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The objective of this paper is to fill the gap in literature on an exhaustive coupled pendulum-torsion 
model for balloon-borne systems. The development of such a model is required to explain the unexpected 
oscillatory behavior recorded on the flight data of scientific balloon-borne missions and more particularly 
the performance degradation due to the coupling of pendulum and azimuth dynamics through the 
azimuth control loop, which is classically designed using a decoupled torsion model. First, a complete 
dynamic model of balloon-borne systems is derived. The proposed model is applied to the Faint 
Intergalactic-medium Redshifted Emission Balloon (FIREBall) experiment and validated by flight data. 
Then, the stability issue raising from the commonly neglected coupling assumption is investigated. 
Sufficient stability conditions are presented by using positivity properties. Based on the FIREBall model, it 
is finally shown how the azimuth control can destabilize the pendulum dynamics, and how the proposed 
model can be used during preliminary design phases to size a flight chain and the associated control 
system to prevent this instability.
1. Introduction

Stratospheric balloons have been used for many years as plat-
forms to carry scientific payloads into upper layers of the atmo-
sphere. Compared to satellites and launchers, they are cost effi-
cient, reusable, flexible in their deployment and operability, able 
to carry heavy payloads, and impose few mechanical constraints 
on their payload [1, chap. 1.3]. Allowing in-situ observations of the 
atmosphere as well as telescopic observations of the sky, they have 
enabled valuable science in various astronomy and Earth science 
disciplines [2]. For many applications, the pointing requirements 
become more and more challenging. Current architectures are able 
to provide telescope stability under the arc-second [3,4], and cur-
rent developments aim at further improving line of sight precision 
to the milli-arcsecond by using fast-steering or deformable mirrors 
[5,6]. Thus, an accurate dynamic modeling of ballon-borne flight 
chains and the development of specific control algorithms are nec-
essary.

Two types of dynamics are generally distinguished in the mod-
eling of balloon systems. About the vertical axis, the torsion of 
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the flight chain is traditionally modeled as a mass-spring sys-
tem [7–15]. Although the stiffness is generally experimentally de-
termined by system identification, which requires to deploy the 
whole system and process in-flight data, the bifilar pendulum 
model allows to analytically derive the stiffness of balloon flight 
chains [16,17]. About the two other axes, balloon flight trains ex-
perience a dynamic behavior typical of a floating multiple pen-
dulum, which can be modeled with Lagrange’s mechanics [11,18]
or multi-body approaches [19,20]. These dynamics have received 
less attention in the literature, and even when they are modeled, 
the azimuth control is most often designed by considering only a 
model of the torsion of the flight train around the vertical axis.

However, the loading of the gondola is rarely symmetrical, 
which leads to a coupling between the azimuth of the gondola 
and the pendulum dynamics. The presence of common resonance 
peaks in the spectral analysis of the gondola’s attitude, reflecting 
their dynamical coupling, was observed in [21,3]. In the design of 
azimuth controllers, with no modeling of the pendulum oscilla-
tions, this coupling has sometimes been considered as neglected 
dynamics [7] or a parasite torque with unknown gain and fre-
quency [10]. Indeed, the azimuth control of the gondola excites the 
pendulum modes, and reciprocally, the pendulum oscillations trig-
ger the azimuth control. Thus, the pendulum modes can also be 
destabilized by the azimuth control. This phenomenon has been 
suspected during the Carmen flight in 2017 and during the Polar-
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ized Instrument for Long wavelength Observation of the Tenuous 
interstellar medium (PILOT) experiments in 2015 and 2017. Fur-
thermore, the pendulum modes may be crucial in the pointing 
performance, as observed in the Faint Intergalactic-medium Red-
shifted Emission Balloon (FIREBall) experiment in 2018 [3], both 
for the coarse pointing (azimuth of the gondola) and fine pointing 
(on-board instrument). All these observations justify the need for a 
new modeling of the coupling between the gondola’s azimuth and 
the pendulum oscillations, and an analysis of the consequences on 
the closed-loop system. It is also worth noticing that the exper-
imental validation of balloon-borne flight chain models requires 
to deploy the whole system, which cannot be done in labora-
tory. As a consequence, the available flight data is often limited, 
since it is only acquired during the science missions. To the best of 
the authors’ knowledge, the matching of the eigenmodes predicted 
by the model with the modes observed in flight has never been 
performed in the literature, although [20,22] discuss the spectral 
analysis of flight data.

In this paper, we consider typical stratospheric balloon-borne 
missions. Once a steady altitude is reached (20 km to 50 km, 
depending on the mission), the attitude control system is turned 
on and the platform must provide pointing stability during a few 
hours. This work focuses on the dynamics of the balloon, flight 
train and gondola during this pointing phase. We propose to de-
rive a new coupled pendulum-torsion model for balloon-borne 
flight trains, and to investigate the consequences of this coupling 
on the stability of the closed-loop system. The modeling, based 
on Lagrangian mechanics, is proposed in Section 2. The method 
is applied to the Faint Intergalactic-medium Redshifted Emission 
Balloon (FIREBall) experiment [3,23]. The predicted natural fre-
quencies are compared to the spectral analysis of the flight data to 
validate the model. Then, the closed-loop stability is studied with 
the positivity framework [24,25] in Section 3. A sufficient condi-
tion is derived to ensure the asymptotic stability of the torsion-
azimuth model, regardless of the parameters of the flight train. It 
is demonstrated how the stability of the torsion-azimuth system 
is no longer guaranteed when considering the coupling with the 
pendulum dynamics and how it can be recovered by damping the 
pendulum oscillations with a reaction wheel. A numerical applica-
tion finally shows how the proposed model can detect and correct 
the instability of one of the pendulum modes of a system when 
the azimuth control is designed only on the torsion-azimuth dy-
namic model.

2. Dynamical modeling

2.1. Pendulum dynamics modeling

Let us consider the scheme of a typical balloon architecture in 
Fig. 1. The dynamics in the plane (y, z) are first considered, given 
a flight chain composed of n + 1 bodies, where body 1 is the bal-
loon and body n + 1 is the gondola. For each body k, let Lk be its 
length, ρk (∈ [0, 1]) the normalized position of its center of grav-
ity from the top end of the body, mk its mass, Ix

k its moment of 
inertia around x at the center of gravity. The distance between the 
center of gravity and the center of buoyancy of the balloon is λL1. 
The center of gravity is typically higher than the center of buoy-
ancy, since the envelop is reinforced at its top end to resist the 
buoyant force. The angle of each body with respect to an inertial 
reference frame is noted θ x

k . yk and zk are the variations of posi-
tion of the center of gravity of the body k. Each body is subject to 
its weight mkg. The system is assumed at an equilibrium altitude, 
with the buoyant force being equal in norm to the total weight 
of the system 

∑n+1
i mig. This assumption is legitimate because, 

during the pointing phase of the mission, (i) the altitude varia-
tions have low amplitude and are much slower than the dynamics 
2

Fig. 1. Model of the pendulum dynamics of the system.

of interest for the pointing control, and (ii) the system experi-
ences low vertical accelerations. In such operating conditions, all 
other aerodynamic forces and torques are considered as input dis-
turbances. Small angles are assumed: the analysis of flight data 
shows that the gondola typically experiences angles not exceeding 
0.2 degrees around the x and y axes, with periods going from the 
second (eigenmodes of the system) to hundreds of seconds (corre-
lated with external disturbances) [3].

For k > 1, the coordinates verify:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yk = y1 + (1 − ρ1)L1 sin θ x
1 +

k−1∑
i=2

Li sin θ x
i + ρk Lk sin θ x

k

zk = z1 − (1 − ρ1)L1 cos θ x
1 −

k−1∑
i=2

Li cos θ x
i − ρk Lk cos θ x

k .

(1)

With the assumption of small motion, the terms in θ̇ x
k sin(θ x

k ) are 
second order terms and can be neglected in the expression of the 
vertical velocities żk . Thus żk = ż1, ∀ k and since the system is at 
an equilibrium altitude żk = 0. The kinetic energy reads, with the 
assumption of small motion:

2Ec =
n+1∑
k=1

(
mk ẏ2

k + Ix
k

(
θ̇ x

k

)2
)

. (2)

Let us choose the vector of n + 2 degrees of freedom:

�x = [
y1 θ x

1 ... θ x
n+1

]T
. (3)

Let μk = ∑n+1
i=k mi , and μn+2 = 0. The potential energy derives 

from the buoyant force −μ1g applied to the center of pressure of 
the balloon, and from the weight mkg of each body:

E p = −μ1 g(z1 − λL1 cos θ x
1) +

n+1∑
k=1

mk gzk (4)

Under the small angle assumption, Lagrange’s equations read:

Mx�̈x + Kx�x = Tx (5)



Fig. 2. Bifilar pendulum model.

where Tx is the vector of generalized force and torques. Mx and Kx

are respectively the mass and stiffness matrices for the pendulum 
dynamics. Their expressions are detailed in Eqs. (A.1) and (A.2) in 
Appendix A.

Additionally, the gondola’s matrix of inertia at its center of 
gravity may have cross terms coupling the azimuth axis z with x, 
when the loading of the gondola is not symmetrical with respect 
to the y-axis. Let I z

n+1 be the moment of inertia of the gondola 
around z, and Ixz

n+1 the cross-term coupling x and z. The equations 
of motion become:⎡
⎣ Mx

0(n+1)×1
Ixz
n+1

01×(n+1) Ixz
n+1 I z

n+1

⎤
⎦[

�̈x

θ̈ z
n+1

]

+
[

Kx 0
0 0

][
�x

θ z
n+1

]
=

[
Tx

−T z
p

]
. (6)

The vector of generalized forces and torques on the right-hand 
side of Eq. (6) takes into account: (i) the aerodynamic force F y

aero

and torque T x
aero applied to the balloon, (ii) the torque T x

n+1 ap-
plied on the gondola by a reaction wheel to damp the pendulum 
motion around x-axis and (iii) the reaction torque −T z

p applied by 
the azimuth driving mechanism in the motorized pivot between 
the gondola and the body n:

[TT
x − T z

p] = [F y
aero T x

aero 01×(n−1) T x
n+1 − T z

p] . (7)

2.2. Torsion dynamics modeling

The bifilar suspension, which is an essential element of many 
balloon-borne flight chains, is modeled with Lagrangian mechanics. 
The torsion dynamics of the flight chain are then derived.

2.2.1. Bifilar suspension
A sketch of a bifilar pendulum is shown in Fig. 2, constituted 

of two cables carrying a body of mass M and moment of inertia I
around z at its center of gravity. Each cable has length L and mass 
m/2, and its center of gravity G1 (resp. G2) is in the middle of the 
cable. They are spaced by a distance 2r. The upper end of the ca-
bles cannot move along z. Let θ z

1 be the angle around z of the top 
of the suspension, which is free to rotate around z, and θ z

2 the an-
gle around z of the bottom of the suspension, with regard to an 
inertial reference frame. The twist angle is η = θ z − θ z . At small 
2 1

3

angles, the torsion around z of an angle η from the equilibrium 
position leads to a rotation of each cable around y, in opposite di-
rections, of angles θ y = ± r

L η. In practice, the relative torsion angle 
does not exceed a few degrees during pointing operations, thus a 
linear approximation to small angles is justified.

The two cables bring the same contribution to the kinetic en-
ergy. Given a single cable of mass m1 = m/2 and moment of inertia 
J1 = m1 L2

12 around y at point G1, and noting VG1 its velocity vector 
at point G1 and ω1 its angular velocity vector with regard to the 
inertial frame, its contribution to the kinetic energy reads at small 
angles:

2Ec1 = m1 || VG1 ||2 + J1 || ω1 ||2

= m1

[
rθ̇ z

1 + L

2

( r

L
η̇
)]2

+ m1L2

12

( r

L
η̇
)2

= m1r2

4

(
θ̇ z

1 + θ̇ z
2

)2 + m1r2

12

(
θ̇ z

2 − θ̇ z
1

)2
.

(8)

The contribution of the other cable is identical: Ec2 = Ec1. The 
body of moment of inertia I rotates of an angle θ z

2 , its contribution 
Ec3 to the kinetic energy verifies: 2Ec3 = I(θ̇ z

2)2. Under the small 
angle assumption, the vertical velocity of the body of mass M in-
volves second order terms in η̇η, and thus its translation kinetic 
energy can be neglected in Ec3. Furthermore, let us note I12 = mr2. 
The total kinetic energy Ec = Ec1 + Ec2 + Ec3 reads:

2Ec = I12

4

(
θ̇ z

1 + θ̇ z
2

)2 + I12

12

(
θ̇ z

2 − θ̇ z
1

)2 + I(θ̇ z
2)2 . (9)

When the suspension is twisted with an angle η, the mass M
is elevated over an height L 

[
1 − cos

( r
L η

)]
. The center of gravity of 

each cable, of mass m
2 , is elevated over an height L

2

[
1 − cos

( r
L η

)]
. 

The potential energy reads:

E p =
(

M + m

2

)
gL

[
1 − cos

( r

L

(
θ z

2 − θ z
1

))]
. (10)

2.2.2. Torsion dynamics of the flight chain
Same notations as for the pendulum motion are used: the bod-

ies are numbered from 1 to n +1, where 1 is the balloon and n +1
is the gondola. In the proposed model, a body k can either repre-
sent a rigid body, either a bifilar suspension. Both bring different 
contributions to the kinetic energy, and only the torsion of bifilar 
suspensions contributes to the potential energy. Each bifilar sus-
pension k is defined with its radius rk , its length Lk , its mass mk , 
and its moment of inertia I z

k = mkr2
k . Each rigid body k is defined 

with its mass mk and its moment of inertia I z
k at its center of grav-

ity. Note that the bifilar suspension can represent an un-deployed 
parachute in the modeling of the torsion dynamics (see [17] for 
example). Without loss of generality, an alternation of rigid bodies 
and bifilar suspensions can be assumed. Indeed, a fictitious rigid 
body k can be inserted between two successive bifilar suspensions, 
with I z

k = 0 and mk = 0. The bodies 1, 3,..., n-2, n, are rigid bod-
ies, and the bodies 2, 4, 6,..., n-3, n-1, are bifilar suspensions (n is 
thus an odd integer for the torsion model). Then, only the angles 
of the rigid bodies are defined since they are sufficient to describe 
the system.

When the body k is a rigid body, its contribution Eck to the 
kinetic energy reads:

2Eck = I z
k(θ̇

z
k )2 . (11)

From the bifilar model Eq. (8), the contribution Eck of a bifilar sus-
pension k to the kinetic energy reads:

2Eck = I z
k (

θ̇ z
k+1 + θ̇ z

k−1

)2 + I z
k (

θ̇ z
k+1 − θ̇ z

k−1

)2
. (12)
4 12



Let μk = ∑n+1
i=k mi , and μn+2 = 0. The contribution E pk of a bi-

filar suspension k to the potential energy reads (Eq. (10)):

E pk = (
mk

2
+ μk+1)gLk

[
1 − cos

(
rk

Lk
(θ z

k+1 − θ z
k−1)

)]
. (13)

The degrees of freedom are the angles of the rigid bodies:

�z = [
θ z

1 θ z
3 ... θ z

n−2 θ z
n

]T
. (14)

The degrees of freedom do not include the gondola’s azimuth, 
since it was already accounted for in the pendulum dynamics (Eq. 
(6)) and is independent from the torsion of the flight chain in 
open-loop (the connection between the body n and the gondola 
is a free pivot, in open-loop).

Under the small angles assumption, Lagrange’s equations read:

Mz�̈z + Kz�z = Tz (15)

Mx and Kx are respectively the mass and stiffness matrices 
for the torsion dynamics. Their expressions are detailed in Eqs.
(A.3) and (A.4) in Appendix A. The vector of generalized torques 
Tz = [T z

aero 01×(n−3)/2 T z
p]T takes into account (i) the aerodynamic 

torque T aero
z applied to the balloon and (ii) the control torque T z

p
applied to the bottom of the flight chain by the motorized pivot.

2.3. Coupled pendulum-torsion-azimuth model

Finally, the complete dynamical model about the x and z-axes 
reads:

MẌ + KX = [TT
x TT

z − T z
p]T (16)

With the vector of degrees of freedom:

X =
[
�T

x �T
z θ z

n+1

]T
(17)

and the symmetrical matrices M and K:

M =

⎡
⎢⎢⎢⎣

Mx 0
0(n+1)×1

Ixz
n+1

0 Mz 0

01×(n+1) Ixz
n+1 0 I z

n+1

⎤
⎥⎥⎥⎦ (18)

K = diag
(

Kx,Kz,0
)

(19)

In this paper, the pendulum dynamics about the y-axis are 
assumed to be decoupled with the dynamics around x and z: 
Ixy
n+1 = I yz

n+1 = 0. They can be modeled similarly to those around 
x.

The motorized pivot couples the torsion of the flight chain with 
the gondola’s azimuth. This model also shows that the azimuth 
control torque T z

p can trigger pendulum oscillations as well be-
cause of the inertia coupling, expressed with the moment of inertia 
Ixz
n+1.

The natural damping of balloon-borne flight trains is generally 
low and difficult to estimate, because it originates from aerody-
namic effects and from the friction in non-ideal joints. A damping 
matrix C can be introduced such that (16) is rewritten as:

MẌ + CẊ + KX = [TT
x TT

z − T z
p]T (20)

Considering the modal matrix �, composed of the eigenvectors 
of the system, the modal damping matrix Cm = �T C� is generally 
assumed to be diagonal. In this case, Cm is called a matrix of pro-
portional damping [26, Chap. 2.2.2] and reads Cm = diag(2ζiωi), 
where ζi and ωi are respectively the damping and the frequency 
of the ith mode. Typical modal damping values ζi are around 10−3.
4

Fig. 3. Sketch of the FIREBall system (not in scale).

2.4. Application of the modeling method and comparison with flight 
data

In this section, the modeling approach is applied to the Faint 
Intergalactic-medium Redshifted Emission Balloon (FIREBall) ex-
periment. The system consists of 11 bodies represented in Fig. 3. 
The values of the parameters are given in Table B.3 in Appendix B.

The main sources of system uncertainties are:

• the shape of the balloon, which can inflate and deflate 
throughout the flight and leads to uncertainties in the length, 
moment of inertia, position of the center of gravity, position 
of the center of buoyancy,

• the bifilar pendulum model, which might not capture all stiff-
ness sources,

• the flexible dynamics of the un-deployed parachute, approxi-
mated by a discretization in 4 elements. Such a discretization 
leads to a 8-th order model for the parachute alone with 4 tor-
sion modes. That was considered representative enough within 
the scope of this study,

• the mass and moment of inertia of the gondola, which depend 
on the ballast mass that was dropped during the flight,

• the static stretching of the parachute and bifilar suspension,
• the behavior of the connections between the bodies, idealized 

in the model.

Table 1 presents the frequencies of the eigenmodes predicted 
by the proposed model, i.e. the solutions in ω of the characteristic 
equation det(Mω2 − K) = 0 where M and K are defined by equa-
tions (18) and (19), respectively.

The zero-frequency modes are not shown. The structural modes 
of the gondola are estimated greater than 1000 rad s−1 and are not 
considered in this study. Because of the coupling Ixz

n+1, the pendu-
lum modes around x-axis also affect the azimuth of the gondola. 
The pendulum modes around y-axis are independent from the two 
other axes (Ixy

n+1 = I yz
n+1 = 0), but they are modeled similarly with 

the multiple pendulum model.
The modes of Table 1 can be compared to the spectral analysis 

of the FIREBall 2018 flight [3]. The amplitude spectrum of the gon-
dola’s rotation rates around the three axes is presented in Fig. 4. 
The data were recorded over a period of 4 hours with a sampling 
time of 120 ms while the attitude control system was active. The 
altitude was approximately constant around 38 km, and the gon-
dola’s angles did not exceed 0.2◦ around x and y, and 0.05◦ around 
z. The 3-axes Inertial Measurement Unit (IMU) hybridizes the mea-



Table 1
Eigenfrequencies (rad/s) predicted by the proposed model.

Mode 1 2 3 4 5 6 7 8 9 10 11

Pendulum (x) 0.265 0.831 2.53 3.47 6.45 11.6 18.1 20.3 44.2 63.9 128
Pendulum (y) 0.265 0.831 2.55 3.48 6.45 11.6 18.1 20.3 44.2 63.9 128
Torsion (z) 1.81 3.94 6.42 7.03 11.9 18.3

Fig. 4. Single-sided amplitude spectrum of the gondola’s rotation rates (deg/s) during FIREBall flight. The red dotted lines show the predicted pendulum modes (Table 1). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Table 2
Relative error (in %) between the model and the flight data.

Mode 1 2 3 4 5 6 7 8

Pendulum (x) 1.8 8.7 2.1 1.3 – 3.6 – 3.2
Pendulum (y) 1.6 8.3 0.5 2.0 – 3.9 – 3.1

surements of accelerometers with Fiber-Optic Gyroscopes (FOG) at 
25 Hz sampling rate. The hardware used during FIREBAll flight is 
more detailed in [3,27].

The pendulum modes 1, 2, 3, 4, 6 and 8 match resonance 
peaks observed on the spectra. The relative errors are presented in 
Table 2. However, we cannot conclude with certainty about pen-
dulum modes 5 and 7 or any torsion mode, since they do not 
exhibit distinguishable peaks on the flight data. They might be 
more damped than the other modes (naturally or under the effect 
of the closed-loop control), or not excited by the disturbances and 
control. The modes 9, 10, 11 are beyond the Nyquist frequency. It 
can be noticed that the pendulum modes are visible on θ̇z because 
of the inertia coupling that justified the proposed model.

The modal shapes of the pendulum modes 1 to 8 (around the 
y axis) are presented in Fig. 5. Mode 1 is an oscillation of the 
whole system around its center of gravity. Mode 2 is an in-phase 
oscillation of the balloon and the flight chain. As a consequence, 
the frequencies of modes 1 and 2 are very sensitive to the un-
certain balloon parameters, which may explain the errors up to 
8.7% on mode 2. The excitation of modes 1 and 2 is primarily cor-
related with low-frequency altitude variations [28,29]. Mode 3 is 
primarily a pendulation of the gondola around its center of gravity. 
Mode 4 includes vibrations of the flight chain and of the gondola. 
The pendulum modes 3 and 4 represented a large contribution to 
the telescope’s pointing error during the FIREBall 2018 flight [3]. 
Modes 3 and 4 can be excited by wind gusts [18], but also by 
the azimuth control of the gondola because of the inertia coupling. 
Pendulum modes of higher frequency (5 and more) are essentially 
oscillations of the elements of the flight train.
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Fig. 5. In scale modal shapes of pendulum modes 1 to 8 in the (x, z) plane.

3. Stability

The azimuth pointing control of balloon-borne gondolas is most 
often designed solely with a model of the torsion of the flight 
train [7–15]. However, in presence of a coupling between the 
gondola’s azimuth and the pendulum oscillations of the system, 
the azimuth control can excite and even destabilize the pendu-
lum modes. The stability of the coupled pendulum-torsion-azimuth 
model proposed in Section 2 is investigated using the positivity 
framework.



Fig. 6. Equivalence between the system and a collocated plant with a strictly positive real feedback. We note Z(s) is the closed-loop transfer from T z
d to θ̇ z

n .
3.1. The positivity framework

The definitions and results from [24,25] are recalled here to in-
troduce the positivity framework. This framework provides strong 
stability guarantees when using collocated actuators and sensors, 
and therefore it is widely used for the control of flexible structures 
[30].

Definition 1 (Positive realness [25]). A square transfer matrix Z(s), 
where s is the Laplace variable, is positive real if it verifies: (i) 
Z(s) has real elements for real s, (ii) Z(s) has elements which are 
analytic for Re(s) > 0, and (iii) Z(s) + Z∗(s) is nonnegative definite 
for Re(s) > 0 (Z∗(s) is the transpose conjugate of Z(s)).

Definition 2 (Strict positive realness [25]). A square transfer matrix 
Z(s) is strictly positive real if it verifies: (i) Z(s) has real elements 
for real s, (ii) Z(s) has elements which are analytic for Re(s) ≥ 0, 
and (iii) Z( jω) + Z∗( jω) is positive definite for all real ω.

Theorem 1 (Feedback of positive real systems [25]). If two systems S1
and S2 are put in feedback, and one of them is strictly positive real, and 
the other one is positive real, then the closed-loop system is asymptoti-
cally stable in the input-output sense. It also holds for all observable/con-
trollable modes.

Theorem 2 (Collocated control [25]). The transfer matrix of a structure is 
positive real if collocated force (respectively torque) actuators and trans-
lation (respectively rotation) rate sensors are used. An actuator and a 
sensor are collocated if they are attached to the same degree of freedom.

3.2. Stability of the torsion-azimuth model

In this section, the matrix of inertia of the gondola is consid-
ered diagonal: Ixz

n+1 = 0. In this case, the torsion and pendulum 
dynamics are decoupled, even in closed-loop. A sufficient condition 
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on the azimuth controller gains is derived to ensure the asymptotic 
stability of the closed-loop torsion-azimuth model.

The azimuth control presented here relies on one actuator (the 
motorized pivot), which applies a torque +T z

p to the bottom of the 
flight chain and −T z

p to the gondola, and two sensors: the gondo-

la’s rotation rate θ̇ z
n+1, and the relative rotation rate θ̇ z

n − θ̇ z
n+1 mea-

sured by the instrumentation of the pivot. A disturbance torque T z
d

is applied to the gondola around z. Both actuator and sensor dy-
namics are considered high enough in frequency bandwidth to be 
neglected in the positivity analysis.

The torsion model (15) augmented with the gondola’s azimuth 
dynamic model:

−T z
p + T z

d = I z
n+1s2θ z

n+1 , (21)

in closed loop with a general control law under the form:

T z
p = C1(s)θ z

n+1 − C2(s)θ z
n (22)

is represented in Fig. 6 (top block-diagram). C1(s) and C2(s) are 
dynamic controllers.

However, this architecture involves a non-square model and a 
non-square controller. Thus, the positivity and colocation frame-
work does not allow to conclude on the closed-loop stability. Nev-
ertheless, the closed-loop system can be written in an equivalent 
plant - feedback control interconnection, such that the new plant 
and controller are collocated. Indeed, by eliminating θ z

n+1 in equa-
tions (21) and (22), the closed-loop system can be interpreted as 
the bottom block diagram of Fig. 6. In this representation, (i) the 
plant from T p

z to θ̇ z
n is collocated, thus positive real (Theorem 2), 

and (ii) C z(s) is an equivalent control whose the strict positive re-
alness allows to characterize the asymptotic stability of the closed-
loop system (Theorem 1).

From Definition 1 applied to the Single-Input Single-Output 
transfer function C z(s), the closed-loop asymptotic stability con-
ditions can be stated.



Condition 1 (Uncoupled azimuth stability).

• C z(s) has real elements for real values of s,
• the roots of I z

n+1s2 + C1(s) only have strictly negative real parts,
• Re(C z( jω)) > 0 for all ω ∈R.

When these conditions are met, since the plant is positive real, 
Theorem 1 states that all controllable modes of the closed-loop 
system are asymptotically stable.

Remarks 1.

• These conditions do not depend on the parameters of the flex-
ible system. In particular, the knowledge of the eigenfrequen-
cies is not even required to ensure asymptotic stability, and 
the result is valid for all flexible modes of any flight chain,

• they ensure also the stability of the equivalent feed-forward 
controller F z(s), required for the stability of the initial-control 
interconnection.

• in the case of a pure collocated control C1(s) = C2(s), the strict 
positive realness of C2(s) ensures the asymptotic stability of 
the closed-loop system. But the pure collocated control cannot 
be applied during the pointing phase since the inertial attitude 
of the gondola must be controlled and regulated around 0. In-
deed the closed-loop steady state must ensures that T z

p = 0
and θ z

n+1 = θ z
n = 0 and not only T z

p = 0 and θ z
n+1 = θ z

n (from 
Eq. (22)). Thus C1(s) �= C2(s) and the stability property of the 
pure collocated control cannot be applied.

3.3. Stability of the coupled pendulum-torsion-azimuth model

When the matrix of inertia of the gondola has a non diago-
nal term coupling the azimuth axis with the roll axis: Ixz

n+1 �= 0, 
the Conditions 1 are no longer sufficient since the block-diagram 
equivalence presented in Fig. 6 is no longer valid. Indeed, in 
some configurations, the azimuth control might destabilize the 
pendulum oscillations, as it was suspected during previous Car-
men (2015) and PILOT (2015 and 2017) flights. Given an azimuth 
controller ensuring the asymptotic stability of the torsion-azimuth 
model (considered independent from the pendulum dynamics), as 
addressed in Section 3.2, it is demonstrated that a reaction wheel 
placed on the x-axis allows to ensure the asymptotic stability of 
the complete system.

The complete model (16) is considered with an azimuth con-
troller (22), and a reaction wheel providing a torque T x

n+1 =
−K (s)θ̇ x

n+1 to damp the pendulum motion of the gondola, where 
K (s) is a dynamic feedback containing the wheel dynamics. The 
closed-loop system can be interpreted as the block diagram in 
Fig. 7, considering the coupling terms Ixz

n+1θ̈
z
n+1 and Ixz

n+1θ̈
x
n+1 as 

disturbance torques in, respectively, the pendulum model (top 
block) and the torsion model augmented with the gondola’s az-
imuth (bottom block). Z(s) is the transfer function from a distur-
bance torque T z

d applied to the gondola around z, to the gondola’s 
rotation rate θ̇ z

n+1 around z, in the closed-loop torsion-azimuth 
model addressed in Fig. 6 (left block-diagram).

In the block diagram represented in Fig. 7, the plant from 
T to θ̇ x

n+1 is collocated, and the equivalent negative feedback 
reads:

C(s) = K (s) − (
Ixz
n+1s

)2
Z(s) (23)

and highlights that the torsion-azimuth closed-loop system Z(s)
may act as a destabilizing feedback for the pendulum system. 
However, the strict positive realness of C(s) is sufficient to en-
sure the asymptotic stability of the system. It is assumed that 
the azimuth controller (22) is designed such that the strict 
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Fig. 7. Model with coupled pendulum and torsion/azimuth dynamics.

positive realness of C z(s) is verified in Section 3.2. As a con-
sequence, Z(s) is real when s is real, and the poles of Z(s)
only have strictly negative real parts. It is immediate that C(s)
also verifies these two properties if K (s) is also stable. Then, 
items (i) and (ii) are fulfilled in Definition 2, and the Single-
Input Single-Output transfer function C(s) is strictly positive 
real if and only if Re(C( jω)) > 0 for all ω ∈ R (item (iii)), 
thus:

Condition 2 (Coupled pendulum-azimuth stability).

K ( jω) + (
Ixz
n+1

)2
ω2 Re (Z( jω)) > 0, ∀ω ∈R . (24)

In the general case Ixz
n+1 �= 0, the stability is not guaranteed with 

the positivity framework when the motorized pivot is the only ac-
tuator (K = 0), since Z( jω) can have negative values. The fully 
parameterized pendulum-torsion model (Eq. (20)) and the stabil-
ity condition (Condition 2) can be used during preliminary design 
phases to size a flight chain and the associated control system. 
That is illustrated in the section 3.4.

3.4. Illustration: destabilization of a pendulum mode by the azimuth 
control

In this section, the risk of destabilizing the pendulum modes 
with an azimuth controller is illustrated with a numerical exam-
ple. The design of the FIREBall system presented in Section 2.4 is 
such that this risk is very small. However, it was discussed to in-
crease the length of the bifilar suspension (body 7 in Table B.3, in 
Appendix B) from 21 m to 40 m to reduce the exposure of the in-
strument to parasite light coming from the balloon by reflection. 
In this new configuration, the torsion mode 2 and the pendulum 
mode 4 have the same frequency in open-loop. Using the cou-
pled pendulum-torsion-azimuth model proposed in Section 2, it 
is shown that the azimuth controller can destabilize the pendulum 
mode 4.

A proportional-derivative azimuth controller (Eq. (22)) is con-
sidered with Ci(s) = K pi + Kdi s , i = 1, 2 and:

K p1 = 3330 N m rad−1 Kd1 = 4440 N m s rad−1

K p2 = 23.3 N m rad−1 Kd2 = 3.1 N m s rad−1
(25)

This controller was designed solely on the nominal torsion model 
so as to provide a bandwidth of 0.7 rad s−1 while damping the 
torsion modes 1 and 2.



Fig. 8. Map of the closed-loop poles, for K = 0 and varying ballast mass.

Fig. 9. Response to an initial azimuth error of 1 rad, for a ballast mass of 50 kg.
The root locus of the system is presented in Fig. 8 with varying 
ballast mass, so as to represent all flight configurations. Only the 
first modes are represented for readability:

• azimuth control mode (rigid mode in open-loop, which was 
placed in closed-loop at a chosen dynamic of 0.7 rad s−1),

• torsion modes 1 and 2,
• pendulum modes 1 to 4 (near the imaginary axis).

The control mode and torsion modes are stable. However, as the 
ballast mass decays, the pendulum mode 4 becomes unstable. Nev-
ertheless, an evaluation of Z( jω) in condition (24) indicates that 
K (s) = 76 N m s rad−1 (we neglect the wheel’s dynamics) is suffi-
cient to ensure condition (24), and thus the asymptotic stability 
of the system. This is illustrated with a simulation presented in 
Fig. 9 showing the response of the gondola’s rotation rate θ̇ x

n+1
to an initial unitary pointing error in azimuth, for K = 0 and 
K = 76 N m s rad−1.

4. Conclusion

A new fully parameterized model of balloon-borne flight trains 
was developed to address the coupling of the pendulum dynam-
ics with the gondola’s azimuth. The method was applied to the 
Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall) 
experiment, and the modes predicted by the proposed model 
matched the resonance peaks on the spectral analysis of flight 
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data. The stability of the proposed coupled pendulum-torsion-
azimuth model was investigated with the positivity framework and 
sufficient stability conditions were derived. It was shown how an 
azimuth control can destabilize the pendulum modes, and how the 
stability can be recovered with an additional actuator. Although 
the pointing performance was beyond the scope of this paper, pre-
vious flight experiences showed that the pendulum dynamics and 
their coupling with the gondola’s azimuth largely contribute to the 
pointing error budget and thus motivated this work. The proposed 
model and stability conditions are general to any platforms and 
then can be used during preliminary design phases of new mis-
sions.
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Table B.3
Parameters of the FIREBALL system.

Body m (kg) L (m) ρ (-) r (m) Ix (kg m2) I y (kg m2) I z (kg m2)

1 3231 120 0.32 – 5.12 × 106 5.12 × 106 5.12 × 106

2 to 5 40.30 14.87 0.5 0.457 742 742 8.42
6 54.93 1.00 0.463 – 6.51 6.51 8.85
7 40.52 21 0.5 0.20 1489 1489 1.62
8 16.5 0.45 0.5 – 0.278 0.278 2.06
9 5.92 0.95 0.5 0.025 0.445 0.445 0.0037
10 33.5 0.70 0.5 – 1.37 1.37 0.377
11 2277 4.6 0.605 – 8510 8153 1538
Appendix A. Expression of the mass and stiffness matrices

The matrices of the pendulum dynamics (5) read

Mx =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1 (1 − ρ1)L1μ2 (ρ2m2 + μ3)L2

∗ Ix
1 + (1 − ρ1)

2L2
1μ2 (1 − ρ1)(ρ2m2 + μ3)L1L2

∗ ∗ Ix
2 + (ρ2

2m2 + μ3)L2
2

... ... ...

∗ ∗ ∗
... (ρn+1mn+1 + μn+2)Ln+1

... (1 − ρ1)(ρn+1mn+1 + μn+2)L1Ln+1

... (ρn+1mn+1 + μn+2)L2Ln+1

... ...

... Ix
n+1 + (ρ2

n+1mn+1 + μn+2)L2
n+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.1)

Kx = diag
(

0, (1 − ρ1)gL1μ2 − λgL1μ1, (ρimi + μi+1)gLi

)
,

2 ≤ i ≤ n + 1 . (A.2)

The matrices of the torsion dynamics (15) read

Mz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I z
1 + I z

2
3

I z
2
6 ... 0 0

I z
2
6

I z
2
3 + I z

3 + I z
4
3 ... 0 0

... ... ... ... ...

0 0 ...
I z
n−3
3 + I z

n−2 + I z
n−1
3

I z
n−1
6

0 0 ...
I z
n−1
6

I z
n−1
3 + I z

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)

Kz =

⎡
⎢⎢⎢⎢⎢⎢⎣

K2 −K2 ... 0 0

−K2 K2 + K4 ... 0 0

... ... ... ... ... ...

0 0 ... Kn−3 + Kn−1 −Kn−1

0 0 ... −Kn−1 Kn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

with Kk =
(mk

2
+ μk+1

) gr2
k

Lk
when the body k is a bifilar

suspension. (A.4)

Appendix B. Model data

The model discussed in Section 2.4 uses the data given in Ta-
ble B.3, and the values g = 9.70 m/s2, λ = 0.1, and Ixz

n+1 = −467
kg m2. Body 1 is the balloon. Bodies 2 to 5 represent the un-
deployed parachute, which is discretized in 4 elements to capture 
its flexibility. Bodies 6 to 10 are other suspensions or rigid bodies 
of the flight chain. Body 11 is the gondola equipped with ballast. 
The ballast mass affects the mass of the gondola, the position of 
its center of gravity and its inertia. In this model, a ballast mass of 
400 kg is considered. When the radius r is specified, the element 
is modeled as a bifilar suspension. Otherwise, it is a rigid body.
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