
HAL Id: hal-03274101
https://hal.science/hal-03274101v1

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task-specific Temporal Node Embedding
Mounir Haddad, Cécile Bothorel, Philippe Lenca, Dominique Bedart

To cite this version:
Mounir Haddad, Cécile Bothorel, Philippe Lenca, Dominique Bedart. Task-specific Temporal Node
Embedding. French Regional Conference on Complex Systems, May 2021, Dijon, France. �hal-
03274101�

https://hal.science/hal-03274101v1
https://hal.archives-ouvertes.fr

Task-specific Temporal Node Embedding

Mounir Haddad12, Cécile Bothorel1, Philippe Lenca1, Dominique Bedart2

1 IMT Atlantique, Lab-STICC, F-29238 Brest, France
2 DSI Global Services, Le Plessis-Robinson, France

{mounir.haddad, cecile.bothorel, philippe.lenca}@imt-atlantique.fr
{mounir.haddad, dominique.bedart}@dsi-globalservices.fr

Abstract. Graph embedding aims to learn a representation of graphs’
nodes in a latent low-dimensional space. The purpose is to encode the
graph’s structural information. While the majority of real-world networks
are dynamic, literature generally focuses on static networks and overlooks
evolution patterns. In a previous article entitled "TemporalNode2vec:
Temporal Node Embedding in Temporal Networks", we introduced a
dynamic graph embedding method that learns continuous time-aware
vertex representations. In this paper, we adapt TemporalNode2vec to
tackle especially the node classification-related tasks. Overall, we prove
that task-specific embedding improves data efficiency significantly com-
paring to task-agnostic embedding.

Keywords: Dynamic network embeddings, Graph representation learn-
ing, Latent representations

1 Introduction

In the last decade, literature has taken an interest in the extraction of net-
works’ relevant structural information. Yet, one has to format graph data in
such a way to make its exploitation easier for machine learning models. Tra-
ditional approaches, commonly based on user-defined heuristics [3,18,11], are
time-consuming in terms of feature engineering.

Some emerging novel approaches known as data embeddings intend to learn a
latent representation of the data that lie in graphs in low dimensional spaces [2].
These techniques have been designed for textual data at first [13] and, thereafter,
have been adapted to graphs among other data structures. Last years have seen
graph representation learning approaches flourish. Some are based on matrix
factorization [4,1,15], on random walks [8,16,6] or on deep learning techniques
(convolutional neural networks [10] or autoencoders [5,19])

As real-world datasets generally evolve over time, a few and recent approaches
consider the temporal dimension to capture evolution patterns. Some methods
use temporal information for the conception of more reliable embeddings [22,14],
while other ones learn a representation for the network at each time step [21,9,12].

In a previous paper, we presented TemporalNode2vec [9], a temporal node
embedding framework, based on the static node embedding algorithm Node2vec

2 Mounir Haddad et al.

[8] and a smoothing mechanism for dynamic word embeddings [20]. Its principal
advantage lies in the way temporal information is incorporated: the different
time steps embeddings are learned jointly. As the majority of embedding tech-
niques, TemporalNode2vec is task-agnostic by design: this means that the result-
ing vertices representations are generic and independent regarding downstream
machine learning tasks. Intuitively, it seems to be possible to enhance the quality
and the efficiency of the embeddings if the inference tasks to be addressed are
known a priori. Upon this idea, we propose a variant of TemporalNode2vec called
TsTemporalNode2vec. It is a task-specific semi-supervised embedding algorithm
tied up to node classification tasks, made possible by a slight modification of the
objective function of TemporalNode2vec. Our main contribution lies in the use
of a part of the ground-truth nodes’ labels within the representation learning
process. We show in our experiments that this variant helps improving node
classification tasks and makes the learned embeddings more data-efficient.

2 Task-agnostic embedding

2.1 TemporalNode2vec model

In order to build sequences of vertices, TemporalNode2vec [9] uses random walks
for each time step in a similar way to node2vec [8]. Given a sequence of temporal
graphs {G1, . . . , GT }, we obtain T ×N × |V | sequences of vertices of length l,
where N is the number of walks starting from each vertex and V is the set of
the temporal graph vertices.

Homophily, or the ability to bring close together embeddings which nodes
share similar neighbors [7], is a property that embeddings should preserve. We
use Positive Pointwise Mutual Information matrices (PPMI) for this purpose.

PPMI(v1, v2)t = max

(
0, log

(
θ
|v1, v2|wt · |V |
|v1|t · |v2|t

))
∀(v1, v2 6= v1, t) ∈ V 2 × [[1, T]]

(1)

where |vi|t is the number of occurrences of vi in the set of walks of Gt, |v1, v2|wt
is the number of times v1 and v2 co-appear in the set of walks of Gt within a
window of size w, and θ is a tunable hyperparameter controlling the trade-off
between PMI entries stability (large negative values of log

(
θ
|v1, v2|wt ×|V |
|v1|t×|v2|t

)
) and

rare co-appearance pairs of nodes.
The overall objective function to optimize for {U1, . . . , UT } is:

L = LSt + τ LSm + λ LLR

=

T∑
t=1

∥∥PPMIt − Ut U
T
t

∥∥2
F
+ τ

T∑
t=2

‖Ut − Ut−1‖2F + λ

T∑
t=1

‖Ut‖2F
(2)

where LSt is the static term, LSm is the temporal smoothing term and LLR

stands for low-rank data-fidelity enforcement.

TsTemporalNode2vec 3

2.2 Experiments

To evaluate TemporalNode2vec, 3 baseline methods have been considered: Two
state-of-the-art static embedding methods (DeepWalk [16] and node2vec [8]) and
DynamicTriad [21], a dynamic embedding approach focusing on how triads of
vertices open/close. For each of those baseline methods, a grid search has been
performed over multiple values for their different hyperparameters.

The performed experiments show that TemporalNode2vec improves node
classification tasks (up to 14.2% in terms of F1 score) and affords to achieve
good performances with a limited number of representation features (figure 1).
On the other hand, TemporalNode2vec is less efficient in edge-related inference
tasks.

Fig. 1: Node classification on AMiner3dataset

3 Task-specific embedding

As seen above, it is possible to extract a small number of features describing
accurately the input temporal graphs. This means that the dimensions of the
obtained latent embedding space contain sufficient information to perform all the
considered inference tasks, as the embeddings are built agnostically regarding
downstream machine learning tasks. However, at this point, the distribution of
each task’s useful information over the latent dimensions remains unknown. For
example, in a simplistic scenario, some of the retained features may be relevant
to edge reconstruction tasks and irrelevant to node classification ones. In such a
configuration, to perform node classification, one can settle for a smaller number
of features. Upon this idea, we propose a variant of TemporalNode2vec we call
TsTemporalNode2vec (task-specific TemporalNode2vec): It is a semi-supervised
embedding algorithm tied up to node classification tasks, made possible by a
slight modification of TemporalNode2vec objective function.
3 More details in section 3.2

4 Mounir Haddad et al.

3.1 TsTemporalNode2vec model

In addition to a sequence of graphs, TsTemporalNode2vec takes also in input
a sequence of timestamped vertices labels S = {si,c,t} where si,c,t signifies that
the vertex vi belongs to the community c at the time step t. In order to conceive
TsTemporalNode2vec, we modify the objective function of TemporalNode2vec
by forcing the proximity of embeddings for the pairs of nodes that belong to
the same community. This may be achieved by adding a term to the objective
function:

Lts =
∑

(i,j,t)∈Spos

‖ui(t)− uj(t)‖2 (3)

where ui(t) represents the embedding of the vertex vi at t and Spos = {(i, j, t)}
is derived from S and signifies that the vertices vi and vj belong to the same
community at t. However, introducing the term Lts is not practical as it involves
vectors rather than matrices, unlike the other terms of the objective function
shown in equation (2).

Instead, we choose to incorporate the supervision additional data into the
PPMI matrices: as these matrices express nodes’ temporal similarities, one can
increase the entries corresponding to the pairs of nodes belonging to the same
community. We introduce Ssup and SPMI matrices:

Ssup(vi, vj)t =

{
1 if (i, j, t) ∈ Spos

0 otherwise (4)

SPMI(vi, vj)t = PPMI(vi, vj)t + α ·mt · Ssup(vi, vj)t (5)

where mt is the median of the non-zero values of PPMIt and α is a hyperpa-
rameter controlling PPMI values increase. We use mt as a normalization so
that α is of order unity.

On another note, it is relevant to notice that the timestamped labels S encom-
pass also information about pairs of nodes belonging to different communities:
in the same way as Spos, we derive Sneg from S. It is then possible to incorporate
Sneg in Ssup and SPMI matrices:

Ssup(vi, vj)t =

1 if (i, j, t) ∈ Spos

−1 if (i, j, t) ∈ Sneg

0 otherwise
(6)

SPMI(vi, vj)t = max
(
0, PPMI(vi, vj)t + α ·mt · Ssup(vi, vj)t

)
(7)

That being set, we substitute PPMI matrices with SPMI ones in the objec-
tive function expressed in equation (2). The following steps of TemporalNode2vec
remain unchanged.

TsTemporalNode2vec 5

3.2 Experiments

Node classification/prediction The idea is to find nodes’ ground-truth com-
munities based on their embeddings. For the node classification task, the current
vertices embeddings are used to find their labels. On the other hand, for the node
class prediction task, we predict nodes’ labels at a time step using their embed-
dings at the previous time step. For both inference tasks, the classifier used is
logistic regression.

Datasets In order to challenge TsTemporalNode2vec performances, we submit
its output embeddings to node classification for the 3 real-world datasets.

– AMiner [17]: 51k researchers and 624k coauthor relationships, divided into
17 timestamped weighted graphs, (a weight represents the number of com-
mon papers between 2 nodes). Authors are mapped to research fields (labels)
regarding the domains their publications address.

– Yelp4: an extract of Yelp challenge dataset. It traces internet users’ com-
ments on businesses. We consider users and businesses as being nodes while
comments are regarded as interactions (38k nodes, 744k edges, 17 time
steps). Users can be mapped to categories (labels) when looking at the type
of businesses they usually comment on.

– Tmall5: an extract of the sales at Tmall.com 6 months before the "Double
11 Day" event in 2014. It stores buyers’ interactions with products (27k
nodes, 2.9M edges, 10 time steps). We assign labels to users as described for
Yelp dataset (categories of preferred products as labels).

Labeling ratio As TsTemporalNode2vec is a semi-supervised embedding model,
one has to define and set the labeling ratio. For the datasets we consider, it is
important to note that the nodes’ labels are not equal regarding the amount of
information they provide: some nodes interact within all the time steps while
others are active during very few ones. Therefore, it seems worthwhile to rate
nodes’ contributions in terms of the provided information. For each node vi, we
define the quantity Qi:

Qi =
qi∑

vj∈V
qj (8)

where qi is the number of time steps where the vertex vi is active. Then, a
labeling ratio r can be obtained by a choosing a random sample of nodes RSr

satisfying: ∑
vj ∈ RSr

Qj ≈ r (9)

4 https://www.yelp.com/dataset/challenge
5 https://tianchi.aliyun.com/competition/entrance/231576/information

6 Mounir Haddad et al.

Model tested values Besides TemporalNode2vec hyperparameters, TsTem-
poralNode2vec has an additional one α, as described in equations (5) and (7).
For our experiments, we keep the values of TemporalNode2vec hyperparameters
giving the best performances on node classification and perform a grid search
over (d, r, α) ∈ {2, 4, 7, 10, 15, 20, 25}× {0.1, 0.25, 0.5}× {0.1, 0.33, 0.67, 1}.

Results analysis and interpretation Table 1 shows the results of the exper-
iments. Overall, TsTemporalNode2vec improves the performances on node clas-
sification tasks. This is particularly the case for small embedding dimensions.
This finding confirms our prior intuition stating that task-specific embedding
captures as much relevant information as possible within the embedding latent
dimensions. Also, as the embedding dimension grows, the gap between task-
specific and task-agnostic approaches scores tends to narrow: for large values of
d, the relevant information is captured by both methods.

Concerning the labeling ratio, the experiments show that setting r to 0.1 is
sufficient to enhance the F1 score. This means that labeling 10% of the nodes
helps to significantly improve the inference performances. On the other hand, it
seems that larger values of r (0.25 and 0.5) do not bring much more improve-
ment to the performances (respectively, an average F1 score gain of 0.8% and
1.4% comparing to r = 0.1). This could be explained by the fact that TsTem-
poralNode2vec needs a small ratio of labeled nodes to understand the kind of
communities to focus on.

Lastly, the hyperparameter α seems to have a significant impact on the per-
formances. For example, large α values result in bad performances for AMiner
dataset, while setting α to 0.33 would be the best choice for Yelp dataset. Con-
cerning Tmall dataset, it seems that the value of α does not have a huge impact
on the classification score. Further investigation is needed to explain that point.
Overall, it seems that the optimal value of α and its impact highly depends on
the considered dataset.

3.3 TsTemporalNode2vec application context

Task-specific temporal graph embedding can be useful in many cases. One can
take advantage of total or partial metadata giving information about nodes com-
munities. Also, when such data is not available, it is possible to perform a soft
labeling step, consisting of marking pairs of nodes probably belonging to the
same community or probably belonging to different communities, based on some
user-defined heuristic. In this case, task-specific embedding offers more flexibil-
ity, as it is possible to specify and highlight the desired communities or types of
communities. One must nevertheless note that the hand-engineered co-belonging
rule is to be considered as a method to reproduce the ground-truth communities
partially but reliably. It should then privilege precision rather than recall.

TsTemporalNode2vec 7

AMiner
r = 0.1 r = 0.25 r = 0.5

Yelp
r = 0.1 r = 0.25 r = 0.5

Tmall
r = 0.1 r = 0.25 r = 0.5

Table 1: TsTemporalNode2vec results analysis

8 Mounir Haddad et al.

4 Conclusion

In this paper, we presented TsTemporalNode2vec, a task-specific temporal node
embedding method, tied up to node classification. We proved its efficiency in
encoding dynamic graphs structural information into a very limited number of
dimensions. Moreover, we listed some application contexts where task-specific
embedding could be useful. Further work related to exploiting the embeddings for
different purposes (visualization, dynamics analysis and prediction) is underway.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Advances in neural information processing systems. pp. 585–591
(2002)

2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence 35(8),
1798–1828 (2013)

3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks.
In: Social network data analytics, pp. 115–148. Springer (2011)

4. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM international on conference on
information and knowledge management. pp. 891–900. ACM (2015)

5. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations.
In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

6. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning
for networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

7. Fortunato, S.: Community detection in graphs. Physics reports 486(3-5), 75–174
(2010)

8. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864. ACM (2016)

9. Haddad, M., Bothorel, C., Lenca, P., Bedart, D.: Temporalnode2vec: Temporal
node embedding in temporal networks. In: International Conference on Complex
Networks and Their Applications. pp. 891–902. Springer (2019)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

11. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
Journal of the American society for information science and technology 58(7),
1019–1031 (2007)

12. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: Scalable dynamic network
embedding. In: 2018 IEEE International Conference on Big Data (Big Data). pp.
3762–3765. IEEE (2018)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-
time dynamic network embeddings. In: Companion of the The Web Conference
2018 on The Web Conference 2018. pp. 969–976. International World Wide Web
Conferences Steering Committee (2018)

TsTemporalNode2vec 9

15. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserv-
ing graph embedding. In: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 1105–1114. ACM (2016)

16. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710. ACM (2014)

17. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 990–998.
ACM (2008)

18. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. Journal of Machine Learning Research 11(Apr), 1201–1242 (2010)

19. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 1225–1234. ACM (2016)

20. Yao, Z., Sun, Y., Ding, W., Rao, N., Xiong, H.: Dynamic word embeddings for
evolving semantic discovery. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. pp. 673–681. ACM (2018)

21. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by
modeling triadic closure process. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

22. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via
neighborhood formation. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. pp. 2857–2866. ACM (2018)

	Task-specific Temporal Node Embedding

