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Let Y n be the number of attempts needed to get the nth success in a nonstationary sequence of independent Bernoulli trials and denote by α a fixed irrational number. We prove that, under mild conditions on the probabilities of success, the law of the fractional part of αY n converges weakly to the uniform distribution on [0, 1) whenever α is irrational. We then compute upper bounds of the convergence rates depending on a measure of irrationality of α and on the probabilities of success. As an application, we discuss the mantissa of a Yn for positive integer a and the mantissa of the nth random Mersenne number generated by the Cramér model of pseudo-primes.

Introduction

We denote by U the uniform distribution on [0, 1) and by {y} the fractional part of a real y. When dealing with fractional parts it is natural to identify [0, 1) to a circle of radius (2π) -1 . We will then write circle [0, [START_REF] Berger | A basic theory of Benford's Law[END_REF] to indicate that we equip [0, 1) with the topology generated by the functions f which are continuous in the usual sense and satisfy lim x→1 f (x) = f (0). This is crucial for the Weyl criterion and the Erdős-Turán inequality (Lemmas 1 and 2 below) on which all our results rely.

As n → +∞, the uniform probability measure on the set {{αk} : k = 1, . . . , n} converges weakly to U if and only if α is irrational [11, p. 8]. For this reason, the sequences (αn) n with irrational α are said to be uniformly distributed modulo 1. We see them as non-random walks on the circle [0, 1). Consider an irrational number α and a sequence of independent Bernoulli trials whose probabilities of success sum to +∞ and decrease to zero as the process moves forward. Remove from the sequence ({αn}) n all the points {αk} for which the kth trial fails (k = 1, 2, . . . ). The remaining points are {αY 1 }, {αY 2 }, . . . , where Y n denotes the number of attempts needed to get the n-th success. The sequence of random variables ({αY n }) n is a random walk on [0, 1) whose trajectories are random subsequences of ({αn}) n . The present paper investigates the distribution of the possible values of the nth term of these subsequences.

We prove below that, as n → +∞, the law of {αY n } converges weakly to U whenever α is irrational. We then provide some bounds of the convergence rates depending on the type of α and the probabilities of success. As applications we discuss the mantissa of a Yn for positive integer a and the mantissa of the nth random Mersenne number generated by the Cramér model of pseudo-primes. The law of a random variable, the type of an irrational number, the mantissa of a positive real and the random Mersenne numbers are defined in Section 1.1.

The convergence rate of the law of {αZ n }, where Z n is the sum of n independent and identically distributed random, is examined in [START_REF] Su | Convergence of random walks on the circle generated by an irrational rotation[END_REF] and [START_REF] Berkes | Berry-Esseen bounds and Diophantine approximation[END_REF]. The involved random variables are subject to certain additional conditions in [START_REF] Berkes | Berry-Esseen bounds and Diophantine approximation[END_REF] and take values -1 and 1 with probabilities 1/2 in [START_REF] Su | Convergence of random walks on the circle generated by an irrational rotation[END_REF]. In both papers, the bounds depend explicitly on the type of α. In our work the random variables Y n+1 -Y n are not independent and are not identically distributed (except in Section 5) and our bounds depend not only on the type of α but also on the probabilities of success.

Among many other references, relevant background material concerning Uniform Distribution Theory and on Benford's law in connection with Number Theory or Probability Theory is available in [START_REF] Berger | A basic theory of Benford's Law[END_REF][START_REF] Chenavier | Products of random variables and the first digit phenomenon[END_REF][START_REF] Kuipers | Uniform Distribution of Sequences[END_REF][START_REF] Massé | Fast growing sequences of numbers and the first digit phenomenon[END_REF].

Definitions and notation

Recall that we denote by U the uniform distribution on [0, 1) and by {y} the fractional part of a real y. We will use standard notation: y for the greatest integer less than or equal to y, [y] for the nearest integer value of y (there is no ambiguity when y is irrational), y for the distance between y and its nearest integer, p n for the nth prime number, log n for the natural logarithm of n, log b a for the logarithm to the base b of a and e h (x) for exp(2iπhx) with i 2 = -1.

Let (X n ) n≥1 be a sequence of independent Bernoulli random variables. We suppose that the probabilities of success q n = P (X n = 1) sum to +∞. According to Borel-Cantelli Lemma, this is necessary and sufficient to ensure that S n = n j=1 X j → +∞ almost surely as n → +∞ and so that the number of trials needed to get the n-th success Y n = min{N : S N = n} is almost surely well defined for all n. We set κ(n

) = q 1 + • • • + q n and λ(n) = q n / κ(n -1).
The nth Mersenne number is 2 pn -1. If q 1 = q 2 = 0 and q n = (log n) -1 for n ≥ 3, Y n is the nth Camér random pseudo-prime [21, p. 91-97] and is denoted by p * n below. The sequences of random variables (p * n ) n and (2 p * n -1) n will be called in the sequel the Cramér sequence and Mersenne-Cramér sequence respectively. The Cramér sequence is almost surely equivalent to (p n ) n [START_REF] Cramér | Prime numbers and probabilities[END_REF].

Fix a numeration base b > 1. The mantissa in base b of a positive real x is the unique number The greater η(α) is, the closer α is to rationals with reasonable denominators. An irrational α is said to be of constant type if h hα > c for some constant c > 0 and all positive integers h or equivalently if the partial quotients of its continued fraction expansion are bounded [11, p. 122]. Such α is of type 1.

M b (x) ∈ [1, b) such that x = M b (x)b m for some integer m. The Benford's law in base b is the probability distribution B b on [1, b) defined by B b ([1, t)) = log b t for t ∈ [1, b). A sequence (x n ) n of
The law of a random variable Z is the unique probability measure Q satisfying Q(B) = P (Z ∈ B) for every Borel set B.

Content

Our results on the weak convergence of the laws of {αY n } and M b (a Yn ) and on the rates of convergence are stated and compared with existing literature in Section 2. Section 3 collects the main tools used in our proofs; they are all well-known, with the possible exception of Proposition 1. Our proofs are collected in Section 4. Finally, we discuss shortly the accuracy of our bounds is in Section 5.

Information about Mersenne numbers

The consideration of Mersenne numbers was motivated by the construction of even perfect numbers [18, pp. 75-83]. It is easy to check that if a k -1 is prime for some positive integers a and k, then it is a Mersenne number. Seven of the first eight Mersenne numbers are prime. However the frequency of primes among the Mersenne numbers seems tiny since the 47th prime Mersenne number is 2 43 112 609 -1 [24]. The largest known prime since December 2018 is the Mersenne number 2 82 589 933 -1 which has more than 24 million digits in base 10 [24]. Most of the known prime Mersenne numbers have held the record of the largest known prime at a time. 

Information about Benford law

Note that {log b x} = log b (M b (x)). Thus (M b (x) < t) ⇐⇒ ({log b x} < log b t) (t ∈ [1, b)) (1) 
(x n )) n is uniformly distributed modulo 1. As a consequence, (a n ) n is Benford in base b if and only if log b a is irrational. Since log b k k-1
decreases as k increases, the Benford sequences satisfy the so called first digit phenomenon: the terms with small first digit k are more frequent than the others. For example, for large n, the frequency of numbers with first digit 1 in base 10 among 2, 4, . . . , 2 n is approximately 30.1 percent. Among other fast growing sequences of positive numbers [START_REF] Massé | Fast growing sequences of numbers and the first digit phenomenon[END_REF], the sequences (n!) n , ( n 1 p k ) n and (n n ) n are Benford in any base b. Moreover (n) n and (p n ) n satisfy somehow the first digit phenomenon but in a weaker sense only [START_REF] Eliahou | On the mantissa distribution of powers of natural and prime numbers[END_REF].

The sequence ({αp n }) n is uniformly distributed modulo 1 when α is irrational [21, pp. 105-107]. This and simple calculations prove that the sequence of Mersenne numbers (2 pn -1) n is Benford in base b whenever b is not a power of 2. Some computer simulations we have made suggest that the law of the random variable M 10 (p * n ) does not converge weakly as n → +∞ whereas, as proved below, the law of M b ((2 p * n -1)) n converges weakly to B b whenever b is not a power of 2. In many cases, the law of the mantissa in base b of products of independent or stationary positive random variables converges weakly to B b [START_REF] Chenavier | Products of random variables and the first digit phenomenon[END_REF].

Information about η(α)

Roth and Baker received the Fields Medal in 1958 and 1970 respectively for their contributions on this subject. The terms irrationality exponent, measure of irrationality and approximation exponent also designate η(α) (see Section 1.1) or η(α) + 1 in the literature. The Liouville numbers [17, p. 310] are the reals of infinite type; they are very well approximated by rationals. By Roth Theorem, all the algebraic numbers are of type 1 [3, p. 169]; they are badly approximated by rationals. Here is what is known, excepting possible recent improvements, on the type of some common transcendental numbers:

η(e) = 1 , η(π) < 6.2 , η(π 2 ) < 4.5 , η(log 2) < 2.6 and η(log 3) < 4.2.
(we have rounded to one decimal place for simplicity). See [23] 

Results and comments

We collect here the statements of our main results and compare them with existing literature.

Limit law of {αY

n } and M b (a Y n )
Note that the values of {αY n } are concentrated in a finite subset of [0, 1) when α is rational and so the law of {αY n } cannot converge to U in this case. Recall that κ

(n) = q 1 + • • • + q n .
Theorem 1. The law of the random variable {αY n } converges weakly to U as n → +∞ whenever α is irrational, (q n ) n decreases to 0 and lim n κ(n) = +∞.

The treatment of the mantissa of a Yn derives easily from the above theorem. It may be worth reminding the reader that there exists no positive random variable

Z such that M b (Z) is distributed following B b for every numeration base b [4, Proposition 5.2].
Corollary 1. Suppose that (q n ) n decreases to 0 and that lim n κ(n) = +∞. Then the law of M b (a Yn ) converges weakly to B b as n → +∞ whenever log b a is irrational. Moreover the law of M b (2 Yn -1) converges weakly to B b whenever b is not a power of 2.

Rates of convergence

Let Q n and Q * n designate the law of {αY n } and that of M b (a Yn ) respectively. We are now concerned with the Kolmogorov-Smirnov distance between Q n and U ,

∆(Q n , U ) = sup 0≤s<1 |Q n ([0, s)) -s|,
and in ∆(Q * n , B b ) = sup 1≤t<b |Q * n ([1, t)) -log b t|. Note that ∆(Q n , U ) = ∆(Q * n , B b ) (2) if α = log b a (replace log b t by s in (1)).
Because of the factor | sin(πhα)| -1 in (8) (see Section 4.2), we need to know to what extent the values of hα are close to zero as h → +∞. This is why our bounds depend on η(α). Recall that λ(n) = q n / κ(n -1). Here are a few examples of asymptotics of λ(n

): λ(n) ∼ (log n) -1 2 n -1 when q n = n -1 , λ(n) ∼ 2 -1 2 n -3 4 when q n = n -1 2 and λ(n) ∼ (log n) -1 2 n -1 2 when q n = (log n) -1 .
Theorem 2. Suppose that α is an irrational of finite type (see Sections and 1.1 and 1.5) and that the q n decrease to 0 and sum to infinity. Denote by η(α) the type of α. Then

∆(Q n , U ) = O λ(n) 1 η
for all η > η(α).

In particular

∆(Q n , U ) = O λ(n) 1 η
for all η > 1 when α is algebraic or equal to e and ∆(Q n , U ) = O λ(n) for all η > η(α) if U α,n designates the uniform probability measure on the set {{αk} : k = 1, . . . , n} [11, p. 123

]. Moreover ∆(Q ±α n , U ) = O (1/ √ n) 1 η
for all η > η(2α) if Q ±α n designates the law of {αZ n } and Z n is the sum of n independent and identically distributed random variables taking values -1 and 1 with probabilities 1/2 [20, Theorem 5.5] and

∆(Q n , U ) = O (1/ √ n) if Q n designates
the law of {αZ n } and Z n is the sum of n independent and identically distributed integer valued random variables with finite variance and α is of contant type [2, Theorem 1.1] .

Again the treatment of the mantissa of a Yn derives easily from the above theorem.

Corollary 2. Suppose that log b a is irrational and that the q n decrease to 0 and sum to +∞. Let F denotes the set of prime factors of b. Then

∆(Q * n , B b ) = O λ(n) 1 η
, where we can choose η = 2.5 • 10 4 log a log b in the general case and, when a = 2, η = 7.7 if F = {2, 3}, η = 15.3 if F = {2, 3, 5} and η = 256.9 if F = {2, 3, 5, 7}.

Several other particular values of a can be discussed in view of Lemma 5 and of the arguments featuring in the proof of Proposition 1. Now we set q n = (log n) -1 . In this case, Y n = p * n , the nth-Cramér number, and 2 Yn -1 is the n-th Mersenne-Cramér number.

Corollary 3. The conclusions of Corollary 2 remain true (with

λ(n) ∼ (n log n) -1 2 ) when Q * n denotes the law of M b (2 p * n -1).
In particular, when Q * n denotes the law of the mantissa in base 10 of the nth Mersenne-Cramér number,

∆(Q * n , B 10 ) = O (n log n) -1 30.6
.

We can slightly improve the bound in Theorem 2 when α is an irrational quadratic number, like √ 2 or the golden ratio, or more generally when it is of constant type (see Sections and 1.1 and 1.5).

Theorem 3. Suppose that α is an irrational of constant type and that the q n decrease to 0 and sum to infinity. Then

∆(Q n , U ) = O λ(n) log 2 (1/λ(n) .
In particular,

∆(Q n , U ) = O n -1 log 3 2 n if q n = 1/n and ∆(Q n , U ) = O (n -1 (log log n) -1 2 log n if q n = 1/(n log n).
On the other hand, let (x n ) n be any sequence in [0, 1) and

Q (x)
n designate the uniform probability measure on the set {x k : k = 1, . . . , n} (n = 1, 2, . . . ). Then ∆(Q

(x) n , U ) = O (n -1 log n) when x n =
{αn} and α is any irrational quadratic number [11, p. 125] and when (x n ) n is the van der Corput sequence [11, p. 127] frequently used to approximate integrals by quasi-Monte Carlo methods. No smaller order of magnitude of ∆(Q [11, p. 109]. So the convergence rate of Q n when α is a quadratic irrational and q n = 1/(n log n) is better than the best possible convergence rate of Q

(x) n , U ) is possible
(x)
n . And it is even slightly better if we choose q n = 1/(n log n log log n) and so on. However, we must take into account, that for each fixed n, the set of atoms of Q (x) n is finite, while that of Q n is not.

Preliminaries

We present here the main tools used in the following.

Weak convergence on the circle [0, 1)

The Lévy continuity theorem states that the weak convergence of a sequence of probability measures on the real line is characterized by the pointwise convergence of the corresponding characteristic functions. For probability measures on the circle [0, 1), the convergence of the Fourier coefficients suffices. We present here the case where the limit distribution is U . Let Z, Z 1 , Z 2 , . . . be some random variables taking their values in [0, 1).

Lemma 1 is the Weyl criterion. A direct proof is easily obtained by extending the arguments in [11, p. 7] to general sequences of probability measures. It is also a consequence of Lemma 2 below which has been established later.

Lemma 1. In order that the law of Z n converges weakly to U as n → +∞ it is necessary and sufficient that, for every positive integer h,

lim n→+∞ E(e h (Z n )) = 0.
Lemma 2 is the Erdős-Turán inequality. It is a kind of Berry-Esseen theorem on the circle [START_REF] Niederreiter | Berry-Esseen bounds and a theorem of Erdős and Turán on uniform distribution mod 1[END_REF]. Theorem 1 in [START_REF] Niederreiter | Berry-Esseen bounds and a theorem of Erdős and Turán on uniform distribution mod 1[END_REF] is the most general version in the univariate case. Here is a simplified formulation which is sufficient in our network.

Lemma 2. Let Q stand for the law of Z. Then, for every positive integer H,

sup 0≤t<1 |Q([0, t)) -t| ≤ C 1 H + H h=1 |E(e h (Z))| h ,
where the constant C is independent of H.

Concentration function

We will make use of general results on the Lévy concentration function [15, p. 38] to get some information about the maximal size of the atoms of S n . Lemma 3 derives Lemma 1 in [15, p. 38] because, when n 1 ≤ n 2 , S n 1 and S n 2 -S n 1 are independent.

Lemma 3. If n 1 ≤ n 2 , then max 0≤j≤n 1 P (S n 1 = j) ≥ max 0≤j≤n 2 P (S n 2 = j).
Lemma 4 is a particular case of the Kolmogorov-Rogozin inequality on concentration function (Theorem 4 in [15, p. 44]). Lemma 4. When (q n ) n decreases to 0,

max 0≤j≤n P (S n = j) = O κ(n) -1 2 ,
where O denotes the Landau big O.

The type of log b a

Let a and b be two integers both greater than 1. We need some upper bounds for η(log b a) to investigate the rate of convergence of the law of M b (a Yn ). Recall that According to the Gelfond-Schneider theorem [3, p. 2], log b a cannot be an irrational algebraic number. It is either rational (when a is a rational power of b) or transcendental. According to Baker's Theorem [3, p. 2] it is of finite type. However Baker's initial papers provide general upper bounds of η(log b a) which are far too large to be meaningful in our context. In [START_REF] Kontorovich | Benford's Law, Values of L-functions and the 3x + 1 problem[END_REF], the authors derive from them that η(log 10 2) ≤ 2.4 • 10 602 . Improving Baker's general bounds has motivated many authors including Baker himself. See [3, pp. 195-221] for references.

It seems that the best available general result which can be helpful for us is Gouillon's one [9, Corollary 2. 

Some results of Rhin [START_REF] Rhin | Approximants de Padé et mesures effectives d'irrationalité[END_REF] and of Wu [START_REF] Wu | On the linear independence measure of logarithms of rational numbers[END_REF] provide reasonable bounds of η(log b a) when the prime factors of a and b are small and log b a is irrational. The following lemma groups them in simplified versions and, aiming at simplicity and the investigation of the Mersenne-Cramér sequence, we then focus on the case a = 2.

Lemma 5. Let u 1 , u 2 , u 3 and u 4 be four integers. Set

H 2 = max(|u 1 |, |u 2 |), H 3 = max(|u 1 |, |u 2 |, |u 3 |) and H 4 = max(|u 1 |, |u 2 |, |u 3 |, |u 4 |). Then, for sufficient large H 2 , H 3 and H 4 , |u 1 log 2 + u 2 log 3| ≥ H -7.62 2 , |u 1 log 2 + u 2 log 3 + u 3 log 5| ≥ H -15.28 3 , |u 1 log 2 + u 2 log 3 + u 3 log 5 + u 4 log 7| ≥ H -256.87 4 .
The following proposition may sound obvious to the specialists in view of Lemma 5, but they are not formulated in the papers of Rhin and Wu or anywhere else it seems.

Proposition 1. Suppose that b is not a power of 2 and let F denotes the set of prime factors of b. Then η(log b 2) ≤ 7.62 when F ⊂ {2, 3}, η(log b 2) ≤ 15.28 when F ⊂ {2, 3, 5} and η(log b 2) ≤ 256.87 when F ⊂ {2, 3, 5, 7}.

Proof. We only demonstrate the first statement. The proofs of the two others follow the same lines. Recall that [x] stands for the nearest integer of x.

Suppose that b = 2 v 1 3 v 2 with v 2 > 0. For each positive integer h, set

k = [hη(log b 2)] and H = max(|h -kv 1 |, kv 2 ).
Lemma 5 ensures the existence of H 0 such that

|h log b 2 -k| = (log b) -1 |(h -kv 1 ) log 2 -kv 2 log 3| ≥ (log b) -1 H -7.62 for all H ≥ H 0 . Moreover hη(log b 2) -1 ≤ k ≤ hη(log b 2) + 1 and so (hη(log b 2) -1)v 2 ≤ kv 2 ≤ H ≤ h + kv 1 + kv 2 ≤ Ch, where C = (1 + (η(log b 2) + 1)(v 1 + v 2 ))
. Then H ≥ H 0 for sufficiently large h and this implies

|h log b 2 -k| ≥ (log b) -1 H -7.62 ≥ (log b) -1 C -7.62 h -7.62 .
This and (3) complete the proof.

Proofs

An important auxiliary result

We begin with a general property on Bernoulli trials whose proof uses and details some arguments of the proof of [START_REF] Massé | Random number sequences and the first digit phenomenon[END_REF]Theorem 4.6.]. Recall the notation presented in Section 1.1. Proof. Fix n ≥ 1. Then, for all m ≥ n,

P (S m+1 = n) = q m+1 P (S m = n -1) + (1 -q m+1 )P (S m = n)
and this leads to

P (S m+1 = n) -P (S m = n) = q m+1 (P (S m = n -1) -P (S m = n)) . (5) 
By [START_REF] Darroch | On the distribution of successes in independent trials[END_REF], the laws of the random variables S m are bell-shaped and, when {κ(m)} grows from 0 to 1, the mode is firstly at κ(m) , then at both κ(m) and κ(m) +1 and finally at κ(m) + 1.

Hence, as m grows,

P (S m = n -1) -P (S m = n) is • nonnegative when κ(m) < n -1,
• nonnegative when n -1 ≤ κ(m) ≤ n and the mode is at κ(m) ,

• nul when n -1 ≤ κ(m) ≤ n and the mode is at both κ(m) and κ(m) + 1,

• nonpositive when n -1 ≤ κ(m) ≤ n and the mode is at κ(m) + 1,

• nonpositive when n < κ(m).

The same applies for P (S m+1 = n) -P (S m = n) in view of ( 5) and so the sequence (P (S m = n)) m≥n is bell-shaped. This yields

+∞ m=n |P (S m+1 = n) -P (S m = n)| ≤ 2 max 0≤j≤m 0 P (S m 0 = j)
for some m 0 ≥ n. According to Lemma 3,

max 0≤j≤m 0 P (S m 0 = j) ≤ max 0≤j≤n P (S n = j).
The proof is completed.

Proof of Theorem 1

Let α be any irrational. By Lemma 1 we need only to check that, for all positive integers h,

lim n→+∞ E(e h (αY n )) = lim n→+∞ +∞ m=n P (Y n = m)e h (αm) = 0.
The random variables X n being independent,

P (Y n = m) = q m P (S m-1 = n -1) (6) 
for all m ≥ n. Fix the positive integers n, h and N ≥ n and set σ m = m j=n q j e h (αj)). When α is irrational, | K l=k e h (αl)| ≤ | sin(πhα)| -1 for all positive integers k and K with k < K. Hence a summation by parts gives for every m ≥ n

|σ m | = q m m j=n e h (αj) + m-1 j=n (q j -q j+1 ) j l=n e h (αl) ≤ q m + m-1 j=n (q j -q j+1 ) | sin(πhα)| -1 = q n | sin(πhα)| -1 (7) 
(recall that (q n ) n is decreasing). By [START_REF] Darroch | On the distribution of successes in independent trials[END_REF] and another summation by parts, we get Then Lemma 3, Proposition 2 and (7) yield for every N ≥ n

N m=n P (Y n = m)e h (αm) ≤ q n | sin(πhα)| max 0≤j≤N -1 P (S N -1 = j) + 2q n | sin(πhα)| max 0≤j≤n-1 P (S n-1 = j) ≤ 3q n | sin(πhα)| max 0≤j≤n-1 P (S n-1 = j).
We have demonstrated that

|E(e h (αY n ))| ≤ 3q n | sin(πhα)| max 0≤j≤n-1 P (S n-1 = j) (8) 
which concludes our proof because lim n q n = 0 (see also Lemma 4).

Proof of Corollary 1

The first assertion is a direct consequence of Theorem 1 and Section 1.4. Assume that b is not a power of 2 and that q n = (log n) -1 for n ≥ 3. Then Y n = p * n and so the law of {log b (2 p * n )} converges weakly to the U because log b 2 is irrational.

In view of Section 1.4 and Lemma 1, it remains only to check that, for all positive integers h,

lim n→+∞ E e h (log b (2 p * n )) -e h (log b (2 p * n -1)) = 0. But e h (log b (2 p * n )) -e h (log b (2 p * n -1)) = e h (log b (2 p * n )) 1 -e h (log b (1 -2 -p * n ))
and so (e h (log b (2

p * n )) -e h (log b (2 p * n -1))
) n is a bounded sequence of random variables which converges almost surely to 0 as n → +∞ because (p * n ) n converges almost surely to +∞. The Lebesgue dominated convergence theorem completes the proof.

Proof of Theorem 2

Fix η > η(α). Using Lemma 2, we get for all positive integers H We have | sin(πhα)| = sin(π hα ) ≥ 2 hα since hα ≤ 1/2. Moreover hα ≥ h -η for sufficiently large h by definition of η(α) (see Section 1.1). So direct calculations yield H h=1 (h| sin(πhα)|) -1 = O(H η ), but the particular nature of the sequence ( hα ) h provides a better estimate, namely

∆(Q n , U ) ≤ C 1 H + H h=1 |E(e h (αY n ))| h ≤ C 1 H + O(λ(n))
H h=1 1 h| sin(πhα)| = O(H η-1 ) (9) 
(see [11, p. 123]). We then arrive at

∆(Q n , U ) ≤ C 1 H + O(λ(n))O(H η-1 ) . (10) 
We choose H = λ(n) -1 η and get

∆(Q n , U ) = O λ(n) 1 η
.

The two others assertions derive from the first one and Section 1.5.

Proof of Corollaries 2 and 3

Recall that

∆(Q n , U ) = ∆(Q * n , B b ) (11) 
if α = log b a. So Corollary 2 is a consequence of Theorem 2 and of (4) and Proposition 2 in Section 3. In view of [START_REF] Gouillon | Explicit lower bounds for linear forms in two logarithms[END_REF] this implies for all η > η(log b 2). So the final arguments of the proof of Theorem 2 apply again and this proves Corollary 3.

Proof of Theorem 3

Suppose that α is of contant type. Then η(α) = 1 and h hα > c for all positive integers h and some c > 0 independent of h (see Section 1.1). In this case H h=1 (h| sin(πhα)|) -1 = O(log 2 H) according to Lemma 3.3 in [11, p. 123] (here log 2 x means (log x) 2 ). Moreover, we no longer need to consider η > η(α) in the proof of Theorem 2.

So we can replace η by 1 and O(H η-1 ) by O(log 2 H) in ( 9) and ( 10) and get

∆(Q n , U ) = O λ(n) log 2 (1/λ(n) .
The two other assertions derive from the first one and simple calculations.

Concluding remark

We are unable to provide general and meaningful lower bounds for ∆(Q n , U ). However what follows makes us hope that the estimates featuring in Theorem 2 are quite accurate.

We have supposed for simplicity that q n decreases to 0 but our arguments still apply when all the q n are equal to q > 0 (with minor changes in Lemma 4 and its consequences when q > 1/2). In this case Y n is the sum of n independent and identically distributed random variables distributed following the geometric distribution with parameter q. These random variables being square integrable, [START_REF] Esseen | On the concentration function of a sum of independent random variables[END_REF]Theorem 4 for some constant C 1 > 0. The maximal size of the atoms of the law of {αY n } admits the same lower bound. Therefore

2∆(Q n , U ) ≥ C 1 n -1 2
whatever is the value of η(α). On the other hand, when all the q n are equal to q > 0, λ(n) = √ q √ n-1 and so, if in addition α is quadratic irrational, Theorem 3 gives

∆(Q n , U ) ≤ C 2 n -1 2 (log n) 2
for some C 2 > 0.

  positive real numbers is said to be Benford in base b when the uniform probability measure on the set {M b (x k ) : k = 1, . . . , n} converges weakly to B b as n → +∞. Following [11, p. 161], we define the type η(α) of an irrational α by η(α) = sup{γ : lim inf h→+∞ h γ hα = 0}.

1 6. 2 when

 2 α = π. By way of comparison, ∆(U α,n , U ) = O (1/n) 1 η

  [y] denotes the nearest integer value of y. If we find c > 0 and γ 0 > 0 such that |hα -[hα]| ≥ ch -γ 0 for all sufficiently large h, (3) then we show that η(α) ≤ γ 0 . If α = log b a, then |hα -[hα]| = (log b) -1 |h log a -k log b|, where k = [h log b a]. So lower bounds on linear forms in logarithms can yield upper bounds on measure of irrationality.

  3.] which leads to η(log b a) < 4 • 10 4 log a log b.

Proposition 2 .

 2 For each fixed n ≥ 1, the sequence (P (S m = n)) m≥n is bell-shaped and +∞ m=n |P (S m+1 = n) -P (S m = n)| ≤ 2 max 0≤j≤n P (S n = j).

P

  (Y n = m)e h (αm) = N m=n P (S m-1 = n -1)q m e h (αm) =P (S N -1 = n -1)σ N + N -1 m=n (P (S m-1 = n -1) -P (S m = n -1))σ m .

H h=1 1

 1 h| sin(πhα)| , because, by (8) and Lemma 4, |E(e h (αY n ))| = O(λ(n)) | sin(πhα)| .

3 .

 3 Classical arguments give|e h (log b (2 p * n )) -e h (log b (2 p * n -1))| = |e h (log b (2 p * n ))||(1 -e h (log b (1 -2 -p * n ))| = O(2 -p * n ) = O(2 -n ) since p * n ≥ n. Hence |E(e h (log b (2 p * n -1)))| = |E(e h (log b (2 p * n )))| + O(2 -n ).

  h (log b (2 p * n -1)))| h = O(λ(n))O(H η-1 ) + O(2 -n )O(log H) = O(λ(n))O(H η-1 )

  .2] leads tosup m≥n P (Y n = m) ≥ C 1 n -1 2

  and so, for any positive random variable Z, M b (Z) is distributed following B b if and only if {log b Z} is distributed following U and, for positive random variables Z n (n = 1, 2, . . . ), the law of M b (Z n ) converges weakly to B

b as n → +∞ if and only if the law of {log b Z n } converges weakly to U . In particular a sequence (x n ) n is Benford in base b if and only if the sequence (log b

  for references. The set {α : η(α) > 1} has Lebesgue measure zero[3, p. 168] but is uncountable since each real greater than 1 is the type of at least one transcendental non-Liouville number[START_REF] Sondow | Irrationality measures, irrationality bases, and a theorem of Jarnik[END_REF] Corollary 4.].All the quadratic numbers are of constant type (see Section 1.1) according to Liouville's theorem[17, p. 299]. The number e is not of constant type although η(e) = 1[17, p. 294]. So the quadratic irrationals are more badly approximated by rationals than e.