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ABSTRACT 11 

Plastic is currently used in aquaculture as a material for settlement and magnification of oyster spats. 12 

Plastic weathering and fragmentation under natural conditions can lead to the production of micro and 13 

nanoparticles and additive leakage, with potential toxic effects on marine life. This study investigates 14 

the effects of the exposure to microplastic (MPs) cocktail derived from aged aquaculture material on 15 

oyster pediveliger larvae (Crassostrea gigas). The cocktail was made of high-density polyethylene 16 

(HDPE), polypropylene (PP) and polyvinyl chloride (PVC). The concentrations tested were 0, 0.1, and 17 

10 mg MP. L-1. During the 7-day fixation phase, pediveliger larvae (17 days) were exposed to the MP 18 

cocktail in laboratory-controlled conditions. After exposure, the success of settlement was 19 

significantly lower for larvae exposed to 10 mg MP. L-1 (49±0.9 %) compared to control ones 20 

(61.8±1.6 %). No malformations or metamorphosis abnormalities were observed. Growth of 21 

pediveliger and spat stages was monitored up to 11 months. During the first twenty-eight days of 22 

development, spat growth was significantly lower for the two MPs exposure conditions (0.1 and 10 23 

mg MP. L-1; respectively -51.8 % and -44.4 %) compared to control groupe. Subsequently, the 24 

previously exposed oysters grew faster than the control condition, resulting in a significantly greater 25 

growth (0.1 and 10 mg MP. L-1: +18.3 % and +19.7 %) than the control group at the end of follow-up. 26 

The nearly one-year follow-up highlighted the potential effects of MPs from aquaculture on larvae and 27 

spat of C. gigas. 28 
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1. INTRODUCTION 34 

In 2019, plastic production reached 370 million tons worldwide, including almost 58 million tons in 35 

Europe (PlasticsEurope, 2020). Seen as revolutionary and versatile, plastic materials are part of one’s 36 

daily life. Ideal for the current economic system, they incur low production costs, and are light, 37 

durable and malleable. The first studies revealing MP presence in marine habitats date back to the 38 

1970s (Carpenter et al., 1972). It is estimated that rivers carry between 70 % and 80 % of plastic 39 

waste, most of which ends up in oceans (Horton et al., 2017). Each year, over 9.5 million tons of 40 

plastics are dumped into oceans (Boucher and Friot, 2020). In 2019 (PlasticsEurope, 2020), the 41 

plastics demand focused on Polypropylene (PP, 19.4 %), Low Density Polyethylene (LDPE, 17.4 %), 42 

High Density Polyethylene (HDPE, 12.4 %), and Polyvinyl-Chloride (PVC, 10 %). Plastic gear is 43 

necessary for the viability of many aquaculture and shellfish farming operations (Schoof and DeNike, 44 
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2017). More recently, questions have arisen regarding the potential contributions of aquaculture to 45 

marine debris and the formation of MPs particles. Most varieties of oyster culture around the world 46 

rely on equipment and gear to develop a specific product, respond to environmental conditions, or 47 

provide protection for bivalves (Pacific Coast Shellfish Growers Association, 2011; USACE, 2015). 48 

Plastic is primarily used in gear such as nets, crops, or attachment tubes/cups, designed to contain or 49 

protect farmed molluscs from predators or environmental conditions (Pacific Coast Shellfish Growers 50 

Association, 2011; USACE, 2015). In the seas, macroplastics first undergo physical degradation, by 51 

waves, salt, hydrolysis, temperature, and photodegradation from the sun's ultraviolet rays (Julienne et 52 

al., 2019; Andrady, 2017; Alimi et al., 2018; Chubarenko et al., 2019; Hernandez et al., 2019), before 53 

facing biological degradation, by bacterial processes (Dussud and Ghiglione, 2014), creating MPs 54 

(fragments <5 mm, Thevenon et al., 2014). Plastics have invaded all marine habitats around the world 55 

(Kershaw and Rochman, 2015; Li et al., 2016). Scientists have estimated that oceans concentrated 56 

more than 5 trillion pieces of plastic materials, gathering 1 to 102,000 particles/m3 (Van 57 

Cauwenberghe et al., 2015; Auta et al., 2017). Plastic pollution affects marine ecosystems and human 58 

activities. When ingested by organisms, they cause abrasions, obstructions, and alterations in 59 

physiological structures, directly influencing the survival of individuals (Wright et al., 2013). Recent 60 

studies have shown that commercial MPs can affect the early stages of bivalve development (Tallec et 61 

al., 2018; Bringer et al., 2020a). These studies have shown the effects of polystyrene (PS)- 62 

nanoplastics (NPs) (50 nm, 10 µg.mL-1) and HDPE-MPs (4-13 µm, 0.1 mg.L-1) on development 63 

(malformations and survival) and on swimming behaviour in oyster larvae, C. gigas. The early stages 64 

of development are the stages most sensitive to environmental hazards and to potential environmental 65 

pollution and contamination (Gamain et al., 2020). Cole & Galloway (2015) demonstrated the 66 

ingestion of 70 nm to 20 μm PS-MPs/NPs particles in C. gigas larvae over the days 3 to 24 after 67 

fertilization. However, the study by Sussarellu et al. (2016) showed transgenerational effects of PS-68 

MPs on larval growth following exposure of parents for two months. Nonetheless, information on 69 

environmentally-aged MPs is limited. Gardon et al. (2020) investigated the effects of both new and 70 

aged MPs on the early stages of pearl oyster development (Pinctada margaritifera). They concluded 71 

that a 48-hour exposure to MPs significantly increased the larval mortality rate. In addition, MPs with 72 
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a high surface/volume ratio tended to adsorb persistent organic pollutants while in marine 73 

environments (e.g. dichlorodiphenyltrichloroethane [DDT], polycyclic aromatic hydrocarbons and 74 

heavy metals; Beaumont et al., 2019; Rochman et al., 2013; Bakir et al., 2014). During fragmentation 75 

or ageing in an aquatic environment, plastics can release additives, such as phthalates (Koumba, 76 

2018), UV stabilizers, antioxidants (Rani et al., 2017), biocides (Beiras et al., 2021) or dyes. Thus, it 77 

is essential to assess toxicity of environmentally-aged MPs on marine fauna. In 1970, due to the 78 

economic development of modern societies, questions were raised internationally in relation to plastic 79 

waste (Rocher, 2008; Dupré, 2013). Few studies considered plastic materials from aquaculture and 80 

fishing activities. Nevertheless, materials and tools from aquaculture professionals are likely to 81 

interfere with bivalve organisms (production and capture phases). Fishing gear – abandoned, lost, or 82 

discarded – is the main source of plastic waste from the fishing and aquaculture sectors, although their 83 

implication in ocean pollution is overlooked by the public (Lusher et al., 2017). The aquaculture and 84 

shellfish-farming sector has diversified and expanded massively with the importance of exports in 85 

France. Following extreme hydro-climatic events (e.g. storms, strong winds or currents, etc.), 86 

professional materials break off and drift to beaches and coasts during high tides. The French shellfish 87 

market is of importance. Each year, nearly 130,000 tons of oysters (C. gigas) are produced and 88 

marketed, while the activity generates more than 20,000 jobs (CNC, 2020). The sustainability of 89 

shellfish companies is water-quality dependent. Due to their filtration feeding activities, bivalves such 90 

as oysters absorb and accumulate MPs in marine environments (Li et al., 2018; Phuong et al., 2018; 91 

Teng et al., 2019). In addition, oysters are key ecological and economic species in coastal ecosystems. 92 

They are also used as a model species in laboratory experiments for the assessment of MPs toxic 93 

effects (Teng et al., 2021). Except for the work of Tallec et al. (2018) on commercial PS-NPs, no 94 

study has determined the toxicity of MPs or NPs on pediveliger larvae of oyster. For the experiment, 95 

pediveliger larvae were exposed for seven days to MPs from aquaculture (cocktail of HDPE crops, PP 96 

collection cups and PVC collection tubes) at two theoretical concentrations (i.e. 0.1 and 10 mg MP. L-97 

1). Study (i) determined larval settlement success after 7 days' exposure to different treatments, and (ii) 98 

monitored growth for nearly a year (11 months), until larvae reached the spat stage.  99 

 100 
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2. MATERIALS AND METHODS 101 

2.1 Pediveliger larvae 102 

Crassostrea gigas (Bayne et al., 2019; Bayne et al., 2017) 17-day-old pediveliger larvae were 103 

supplied by a commercial hatchery (France Naissain, France). Upon reception and before starting 104 

experiments, the mobility and good health status of larvae were assessed (Motic 1820, x20 objective). 105 

  106 

2.2 Seawater and preparation of microplastics from aquaculture 107 

Plastic macrodebris were collected on the French Atlantic coast (South West, France), in Angoulins-108 

sur-mer municipality beach area (Bringer et al., 2021). They were sorted and classified, selecting only 109 

plastics aged in the marine environment, and from the oyster industry. Polypropylene cup collectors 110 

(PP), pipe collector (PVC) and high-density polyethylene oyster culture crops (HDPE) were chosen. A 111 

GC-MS pyrolysis analysis (700 °C) characterised the polymers of the selected materials (manual 112 

cutting to obtain samples of 130-200 μg). After a rough cut (3-4 cm), the plastics were crushed using a 113 

stationary metal hammer, and this was repeated several times. Then, the plastics were sieved using 5 114 

mm, 1 mm and 100 µm sieves. The grinding was carried out at room temperature so as not to 115 

influence the nature of the material. The cocktail consisted of 28 % HDPE, 40 % PP, and 32 % PVC 116 

(Andrady, 2011). The size range of the cocktail of MPs was 138.6±2.3 μm (three analytical replicates 117 

in laser particle size distribution, Malverne). Seawater was sampled in the Atlantic (South West, 118 

France), before being filtered with 50 µm and 10 µm membranes to eliminate debris and 119 

microorganisms (i.e. filtered seawater, FSW).  120 

 121 

2.3 Analysis of exposure solutions 122 

To carry out a quantitative analysis of MPs in experimental seawater, each theoretical cocktail solution 123 

(0, 0.1, and 10 mg MP. L-1) was analysed using a flow cytometer (Attune Acoustic Focusing 124 

Cytometer). Two-milliliter samples from each MP exposition solution (n=4/condition) were vortexed 125 

(StarLab Vortex IR, 12,000 rpm for 20 sec) to homogenise the solutions and then 300 μL was taken 126 

for flow cytometry analysis. A calibration was carried out, thanks to previous studies (Bringer et al., 127 

2020a) with commercial MPs, to achieve an analysis rate of 500 μL.min-1 and a saturation of 10,000 128 
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particles maximum detected. From the control conditions (10 µm FSW), control analytical samples 129 

(n=12) were created. The blank obtained enabled removal of background particles (naturally present in 130 

seawater). Using seawater filtered at 0.2 µm, a first calibration was conducted to select the < 200-time 131 

detected particles. MPs measurements in seawater were assessed at D0 (beginning of exposure) and D7 132 

(end of exposure) for all exposure conditions.  133 

 134 

2.4 Experimental design 135 

2.4.1 Exposure of pediveliger larvae in experimental microcosms 136 

Pediveliger larvae (D0) were acclimatised for a few hours in petri dishes at microcosm temperature 137 

(24±0.1 °C) for fixation (Figure S1). Microcosms have been defined as experimental systems 138 

simulating real-life conditions (Buffet et al., 2014; Martinez-Sosa, 2019; Enya et al., 2020). Fifteen 139 

thousand (15,000) larvae/condition with three replicates were added to experimental sieves, i.e. 45,000 140 

larvae/condition. Then, larvae were exposed in the dark for 7 days (step 1: settlement phase, from D0 141 

to D7, Figure 1). The exposure conditions were as follows: larvae were put in 195 µm sieves (three 142 

replicates per condition), at the surface of a 300-400 µm microbreak layer (Ovive industry, La 143 

Rochelle, France), and placed in 224 L tanks. Microbreaks correspond to very finely crushed oyster 144 

shells. Microbreaks was cleaned before use in microcosms. The sieves (n=3/conditions) were then 145 

placed on a table inside a tank where the FSW circulated. Sieves were all connected by an air-lift 146 

system creating a bottom-up movement of FSW (2.3 L.h-1/sieve), allowing a continuous renewal of 147 

water in the sieves containing the pediveliger larvae. The temperature was 24.0±0.1 °C, and salinity 148 

28.2±0.3 (Table 1).  Continuous bubbling and brewing systems were set up. Brewers were installed in 149 

the microcosms in order to homogenize the dispersion of the MPs. The temperature value and salinity 150 

were measured daily. Throughout the experiment, nitrates, nitrites, chlorine, and pH (7.1±0.4) were 151 

regularly measured to ensure consistency. This experimental device was based on Glize’s work 152 

(1992). The day before the start of the exposure, the cocktail of MPs was inserted into the tanks (224 153 

L) according to three theoretical concentrations tested: 0 (control without MP); 0.1 and 10 mg MP. L-1. 154 

To do this, precise quantities of MPs cocktail were weighed (n=7, i.e. 7 days of exposure with one 155 

renewal every day), before being inserted into the microcosms, for the two conditions of exposure to 156 
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MPs: 22.4 mg for 0.1 mg MP. L-1 and 2,240 mg for 10 mg MP. L-1. The water was changed every day 157 

and the sieves were transferred to tanks prepared in advance, and the cocktail of MPs was added at 158 

each renewal according to the conditions. The pediveliger larvae were fed twice a day with algae paste 159 

(mixed diet of T. Isochrysis galbana, Pavlova, Tetraselmis, Thalassiosira and Nanno, Shelfish diet). 160 

At this stage of their development, the larvae are more sensitive to environmental risks (Connor, 1972; 161 

Martin et al., 1981 and Quiniou et al., 2005), hence the importance of respecting the protocols of 162 

renewal of water and daily food to avoid significant mortalities. 163 

 164 

2.4.2 Experimental hatchery for long-term development  165 

After a 7-day exposure period, pediveliger larvae were put in experimental hatchery devices (step 2, 166 

Figure 1). After D7, fixed larvae were placed in a micronursery. In an open circuit, FSW (10 µm) 167 

circulated at a flow rate of 27 L.h-1 (132 % renewal every day). The temperature was 21.3±0.5 °C, and 168 

salinity 25.1±0.3 (Table 1). 169 

 170 

Table 1. Essential parameters (temperature, salinity, and light) for development of pediveliger larvae and oyster 171 

spat in various aquaculture devices. 172 

Water parameters Microcosms Micronursery Nursery Oyster farm 

Temperature (°C) 24±0.1 21.3±0.5 19.4±0.6 15.9±2.5 

Salinity 28.2±0.3 25.1±0.3 32.0+0.7 32.6±1.5 

Light dark natural natural natural 

 173 

At D28, oyster spat were transferred to an outdoor nursery (seawater filtered at 30 µm). The flow rate 174 

was 2,117.6 L.h-1 (7,260 % renewal every day), temperature 16.3±1.0 °C, and salinity 27.4±0.7 (Table 175 

1). Once in the nursery, spat were exclusively fed with naturally-present phytoplankton. Larger mesh 176 

sieves were used (500, 1000 and 3000 µm) to allow larval magnification. Then, oyster spat were 177 

placed in 4000 µm mesh crops and placed in experimental beds (D190, CNRS platform, La Rochelle, 178 

France). Figure 1 summarises the development cycle from pediveliger larvae to oyster spat. It includes 179 

the aquaculture devices used for oyster development, and indicates the beginning of the exposure 180 
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period (D0), the settlement success (end of expsoure; D7), and the growth monitoring analysis (D0 to 181 

D338,). 182 

 183 

 184 

Figure 1. Experimental devices to develop pediveliger larvae into oyster spat C. gigas. Step 1: 7-day exposure 185 

(D0 to D7, settlement success) in experimental microcosms. Step 2: development (D7 to D338) in experimental 186 

hatchery. Length growth was monitored for the entire experiment (from D0 to D338, i.e. 11 months). 187 

 188 

2.5 Settlement success and growth monitoring of pediveliger larvae  189 

After a 7-day exposure period to MPs cocktail, at different concentrations, an analysis of the larval 190 

settlement ratio was performed, quantifying larvae that were fixed in each condition and replicate 191 

(n=3/condition). A ratio was calculated from the weight of samples taken (n=3/replicates, i.e. 192 

n=9/conditions) and the total weight corresponding to the total quantity of pediveliger larvae at the 193 

start of the experiment. After being weighed, the samples taken were analysed under a microscope 194 

(Motic 1820, 200x) and the number of larvae fixed was quantified. The oyster growth in length was 195 



 9

monitored at pediveliger and early spat stages, taking microphotographies under the Motic 1820 196 

Binocular microscope (200x). Length of larvae was measured on photographs with Image J. 197 

Pediveliger larvae were oriented lengthwise under the microscope (Motic 1820, x20 objective) and a 198 

line was drawn with Image J (Talmage and Gobler, 2009; Helm et al., 2004; Bringer et al., 2020b). To 199 

carry out the growth analysis, pediveliger larvae (n=30) in each replicate and condition 200 

(n=90/conditions) were measured. Results are expressed in mean ± SEM. Then, oyster spat 201 

(n=30/replicate, i.e. n=90/condition) were measured (length, width, and thickness) and weighed (total 202 

weight) using a digital caliper (0.1 mm) and precision balance (0.1 g, Denver Instrument). Results are 203 

expressed in mean ± SEM. During the exposure period (D0 to D7, microcosms, Figure 1), growth was 204 

quantified every two days. During the experimental hatchery period (D7 to D190, device 1 and 2, Figure 205 

1), growth was quantified every 4 days. Finally, during the period in oyster beds, growth was 206 

quantified once a month (D190 to D338, device 3, Figure 1). 207 

 208 

2.6 Statistics 209 

A statistical analysis was conducted using R Studio and graphs on Microsoft Excel. Homogeneity of 210 

variance (Levene’s test) and normality of distribution (Shapiro-Wilk) were assessed. To compare the 211 

settlement success in each treatment, an analysis of variance (ANOVA) was performed followed by a 212 

Tukey’s post-hoc test. A statistical analysis of growth biomonitoring data was carried out through the 213 

Kruskal-Wallis test. Then, differences in mean concentrations were assessed using the Kruskal 214 

Nemenyi Post-hoc test, coupled with the PMCMR package (equivalent to the Tukey’s test for non-215 

parametric data). A significance was accepted for p < 0.05. Data are expressed in mean ± SEM.  216 

 217 

3. RESULTS AND DISCUSSION 218 

3.1 MP exposure concentrations 219 

The concentrations of MPs for the two exposure conditions (Table 2) varied between D0 (start of 220 

exposure) and D7 (end of exposure). The results of this present study are comparable to the 221 

concentrations assayed by flow cytometry in a previous study on commercial HDPE-MPs of 20-25 µm 222 
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(Bringer et al., 2020a). In accordance with theoretical factors, the dilution factor of the two 223 

concentrations tested should equate to 100. However, factors at D0 and D7 were of 8.88±0.62 and 224 

9.17±0.37. The theoretical 10 mg MP. L-1 condition suggested that the real dilution factor was lower in 225 

display tanks. The differences observed between the theoretical and measured concentrations of MPs 226 

could come from aggregation of MPs togther (Alimi et al., 2018; Michels et al., 2018) and binding on 227 

the walls of exposure microcosms. Despite the use of brewers, MPs might be heterogeneously 228 

dispersed in the exposure medium. By taking into account the assays carried out at D0 and D7, we can 229 

calculate the mean concentrations corresponding to the theoretical concentrations: 0.9±0.08 (0.1 mg 230 

MP. L-1) and 8.4±0.5 (10 mg MP. L-1). No microparticles were found in the waters of the control 231 

condition.. 232 

 233 

Table. 2 Theoretical and measured MP concentrations (mean ± SEM) at the beginning (D0) and at the end of the 234 

pediveliger exposure (D7).  235 

 236 

Sampling times Theoretical (mg MP. L-1) Measured (MP. µL-1) Concentration factor 

D0 0.1 0.88±0.07 - 

D7 0.1 0.97±0.09 - 

D0 10 7.8±0.65 8.88±0.12 

D7 10 8.9±0.27 9.17±0.54 

 237 

Through flow cytometry, MP concentrations in exposure conditions were determined. Long et al. 238 

(2017) assessed PS-MPs concentrations using flow cytometry. Recent studies have measured the 239 

concentrations of nano and microparticles through flow cytometry (Caputo et al., 2021; Kaile et al., 240 

2020). In this work, concentrations were higher than measured in the marine environment (Van 241 

Cauwenberghe et al., 2015; Auta et al., 2017). A previous study measured 13.4±0.9 MP. L-1 in the 242 

coastal Atlantic sector (Green et al., 2018). In addition, the study published by Frere et al. (2017), 243 

showed concentrations of 0.24±0.35 MP.m-3 in the Bay of Brest (France). These different results prove 244 

to us that our experimental concentrations are stronger than the natural environment. However, the use 245 

of aged aquaculture MPs in the marine environment has increased knowledge on the toxicity of plastic 246 
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particles at early stages of development in Crassostrea gigas. Apart from this research, few studies 247 

focused on aquaculture plastics and their impacts.  248 

 249 

3.2 MP effects on the settlement success of pediveliger larvae 250 

After a 7-day exposure, pediveliger larvae were removed from the microcosm devices and were put in 251 

the micronursery (device 1 of experimental hatchery, Figure 1). Fixed larvae were counted using a 252 

microscope. In the control condition (without MPs), 9,266±246 (n=3 replicates) out of the 15,000 253 

larvae at D0 were fixed. In the 0.1 and 10 mg MP. L-1conditions, 9,188±129 and 7,352±142 larvae 254 

were fixed (Figure 2). 255 

 256 

  257 

Figure 2. Settlement success of pediveliger larvae of C. gigas after a 7-day exposure: control (0 mg MP. L-1), 258 

0.1 and 10 mg MP. L-1. Values are expressed as mean ± SEM (n=3 replicates/conditions, i.e. n=9/conditions). 259 

Different letters at the top of the bars indicate significant differences between concentrations (p < 0.05, Anova 260 

and Tukey test).  261 

 262 

In the control condition, 61.8±1.6 % larvae were successfully fixed. In the 0.1 mg MP. L-1 condition, 263 

the ratio indicated 61.3±0.9 %, which did not statistically differ from the control condition (p=0.95). 264 

However, in the 10 mg MP. L-1 condition, the ratio was 49.0±0.9 %, differing significantly from the 265 
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other two conditions (p<0.001). The average rate of C. gigas larval settlement in remote microbreaks 266 

currently reaches 65 % (Bodoy, 1990). In this work, the control condition displayed a binding rate of 267 

approximately 62 %. The experimental system was thus considered valid. After a few days of 268 

development in the micronursery, fixed pediveliger larvae began to grow shells (Figure 3). In all 269 

conditions, no delay in shell development nor developmental abnormalities (malformations) were 270 

noted. 271 

 272 

 273 

Figure 3. Microphotographs and pictures of pediveliger larvae from the beginning (D0) to the end of the 274 

experiment (D338) – including MP exposure (D7 – step 1), spat development (D28 and D89 – step 2), and 275 

monitoring (D338). Photos were taken in each condition: control (0  mg MP. L-1); 0.1 and 10 mg MP. L-1. Scales 276 

are expressed in mm. Observations and photographs were performed at 5X or 20X using a binocular microscope 277 

(Motic). “DX” indicates the sampling times in days. 278 

 279 

In an earlier study, pediveliger larvae (C. gigas) were exposed for a period of 24 hours, showing 280 

decreased metamorphosis rates with increasing drug concentrations tested, greater than what is found 281 

in the natural environment (Di Poi et al., 2014). In the study conducted by Vignier et al. (2016), 282 

exposure of oyster pediveliger larvae (C. virginica) for 72 h to increasing doses of CEWAF (dispersed 283 

oil) induced settlement inhibition in a dose-dependent manner. The authors concluded that the 284 

settlement success was sensitive to environmental parameter variations and pollutant exposure 285 
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(Vignier et al., 2016). Wang et al. demonstrated that the pediveliger larvae of Pinctada maxima are 286 

more prone to attach to natural collectors (palm rope collector) than to plastic collectors (Wang et al., 287 

2017). Larvae were considered metamorphosed if they displayed clear loss of velum and foot, shell 288 

growth and well-developed gills. Mottier et al. (2014) exposed pediveliger larvae for 24 h to 289 

glyphosate in commercial formulations and observed a reduction of the larval metamorphosis rate. 290 

Tallec et al. (2018) did not observe impacts on the metamorphosis of exposed C. gigas following 24 h 291 

of exposure. A variation in particle size (MPs or NPs) or concentration had no influence. In addition, 292 

after PS-MPs/NPs treatments, there were no developmental abnormalities in oysters (Tallec et al., 293 

2018). These results echoed our own observations, showing no impacts on larval metamorphosis and 294 

no developmental abnormalities during fixation. MPs had no impacts on the development of 295 

pediveliger larvae, most likely due to their protective shell (Hickman, 1999; Liebig and Vanderploeg, 296 

1995; Schiaparelli et al., 2004). Nonetheless, no studies reported MP impacts on fixation, i.e., with 297 

lower fixation rate in larvae exposed to high concentrations. MPs could affect the energy dynamics of 298 

pediveliger larvae (Sussarellu et al., 2016; Rico-Villa et al., 2010). Larvae would lose their fixation 299 

capacities as they lack energy reserves, constantly fighting against MPs in their environment. Effects 300 

were noted on the energy reserves of sediment-dwelling bivalves. Indeed, the lipid content was lower 301 

in bivalves exposed to MPs (Auclair et al., 2020; Bour et al., 2018). The drifting and structure of 302 

marine organisms could be influenced by chronic MP exposure (Sendra et al., 2021). In addition, 303 

recent studies have highlighted that MPs may affect immune enzyme activities and immune-related 304 

gene expression (Gardon et al., 2020; Huang et al., 2020). Authors hypothesised that the defence 305 

mechanisms at larval stages could be weakened and therefore individuals could be more sensitive to 306 

environmental factors such as pathogens or potential MPs (Thomas-Guyon et al., 2009). Larvae of the 307 

Pacific oyster C. gigas appeared to acquire their own defence mechanisms during development. 308 

Potentially weakened by MPs, pediveliger larvae would have recourse to an adapted defense system to 309 

fight against plastic contamination, which can generate significant energy consumption, detrimental to 310 

growth for example. 311 

 312 

3.3 MP effects on pediveliger larvae development and oyster spat growth 313 
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Length growth (in mm, Figure 4.a) was monitored at pediveliger larval stage from the beginning to the 314 

end of exposure (D0 to D7, Figure 3) and then until the spat stage, 11 months later (D338, Figure 3). A 315 

7-day exposure to MPs led to growth retardation of larvae up to 28 days (D0 to D28, Figure 4.c). 316 

Indeed, there was a significant difference of growth rate between the control condition (0.54±0.05 mm 317 

of growth for 28 days)  and the 0.1 and 10 mg MP. L-1 conditions(0.26±0.02 and 0.30±0.02 mm of 318 

growth for 28 days). Oysters had similar growth rate between D28 and D89 (Figure 4.d), with no 319 

significant variation between the conditions tested. The larvae from the control had a growth of 320 

9.5±0.9 mm, while the larvae from the 0.1 and 10 mg MP. L-1 conditions grew at 8.1±0.7 and 8.6±0.7 321 

mm for 61 days (from 28 to 89 days). From D89 to D338 (end of growth monitoring), pre-exposed 322 

oysters exhibited high growth during their development (Figure 4.e). Control spat grew 32.1±2.0 mm 323 

while the spat from the 0.1 and 10 mg MP. L-1 conditions had similar growth of 41.5±2.5 mm and 324 

41.3±2.1 mm, for 249 days (from 89 to 338 days, Figure 4.e). 325 

 326 
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Figure 4. (a) Growth kinetic (D0 to D338) (b) and total length of C. gigas pediveliger larvae and oyster spat. (c) 328 

Graphical displays on total length from D0 to D28; (d) D28 to D89 and (e) D89 to D338 in various exposure 329 

conditions: control (0 mg MP. L-1), 0.1 and 10 mg MP. L-1. Values are expressed in mean ± SEM 330 

(n=30/replicates, i.e. n=90/conditions). Different letters at the top of the bars indicate significant differences 331 

between exposure conditions (p < 0.05, Kruskal-Wallis and Nemenyi test). 332 

 333 

The total growth (D0 to D338) was significantly higher in MPs-exposed oysters in comparison to 334 

control individuals (Figure 4.b). Indeed, the control condition observed a total growth of 42.1±1.9 mm 335 

while the 0.1 and 10 mg MP. L-1 conditions displayed a total growth of 49.8±2.0 and 50.4±2.1 mm 336 

(Figure 4.b). Our results indicate that the oyster growth during the fixation phase was delayed by MPs 337 

exposure. Then, the growth at the end of experiment turned out to be higher than for oysters from the 338 

control condition. Few studies monitored the growth of exposed invertebrates on a long-term basis. In 339 

some cases, growth, respiration and filtration rates of oysters were not impacted by MPs, compared to 340 

other benthic study models that were weakened by exposures to MPs (Green, 2016). Revel et al. 341 

(2020) showed that PE and PP-MPs (<400 µm) had no significant toxicity on adult oysters after 10 342 

days of exposure to 0-100 µg MP. L-1. Cole and Galloway (2015) reported that PS-MPs of 1 and 10 343 

µm restricted algal feeding of oyster larvae, but there were no consequences on the growth of oyster 344 

larvae exposed up to 100 MP. mL-1. After a two-month exposure to low and high doses of PLA 345 

(polyactic acid) or HDPE-MPs, filtration and growth rates of adult Ostrea edulis were unaltered 346 

(Green, 2016). Because of the relatively low toxicity and long-term effects of MPs and additives, toxic 347 

effects analysis  over a long periode of time  is particulary relevant.. Analysis of metabolic rates and 348 

assimilation efficiency indicated a decrease in mean energy balance, when comparing adults from the 349 

control condition to those exposed for two months to 0.25 and 2.5 μg. L-1 micro-PS (Gardon et al.,  350 

2018). The impacts on growth and energy dynamics are likely interconnected. Widdows and Johnson 351 

(1988) suggested that the energy available for growth should be a balance between the energy from 352 

food consumption and that used for respiration. Oyster larvae facing chronic MPs exposure could 353 

consume the energy dedicated to the fixation and development. Sussarellu et al. (2016) exposed adult 354 

oysters during gametogenesis for two-months to 23 μg. L-1 PS-microbeads (2-6 μm) and reported 355 
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delayed larval growth. Watts et al. (2015) fed crabs (Carcinus maenas) over a period of 4 weeks (fed 356 

2-3 times per week) with different amounts of PP rope microfibers (0; 0.3; 0.6 and 1 % added to food). 357 

Those fed with plastics had a significant decrease in growth, mainly driven by a reduced food 358 

consumption over time. Larvae (Crepidula onyx) fed with higher concentrations (30 and 70 % of the 359 

algal concentration with final concentration of 6x104 and 1.4x105 particles.mL-1 respectively) of 360 

micro-PS (2-5 µm) than those found in the environment were smaller due to their reduced growth rate, 361 

in comparison to the control species (Lo and Chan, 2018).  362 

 363 

5. CONCLUSIONS 364 

This study observed the effects of a cocktail of MPs (138.6±2.3 µm) containing particles of HDPE, PP 365 

and PVC from aquaculture plastics aged in the marine environment. After an exposure period of 7 366 

days, the settlement success of the pediveliger larvae was evaluated. Then, an 11-month follow-up was 367 

carried out to monitor the growth in length of the pediveliger larvae up to the spat stage. Larvae 368 

exposed to 10 mg MP. L-1 showed a lower binding rate to substrate. In addition, the larvae exposed to 369 

the two concentrations of MPs (0.1 and 10 mg MP. L-1) exhibited growth retardation over 28 days of 370 

follow-up. At the end of the experiment (at 338 days), the spat produced from the larvae exposed to 371 

the MPs recovered their growth retardation, and over 11 months had a total growth greater than the 372 

control group. The energy used by larvae facing MPs exposure could affect the oysters’ ability to 373 

grow. It may be relevant to conduct further studies on the potential effects of MPs on energy reserves 374 

and the immune system of oysters at early stages of development. This study provides new evidences 375 

on the environmental risks of realistic high concentrations of MPs on aquatic invertebrates. 376 
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