Φmeasured(λi,λo)−S · p(λi,λo)‖ (4)

Such minimisation process involves a choice of a norm function.
But, this choice has little influence when dealing with fluorescence:
the data have low dynamic range. Therefore, we use a L2 norm in
the result section i.e. the mean square error between the reference
dataset and the reconstruction defined in Eqn. 3.

By definition, such strategy reduces the average reconstruction
error for a given value but, we show that in Sec.7 that is provides
less accurate rendering.

Integral ratio The second strategy consist in defining S as the ratio
between the integral of the original dataset and the GMM.

S =

∫∫
Λ

Φmeasured(λi,λo)dλidλo∫∫
Λ

p(λi,λo)dλidλo
(5)

This method ensures the reconstructed dataset has the same fluo-
rescent albedo as the original dataset. While this technique does not
reduce error for each entry, it provides better rendering results: our
eyes are more sensitive to brightness variation than to slight color
shift as we show in Sec.7.

6. Rendering Phase

During the rendering phase, when a fluorescent event occurs, we
first need to sample an in-shifting or an out-shifting wavelength
depending on the ray direction. Then, we need to evaluate the at-
tenuation given a set of λi and λo wavelengths. The sampling phase
relies on conditional probability: either λi or λo is known, and we
have to sample a λo or a λi according to the ray direction, i.e., an
in-shifting or out-shifting event.

c© 2021 The Author(s)
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6.1. Conditional GMM

To sample a random wavelength shift after a fluorescence event, we
need to “sample a slice” on the multivariate Gaussian mixture. With
a fixed input wavelength λi, we construct the conditional parame-
ters for the resulting Gaussian mixture and generate the random
variable as the output wavelength λo.

In our 2-dimensional dataset, we have:

λ =

(
λi
λo

)
, µk =

(
µka

µkb

)
, Σk =

(
σkaa σkab

σkba σkbb

)
(6)

where λ is a sample point, µk and Σk are the GMM parameters for
the kth Gaussian.

We define T, the inversion of kth covariance matrix as:

Tk = Σ
−1
k =

(
τkaa τkab

τkba τkbb

)
(7)

The conditional probability that given λi, we shift to λo in each
single component k is:

pk(λi→ λo) =N
(

λo | µkb|a ,τ
−1
kbb

)
(8)

with : µkb|a = µkb − τ
−1
kbb

τkba

(
λi−µka

)
(9)

Then, we get the probability for the entire conditional GMM
from a given λi to λo:

p(λi→ λo) =
K

∑
k=1

π
(λi)
k pk (λi→ λo) (10)

with : π
(λi)
k =

πkN
(
λo | µka ,σkaa

)
∑kN

(
λo | µka ,σkaa

) . (11)

Finally, we generate the random variable based on the new con-
ditional GMM model, we first choose which Gaussian component
we will sample by the conditional mixing coefficients π

(λi)
k , then

we generate each sample following normal distribution using the
chosen kth Gaussian:

µ(λi)
k = µkb|a , σ

(λi)
k = τ

−1
kbb

. (12)

We have only shown the model for sampling the light path, but
it is straightforward to symmetrically apply the model for sampling
on an eye path.

6.2. Importance Sampling

When a ray hits a fluorescent element, two events can occur:

• the ray is reflected with the same wavelength as the radiating ray,
there is no fluorescence event,
• the ray is re-radiated to a different wavelength, there is a fluores-

cent event happening.

We first determine if a fluorescent event occurs based on the ra-
tio between the main diagonal and the total reflectance for the ray
radiating wavelength. If a fluorescent event occurs, we importance
sample the re-radiation. We then use the Gaussian mixture to im-
portance sample this fluorescent event (see Alg. 1).

400 450 500 550 600 650 700 750
Wavelength (nm)

Yellow Post-It
GMM

Figure 4: Example of a conditional PDF derived from the GMM
model compared to the unfiltered yellow fluorescent dataset. The
figure shows the expected distribution of the reemission wavelength
λo when the material is radiated at λi = 460 nm. When a fluores-
cent event occur, the outgoing wavelength λo is sampled according
to this conditional PDF. Notice the measurement noise present in
the original data lowers the highest value of the PDF after normal-
isation when compared to the analytic conditional PDF derived
from the GMM.

Figure 4 show an example of the conditional GMM for a specific
radiating wavelength λi. Given a radiating wavelength, the model
can generate a distribution of reemitted wavelengths. We use this
distribution to importance sample the reemitted wavelength λo.

The probability for the transition between the set of radiating
wavelength λi and re-emitting wavelength λo is:

pshift(λi→ λo) =


Φ(λi,λi)

rt (λi)
if λi = λo(

1− Φ(λi,λi)
rt (λi)

)
·
(

∑
K
k=1 π

(λi)
k N (λo | µ(λi)

k ,σ
(λi)
k

)
rt(λi) =

∫
Λ

Φ(λi,λr)dλr (13)

where:
Φ(λi,λi) is the non-fluorescent reflectance,
rt(λi) is the total reflected energy given λi.

In our renderer, we use Hero Wavelength Spectral Sampling
(HWSS) [WND*14]. The HWSS technique multiplexes multiple
wavelengths in a Monte-Carlo (MC) sample. It differs from a sim-
ple multiplexing approach by using a “Hero” component which is
used to take all decisions on the directional component. This tech-
nique drastically reduces colour noise in contexts where there is a
wavelength dependency on the directional decisions such as par-
ticipating medium. In the case of fluorescence, we allow each of
the wavelength in the HWSS vector to be independently impor-
tance sampled. If done directly, we can find non-zero samples with
a zero probability which is incorrect for a MC integrator. Mojzík et
al. [MFW18] introduced a balance term to avoid this artefact. We
use the same term in our implementation:

p j(λi j → λo j ) =
N

∏
k=1,k 6= j

pshift(λik → λok ) (14)

where:
p j(λi j → λo j ) is the probability of jth HWSS sample,
pshift(λi→ λo) is the probability of shifting from λi to λo,
N is the size of the HWSS vector.
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Algorithm 1: Random wavelength shifting. Given a λi, we
either have no fluorescent event, i.e. λi = λo or, we sample
a λo after a fluorescent event.

input : λi
output: λo and pdf := pshift(λi→ λo)

ξ1←U(0,1);
pdiag←

Φ(λi,λi)
rt (λi)

;

if ξ1 ≤ pdiag then
// Sample the main diagonal
λo← λi;
pdf← pdiag;

else
// Wavelength shifting event
/* Select one Gaussian from the

mixture */
ξ2←U(0,1);
s← 0;
for k← 1 to K do

s← s+π
(λi)
k ;

if s≤ ξ2 then
break;

end
end
/* Conditional sampling with

rejection method */
do

λo←N
(

µ(λi)
k ,σ

(λi)
k

)
;

while λo ≤ λi;
/* Eqn. 13 */

pdf← (1−pdiag) ·
(

∑
K
k=1 π

(λi)
k N (λo | µ(λi)

k ,σ
(λi)
k

)
;

end

6.3. Implementation details

To evaluate the re-radiation, we store for each Gaussian of the mix-
ture, its mean, covariance matrix and weight. We also need to store
the scaling factor S. We precompute the determinant and the inverse
of the covariance matrix before rendering to speed-up evaluation of
the mixture. We store the diagonal in its original tabulated form
without any alteration.

To efficiently perform the conditional wavelength shifting we
also precompute two additional tabulated values to retrieve π

(λi)
k

or π
(λo)
k : the sum of rows and the sum of columns of the Gaussian

Mixture. In our implementation, we use a 1 nm sampling rate.

While additional values are precomputed and represent an addi-
tional memory footprint, this is still far less than the memory re-
quired when using a tabulated CDF which are needed when using
only tabulated measurements.

We provide as supplemental material a repository con-
taining the source code for fitting the measured data with
Gaussian Mixture Model. The repository also contains a
patch for ART renderer [18] to use the computed GMM
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Figure 5: Mean squared error between the measured datasets and
the reconstruction with different number of Gaussians and different
weighting factors. We use the same mixture for both techniques to
compute the scaling factor. From 3 Gaussians, we observe a signifi-
cant drop in the reconstruction error using the MSE metric. Adding
additional Gaussians does not significantly reduce MSE.

as input to reproduce the rendering showcased in this pa-
per. It is accessible here: https://gitlab.com/huaq_
/compact-representation-fluorescence.

7. Results and Discussions

Looking at the entirety of our pipeline, we have:

• A reflectance spectrum corresponding to diagonal, the original
non-fluorescent part.
• A set of parameters representing the Gaussian mixture, which

are:

– a weighting factor (1 element),
– a mean vector (2 elements),
– a covariance matrix (2x2 elements).

To evaluate the accuracy of our reconstruction, we propose to
compare the results of the reconstructed re-radiation with the orig-
inal tabulated data. We use the perceptual comparison on both ren-
dering and reconstruction, with ∆E∗00 on rendering using a Monte-
Carlo path tracer and the Mean Square Error between the original
and reconstructed re-radiation matrices.

In this section, we review the results and discuss the strengths
and weaknesses of our model, we especially emphasising on the
reconstruction accuracy.

7.1. Re-radiation reconstruction accuracy

We use Mean Square Error (MSE) to evaluate the accuracy of the
reconstructed matrices on a per-wavelength basis (see Fig. 5). For
all datasets, the MSE significantly drops at 3 Gaussians. Adding
additional Gaussians then have little effect on improving the recon-
struction accuracy. The MSE shows Pink Post-It dataset is being
more challenging to reconstruct: the re-radiation spectrum behaves
less like a Gaussian distribution than the two other datasets. Using
a different set of basis functions, which can account for skewness
would probably improve the accuracy for this specific dataset.

Overall, our method provides good accuracy. Even with a small
number of Gaussians, we fit the original datasets well, with a maxi-
mum MSE at 1.73 ·10−5 when using the integral ratio for comput-
ing the weighting factor.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

https://gitlab.com/huaq_/compact-representation-fluorescence
https://gitlab.com/huaq_/compact-representation-fluorescence


Q. Hua, A. Fichet and A. Wilkie / A Compact Representation for Fluorescent Spectral Data

Green Post-It Yellow Post-It Pink Post-It
Reference 2 Gaussians 6 Gaussians Reference 2 Gaussians 6 Gaussians Reference 2 Gaussians 6 Gaussians

9184 Bytes 120 Bytes 344 Bytes 9184 Bytes 120 Bytes 344 Bytes 9184 Bytes 120 Bytes 344 Bytes

R
er

ad
ia

tio
n

M
in

.M
SE

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

In
te

gr
al

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

0.06
0λi 400 500 600

λ
o650

550
450

D
ay

lig
ht

sc
en

e
M

in
.M

SE
∆

E
∗ 00

4

0

4

0

4

0

4

0

4

0

4

0

In
te

gr
al

∆
E
∗ 00

4

0

4

0

4

0

4

0

4

0

4

0

N
ea

r
U

V
sc

en
e

M
in

.M
SE

∆
E
∗ 00

8

0

8

0

8

0

8

0

8

0

8

0

In
te

gr
al

∆
E
∗ 00

8

0

8

0

8

0

8

0

8

0

8

0

Figure 6: Comparison of reference datasets (tabulated re-radiation) with the proposed GMM representation using a different number of
Gaussians in two different lighting conditions. We compare with two different strategies to scale the GMM for re-radiation reconstruction:
minimizing the MSE and integral ratio. The original datasets are measured with the excitation wavelength ranging from 300 to 700 nm and
reemission ranging from 380 to 700 nm sampled each at 10 nm. The original dataset are stored in 49 by 41 matrices. To store the pure
re-radiation spectrum, each of the original dataset needs 1148 elements. The GMM representation requires 7 elements per Gaussian and a
weighting factor to represent the pure-re-radiation. Even with a low number of Gaussian, we get an accurate reconstruction with a minimal
memory footprint. Using the integral ratio for the weighting factor gives better results despite the higher MSE (see Fig. 5): our vision system
better notice a variation of brightness than a slight wavelength difference. Using the integral ratio better conserves the overall light intensity
coming from re-radiation while MSE minimisation better conserves the accuracy on a per-wavelength basis.
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7.2. Rendering accuracy

To evaluate the rendering accuracy, we use CIE-∆E∗00 difference
between the reference datasets (tabulated values) and the recon-
structed re-radiations using our proposed method with a varying
number of Gaussians on renderings using a path tracer. We use
three different datasets: measured re-radiation for pink, yellow and
green Post-It. These datasets come from the ART open source ren-
derer [18] and originate from Labsphere Inc. according to the meta-
data included in the measurement archive†.

The lighting conditions have a significant impact on the error.
The fluorescent nature of the dataset makes an objective evaluation
of the rendering accuracy difficult. We choose to use two drastically
different lighting environments: a daylight scene using a skydome
from Hosek and Wilkie [HW12] (this model is appropriate to use
here as it contains an ultra-violet component) and a near monochro-
matic light radiating at 450 nm.

Our technique performs well even with a limited number of
Gaussians (see Fig. 6). ∆E∗00 are lower than 4 in a daylight en-
vironment. Even for challenging cases where most of the energy
falls into the re-radiation, with near monochromatic 450 nm illu-
mination, the difference remains low for green and yellow Post-It
dataset. For the pink Post-It dataset, the difference is more visible
in the near monochromatic lighting. This is expected as this dataset
is more challenging to fit with Gaussians.

7.3. Weighting factor

We evaluated two strategies for computing the weighting factor
utilised to scale the GMM to reconstruct the re-radiation matrices:
minimisation process on the MSE between the original dataset and
the scaled GMM and integral ratio (see Sec. 5.3).

As expected, with the minimisation process, we obtain a lower
MSE than using the integral ratio. Nevertheless, a lower MSE does
not imply better rendering accuracy. In fact, we observed the oppo-
site. At first glance, this might seem surprising. However, the ∆E∗00
evaluates visible difference for the human vision system. Our eyes
are more sensitive to variation of intensity than to a slight shift in
the spectral domain. Using the integral ratio ensures having a simi-
lar luminous quantity falling into fluorescence. Note that we did not
use any perceptual weighting for computing this ratio. This gives
us the insight that the weighting factor could also be optimised to
minimise the ∆E∗00 given a specific illuminant.

The strategy for computing the scaling factor depends on the tar-
get application. The integral ratio is better suited for perceptual ap-
plications like rendering with tone mapping. If the accuracy of the
spectral reconstruction of re-radiation is needed, then the minimi-
sation of MSE is a better choice.

7.4. Memory footprint analysis

Our method is memory efficient and works with only a fraction of
the memory required when using raw tabulated data.

† The ART measured bispectral data are available from
ART_Resources/SpectralData/FluorescentPostIt.ark

(a) Bi-spectral tabulated
texture.

(b) The same bi-
spectral using GMM for
re-radiation.

8

0

(c) ∆E∗
00 difference be-

tween (a) and (b)

Figure 7: With our method, we can drastically reduce the mem-
ory footprint of bi-spectral textures. We use the bi-spectral uplift-
ing technique from Jung et al. [JWH*19] to generate a bi-spectral
texture from an RGB image. Notice that the bottom part of both im-
ages has visible fluorescence. The reference image and our method
are rendered with 60k SPP in the same base renderer except for the
fluorescent sampling process.

The measured re-radiation dataset we have used are sampled at a
10nm rate, for radiating wavelength ranging from 300nm to 800nm
and reflected wavelength ranging from 380 nm to 800 nm. They are
stored in 41× 49 matrices. In the most favourable case, we only
have to store the upper triangular part of the re-radiation due to the
nature of fluorescence shifting wavelengths to a lower energy state.
If extreme high accuracy is desired, each matrix can be interpolated
to a 2-dimensional matrix sampled at a 1 nm rate; this matrix uses
98000 Bytes.

Apart from doing away with having to use the raw re-radiation
matrix data, in practice, effective sampling of wavelength shifting
is desirable. This requires additional memory space: additional tab-
ulated CDF are computed at the initialisation stage. This triples the
memory footprint when exclusively using tabulated data.

With our method, we only need a small set of Gaussian param-
eters to both evaluate on the fly the re-radiation and to importance
sample wavelength shifting. If rendering accuracy is desired, our
method can be used solely to importance sample while sparing the
storage of tabulated CDF.

We have shown in Fig. 6 our fitting provides a good reconstruc-
tion of the tabulated re-radiation matrix with only a few Gaussians.
Assume we use 4 Gaussian for fitting, while the tabulated data are
sampled at 1nm rate, the memory difference of one fluorescent ma-
terial between the tabulated method and our method is approximate
2985776 Bytes.

7.5. Fluorescent textures

We can use our method along with fluorescent texture.
In [JWH*19] they use such kind of textures to uplift RGB tex-
tures. This technique uses fluorescence on some pixels to enlarge
the colour gamut. The generated textures can be very large in mem-
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ory due to the potential large number of re-radiation matrices. For
a 256× 256 texture, where every pixel is fluorescent, it could re-
quire up to 3× 256× 256 re-radiation matrices (one used for the
attenuation and the two others for precomputed CDFs).

We applied our method to compress spectral uplifted textures
from [JWH*19]. Our method accurately renders the fluorescent
texture with a ∆E∗00 ≤ 8 between the reference image and our
method (see Fig. 7). The texture is 32× 32 pixel with 255 fluo-
rescent pixels after the uplifting. The reradiation matrices sizes are
500 by 500 elements. The memory consumption for the diagonal is
4.10 MB and an additional 254.49 MB for the re-radiation. In this
rendering, we used 2 Gaussians per fluorescent pixel lowering the
re-radiation memory footprint down to 30.60 KB. The total mem-
ory footprint of the fully tabulated bi-spectral 32× 32 texture is
258.59 MB compared to the 4.13 MB needed by when using GMM
for the re-radiation. This makes it 62.67 times more memory effi-
cient for this specific dataset. This does not even account for the
additional memory overhead of tabulated CDFs desirable for effi-
cient importance sampling of the tabulated dataset.

This ratio is even higher when increasing the resolution of the
texture implying a larger number of fluorescent pixels.

8. Conclusion and Future Work

We have presented a compact and efficient method for compressing
re-radiation matrices. This allows to drastically lower the memory
footprint needed to store a fluorescent spectrum. The memory re-
duction is useful in the case of fluorescent texture is present, as
the large fluorescent texture has a high memory requirement. Our
proposed method also enables efficient importance sampling.

In future work, we want to develop a parametric re-radiation
model suited for edition. The presented method, while being mem-
ory efficient and accurate, lacks the ability for an artist to intuitively
edit fluorescence. We also want to evaluate additional metrics for
computing the weighting factor used in re-radiation reconstruction
depending on the targeted application: visual accuracy or absolute
re-radiation difference.

Although we show that Gaussian Mixture can be used to com-
pact fluorescence, due to the limitation of public fluorescent dataset
in the graphics community, it is hard to say which parametric model
is the best to suit the fluorescence. Add some skewness distribution
can be an interesting work to the specific pink fluorescent dataset.
The access to more fluorescent data and make them usable in com-
puter graphics will be beneficial to the future work in fluorescent
representation.

There is also possibility to try out other fitting methods for the
mixture, such as using MAP-EM or non-linear fitting framework
with different loss functions. We tried variational bayesian infer-
ence for the fitting of the mixture, however, the rendering results
can not give us consistent observation. We need more research on
that to have a decisive answer on which fitting method is best to
the fluorescence data. For the particular problem in color shift in
Fig. 6, we think different fitting method might help us with the
color shift, but another more potential way to improve that will be
to design a human perception metric instead of any distance based
metrics.
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Appendix A:

The deviation of weighted EM used in the paper.

Given an observed data set X = {x1,x2, ...,xn}, for each ob-
servation in X , there is a corresponding latent variable in the set
Z = {z1,z2, ...,zn} which helps to model dependencies between
variables. The data set X ,Z is seen as a complete data set.

When using EM to fit a mixture of K Gaussians, the latent vari-
able set Z is a set of N-dimensional vector. Each component zn is
a K-dimensional binary random variable, where znk denotes the kth

element of zn. znk ∈ {0,1}, ∑k znk = 1. This latent variable vec-
tor represents which Gaussian component generated our sample xn
with probability p(znk = 1) = πk.

Assume we have a dataset X = {x1, ...,xn}, the corresponding
weight vector for each sample in X is W = {w1, ...,wn}. The mix-
ture of Gaussian is:

p(X |θ,W ) =
K

∑
k=1

πkN
(

X |µk,
1

W
Σk

)
. (15)

The responsibility function is thus:

γ(znk)
(weighted) =

πkN
(

xn | µk,
1

wn
Σk

)
∑

K
j=1 π jN

(
xn | µ j,

1
wn

Σ j

) . (16)

The means, covariances and mixture coefficients used to max-
imise the expected complete-data log-likelihood are:

µ(weighted)
k =

1
Nk

N

∑
n=1

wnγ(znk)
(weighted) xn, (17)

Σ
(weighted)
k =

1
Nk

N

∑
n=1

wnγ(znk)
(weighted) (xn−µk)(xn−µk)

T ,

(18)

π
(weighted)
k =

Nk
N

, (19)

N(weighted)
k =

N

∑
n=1

γ(znk)
(weighted) . (20)
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