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ARTICLE

Impact of an accelerated melting of Greenland on
malaria distribution over Africa
Alizée Chemison 1✉, Gilles Ramstein 1,6, Adrian M. Tompkins 2, Dimitri Defrance3, Guigone Camus1,

Margaux Charra1 & Cyril Caminade4,5,6

Studies about the impact of future climate change on diseases have mostly focused on

standard Representative Concentration Pathway climate change scenarios. These scenarios

do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting

could occur, impacting climate and consequently societies. Here, we investigate the addi-

tional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in

Africa using several malaria models driven by Institute Pierre Simon Laplace climate simu-

lations. Results reveal that our melting scenario could moderate the simulated increase in

malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in

malaria transmission risk over West Africa and drive malaria emergence in southern Africa

associated with a significant southward shift of the African rain-belt. We argue that the effect

of such ice-sheet melting should be investigated further in future public health and agriculture

climate change risk assessments.
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Human malaria is a parasitic disease caused by five species
of Plasmodium and is transmitted by the bite of an
infected Anopheles female mosquito to a human host. The

tropical form of the parasite, Plasmodium falciparum, causes the
most severe clinical form of malaria and is widespread in Africa1.
Malaria is responsible for many deaths worldwide, 405 000
reported in 2018, 67% occurred among children between 0 and 5
years of age2. Ninety-three percent of total cases and 94% of
global deaths occurred in Africa in 20181. Hence malaria has
serious socio-economic impacts and can hamper development
over the African continent3. Historically, the prevalence of
malaria was significantly higher than today, even in temperate
regions of Europe and North America4, before large control
measures were undertaken following World War II5. Malaria
elimination was achieved post 1970s for European countries and
during the 1950s in the USA. Over the African continent, the
situation started improving during the past two decades with
increased financial support and malaria control efforts (insecti-
cide spraying, distribution of bed nets, development of rapid
diagnostic tests and drugs)5.

Malaria is a climate sensitive disease, with transmission often
seasonal, as specific temperature and rainfall conditions are
necessary for the development of Anopheles mosquitoes and
Plasmodium parasites6,7. An. gambiae, An. arabiensis and An.
funestus are the primary malaria vectors in the worst-affected
regions of Africa8. They are present when humidity exceeds at
least 40% but adult mosquitoes die rapidly above 38 °C9. Their
presence is strongly regulated by the (often seasonal) rains, which
are needed to provide breeding sites. After the sporogonic cycle,
which is the incubation period for the mosquito to become
infectious, the mosquito can infect additional humans. This
incubation period shortens when temperature increases. A
minimum temperature for sporogonic development was observed
at 17 °C for An. gambiae and P. falciparum10. Therefore, tem-
peratures must be high enough for the parasite to complete its
sporogonic cycle but if the temperature is too high then the
mortality of the vector increases, leading to a decrease in malaria
transmission risk. It should be emphasized that the temperature
thresholds and hydrological relationships are still studied and
debated10,11. Thus, while control efforts and economical devel-
opment have been successful in reducing transmission, changing
climate conditions can still impact both the seasonality and mean
intensity of malaria transmission12.

Several studies have investigated the impact of climate change
on future malaria risk. Martens et al.13 indicate that climate
change will mainly impact the fringes of endemic regions where
malaria transmission occurs year-round. These fringe regions
include South East Asia, South America, and parts of Africa13.
Another study by the same author in 1999 indicates that tem-
perate zones where competent Anopheles vectors are present but
where the temperatures are too cold for transmission are the most
at risk. These are North America, Central Asia, and northern
Europe14. Martens also shows that the length of the Length of the
transmission season (LTS) is impacted by changes in climate.
Some regions, which are projected to be drier in the future, may
experience a decrease in LTS. Several studies show that
rising temperatures might lead to a decrease in malaria trans-
mission in the warmest regions, as is the case in the semi-arid
Sahel15. A temperature increase could, however, increase malaria
transmission in colder regions such as the plateaus of East
Africa15. These studies highlight the sensitivity of malaria trans-
mission to changes in temperature and rainfall. Changes in the
LTS were simulated for the twenty-first century by Caminade
et al.16 using an ensemble of malaria and climate models driven
by climate scenarios such as the Representative Concentration
Pathway 8.5 (RCP8.5)17. This study highlights a decrease in LTS

over the warm plains of West Africa and an increase in LTS
over the plateaus of East Africa during the 2080s based on
RCP8.516.

One limitation of previous public health impact studies is that
they have usually only considered standard climate change RCP
scenarios produced within the Couple Model Intercomparison
Project (CMIP) framework18. RCP span a range of greenhouse
gases (GHGs) emission scenarios, but may neglect potential rapid
climate destabilizing mechanisms, such as a rapid ice-sheet
melting at high latitudes and accelerated melting of permafrost.

General Circulation Models (GCMs) are not usually fully
coupled with ice-sheet models. Instead, their temperature and
precipitation outputs are used to force ice-sheet models or
regional models offline to estimate additional sea level rise
(SLR)19. The melting of the ice sheet is not directly accounted for
in the GCMs, nor is the effect of their feedbacks with the other
sub-climatic systems. Melting is a nonlinear process due to
freshwater inputs slowing down the Atlantic Meridional Over-
turning Circulation (AMOC)20 and due to positive feedbacks
with temperature increase19, since the albedo of exposed surfaces
decreases following the melting of the ice sheet leading to an
increased absorbance and further melting of the ice sheet. In
addition, the potential increase in liquid with respect to solid
precipitation increases the mass loss of the Greenland ice sheet
further19. There is also a mass loss due to glacier dynamics19,21.
In Greenland, recent observations suggest that important pro-
cesses responsible for glacier front destabilization that are not
included in the current state of the art dynamical ice-sheet
models21,22. Such destabilization could lead to an iceberg debacle
similar to some extent to past Heinrich events23. While the IPCC
fifth Assessment Report (AR5) predicts an additional SLR ranging
between 0.52 and 0.98 m by the end of the twenty-first century24,
rapid ice-sheet destabilization could significantly increase these
estimates.

A significant release of freshwater at high latitudes would
likely have significant consequences for climate over the Eur-
opean and African continents, directly affecting the
AMOC25,26. Currently, the driving force behind the AMOC is
the sinking of the cold, dense waters of the North Atlantic. This
descent drives the ocean currents like a “conveyor belt”,
allowing warm waters to rise from the south to the north and
thus redistributing heat and water between hemispheres. An
additional supply of freshwater in the Northern Atlantic would
lead to a decrease in the density of cold surface water. This
effect slows down the sinking of cold surface water and the
AMOC. A slowdown of the AMOC affects the ocean tem-
perature, as well as pressure gradients over the Atlantic ocean.
The respective cooling of the North Atlantic and the Sahara
desert with respect to the southern Atlantic ocean is usually
associated with a southward shift of the rain-belt ultimately
leading to decreased rainfall over the Sahel26.

Such extreme changes in rainfall over the African continent
might have significant implications for both the location and
intensity of malaria transmission that may fall outside the range
predicted by standard RCP scenarios. As most previous impact
studies have focused on standard climate change scenarios27, the
purpose here is to investigate the impact of such a rapid ice-sheet
destabilization of Greenland, on climate and malaria distribution
in Africa using a multi malaria model approach. An ensemble of
destabilization scenarios ranging from limited (SLR= 1 m) to
extreme (SLR= 3 m) ice melt is utilized to estimate associated
changes in climate and malaria risk over Africa and discuss
potential public health implications. The aim of this study is not
to make realistic projections of what will happen, but to use
extreme cases of freshwater input to study mechanisms and
patterns in one specific climate model.
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Results
Malaria model validation and historical context. Mean malaria
prevalence (%), as simulated by Liverpool Malaria Model (LMM)
(Fig. 1b) and VECtor borne disease community model of ICTP
TRIeste (VECTRI) (Fig. 1c), is compared to Malaria Atlas Project
(MAP) prevalence data (Fig. 1a) for 2000–2017.

Maximum MAP prevalence values reach about 70% over
Central Africa and parts of West Africa (Fig. 1a). Prevalence
hotspots are shown over Burkina Faso, parts of southern Guinea,
the Democratic Republic of Congo, and parts of Mozambique.
The surrounding regions still have large prevalence values
ranging between 30% and 60%. Malaria prevalence values
approach 0 over the north of the Sahel. Very low prevalence

values are shown over the plateau of East Africa, the South of
Namibia, Botswana, and South Africa (Fig. 1a).

The malaria-free zones are well captured by the LMM except
over Ethiopia that is considered malaria-free by the MAP data
(Fig. 1a, b). The northern malaria fringe south of the Sahara is
simulated too far south by the LMM model (Fig. 1b) with respect
to MAP data (Fig. 1a). The largest prevalence values are shown
over Western and Central Africa. LMM simulated prevalence is
distributed zonally, namely prevalence linearly decreases with
increasing or decreasing latitude from the equator (Fig. 1b). The
MAP data show a more heterogeneous prevalence pattern with
localized maximum shown over West, Central, and South-Eastern
Africa (Fig. 1a). VECTRI model overestimates prevalence
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Fig. 1 Malaria model validation maps. a Averaged MAP prevalence data for 2000–17. Averaged prevalence (%) for b LMM and c VECTRI. d Lysenko and
Semashko malaria endemicity classes for 1900s. Endemicity classes for 1951 derived from e MARA, f LMM_R0 and g MIASMA.
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compared to MAP and LMM (Fig. 1a–c). VECTRI shows
prevalence hotspots (>70%) over the same regions as MAP but
these hotspots encompass a much broader geographical range
(Fig. 1c). The malaria-free regions south of the Sahara are
reproduced at the right latitude by the VECTRI model but it
simulates malaria risk over the southern part of Algeria, this
feature is absent in MAP or LMM simulations. Eastern and
southern African regions which are normally malaria-free, reach
prevalence values >60% in VECTRI simulation (Fig. 1c). It is
nonetheless noteworthy that MAP data represent recent malaria
distribution and includes the effect of interventions, which is not
considered in LMM and VECTRI. The spatial range of malaria
was far greater during the pre-intervention era, as represented by
the Lysenko and Semashko data, and the VECTRI model is closer
to this early twentieth century estimate.

All Mathematical Malaria Models (MMM) are solely driven by
climate variables, and maximum in prevalence are simulated over
Central Africa (Fig. 1), where the largest rainfall occurs (Fig. 2g).
The LMM and VECTRI malaria-free areas correspond to regions
where climate is unsuitable for malaria transmission and where
population densities are extremely low. The MAP maximum
mostly corresponds to regions where the Anopheles mosquitoes
became resistant to insecticides. Our ensemble of MMMs does
not consider the effect of control and socio-economics factors
which is considered in MAP.

Simulated LTS was transformed into endemicity classes (see
“Methods”) and compared to the Lysenko and Semashko data4

(Fig. 1d–g), to validate the monthly MMMs, the Mapping Malaria
Risk in Africa (MARA) model, Modeling Framework for the
Health Impact Assessment of Man-Induced Atmospheric
Changes (MIASMA) and the steady state version of LMM
(LMM_R0). The holoendemic area is shown over Central Africa,
especially over the Democratic Republic of Congo (Fig. 1d).
Patchy maxima are shown over coastal West Africa and Burkina
Faso (Fig. 1d). Holoendemic transmission is also shown over
Tanzania (Fig. 1d). Around those regions, hyperendemic
transmission is depicted from West to Southeast Africa (Fig. 1d).

Over the northern fringe of the Sahel and southern Africa,
malaria transmission is mostly mesoendemic (Fig. 1d–g). The
Sahara Desert, parts of South Africa and high plateaus of East
Africa were malaria-free during the 1900s (Fig. 1d). Notably,
meso to hyperendemic malaria transmission is also shown over
the coasts of North Africa for the Lysenko and Semashko data,
and this feature is not well captured by the MMMs (Fig. 1d–g).
This is consistent with the fact that the Lysenko and Semashko
data are based on all Plasmodium species (including the more
temperate form of the parasite, Plasmodium vivax, that used to be
prevalent over North Africa), while our MMMs are solely
parameterized for the transmission of the tropical form of the
parasite, P. falciparum.

The MARA and LMM_R0 models provide similar results
(Fig. 1e–f), and they are both in good agreement with the Lysenko
and Semashko data (Fig. 1d). The holoendemic regions
encompass West and Central Africa. Near those areas, malaria
endemicity varies from hyperendemic to mesoendemic. Hypoen-
demic regions are distributed from North Africa to the South of
the Sahara, on the East African plateaus, and for LMM_R0 over
the southern part of South Africa. The MARA model simulates
moderate transmission over the northern part of South Africa e.g.
over the Limpopo region and Krueger park where moderate
malaria transmission still occurs today. The hyperendemic zones,
as simulated by MIASMA (Fig. 1g), cover a broader geographical
range with respect to other MMMs and the Lysenko and
Semashko data (Fig. 1d–f). These zones are distributed from East
to West Africa, between 14°N and 17°S. Around those areas,
malaria transmission decreases, switching from wide

hyperendemic zones to smaller mesoendemic zones. Hypoen-
demic regions are mainly restricted to the Sahara, to part of the
Namibian coasts, and to high altitude regions of East Africa.

Overall, MARA, LMM_R0, and LMM correctly simulate
malaria transmission at regional scale, while the MIASMA and
VECTRI models tend to overestimate malaria transmission and
its geographical range. Different validation scores are provided in
Table 1: the Pearson correlation test, the Normalized Mean
Absolute Error (NMAE), and the Root Mean Square Error
(RMSE) were calculated for each model. The largest correlation
coefficient is shown for LMM prevalence (0.527) and MARA LTS
(0.561). The LMM model and MARA models also show better
RMSE and NMAE scores. MMMs differ in their application and
therefore in their formulation. The threshold values for
temperature and precipitation vary between each MMM (see
“Methods”). Therefore, MMMs do not have the same sensitivity
to changes in rainfall and temperature (Supplementary Fig. 1). In
addition, the outputs of the monthly MMMs differ, they are
transformed to obtain the LTS using different assumptions, and
this can lead to large differences despite identical climate inputs.
In the following, we will primarily focus on the two best
performing models (LMM and MARA), except for the innovative
question of the additional ice-melting effect where the 5 models
are presented. Results for other MMMs are presented in Supple-
mentary Information.

Impact of RCP8.5 simulation on malaria. The largest increases,
in simulated prevalence (Fig. 2b) and LTS (Fig. 2d), are shown
over the plateaus of East Africa for the RCP8.5 scenario. Max-
imum values slightly exceed 60% for simulated prevalence
(Fig. 2a) and LTS can sometimes exceed 10 months (Fig. 2c),
denoting almost year-round malaria transmission.

These maxima are shown in areas where temperatures typically
range from 22 to 30 °C (Fig. 2e). The highest rainfall amounts
ranging from 100 to 300 mm.month−1 are simulated over the
western coast of Central Africa (Fig. 2g). The areas free of malaria
coincide with temperatures above 32 °C or below 20 °C and arid
areas (below 50 mm.month−1, Fig. 2e–g).

All MMMs simulate an increase in LTS and malaria prevalence
over the highlands of East Africa during the 2040s (Fig. 2b–d and
Supplementary Fig. 2) for the RCP8.5 scenario. The simulated
increase in prevalence reaches about 18% and the future LTS is
simulated to lengthen by about 3 months over Ethiopia
(Fig. 2b–d). This increase is associated with a rise in temperature
of up to +3 °C (Fig. 2f) and an increase in precipitation of at least
40 mm.month−1 (Fig. 2h). An increase in prevalence and LTS is
also shown over the plateau of central Angola (Fig. 2b–d), this
simulated increase is consistent with an increase in temperature
and rainfall (Fig. 2f–h). Conversely, the dynamical LMM model
simulates a decrease in prevalence over the Sahel and southern
Africa (Fig. 2b). These differences are associated with a 1 °C
temperature increase over the Sahel (Fig. 2f) where annual mean
temperatures were already exceeding 30 °C (Fig. 2e). However,
there is no major change in simulated rainfall over this region
(Fig. 2h). These results are in agreement with former findings
based on a larger multi-model risk assessment16,28. In addition,
the simulated decrease in malaria risk over the plains of West
Africa and the increase shown over the plateaus of East Africa are
similar to twentieth century malaria endemicity trends
(1900–2007)29.

If we consider the standard RCP8.5 scenario, rising tempera-
tures tend to moderately shorten the length of the future LTS over
the plains of the Sahel (Fig. 2b–d). Over these regions, future
temperatures might become too warm for Anopheles mosquitoes
to survive. In contrast, there is a simulated increase in the LTS
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Fig. 2 Mean and future changes in climate parameters and malaria risk based on the RCP8.5 scenario. The left-hand column (a–c–e–g) depicts mean
patterns for the 2040s and the right-hand column (b–d–f–h) shows future differences between the 2040s and 2010s. a, b malaria prevalence (%)
simulated by the LMM, c, d LTS (in months) based on the MARA model. e, f temperature (°C) and g, h precipitation (mm.month−1).
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shown over the East African highlands (Fig. 2b–d). Future
temperature exceeds the minimum temperature threshold for the
parasite to replicate inside the mosquito vector. This effect is
accentuated by a simulated increase in precipitation over this
region (Fig. 2h).

Additional impact of a rapid ice-sheet melting on malaria. In
the ICE1m experiment, the simulated temperature increase is
more moderate with respect to the RCP8.5 simulation (Fig. 3f vs
Fig. 2f). However, simulated rainfall change in ICE1m sig-
nificantly differs from RCP8.5, with a significant rainfall decrease
shown over the northern half of the African continent, while an
increase in rainfall is simulated over southern Africa, denoting a
southward shift of the African rain-belt (Fig. 3h). There is a
strong increase in both the LTS and malaria prevalence over the
southern part of Africa and over the Eastern African plateaus
(Fig. 3b–d). A clear decrease in simulated malaria prevalence is
depicted over south of the Sahara with the LMM model (Fig. 3b).
The same analysis is presented in Supplementary Information for
the other MMMs (VECTRI, MIASMA, and LMM_R0, see Sup-
plementary Figs. 2 and 3) and for other ICEXm simulations
(ICE0.5m, ICE1.5m, ICE3m, see Supplementary Fig. 6).

In order to focus on the additional effect of the ice-melting
signal, the difference between the ICE1m and the
RCP8.5 simulation for temperature and precipitation is shown
in Fig. 4, while changes in malaria transmission are shown in
Fig. 5. Simulated temperatures tend to be colder in ICE1m with
respect to RCP8.5 over Africa, except over the western coast of
Namibia and the southern-east coast of Africa where a local
increase in temperature is simulated (Fig. 4a). Simulated
temperatures are colder over the Sahara Desert and to a lesser
extent over southern Africa, in ICE1m with respect to RCP8.5
(Fig. 4a). A very pronounced drying signal is simulated over the
Sahel, East Africa, and Central Africa whereas a significant
increase in rainfall is simulated over southern Africa (Fig. 4b).
These climatic changes have an impact on malaria prevalence in
all MMMs simulations (Fig. 5).

The rapid melting of Greenland tends to reduce malaria
transmission further over the Sahel. This decrease is moderate for
ICE1m (Fig. 5c–e) and intensifies in ICE3m (Supplementary
Fig. 7). The simulated difference in malaria prevalence ranges
between −4 to −8% for VECTRI and LMM over the Sahel
(Fig. 5a, b). This decrease is more pronounced in the VECTRI
experiment (Fig. 5b) with respect to the LMM simulation
(Fig. 5a). The simulated increase in malaria transmission shown
in RCP8.5 is reduced in ICE1m over the plateaus of East Africa
(Fig. 5). For LMM this signal ranges from −6 to −16% (Fig. 5a)
while for VECTRI this signal does not exceed −10% (Fig. 5b). For
LMM_R0 and MIASMA, LTS shortens by about one month
between ICE1m and RCP8.5 (Fig. 5c–e). MARA simulates a LTS
difference ranging between −1 and −3 months over the plateaus
of East Africa (Fig. 5d). The additional impact of ice-sheet
melting tends to increase malaria transmission risk over the
western coasts of Central and southern Africa (Fig. 5). This signal

ranges between 6 and 14% for simulated malaria prevalence and
between 1 and 3 months for simulated LTS over southern Africa
at the end of the twenty-first century". (Supplementary Fig. 4).

Based on these future changes, four geographical areas were
defined to study the temporal evolution of malaria transmis-
sion and its relationship with simulated changes in tempera-
ture and rainfall (Supplementary Fig. 4.a for malaria
parameters and Supplementary Fig. 4.b for climatic para-
meters). The largest changes are simulated over southern
Africa at the end of the twenty-first century and are related to
an increase in precipitation (Supplementary Fig. 4.4). Changes
in endemicity classes are provided in Supplementary Table 1
and Supplementary Fig. 5. For more than 80% of spatial points
there is no change in endemicity classes (Supplementary
Table 1). For the remaining points, endemicity classes change
by one class maximum.

Discussion
Malaria transmission risk increases during the twenty-first cen-
tury over highland regions of East Africa while it slightly
decreases over West Africa based on the RCP8.5 scenario. The
decrease in the West is mainly due to temperatures exceeding the
upper survival threshold of Anopheles mosquitoes, while the
temperature increase over the East African plateaus exceeds the
minimum sporogonic threshold. By including an additional
freshwater release in the North Atlantic Ocean, climate and
malaria risk are significantly modified. These changes are con-
sistent across all malaria models. The increase in risk over East
Africa is more moderate due to lower temperature and pre-
cipitation conditions with respect to the RCP8.5 scenario. A rapid
ice melting induces a southward shift of the African rain-belt.
This latitudinal shift amplifies the simulated decrease in malaria
risk over West Africa and increases the risk over southern Africa.
This could have serious implications for the populations of
southern Africa, which have not been intensively exposed to
malaria in recent decades.

If we consider the current state of the art global and regional
climate models, the African monsoon is a complex phenomenon
to represent and simulate correctly. First, there is a strong natural
decadal to multi-decadal variability in African rainfall30. For
example, mega-droughts occurred over the Sahel during the early
nineteenth century, before the Anthropocene took place31. Sec-
ond, the response of the African monsoon to different RCP
emission scenarios has been summarized in the WG1 report of
the IPCC AR5 report. Results show large differences in simulated
rainfall by different GCMs over the twenty-first century32. For
instance, simulated rainfall changes in the 32 GCM ensemble for
RCP8.5 are quite diverse, some models show an enhanced
monsoon, while others simulate a drying signal. Some climate
models depict a latitudinal shift of the rain-belt whereas others
models only show changes in rainfall intensity with no clear
latitudinal shift of the monsoon. Although there is a strong
variability between models regarding future climate change with
standard RCP emission scenarios, the southward shift of the

Table 1 Malaria models skill scores.

LMM (Prevalence) VECTRI (Prevalence) MARA (LTS) MIASMA (LTS) LMM_R0 (LTS)

Pearson test 0.527* 0.404* 0.561* 0.441* 0.501*
NMAE 0.127 0.149 0.193 0.381 0.227
RMSE 0.185 0.228 0.011 0.016 0.012

Different skill scores (Pearson correlation coefficients, NMAE and RMSE) were calculated.
The MAP prevalence data are used as baseline for LMM and VECTRI, and the Lysenko and Semashko data are used as baseline for MARA, MIASMA, and LMM_R0. Significant correlations at the 99%
confidence interval are denoted by *.
LTS Length of the Transmission Season, NMAE Normalized Mean Absolute Error, RMSE Root Mean Square Error.
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Fig. 3 Mean and future changes in climate parameters and malaria risk for the ICE1m experiment. The left-hand column (a–c–e–g) depicts mean
patterns for the 2040s and the right-hand column (b–d–f–h) shows future differences between the 2040s and 2010s. a, b Simulated malaria prevalence
(%) by the LMM. c, d LTS (in months) based on the MARA model. e, f Temperature (°C) and g, h precipitation (mm.month−1).
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African monsoon due to freshwater release is a robust result.
During past glacial periods, rapid Northern ice-sheet melting led
to global reorganization of ocean and atmosphere dynamics. Over
North Atlantic, the surge of icebergs and associated freshwater
triggered a decrease of North Atlantic Deep Water and a slow-
down of the AMOC. Over Africa, in the tropics, the atmospheric

circulation response corresponds to a large subtropical jet varia-
tion and a southward shift of Inter-Tropical Convergence Zone
(ITCZ)33. This change is recorded in paleo proxy of temperature
and precipitation34 and confirmed by most climate model
simulations ran in paleo mode35. The decrease of the AMOC is
triggered by freshwater inputs in our simulations. Such a large

ba

Fig. 4 Impacts of an additional ice-melting on climate parameters. a Temperature (°C) and (b) rainfall (mm.month−1) difference between the ICE1m and
RCP8.5 simulation for the 2040s.

c d e

ba

Fig. 5 Difference in malaria risk between the ICE1m simulation and the RCP8.5 simulation for the 2040s. Difference in prevalence (%) for (a) LMM and
(b) VECTRI and difference in LTS (months) for (c) LMM_R0, (d) MARA, and (e) MIASMA. The different boxes represent key Africa regions (red for West
Africa, orange for East Africa, blue for west central coasts of Africa, green for southern Africa), see “Methods” for further details.
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decrease of the AMOC and its stability may be produced using
GHGs solely20,36. Indeed, the synergistic contribution of Green-
land ice-sheet melting (freshwater release) and GHGs warming
may lead to a collapse of the AMOC20. In addition, very recent
studies show that there is a current slowdown of AMOC leading
to the weakest state of the AMOC occurring in recent decades37.
A southern shift of the ITCZ and subtropical jet shifts the African
monsoon southward26,38.

Simulated changes in malaria transmission based on the
RCP8.5 scenario are consistent with other studies28,39. Never-
theless, the MMMs used in this study have significant limitations.
Only the direct impact of climate is considered in our malaria
models, except for the VECTRI model which includes population
density effects which are fixed in time. Our models do not con-
sider age stratification and dynamic population changes2 and do
not consider changes in control measures, the development of
new malaria drugs and treatments, and importantly changes in
socio-economic factors that significantly impact and shape
malaria burden at country scale5. Moreover, the VECTRI and
LMM models are validated by a statistical model (MAP) which
itself can be biased. On the other hand, the IPSL climate model
does not account for all climate change-related feedbacks. Indeed,
dynamical changes in temperature and precipitation inevitably
affect vegetation, which in turn could affect mosquito dynamics at
small spatial scale40,41. Finally, an increase in spatial resolution is
necessary to take into account the hydrology of basins (with the
presence of river, lakes...) and dams42. In addition, we only use
one climate model for practical reasons. Running several climate
models with a freshwater release is a time-consuming exercise
and will require several international collaborations with other
climate centers worldwide. Such “tipping point” multi-climate
model exercise should be encouraged in the future.

Our scenario shows the importance of the freshwater release in
the North Atlantic in terms of feedback on temperature and
precipitation and therefore on malaria transmission and poten-
tially other climate-sensitive diseases. Given the accelerated pace
of observed environmental changes, particularly over peri-Arctic
and Arctic regions, it is now critical to develop novel climate
scenarios which consider such rapid climate tipping points.
Assessing the impact of such tipping point scenarios (including a
rapid ice-sheet melting at high latitudes, but also permafrost melt)
and the associated uncertainties on critical sectors, such as public
health, agriculture, and water resources, should be a research
priority for the climate and impact modeling communities in the
upcoming years.

Method
Malaria models. An ensemble of five MMM is used. Two MMMs, the LMM43 and
the VECTRI44 are dynamical malaria models that simulate the vector and parasite
dynamics, and they are both driven by daily rainfall and temperature data. The
other three MMMs are simpler in their formulation and are driven by monthly
rainfall and temperature data. These models are the MARA model45, MIASMA46,
and the steady state version of LMM (LMM_R0). All malaria models have been
parameterized to simulate the transmission of P. falciparum, the malaria parasite
which causes about 90% of all plasmodial infections in Africa1,47. It is noteworthy
that most MMMs have been parameterized based on field and laboratory data for
An. gambiae. For the three models driven by monthly climate data, the simulated
LTS (number of months per year) is used for model intercomparison. For the two
dynamical MMMs, we investigate malaria prevalence (in %) which is the pro-
portion of the human population infected with malaria.

The MARA model is a MMM that estimates the distribution of stable malaria
transmission45. This model simulates the effect of monthly mean rainfall and
temperature on malaria transmission. This model requires three consecutive
months with more than 60 mm of rain combined with a catalyst month with more
than 80 mm. The temperature must be higher than 19.5 °C, and a temperature
function is combined with the seasonality index derived from the standard
deviation of monthly rainfall16. The resulting output for a given month is 1 if
climate is suitable for malaria transmission and 0 otherwise45. LTS is then
calculated as the sum of the number of months (consecutive or not) suitable for
transmission for a given year. This model has originally been developed to estimate

climate suitability for malaria at the African continental scale and does not
consider micro-climatic conditions, watershed specificity, and the impact of human
intervention45.

MIASMA is a dynamical monthly malaria model14. MIASMA is based on
simple functions linking monthly mean temperature and precipitation to malaria
Transmission Potential (TP). Temperature affects the probability of survival and
mosquito biting rate, and a minimum of monthly precipitation is essential for
malaria transmission14. The temperature range suitable for potential transmission
ranges from 16 to 40 °C. In addition, rainfall must be greater than or equal to 80
mm.month−1 for 4 consecutive months14. If TP > 0 (equivalent to a basic
reproduction number R0 > 1), we consider that a given month is suitable for
transmission. LTS is then calculated by summing all suitable months (consecutive
or not) for a given year.

LMM is an epidemiological and dynamical malaria model. It simulates the
dependency of the malaria vector and parasite to daily rainfall and temperature
conditions12,43,48. This model provides information for both Anopheles vector and
the human host. It classifies the vector and host population into three categories
susceptible, exposed, and infectious. Precipitation during the previous 10 days
influences the number of mosquito eggs and the mortality of the larvae.
Temperature influences the mortality rate of the mosquito, the egg-laying/biting
(gonotrophic) cycle, and the incubation time of the parasite in the mosquito
(sporogonic cycle). Both cycles depend on the number of degree days above a
specific temperature threshold. For the gonotrophic cycle, the threshold is 9 °C and
takes about 37 humid degree days above 7.7 °C, whereas the sporogonic cycle takes
approximately 111 degree days with a threshold of 18 °C49. LMM has many
epidemiological parameters as outputs. We focus on malaria prevalence (in %)
which is the infected population rate.

LMM_R0 is a simplified, steady-state version of LMM12. This model uses
monthly rainfall and temperature data as inputs. Rainfall influences the number of
adult mosquitoes for each month. The minimum temperature threshold is 18 °C.
The probability of surviving mosquitoes is a function of temperature, with a near-
zero probability (0.04) for a temperature of 40 °C12. The output is the basic
reproduction number (R0), which indicates the number of secondary infections
arising from one infected case in a totally susceptible population. For a given
month, if R0 > 1 then we assume that climatic conditions are suitable for malaria
transmission and we assign 1 for this particular month and location. LTS is then
calculated as the sum of suitable months (consecutive or not) for a given year.

VECTRI is a mathematical model that includes the effects of precipitation,
temperature, population immunity, hydrology (using a simple pool model), and
human population density44. VECTRI has been applied to both climate change
scenarios16 and seasonal prediction of malaria. The inputs are daily precipitation,
daily temperature, and population density. This model considers the impact of
temperature and precipitation variations on the life cycle of the vector (larvae and
adults) and the P. falciparum parasite similarly to LMM. The model
parameterization is mostly based on data available for An. gambiae. The
temperature affects both sporogonic and gonotrophic cycles. A hydrological basin
model also represents the precipitation effect. The number of breeding sites
increases following rainfall events and then decreases when evaporation and runoff
increase. Extreme rainfall limits the number of larvae through a flushing effect44.
As the entomological inoculation rate increases, it drives increasing immunity in
the population following the model of Laneri et al.50, which is lost over a 3-year
timescale, and immune populations are subject to lower transmission probabilities
related to the susceptible population. VECTRI also considers population density
when calculating the vector-biting rate. The population density used is that of the
Afripop project for the year 200551. Large population density leads to a dilution
effect, leading to lower transmission in urban environments. While the base values
of the model parameter settings are taken from published laboratory and field
studies, these parameters are then calibrated within a set tolerance range (also
estimated from the literature if available) using a constrained genetic algorithm
machine learning approach described by Tompkins, A. & Thomson, M.52. Fifteen
model parameters were calibrated fitting the model to over 200 field studies
reporting the parasite ratio spanning the period 1980–2012 for a wide range of
lowland and highland locations across Ethiopia, available from the Oxford MAP
database53. The VECTRI malaria model has many standard outputs44. We focus on
simulated malaria prevalence (in %) to compare VECTRI with LMM results.

Malaria validation data. In order to validate the malaria model simulations, we
employ two historical malaria datasets (Fig. 1). The first dataset is malaria pre-
valence in children at 2–10 years of age (in %) derived from the MAP53. MAP
provides gold standard datasets for spatial malaria risk estimate. The MAP output
data are based on a Bayesian statistical model, which is driven by a set of envir-
onmental and other socio-economic covariates54. Simulated malaria prevalence
rates by VECTRI and LMM are directly compared to the MAP annual data. The
period used for validation corresponds to the average between 2000 and 2017. The
regions where prevalence values are below 1% are considered free of malaria risk.

The second dataset is based on the work conducted by Lysenko and Semashko
during the 1960s4. This dataset corresponds to malaria prevalence data for children
(PR) data that was transformed into malaria endemicity categories. These data
provide 1900s malaria endemicity estimates for all Plasmodium parasites before
human intervention occurred at a global scale. This dataset is a better estimate of
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the impact of environmental conditions on malaria burden, as limited malaria
control measures were undertaken prior to the 1920s55. These data are binned into
five categories: free, PR < 1%; hypoendemic, PR > 1% and PR < 10% ; mesoendemic,
PR > 10% and < 50%; hyperendemic, PR > 50% and < 75%; and holoendemic
transmission, PR > 75%56. The monthly malaria models (MARA, MIASMA, and
LMM_R0) are compared to the Lysenko and Semashko data. The LTS malaria
model output was transformed in endemicity categories, holoendemic transmission
was defined for LTS > 9 months, hyperendemic transmission for LTS ranging
between 6 and 9 months, mesoendemic for LTS ranging between 3 and 6 months,
hypoendemic for LTS ranging between 1 and 3 months and free for LTS <
1 month14.

There is a 51-year gap between the Lysenko and Semashko data (1900) and our
simulation data that starts in 1951. The difference between the 1900s and 1950s for
malaria transmission is mostly related to the implementation of health measures
and land surface management such as implementation of drainage schemes.
However, our models do not take human intervention into account, which is why
we assume that the Lysenko and Semashko data and the simulations of our models
are comparable.

Climate model and simulations experiments. All MMMs require temperature
and rainfall data as inputs. To obtain these variables for different ice melt scenarios,
we utilize General Circulation Model (GCM) simulations performed with the
Institute Pierre Simon Laplace Climate Model at Low spatial Resolution, version A
(IPSL-CM5A-LR)57. IPSL-CM5A-LR is part of the fifth phase of the Coupled
Model Intercomparison Project (CMIP5)58, that underpins the IPCC AR5. It is a
standard climate model that couples an atmosphere-land surface model to an
ocean-sea ice model. This global model is made up of physical and biogeochemistry
models57. The physical model for the atmosphere is the LMDZ model (Laboratoire
de Météorologie Dynamique Zoom) in its version 5A59. It comprises 39 vertical
levels with 15 levels below 20 km of altitude57. The land surface model is
ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms)60. The
ocean model is NEMOv3.2 (Nucleus for European Modeling of Ocean)61. It
includes OPA (Océan PArallélisé) to simulate the dynamics of oceans57, PISCES
(Pelagic Interaction Scheme for Carbon and Ecosystem Studies) for ocean
biochemistry62, and LIM2 (Louvain-la-Neuve Sea Ice Model, Version 2) for sea
ice63. The OAsis (Ocean Atmosphere Sea Ice Soil) coupler64 allows the synchro-
nization of all models and the exchange of energy and moisture fluxes between the
different sub-climatic systems57. The biogeochemistry models are INCA (The
INteraction with Chemistry and Aerosol) for tropospheric chemistry and
aerosols57, the REPROBUS (Reactive Processes Ruling the Ozone Budget in the
Stratosphere) module for stratospheric chemistry65. The prescribed variables are
CO2 emissions based on RCP scenarios17, land use66, solar irradiance67, other gases
emissions, and volcanic aerosols57. The spatial resolution of IPSL-CM5A-LR is
3.75° in longitude and 1.875° in latitude57.

Our reference simulation is the RCP8.5 simulation17 that was carried out with the
same climate model. This experiment is a worst-case scenario, with GHGs emissions
projected to result is a top of atmosphere radiative imbalance of 8.5Wm−2 by the
end of the twenty-first century. It assumes GHG emissions approximately follow the
current trend in future without mitigation17.

The second ensemble of simulations (ICEXm) represents the additional impact
of ice melt. ICEXm simulations include the same RCP8.5 external forcing to which
is added an accelerated melting of Greenland. ICEXm simulations correspond to a
water-hosing experiment, which is superimposed on the standard RCP8.5 climate
change scenario26. These simulations are referred as to ICEXm, where Xm denotes
the additional SLR (in meters) at a global scale. In ICE1m an additional 0.22-Sv
(1Sv= 106 m3 s−1) of freshwater is released in the North Atlantic Ocean from 2020
to 207026. ICE1m does not represent the total melting of Greenland which would
correspond to an additional 7.2 m SLR, but is consistent with the maximum SLR
estimate provided by the IPCC. Other ICEXm scenarios have been used and are
presented in Supplementary Information. They respectively represent 0.5, 1.5, and
3 m of additional SLR. The ICE3m simulation corresponds to a significant
destabilization of the ice sheet, which is similar to past Heinrich events.

Because of the complexity of modifying several climate models to simulate the
melting of the ice sheet and computational time constrains, we have chosen to use
only one climate model (IPSL-CM5A-LR) in this study.

Because GCMs still have significant biases in rainfall and temperature, in
particular over Africa68, we employed a bias-correction technique to calibrate the
raw GCM outputs. We used the Cumulative Distribution Function transform
(CDF-t) method that was developed by Michelangeli et al.69. This method consists
in matching the CDF of a simulated climate variable (rainfall and temperature
outputs of the IPSL-CM5A-LR model) to the CDF of an observed climate variable
through a mathematical transfer function70. The CDF-t method has been applied
over the period 1950–2099. The observed reference dataset used for bias correction
is WFDEI (Watch Forcing Data by making use of the ERA-Interim)71, which is
derived from the ERA-Interim reanalysis data72, and available from 1 January 1979
to 31 December 2013. The CDF-t technique has been applied monthly to consider
strong seasonality in rainfall and temperature in Africa. The CDF-t bias-calibration
technique preserves the long-term trends but moments or quantiles are not
conserved70. The GCM data has been spatially interpolated to match the WFDEI
0.5 × 0.5 degree grid before applying bias correction71.

We primarily focus on two simulations, the RCP8.5 simulation and the ICE1m
simulation. The reference historical period is the average between 2000 and 2020
(referred as to 2010s). The maximum disturbance period was determined to occur
between 2040 and 2050 (2040s) consistently with Defrance et al.26. Thus, difference
maps were calculated as the difference between the maximum perturbation period
(2040s) and the reference period (2010s). To estimate the additional impact of a
rapid ice-melting, the difference between the ICE1m and RCP8.5 experiments were
investigated for the 2040s. To focus on changes in seasonality, we carry out a time
series analysis for four specific regions chosen due to their large malaria signals
simulated during the 2040s. These regions are defined as follows: the West African
region [2.1–15.1°N; 16.1°W to 20.1°E], the East African region [2.1°S to 16.1°N;
28.1–41.1°E], the Central coasts of Africa [12.6°S to 0.1°N; 9.1°E to 21.1°E]
and southern Africa [28.1–12.6°S; 13.1–35.1°E]. Time series were calculated by
averaging land values. A 6-year running average was applied to all time series and
relative changes were calculated in percentages.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All model inputs and outputs that support the findings of this study are available at
https://doi.org/10.17605/OSF.IO/RHKPB that should allow reproductibility of the main
figures. The MAP data can be accessed by following this link: https://malariaatlas.org/
explorer/#, they are available for use under the Creative Commons Attribution 3.0
Unported license. The Lysenko and Semashko data are the digitized data from the paper
of Gething et al.29.

Code availability
The code of the VECTRI model is available in open-source at the following link: http://
users.ictp.it/~tompkins/vectri/. For other models, please contact the creators of these
codes: Anne Jones (anne.jones@ibm.com) or Andy Morse (a.p.morse@liverpool.ac.uk)
for LMM and LMM_R0—M. Craig for MARA (craigm@mrc.ac.za) and Pim Martens for
MIASMA (p.martens@icis.unimaas.nl).
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