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Spurious-free interpolations for non-intrusive PGD-based
parametric solutions: Application to composites forming processes

Chady Ghnatios1 · Elias Cueto2 · Antonio Falco3 · Jean-Louis Duval4 · Francisco Chinesta5

Abstract
Non-intrusive approaches for the construction of computational vademecums face different challenges, especially when 
a parameter variation affects the physics of the problem considerably. In these situations, classical interpolation becomes 
inaccurate. Therefore, classical approaches for the construction of an offline computational vademecum, typically by 
using model reduction techniques, are no longer valid. Such problems are faced in different physical simulations, for 
example welding path problems, resin transfer molding, or sheet compression molding, among others. In such situations, 
the interpolation of precomputed solutions at prescribed parameter values (built using either intrusive or non intrusive 
techniques) generates spurious numerical artifacts. In this work, we propose an alternative interpolation and simulation 
strategy by using physically-based morphing of spaces. The morphing will transform the uncompatibe physical domains of 
the problem’s solution into a compatible one, where an interpolation free of artifacts can be performed. Later on, an inverse 
transformation can be used to push-back the solution. Different relevant examples are illustrated in this work to motivate the 
use of the proposed method.

Keywords Non-intrusive PGD · Smart interpolation · Geometrical mapping · Interpolation · Real-time · Computational 
vademecum

Introduction

Computational abaci or vademecums can be built either
through the use of numerical simulation or data-driven
modeling [7, 13, 18]. They consist of a compilation or a
handbook of solutions precomputed “offline”, to be used
on the fly, “online”. The possibility of performing real
time simulation in an industrial framework at the expense
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of offline heavy computations is motivating the industrial
companies to move in this direction. The development of
such computational vademecums became possible thanks
to the development of model order reduction techniques
[3], especially the Proper Generalized Decomposition,
PGD, which is probably a very suitable “a priori” model
order reduction technique. However, PGD is by nature the
most intrusive model reduction technique due to its “a
priori” formulation. Recent efforts have been undertaken
to formulate the PGD in a non-intrusive manner as much
as possible [4, 5, 27]. Some non-intrusive versions of
the PGD rely on external flow processing codes that
controls validated open-source finite element (FE) codes
or commercial software [16, 20, 26]. The external, home-
made, code manages the assigned FE problems to the
commercial software. The assigned problems are managed
by classical PGD decomposition procedures [1, 6, 11].
Another way of constructing a computational vademecum
through the use of non-intrusive PGD relies on the
calculation of snapshots to later on construct a manifold
of solutions using the locally linear embedding (LLE) for
example or other manifold learning techniques [2, 4, 5, 12,
15, 17, 21, 23].
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Fig. 1 RTM front propagation solution for two different permeabilities k1 and k2 (Metric system units) at the same filling time

Despite numerous developments during the recent years
towards the development of computational vademecums
in both intrusive and non-intrusive manners [11], the
calculation of solution handbooks using any of the
aforementioned methods faces a major challenge when
changing a parameter induces drastic changes in the solution
map. The changes at a given point can be very aggressive
such that interpolation, a finite element mesh in a parametric
domain, for instance, leads to unrealistic numerical artifacts
[10]. Thus, in resin transfer molding, the interpolation of
the resin flow front between solutions computed at different
permeabilities may lead to multiple fronts appearing in
the solution. For example, interpolating the solutions
shown in Fig. 1 lead to the one illustrated in Fig. 2. In
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Fig. 2 Classical front interpolation of two RTM fluid front at a
permeability k = 10−11 from two snapshots at k1 = 5 × 10−12 and
k2 = 5 × 10−11

such case, a simulation using standard non-intrusive-PGD
fails.

We can clearly identify that a change in the permeability
of the domain will compromise the solution of the resin
front propagation and therefore computing a solution
handbook becomes useless. Computational vademecums
in resin transfer molding appear to be a cornerstone of
interest when identifying anisotropic permeabilities [9] and
even more importantly, for parametric simulation of resin
injection in complex molds.

Other challenging problems with localized non-
interpolable effects are path-dependent problems. Path
dependent problems appear in different domains ranging
from economy [8] to 3D printing, structural analysis [22,
25], time-dependent vehicle routing problems [14] and
welding [24] among many others. Recently, the use of
experimental and machine learning techniques to optimize
path dependent problems in welding were considered, for
example [19, 24]. However, the problem of simulating and
optimizing a path-dependent problem involves an infinite
number of parameters and is impossible to simulate and
optimize using classical techniques.

In this work, we aim to tackle problems with non-
interpolable localized effects, through proposing an appro-
priate interpolation technique. The suggested method starts
by using a “physics-based” geometrical mapping, to trans-
form different offline computed snapshots into another
geometrically similar domain. In the new domain, which
will be named “the reference domain”, all localized effects
overlap, thus rendering the interpolation possible. Once
the interpolation is performed, an inverse transformation is
used to transfer the constructed solution back to the real
domain. Eventually the transformation and interpolation are
both performed online, as fast as possible, to allow real
time exploration and optimization of the solution. Several



Fig. 3 An elastic rope supporting a load at a position x = X

examples are illustrated in this paper using those adopted
mappings, in Resin Transfer Molding (RTM), path depen-
dent heat transfer problems and sheet molding compound
(SMC) involving flow fronts, starting with an illustrative 1D
example.

An illustrative example in 1D

As a first example, we consider an elastic rope fixed at its
two ends A and B, with an applied displacement at a point
Pi of coordinate x = X as illustrated in Fig. 3. For the
sake of simplicity, the vertical displacement is assumed to
be equal to 1 unit. The generated deformation of the rope
is assumed linear between the two fixed support and the
position of application of the load.

Now placing 2 different loads at P1 and P2 would give
two different deformations as per Fig. 4. If we consider a
unit displacement applied at the middle point between P1

and P2, the classical interpolation of the two displacement
fields of the rope would lead to the solution in red illustrated
in Fig. 5. However, we expect to find is the solution in green,
also illustrated in Fig. 5.

The problem of the deformation of the rope illustrated in
Fig. 4 is a 2D problem defined in the domain (x, X) where
x is the coordinate along the length of the rope x ∈ [0, L],
with L the initial length of the rope, and X is the position of
the applied displacement such that X ∈ [a, b], where in the
limit a tends to 0 and b tends to L. The analytical solution
of the vertical displacement v can be written as a function
of x and X such as:

{
v = − x

X
if x < X,

v = − L−x
L−X

elsewhere.
(1)

The solution is illustrated in the 2D domain (x, X)

in Fig. 6a for L = 1. With the help of a geometrical

Fig. 4 Solution for two different
applied displacements

Fig. 5 Interpolation of the displacement field using classical interpo-
lation technique in red, and the reference solution in green

transformation, we can transform the point of application
of the displacements Pi to the same position, for example
the center point of the domain. Thus, we can transform the
domain x ∈ [0, L] into another domain s ∈ [0, 2] such that:
{

x = sX, if s ∈ [0, 1],
x = (s − 1)(L − X) + X, if s ∈ [1, 2]. (2)

Using the transformation given by Eq. 2, the displace-
ment is always applied at s = 1, and therefore the solution
in the (s, X) domain results the one illustrated in Fig. 6b for
L = 1.

As one may notice, in the s domain, displacements
are always applied at the same position, and therefore the
solution can be interpolated without major issues. To check
the described approach, the solution is computed for four
different positions of the applied displacement in the x

domain, named 4 snapshots, at X = 0+, X = L/3,
X = 2L/3 and X = L−. Figure 7a shows the solution
obtained using a classical interpolation in the x domain at
X = L/2, while Fig. 7b shows the result of the interpolation
when performed in the s domain and then using an inverse
transformation.

Geometrical mapping in 2D

In this section we illustrate the geometrical mapping used
to transform the domains. For the sake of simplicity, we
are first illustrating the process on a 2D example of a
localized heat source and homogeneous Dirichlet boundary
conditions. Thermal fields are computed in the domain at
different location of the heat source. The original domain �

is depicted in Fig. 8. The governing equation is:

−k

(
∂2T

∂x2
+ ∂2T

∂y2

)
= Q, (3)



Fig. 6 Solution in the 2D real domain (x, X) and transformed domain (s, X)

Fig. 7 Solution at X = L/2
using classical interpolation and
the proposed mapping technique
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Fig. 8 The problem domain � involving localized heat source Q, with
homogeneous Dirichlet boundary conditions

Fig. 9 Locations of different thermal sources Gi in the different
computed snapshots



Fig. 10 Temperature fields for
two different “snapshot”
solutions
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Fig. 11 Real domain (x, y) and
reference domain (r, s)
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Fig. 12 Solution using classical
interpolation and the one based
on the proposed mapping
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Fig. 13 Interpolated solution in the reference domain

where k is the thermal conductivity and Q the heat
generation term. Q is defined as a localized heat generation
inside a domain G such as:

Q =
{
1 if (x, y) ∈ G,

0 elsewhere.
(4)

Different snapshots are obtained, capturing different tem-
perature fields Ti(x) for different locations of the heat source
Gi . The location of the different thermal sources is depicted
in Fig. 9. Snapshot solutions (two of them depicted in
Fig. 10) can be computed using any direct numerical solver.
For instance, in this work we used the finite element
method.

Once the snapshots are available in the physical (x, y)

domain, we can transform the domain into a “reference”
domain (r, s) where all heat sources apply at the same
location, as illustrated in Fig. 11. Transformations between
the two coordinate systems X = (x, y) and R = (r, s) for
each triangle in Fig. 11 read:{
X = X1φ1(r, s) + X2φ2(r, s) + X3φ3(r, s)

R = R1ξ1(x, y) + R2ξ2(x, y) + R3ξ3(x, y)
(5)

Equation 5 is defined per triangle in the domains
illustrated in Fig. 11, φi being the standard Lagrange

Fig. 14 Different snapshots of
mold filling at time t = 120s
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Fig. 15 Solution using classical interpolation for kx = ky = 0.5k

interpolation functions defined in the reference (r, s)

domain, while ξi the Lagrange shape functions defined in
the (x, y) real domain whose expression can be found in any
finite elements textbook. The element connectivity remains
unchanged while mapping between the real and reference
elements. The values Xi and Ri are the coordinates of the
nodes of the corresponding triangles in the (x, y) and (r, s)

domains respectively.
In the (r, s) domain, the interpolation can be performed

using any classical interpolation technique, for instance the
SSL-PGD technique is used [10]. Figure 12 illustrates the
interpolated solution associated with a heat source at a
location different than the ones related to the pre-computed
snapshots using classical interpolation technique in Fig. 12a
and using the proposed mapping in Fig. 12b. Figure 13
illustrates the interpolation result in the reference (r, s)

domain. Figure 13 clearly illustrates the deformed mesh
that is induced by the mapping. As a consequence, the
sampling should rich enough for avoiding excessive mesh
distortion. Only the closest solutions to the searched one
are mapped, and consequently the closer they are, the
smaller are the associated mesh distortions induced by the
mapping.
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Fig. 16 Solution using flow front radius interpolation in the (r; θ)

coordinates for kx = ky = 0.5k

Flow fronts interpolation

Parametric domain properties

The propagation of a front remains a tricky issue when using
again interpolation. In this section we tackle the propagation
of a front in resin transfer molding (RTM) processes. The
front propagation can be computed with a non intrusive
approach using any classical software. We compute first
different snapshots using different permeability values.
Figure 14a shows a snapshot for kx = ky = k, while
Fig. 14b shows a snapshot for kx = ky = 0.1k, both for
the same filling time. Interpolating the two solutions using
classical interpolations at kx = ky = 0.5k would yield
the result illustrated in Fig. 15, where spurious interpolation
artifacts can be noticed.

The technique introduced in Section “Geometrical map-
ping in 2D” does not apply in the present case, being the
injection point located at the same position and remaining
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unchanged. In that situation a possible solution consists
of transforming the 2D domain (x, y) into the 2D polar
coordinates domain (r, θ) attached to the injection point. In
(r, θ), for the considered problem, the front of snapshot one
is defined from R1(θ), while the front in snapshot two reads
R2(θ). We can therefore interpolate the level sets R1 and R2

at each value of θ to define Ri related to ki = 0.5k. The
resulting solution is depicted in Fig. 16. Figure 17 shows the
error maps in the domain with respect to the exact solution,
for both cases using classical interpolation and the one
here proposed, spurious free, interpolation technique. An
excellent accuracy can be noticed. Only very few nodes on
the outer interface of the propagation region are not exactly
captured, while classical interpolation exhibits completely
wrong results.

This idea can be further generalized for different values
of kx and ky . Figure 18 shows a classical interpolation of 2
solutions for different kx and ky , while Fig. 19 shows the
fronts R1(θ) and R2(θ). The interpolation of the front at
every θ yields the result illustrated in Fig. 20.

Flow front prediction with the injection point
location as parameters

In this section, the techniques discussed in Sections “Geo-
metricalmapping in 2D” and “Flow fronts interpolation”, can
be combined for simulating the flow front evolution for any
permeability and any position of the injection point using
only few snapshots. To check the method, we generated a
matlab GUI application to modify the permeability values
and the injection point coordinates. The solution is therefore
obtained in real time. Figure 21 illustrates the front propa-
gation starting from different points and for different per-
meabilities kx and ky , combining the techniques previously
introduced in Sections “Geometrical mapping in 2D” and
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Fig. 18 Solution using classical interpolations for different permeabil-
ity tensors

“Flow fronts interpolation”. Figure 21 also illustrates 4
sliders that are used to change the values of the permeability
and injection point coordinates.

Moreover, we can compute the associated pressure fields
at different points and at different time steps. However a
slight adaptation for interpolating the pressure is needed. In
fact, we first extract the pressure pattern P(r, θ) at every θj ,
with θj ∈ [0, 2π ]:{

P 1
j = P(r1, θ = θj ) for R = R1,

P 2
j = P(r2, θ = θj ) for R = R2.

(6)

Later on, we scale the pressures P 1
j and P 2

j to act in the
domain with the flow front located at Rj :{

P 1
j scaled

(r1 · Rj

R1
, θj ) = P 1

j (r1, θj ),

P 2
j scaled

(r2 · Rj

R2
, θj ) = P 2

j (r2, θj ).
(7)

Finally we interpolate the scaled pressures to obtain the
final pressure, as represented in Fig. 22 for a given angle θj .
Figure 23 shows the pressure fields for different injection
point locations and different permeabilities.
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Fig. 19 Flow fronts at the same time for two different permeability
tensors
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Fig. 20 Flow front prediction using the interpolation in the (r; θ)

coordinates

Figure 24 and 25 depicts similar results for larger times
when the flow front is affected by the presence of the mold
walls.

For quantifying the error, the pressure field is computed
for kx = ky = 5 10−11 Pa.s and the injection point located
at x = y = 0.2m. The reference solution is depoicted
in Fig. 26a, the interpolated solution using the proposed
mapping in Fig. 26b and the error between both in Fig. 26c.
As it can be noticed, the maximum relative error does not
exceed 6% as shown in Fig. 26c.

Amore elaborate case: SMC process

This section addresses the flow front evolution in sheet
molding compound (SMC) processes. We consider the shell
geometry illustrated in Fig. 27. The considered curvilinear
coordinate s at any node M can be computed starting from
s = 0 at x = 0

The computed solutions are then mapped into the (s, y)

domain, where the considered shell becomes a plate 2D part.
This transformation leads to the 2D domain illustrated in
Fig. 28. The preform flow front induced by the squeezing
is illustrated in the (s, y) domain, where the center of
the flow front O is considered to be the center of the
initially deposited preform. To correctly interpolate the
preform front, coordinates (s, y) are mapped into the polar
coordinates, with the flow front defined by R(θ) for every
θ ∈ [0, 2π ].

Five transient SMC simulations were performed using
commercial ESI software, with different initial position
of the squeezed preform that resulted in five different
flow fronts Ri(θ, t), with i = 1, . . . , 5. Figures 29a
and b illustrate the preform deformation in the mold at the
same time step for two initial preforms at different initial
positions.
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Fig. 21 Different flow front interpolated solutions at the same time step with permeability and injection point location as parameters

sOi
represents the curvilinear coordinate of the center of

the simulated preform. The compression of a new preform
of center C can be simulated by using the interpolation of
Ri(θ, t) with respect to its initial position of C. Figure 30
illustrates the solution using classical interpolation, from
the two illustrated configurations shown in Fig. 29 with
sC = sO2 · 0.4+ sO3 · 0.6, while Fig. 31 illustrates the same
solution by employing the proposed strategy.

Conclusion

In this work we illustrated the possibility of constructing
computational vademecums by adapting the interpolations
of snapshots with highly localized effects such as front
propagation and localized deformations. This approach
relies on the use of physically-based mappings. The
approach is later leveraged for different applications allowing

Fig. 22 Pressure interpolation at
a given θj
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Fig. 23 Different interpolated pressure fields at the same time step
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Fig. 24 Interpolated flow front positions for different combination of permeabilities
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Fig. 25 Interpolated pressure fields for different combination of permeabilities
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Fig. 26 Quantifying the error in the pressure calculation at t = 97.5s
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Fig. 27 The shell part considered for the SMC simulation. The
coordinate s is a curvilinear coordinate used to map the 3D shell part
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Fig. 28 The shell shape mapped into the (s, y) domain. The preform
center O is considered as the initial center of the initially deposited
preform
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Fig. 29 Simulation of the deformation of a preform in a mold obtained from ESI® commercial software for two initial preform placement
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Fig. 30 Classical interpolation for an intermediate preform placement
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Fig. 31 Interpolation by using the adapted mapping



real-time simulations in previously unreachable parametric
simulations. The approach does not require any re-meshing
of the domain since all the mathematical procedures apply
in the reference domain.
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