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Av. Getúlio Vargas 333, 25651-075 Petrópolis - RJ, Brasil
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Abstract: In the present paper we propose a simple method for
dealing with growth control of cracks under contact type boundary
conditions on their lips. The aim is to find a mechanism for decreas-
ing the energy release rate of cracked components, which means
increasing their fracture toughness. The method consists in min-
imizing a shape functional defined in terms of the Rice’s integral,
with respect to the nucleation of hard and/or soft inclusions, ac-
cording to the information provided by the associated topological
derivative. Based on Griffith’s energy criterion, this simple strategy
allows for an increase in fracture toughness of the cracked compo-
nent. Since the problem is non-linear, the domain decomposition
technique, combined with the Steklov-Poincaré pseudo-differential
boundary operator, is used to obtain the sensitivity of the associated
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shape functional with respect to the nucleation of a small circular in-
clusion with different material property from the background. Then,
the obtained topological derivatives are used to indicate the regions,
where the controls should be positioned in order to solve the mini-
mization problem we are dealing with. Finally, a numerical example
is presented showing the applicability of the proposed methodology.

Keywords: Rice’s integral, Griffith’s criterion, Eshelby’s tensor,
topological derivative

1. Introduction

In materials science, toughness is an intrinsic property of components, which
is used to describe their capability to resist fracture. In particular, when the
original component is already partially cracked, this property is called fracture
toughness and represents the ability of materials in resisting the activation of
the crack propagation mechanism. The fracture toughness of a component is
related to its energy release rate, which is defined as the variation of the strain
energy stored in the body with respect to the crack growth. More specifically,
based on Griffith’s energy criterion (Griffith, 1921), the lower is the energy
release rate of the cracked component, the higher is its fracture toughness.
Following this idea, different strategies, meant to reduce the energy release rate
of the components, have been proposed in the literature. See, for instance,
Destuynder (1989), Hild, Münch and Ousset (2008), Khludnev, Leugering and
Specovious-Neugebauer (2012), Münch and Pedregal (2010) and related works,
Homberg and Khludniev (2002), Saliba et al. (2005), Saurin (2000).

This paper deals with crack growth control problems by using the con-
cept of topological derivative, see Khludnev, Leugering and Specovious-
Neugebauer (2012), Kovtunenko and Leugering (2016), Leugering, Soko lowski
and Żochowski (2015), Soko lowski, Leugering and Żochowski (2014, 2016). Fol-
lowing the original ideas, presented in Xavier, Novotny and Soko lowski (2018),
a shape functional defined in terms of the Rice’s integral (Rice, 1968) is mini-
mized with respect to the nucleation of hard and/or soft inclusions far from the
crack tip. Since the Rice’s integral is defined in terms of energy release, based
on Griffith’s energy criterion, this simple strategy allows for an increase of frac-
ture toughness of the cracked body. However, the methodology referred to was
developed over a linear elastic model. One well-known limitation of this class of
models is that they are not able to distinguish between traction and compression
stress states, so that crack closure phenomenon cannot be captured, for exam-
ple. Therefore, in this work, an extension of the method, presented in Xavier,
Novotny and Soko lowski (2018) to the non-linear case, associated with contact
type boundary conditions on the crack lips, is proposed. In particular, the sen-
sitivity of the Rice’s integral, with respect to the nucleation of a small circular
inclusion, is obtained by using the Domain Decomposition Technique combined
with the Steklov-Poincaré pseudo-differential boundary operator (Soko lowski
and Żochowski, 2005). As proposed in Xavier, Novotny and Soko lowski (2018),
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the resulting expression is used to indicate the regions, where the controls (in-
clusions) should be positioned (nucleated) in order to solve the minimization
problem. A numerical example, based on the famous Bittencourt’s experiment
is presented, showing the effectiveness of the proposed methodology. In fact, a
gain of 13% in the fracture toughness of the mechanical component is observed.

The work is organized as follows. The statement of the problem is presented
in Section 2. In Section 3, the closed formula of the associated topological
derivative is obtained. The numerical experiment is described in Section 4.
Finally, some concluding remarks are presented in Section 5.

2. Statement of the problem

2.1. The preliminaries

Let us consider an elastic cracked body, represented by an open and bounded
domain D ⊂ R2, with boundary ∂D = ΓN ∪ΓD ∪Γc, submitted to surface loads
on ΓN , prescribed displacements on ΓD and a possible contact condition on Γc.
The contour Γc is used to represent the crack inside the body. We assume that
the normal vectors on both sides of Γc are collinear, allowing us to set just one
normal vector field n on the potential contact region. The existing cracks are
assumed to be straight lines with length h and direction e, where e is a unit
vector aligned with the crack. The notation x∗ is used to denote the crack
tips. Finally, the cracks Γc are free of traction and a control region ω∗ ⊂ D,
containing the crack tip, is considered, see the sketch in Fig. 1. Then, the

c

Figure 1. Cracked elastic body
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mechanical problem is defined as: Find u, such that
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(1)

For the purposes of this work, it is necessary to introduce the regularized
version of the problem (1). In this case, the total potential energy of the system
is given by

F(u) =
1

2

∫

D

σ(u)·∇us−

∫

ΓN

q ·u+µa

∫

Γc

√

(u · τ)2 + a+µc

∫

Γc

| [[u]]·n |2+ , (2)

where the displacement field u is a solution to the following variational problem:
Find u ∈ U , such that

∫

D

σ(u) · ∇ηs =

=

∫

ΓN

q · η − µa

∫

Γc

(τ ⊗ τ)u · η
√

(u · τ)2 + a
− 2µc

∫

Γc

(| [[u]] · n |+)n · η , ∀η ∈ V . (3)

The term σ(u) = C∇us is the Cauchy stress tensor. We consider isotropic
material, so that the elasticity tensor C can be written as

C = 2µI + λ(I ⊗ I) , (4)

where I and I are the second and fourth order identity tensors, respectively, and
µ and λ are the Lamé’s coefficients. In particular, we have

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
and λ∗ =

νE

1 − ν2
, (5)

where λ and λ∗ are associated with plane strain and plane stress assumptions,
respectively. In addition, E is the Young’s modulus and ν the Poisson’s ratio.
The strain tensor is defined as

∇ϕs := (∇ϕ)s =
1

2
(∇ϕ + (∇ϕ)⊤) . (6)

In what follows, the term q ∈ H
1

2 (ΓN ;R2) is a given boundary traction, µa

is a known friction coefficient, τ denotes the tangential vector field on Γc and
a ∈ R+ is a regularization parameter. The operator | [[ϕ]] · n |2+, defined as

| [[ϕ]] · n |2+ :=

{

0 if [[ϕ]] · n > 0 ,
([[ϕ]] · n)2 if [[ϕ]] · n ≤ 0 ,

(7)
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is introduced to impose the non-interpenetration condition through the penalty
parameter µc. Finally, the set U and the space V are defined as

V := U :=
{

ϕ ∈ H1(D) : ϕ|ΓD
= 0

}

. (8)

Since we are considering a cracked domain, the propagation mechanism may
be activated according to some dissipation criterion (Griffith, 1921). As men-
tioned before, the aim is to find a way to retard or even avoid the triggering
of such mechanism by minimizing a shape functional, written down in terms of
the Rice’s integral with respect to the nucleation of circular inclusions far from
the crack tip.

2.2. Rice’s integral

The Rice’s integral, denoted by J (u), is defined as

J (u) := −
d

dh
W(u) , (9)

where W(u) is the energy released (Rice, 1968). By taking the strain energy to
compute the energy release rate, i.e., taking W(u) = −F(u), we obtain

J (u) = e·

∫

∂ω∗

Σ(u)n∗+µa

∫

Γc

∂τV
τ
√

(u · τ)2 + a+µc

∫

Γc

∂τV
τ | [[u]]·n |2+, (10)

where e is the direction of the crack growth, n∗ is the outward unit vector normal
to ∂ω∗, and Σ(u), defined as

Σ(u) =
1

2
(σ(u) · ∇us)I −∇u⊤σ(u) , (11)

is the Eshelby energy-momentum tensor introduced in Eshelby (1975). In the
sequence, V τ is the tangential component of the shape change velocity field V ,
which, in the present case, is defined as

V ∈ C∞(D) : V = e in ω∗, (12)

with compact support in ω∗.
For the purposes of this work, it is necessary to introduce a representation

of J (u) as an integral over the cracked domain. Alternative representations of
J (u) can be found in Fancello, Taroco and Feijóo (1993), Saurin (2000), or Van
Goethem and Novotny (2010), for instance. For a more general expression of
J (u) in three spatial dimensions see Feijóo and al. (2000). According to Van
Goethem and Novotny (2010), the derivative of F(u), with respect to the crack
length h, can also be written down as

d

dh
F(u) =

=

∫

D

Σ(u) · ∇V + µa

∫

Γc

∂τV
τ
√

(u · τ)2 + a + µc

∫

Γc

∂τV
τ | [[u]] · n |2+.

(13)
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Therefore, the following equivalent form for the Rice’s integral J (u) holds true

J (u) =

=

∫

D

Σ(u) · ∇V + µa

∫

Γc

∂τV
τ
√

(u · τ)2 + a + µc

∫

Γc

∂τV
τ | [[u]] · n|2+,

(14)

where Σ(u) is the Eshelby tensor, defined by (11). The proof of the equivalence
between the different representations of the Rice’s integral, given by (10) and
(14), can be found in details in Van Goethem and Novotny (2010), for instance.

2.3. Topology optimization problem

The topology optimization problem is based on Griffith’s energy criterion for
crack propagation (Griffith, 1921). This criterion can be written down in terms
of the Rice’s integral in the following way:

J (u) + Gs







< 0 the crack is unstable;
= 0 the crack is in equilibrium;
> 0 the crack is stable,

(15)

where Gs > 0 is used to denote the Griffith’s surface energy.
Since Gs is a positive number and taking into account that J (u) is a negative

quantity, the less negative is J (u) the higher is the fracture toughness of the
mechanical component. Therefore, by avoiding trivial solution, which consists
in rounding the crack tip, the idea is to maximize J (u) with respect to the
nucleation of hard and/or soft inclusions far from the crack tip. Thus, the
optimization problem we are dealing with can be formulated as follows:

Minimize
Ω⊂D

{−J (u)}, subject to (3) , (16)

where Ω := D \ ω∗ and J (u) is the Rice’s integral, defined through (14). Here,
the domain Ω, which is free of geometrical singularities, produced by the crack
tip, is assumed to be smooth, with Lipschitz boundary ∂Ω.

A natural approach to deal with such a minimization problem consists in
applying the concept of topological derivative (see Novotny and Soko lowski,
2013; Sokolowski and Żochowski, 1999). Therefore, in order to simplify further
the analysis, we introduce the following adjoint state: Find v ∈ V , such that

∫

D

σ(v) · ∇ηs = 〈DuJ (u), η〉 =

=

∫

D

tr(∇V )σ(u) · ∇ηs −

∫

D

σ(η) · (∇u∇V ) −

∫

D

σ(u) · (∇η∇V )

+ µa

∫

Γc

∂τV
τ (τ ⊗ τ)u · η
√

(u · τ)2 + a
+ 2µc

∫

Γc

∂τV
τ (| [[u]] · n |+)n · η , ∀ η ∈ V ,

(17)

where V is the shape change velocity field defined in (12).
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3. Topology optimization method

The methodology, proposed in Xavier, Novotny and Soko lowski (2018), is based
on the fact that the introduction of an inclusion at the region, where the topolo-
gical derivative is negative, allows for decreasing the values of the associated
shape functional. Therefore, the topological derivative of the shape functional,
defined by (14), with respect to the nucleation of a small circular inclusion, is
obtained. Then, the resulting expression will be used to indicate the regions,
where the inclusions should be nucleated in order to solve the minimization
problem (16). Since the domain of analysis contains a singularity, it is nec-
essary first to apply the Domain Decomposition Technique, combined with the
Steklov-Poincaré pseudo-differential boundary operator, in order to evaluate the
associated topological derivative.

3.1. Domain decomposition method

Let us decompose D into two subdomains, namely, ω∗ ⊂ D and Ω := D \ ω∗,
such that ω∗ is the region, which contains the singularity produced by the crack
tip. In addition, we consider an intact domain ω of the form ω := ω∗ ∪ Γc as
sketched in Fig. 2. Then, the following boundary value problem is considered:
Find w, such that















divσ(w) = 0 in ω∗ ,
σ(w) = C∇ws ,

σ(w)n = g(w) on Γc ,
w = ϕ on ∂ω .

(18)

where the vector function g is given by

g(w) = −µa

(τ ⊗ τ)w
√

(w · τ)2 + a
− 2µc(| [[w]] · n |+)n . (19)

Therefore, by using (18), we can define the Steklov-Poincaré pseudo-differential
boundary operator S as follows

S : H
1

2 (∂ω) → H− 1

2 (∂ω)
ϕ 7→ σ(w)n∗ ,

(20)

where n∗ is the outward normal vector to the boundary ∂ω. Therefore, the
following variational problem is considered over the uncracked domain Ω: Find
u ∈ U , such that

∫

Ω

σ(u) · ∇ηs +

∫

∂ω

S(u) · η =

∫

ΓN

q · η , ∀η ∈ V . (21)

Note that, by setting ϕ = (u)|∂ω
, we have w = (u)|ω∗

.
By using the Domain Decomposition Technique, the cracked domain D is de-

composed, so that the singularity, produced by the crack tip, is absorbed by the
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c

c

Figure 2. Truncated domain

auxiliary problem (18), defined over the cracked subdomain ω∗. Consequently,
the remaining subdomain Ω becomes smooth, which allows us to evaluate the as-
sociated topological derivative by using results known from the literature. For
more details on the domain decomposition method, see Amigo et al. (2016),
Lopes et al. (2017), or Soko lowski and Żochowski (2005), for instance.

Now, in order to apply the concept of topological derivative (Novotny and
Soko lowski, 2013), let us introduce the topologically perturbed counterpart of
the problem (21). The idea consists in nucleating a circular inclusion, denoted by
Bε(x̂), of radius ε and center at the arbitrary point x̂ ∈ Ω, such that Bε(x̂) ⊂ Ω,
see the sketch in Fig. 3. More precisely, we define a piecewise constant function
of the form

γε = γε(x) :=

{

1 if x ∈ Ω \Bε(x̂) ;
γ if x ∈ Bε(x̂) ,

(22)

where γ = γ(x) is the contrast in the material properties. The variational
formulation, associated with the topologically perturbed problem, is stated as:
Find uε ∈ U , such that

∫

Ω

σε(uε) · ∇ηs +

∫

∂ω

S(uε) · η =

∫

ΓN

q · η ∀η ∈ V , (23)

where σε(uε) = γεσ(uε). Note that, by setting ϕ = (uε)|∂ω
, we have w = (uε)|ω∗

.

3.2. Existence of the topological derivative

The existence of the associated topological derivative is ensured by the following
result:
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c

c

Figure 3. The perturbed problem

Lemma 1 Let uε and u be solutions of problems (23) and (21), respectively.
Then, the following estimate holds true:

‖uε − u‖H1(Ω) ≤ Cε , (24)

where C is a constant independent of the small parameter ε.

Proof Let us subtract (21) from (23). Then, from the definition for the
contrast (22), we obtain

0 =

∫

Ω

(σε(uε) − σ(u)) · ∇ηs +

∫

∂ω

S(uε − u) · η

=

∫

Ω\Bε

(σ(uε) − σ(u)) · ∇ηs +

∫

Bε

(γσ(uε) − σ(u)) · ∇ηs

+

∫

∂ω

S(uε − u) · η .

After adding and subtracting the term
∫

Bε

γσ(u) · ∇ηs

in the above expression, we have
∫

Ω

σε(uε − u) · ∇ηs +

∫

∂ω

S(uε − u) · η =

∫

Bε

(1 − γ)σ(u) · ∇ηs . (25)

By taking η = uε − u as test function in (25) we obtain the following equality
∫

Ω

σε(uε − u) · ∇(uε − u)s +

∫

∂ω

S(uε − u) · (uε − u)

=

∫

Bε

T(u) · ∇(uε − u)s , (26)
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where we have introduced the notation

T(u) = (1 − γ)σ(u) . (27)

From the Cauchy-Schwartz inequality, it follows that
∫

Bε

T(u) · ∇(uε − u)s ≤ ‖T(u)‖L2(Bε)‖∇(uε − u)‖L2(Bε)

≤ C0ε‖∇(uε − u)‖L2(Bε) (28)

≤ C1ε‖uε − u‖H1(Ω).

By coercivity of the bilinear form on the left-hand side of (29) we have

c‖uε −u‖2H1(Ω) ≤

∫

Ω

σε(uε − u) · ∇(uε − u)s +

∫

∂ω

S(uε − u) · (uε −u), (29)

which leads to the result with C=C1/c independent of the small parameter ε.�

3.3. Topological derivative formula

Since the topological perturbation is nucleated far from the control region ω∗

and taking into account the definition of the shape change velocity field V from
(12), the Rice’s integral (14) becomes concentrated over the fixed domain ω∗.
In this particular case, the topological derivative can be adapted from Amstutz
(2006). For the general case, associated with singular domain perturbations,
which is much more complicated from the mathematical point view, see, for in-
stance, Nazarov, Soko lowski and Specovious-Neugebauer (2010), or Soko lowski
and Żochowski (2005). See also Ammari et al. (2002) for the complete topolo-
gical asymptotic expansion of solutions governed by the elasticity system.

Theorem 1 The topological derivative of the shape functional {−J (u)}, where
J (u) is the Rice’s integral given by (14), with respect to the nucleation of a
small circular inclusion endowed with contrast γ, can be formulated in terms of
the solutions to the direct (21) and adjoint (17) problems, namely:

T (x) = Pγσ(u)(x) · ∇vs(x), ∀x ∈ Ω , (30)

where the polarization tensor Pγ is given by a fourth order isotropic tensor as
follows

Pγ = −
1 − γ

1 + βγ

(

(1 + β)I +
1

2
(α− β)

1 − γ

1 + αγ
I ⊗ I

)

, (31)

with the coefficients α and β defined as

α =
µ + λ

µ
and β =

3µ + λ

µ + λ
. (32)
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Corollary 1 The following limit cases for the contrast parameter γ can be
formally obtained from Theorem 1, whose rigorous mathematical justification
can be found in Ammari et al. (2013), for instance:

Case 1. Contrast parameter going to zero (γ → 0),

T0(x) = P0σ(u)(x) · ∇vs(x) , (33)

where the polarization tensor P0 is given by

P0 = −
4µ + 2λ

µ + λ

(

I−
µ− λ

4µ
I ⊗ I

)

. (34)

Case 2. Contrast parameter going to infinity (γ → ∞),

T∞(x) = P∞σ(u)(x) · ∇vs(x) , (35)

with the polarization tensor P∞ given by

P∞ =
4µ + 2λ

3µ + λ

(

I +
µ− λ

4(µ + λ)
I ⊗ I

)

. (36)

4. Bittencourt’s experiment

In this section a well known numerical experiment is presented in order to illus-
trate some preliminary results. As mentioned before, the obtained topological
derivatives will be used to indicate the regions, where the controls should be
positioned. Then, a combination of such indications is performed in order to
verify the effects caused by the topological changes. The mechanical problem
is solved by using the Finite Element Method with linear triangular elements
only.

This example, called Bittencourt’s experiment (see Bittencourt et al., 1996),
has been proposed in Ingraffea and Grigoriu (1990). The geometry and
boundary conditions can be seen in details in Fig. 4. A concentrated load
q = −(0, 104) lbf is applied at the middle point of the top face. In particular,
we highlight the three holes, located between the load and the initial crack. In
addition, the control region ω∗ is given by a circle centered at the crack tip
with radius r∗ = 0.5 in. It is assumed that the structure is under plane strain
assumption. The remaining parameters are shown in Table 1.

The obtained topological derivatives in the neighborhood of the control re-
gion ω∗ (see Fig. 4 for details) are presented in Fig. 5. In particular, the limit
Cases 1 and 2, according to (33) and (35) in Corollary 1, are presented in Figs
5(a) and 5(b), respectively. Note that, as indicated in Fig. 5(a), two soft in-
clusions should be nucleated at both sides of the crack tip. Now, taking into
account the result shown in Fig. 5(b), a hard inclusion should be nucleated in
front of the crack in the direction of the applied load.
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20

Figure 4. Bittencourt’s experiment. Geometry and boundary conditions

Table 1. Bittencourt’s experiment. Parameters

Parameter Value
E 4.5 × 105 psi
ν 0.35
e (0, 1)
h 1.5 in
c 5 in

In order to verify the effects, caused by the nucleation of such inclusions, the
following four cases are considered. Case A: no inclusions are nucleated; Case B:
a hard inclusion is nucleated at the point (5.4125, 2.25) since T∞(x) < 0; Case
C: two soft inclusions are nucleated at the points (4.125, 1.75) and (5.87, 1.125)
since T0(x) < 0; Case D: the cases B and C are considered simultaneously. In
all cases the radius of the inclusion is r = 0.25 in, see Fig. 6 for details, where
white/black circles represent soft/hard inclusions.

The obtained results are presented in Table 2, and they are also presented
in Fig. 7 after normalization with respect to the first obtained value of −J (u).

Table 2. Bittencourt’s experiment. Obtained results

Cases A B C D
−J (u) 101.5803 97.291 92.1696 88.3871

Note that the values of the associated shape functional decrease after introduc-
ing the topology changes according to the signal of the topological derivative.
In the last case, for example, a gain of approximately 13% is observed.



Growth control of cracks under contact with topological derivative of Rice’s integral 319

-60

-40

-20

0

20

40

60

80

100

120

140

(a) Case 1: T0(x)
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Figure 5. Bittencourt’s experiment. Topological derivatives in the neighborhood
of the control region ω∗, centered at the crack tip (see Figure 4 for details)

5. Conclusions

In this paper, an extension of the methodology proposed in Xavier, Novotny
and Soko lowski (2018) to deal with crack growth control problems for the non-
linear case by considering contact type boundary conditions on the crack lips,
is proposed. The main idea consists in minimizing a shape functional defined
in terms of the Rice’s integral, by nucleating hard and/or soft inclusions far
from the crack tip, according to the information provided by the topological
derivative. In particular, the Domain Decomposition Technique, combined with
the Steklov-Poincaré pseudo-differential boundary operator, is used to obtain
the sensitivity of the associated shape functional with respect to the nucleation
of a small circular inclusion with different material property from the back-
ground. Then, the resulting expression is used to indicate the regions, where
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...

(a) Case A

...

(b) Case B

...

(c) Case C

...

(d) Case D

Figure 6. Cases A, B, C, and D

the controls (inclusions) should be positioned (nucleated) in order to solve the
minimization problem. According to the Griffith’s energy criterion, this proce-
dure allows for an increase of the fracture toughness of the cracked component.
The well known Bittencourt’s experiment is presented to illustrate the applica-
bility of the method in the case of pure traction. In fact, this example shows
that a gain of 13% in the fracture toughness of the mechanical component can
be obtained by applying the proposed method. Finally, it should be emphasized
that the numerical example can be seen as a preliminary result only. Actually,
further studies, related to the implementation of the numerical treatment of the
problems with the non-interpenetration conditions, are now being carried out.

In addition, the numerical experiments only show a tendency concerning the
behavior of the shape function after nucleation of inclusions according to the
value of the topological derivative. Solving a topology optimization problem in
the strict sense by using the derived theoretical results is the subject of future
work.
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Figure 7. Bittencourt’s experiment. Obtained results
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