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ABSTRACT
In Neurosciences, networks are currently used for represent-
ing the brain connections system with the purpose of deter-
mining the specific characteristics of the brain itself. How-
ever, discriminating between a healthy human brain network
and a pathological one using common network descriptors
could be misleading. For this reason, we explored network
embedding techniques with the purpose of brain connectivity
networks comparison. We proposed first the definition of
representative graph for healthy brain connectivity. Then,
two classification procedures through embedding are intro-
duced, achieving good accuracy results in different datasets.
Moreover, the intriguing power of this technique is given by
the possibility of visualizing networks in a low-dimensional
space, facilitating the interpretation of the differences be-
tween networks under diverse conditions e.g. normal or
pathological.

Index Terms— Network classification, MRI, low dimen-
sional space, graph comparison.

1. INTRODUCTION

In various contexts, network embedding technique has been
developed for performing analysis on a single graph. This
technique has been proven to work for different applications,
such as node classification or link prediction. An efficient
network embedding algorithm is capable of capturing the rel-
evant features of the graph and reproduce them in a low-
dimensional Euclidean space.
In the context of Neurosciences, networks are used to repre-
sent the set of connections between brain regions with eventu-
ally the aim of distinguish pathological versus healthy states.
However, such a distinction could be missed based on the net-
work descriptors commonly used. Indeed there is no clear ev-
idence of a best measure to be used in the discrimination of
different brain states [1]. As a results each process focuses on
specific descriptors which differ from pathology to pathology
or requires hand-crafted index to reveal a dissimilarity (i.e.
[2]). In this study, we investigate the use of network embed-
ding with the goal of applying to human brain connectivity
network classification. Moreover, the intriguing power of the
embedding in our domain is given by the possibility to vi-
sualize the connectivity network in a low-dimensional space,

which allows to determine which brain regions and properties
are peculiar of the given network and are fundamentals for
the normal vs abnormal classification process, providing in-
terestingly new knowledge about the pathological conditions.

2. MATERIAL AND METHODS

2.1. Data: brain connectivity networks definition

The definition of brain connectivity networks was achieved
through out different phases proposed in [3]. First, the func-
tional MR images (fMRI) acquired at rest were aggregated
over 90 regions defined according to the anatomical label-
ing in [4]. For each parcel, a unique time series signal was
determined by averaging the fMRI time series over all vox-
els of the parcel, weighted by the proportion of gray matter
in each voxel, obtained by individual structural image tissue
segmentation, to take into account for the partial volume ef-
fect. The following stage consisted in the application of the
discrete wavelet transform to each mean fMRI time series. As
a result, for each subject, different fMRI time series at distinct
scales, associated to different intervals of frequencies, were at
our disposal. Since it has been observed that the resting state
information activity is mainly captured at a frequency lower
than 0.1Hz, the correlation among regions was estimated only
for this frequency band. Finally, by thresholding the correla-
tion matrix, a binary matrix was defined. This matrix cor-
responded to the adjacency matrix of the brain connectivity
network, whose nodes were given by the parcels. The thresh-
old was tuned for each subject in order to compute a binary
matrix with a given non-zeros entries number; in our experi-
ments it has been set to 400. Table 1 indicates the resting state
datasets we used in our experiments extracted from different
databases.

Dataset name Number of Data
Total Class 1 Class 2

HCP test retest [5] 100×2 - -
Coma [2] 37 20 Control 17 Comatose

Young&Elderly [6] 26 15 Young 11 Elderly

Table 1. List of the databases used including different classes
of subjects. HCP: Human Connectome Project.



2.2. Nodal embedding

Network embedding can be seen as a dimensionality reduc-
tion tool which maps a network into a vector space. We
focussed on nodal embedding, namely a mapping function
which maps a graph into a bag-of-vector where each vector is
associated to a single vertex of the graph.
Among the available methods, we selected node2vec em-
bedding algorithm [7] which has been proven of being able
to capture the structural equivalence of nodes. node2vec
is based on the Skip-gram architecture which is used to learn
a features representation of words based on their context [8].
In the case of network, the concept of context is translated
into the one of neighborhood. Precisely, node2vec defines
a flexible notion of a node’s neighborhood depending on spe-
cific characteristics we are interested in, such as those ob-
tained by structural relations or by similar relationships be-
tween the neighborhoods. Note that neighborhood is not de-
fined based on a unique similarity function, but can be de-
fined via two searching strategy. For each vertex, the al-
gorithm computes a neighborhood set of a given number of
nodes. The breadth-first sampling (BFS) considers the neigh-
borhood of a node as nodes which are immediate neighbors of
the source. Whereas, the DFS neighborhood is composed by
nodes which are sequentially sampled at increasing distances
from the node itself. node2vec allows to smoothly interpo-
late between BFS and DFS.
In synthesis, the node2vec embedding function is deter-
mined by the following parameters: d dimension of the em-
bedding space, N number of random walks per node used to
estimate the proximity matrix, L random walk length, k size
of the neighborhood set for each node, p return parameter and
q in-out parameter controlling the sampling strategy (small
p→ BFS, small q → DFS).
Setting the parameters’ values referring to a single graph’s
embedding would result in the necessity of using different pa-
rameters for each single graph. However, in this way we loose
the possibility of a fair graphs comparison. Because our pur-
pose is to capture the class features for different graphs, we
propose to set these parameters according to the results ob-
tained for a graph comparison for which we know the ground
truth. To clarify, we would like to perform a graph embed-
ding for which the computed similarity index for the same
class is maximized, while the similarity index between differ-
ent classes is minimized. The obtained embedding, thereby,
would eventually be able to capture the shared characteris-
tic of a group of graphs. Since all the graphs in our datasets
are comparable in terms of the number of nodes and edges,
we chose to tune the parameters based on the HCP dataset.
This dataset provides test and retest data for the same sub-
jects. Thus, using this unique dataset for the tuning, we ex-
pected to maximize the similarity index between graphs of the
same subject, forcing the embedding to capture the character-
istics which were relevant in brain connectivity. Indeed, a
parameters configuration which estimates similar embedding

for similar graphs, was assumed to capture the intrinsic nature
of the corresponding brain connectivity network.
The final parameters’ values were d = 3, N = 20, L =
2×network diameter, k = 3, p = 1, q = 2.

2.3. Pyramid graph matching kernel

In our project, we are interested in comparing networks which
belong to different classes, healthy vs pathological subjects
or for patients sub-typing. This comparison could be directly
performed in the network space; however, our purpose was to
explore the potentiality of embedding in the analysis of brain
connectivity. With this goal, we found the work [9] newswor-
thy. In particular, inspired by the pyramid match kernel used
in computer vision, the authors have designed an equivalent
version for graphs, named pyramid matching graph kernel.
The main idea of the algorithm was to count the matching of
vectors in the embedding space at different resolution levels.
We reproduced their setting using node2vec as embedding
algorithm. In the embedded space, given a number of level, a
grid of cells having increasing size in one dimension for each
level was computed. Two vectors corresponding to the same
region in the brain were matched if they belonged to the same
cell. Each matching was weighted according to the dimension
of the corresponding region. Counting the number of match-
ings between two embedded graphs allowed to compute their
similarity.

2.4. Representative graph

Previous works have defined, for a class, an average graph in
the network space, taking into account the average of the ad-
jacency matrices or selecting edges present in all the graphs
of the class. We propose an innovative approach using a net-
work embedding algorithm. It requires labeled graphs with
labeled nodes. Note that all graphs have the same number
of nodes. Having at our disposal a labeled set of graphs, we
considered all the networks which belong to the same class.
For each node, we considered the set of the embedding vec-
tors obtained through the mapping of all graphs of the class.
Then, we averaged components by components and computed
the barycenter. The output of this process was a set of vectors,
where each vector was associated to a given node in the graph.
This output can be interpreted as a virtual embedding of a rep-
resentative graph. In fact, we were implicitly assuming that
the vector position in the embedding space should be related
to the label associated to the node. Moreover, since the em-
bedding was supposed to capture the structural equivalence of
nodes, we hypothesized that for individuals belonging to the
same class, same brain regions exhibited the same connectiv-
ity pattern.

2.5. Classification procedure

We propose to compare two classification procedures through
embedding, standard SVM vs a graph representation of a class



C1 - MA C1 - SD C2 - MA C2 - SD
COMA 0.83 0.019 0.75 0.025
Y&E 0.59 0.045 0.62 0.051

Table 2. Classification performances over all the datasets
through the two different classification procedures. MA -
mean accuracy and SD - standard deviation computed on 100
experiments.

(see Fig.1). For both procedures, we computed the embed-
ding of all networks using node2vec. As a result, each
graph was converted into a set of vectors. We randomly deter-
mined a subset of the dataset as the training set. The remain-
ing data formed the candidates for classification (testing set).
The training set was partitioned into two classes.

FIRST CLASSIFICATION METHOD

KERNEL- SVM
the used kernel is the PYRAMID 

GRAPH MATCHING KERNEL (PGMK)

SECOND CLASSIFICATION METHOD

• COMPUTATION OF THE 
REPRESENTATIVE OF EACH CLASS IN 

THE TRAINING DATA
• CLASSIFICATION  COMPUTING THE 

PROXIMITY WITH THE 
REPRESENTATIVE

proximity calculated with PGMK

DATASET OF 
NETWORKS

node2vec EMBEDDING 
OF EACH NETWORK

BAG-OF-VECTORS 
DATASET

Fig. 1. Classification procedure scheme

2.5.1. First classification procedure: C1

We calculated the gram matrix using the pyramid graph
matching kernel. Then, we used kernel-SVM to predict the
labels on the candidates in the testing set. The kernel used
was the pyramid graph matching kernel.

2.5.2. Second classification procedure: C2

This procedure used the average graph as a representative for
each class for the comparison. The average embedding graph
was computed for each class. To classify the testing set, we
computed the pyramid graph matching similarity index be-
tween each candidate and the two graph representatives of the
classes. We predicted the graph label, according to the more
similar graph.

3. EXPERIMENTS AND RESULTS
First, we compared the representative networks obtained from
the different groups of controls coming from the different
datasets. The first three graphics in Fig. 2 is illustrating the
robustness of the construction of the representative graphs ob-
tained from the three different datasets acquired in different

conditions, but preprocessed using the same methods. Sec-
ond, we ran the two classification procedures 100 times for
the datasets. Each time the embedding and the training sets
were computed in a repeated random sub-sampling validation
framework. We observed a slightly variability in terms of ac-
curacy depending on the datasets.

4. DISCUSSION

Network representation is largely used in Neurosciences for
structural or functional brain connectivity studies. In this pa-
per we explored the applicability of the network embedding
approach for brain connectivity investigation. We calibrated
the embedding method parameters based on one dataset con-
sidered as the ground truth. It is important to mention that
this was not done to improve performances but to favor a
certain pattern on the data. Besides, the dataset used for
calibration was indeed very different in term of acquisition
conditions (different centers, different MR scanners) that the
other datasets we considered then for classification perfor-
mances testing.
Our preliminary results demonstrate, using datasets coming
from different databases, that a network embedding approach,
combined with standard classification methods, provides
good performances for separating two different families of
graphs representative of pathological states (brain trauma,
coma) versus healthy conditions or normal aging connectiv-
ity changes (young vs elderly). The performances were very
similar for all the datasets, representative of very different
clinical situations, with the classification method that used
a graph representative of a class of subjects versus the more
standard SVM method. This demonstrates that our definition
of the graph representative of a class was valid. However, we
notice that SVM provided the best performances for the coma
dataset being able of capturing the dissimilarity between the
two classes without any prior selection of graph descriptors
neither requiring the definition of a specific measure [2]. The
performances remained appreciable for Young&Elderly.
Our classification scores are good, but not excellent. How-
ever, we consider that our procedure should not be only
evaluated on its classification results. Indeed, the major inter-
est of network embedding is to facilitate the interpretation of
the differences in a low-dimensional space between networks
(see Fig. 2). This is highly valuable in Neurosciences where
networks may be representative of brain connectivity under
different conditions e.g. normal or abnormal. Thus, even
whether previous works may report better classification per-
formances, we assume that a network embedding procedure
provides an additional value: the possibility of determining a
signature for the class.
The use of global descriptors for graph characterization has
been proven not to be enough for detecting some differences
between graphs [2]. Our achievement shows the power of our
embedding method for graphs comparison in capturing the
meaningful features of the network. Even if further analysis



(a) (b)

Fig. 2. (a) Visualization in a 3D space of a subset of regions in different representative embeddings. Qualitatively, we can
appreciate the closeness of the healthy representatives extracted from different datasets. While, major differences could be
visualized with respect to the right picture representing the comatose class. Numbers refer to the region labels in [4].
(b) Projection over the first two dimensions of the embedded vectors in the healthy control (top) and comatose (bottom)
representatives in COMA data. Points’ marker are colored according to the values of the third coordinate.

needs to be conducted, we interpret the good performances
obtained as an indicator of the type of graph property pre-
served in the embedding.
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