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Introduction

In materials science, toughness is an intrinsic property of components, which is used to describe their capability to resist fracture. In particular, when the original component is already partially cracked, this property is called fracture toughness and represents the ability of materials in resisting the activation of the crack propagation mechanism. The fracture toughness of a component is related to its energy release rate, which is defined as the variation of the strain energy stored in the body with respect to the crack growth. More specifically, based on Griffith's energy criterion (Griffith, 1921), the lower is the energy release rate of the cracked component, the higher is its fracture toughness. Following this idea, different strategies, meant to reduce the energy release rate of the components, have been proposed in the literature. See, for instance, [START_REF] Destuynder | Remarques sur le contrôle de la propagation des fissures en régime stationnaire[END_REF], Hild, Münch and Ousset (2008), Khludnev, Leugering and Specovious-Neugebauer (2012), [START_REF] Münch | Relaxation of an optimal design problem in fracture mechanic: the anti-plane case[END_REF] and related works, Homberg and Khludniev (2002), [START_REF] Saliba | Adaptivity in linear elastic fracture mechanics based on shape sensitivity analysis[END_REF], [START_REF] Saurin | Shape design sensitivity analysis for fracture conditions[END_REF]. This paper deals with crack growth control problems by using the concept of topological derivative, see Khludnev, Leugering and Specovious-Neugebauer (2012), [START_REF] Kovtunenko | A shape-topological control problem for nonlinear crack-defect interaction: the antiplane variational model[END_REF], [START_REF] Leugering | Control of crack propagation by shape-topological optimization[END_REF], Soko lowski, Leugering andŻochowski (2014, 2016). Following the original ideas, presented in Xavier, [START_REF] Xavier | Crack growth control based on the topological derivative of the Rice's integral[END_REF], a shape functional defined in terms of the Rice's integral [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF]) is minimized with respect to the nucleation of hard and/or soft inclusions far from the crack tip. Since the Rice's integral is defined in terms of energy release, based on Griffith's energy criterion, this simple strategy allows for an increase of fracture toughness of the cracked body. However, the methodology referred to was developed over a linear elastic model. One well-known limitation of this class of models is that they are not able to distinguish between traction and compression stress states, so that crack closure phenomenon cannot be captured, for example. Therefore, in this work, an extension of the method, presented in Xavier, [START_REF] Xavier | Crack growth control based on the topological derivative of the Rice's integral[END_REF] to the non-linear case, associated with contact type boundary conditions on the crack lips, is proposed. In particular, the sensitivity of the Rice's integral, with respect to the nucleation of a small circular inclusion, is obtained by using the Domain Decomposition Technique combined with the Steklov-Poincaré pseudo-differential boundary operator [START_REF] Soko Lowski | Modelling of topological derivatives for contact problems[END_REF]. As proposed in [START_REF] Xavier | Crack growth control based on the topological derivative of the Rice's integral[END_REF], the resulting expression is used to indicate the regions, where the controls (inclusions) should be positioned (nucleated) in order to solve the minimization problem. A numerical example, based on the famous Bittencourt's experiment is presented, showing the effectiveness of the proposed methodology. In fact, a gain of 13% in the fracture toughness of the mechanical component is observed.

The work is organized as follows. The statement of the problem is presented in Section 2. In Section 3, the closed formula of the associated topological derivative is obtained. The numerical experiment is described in Section 4. Finally, some concluding remarks are presented in Section 5. The contour Γ c is used to represent the crack inside the body. We assume that the normal vectors on both sides of Γ c are collinear, allowing us to set just one normal vector field n on the potential contact region. The existing cracks are assumed to be straight lines with length h and direction e, where e is a unit vector aligned with the crack. The notation x * is used to denote the crack tips. Finally, the cracks Γ c are free of traction and a control region ω * ⊂ D, containing the crack tip, is considered, see the sketch in Fig. 1. Then, the c Figure 1. Cracked elastic body mechanical problem is defined as: Find u, such that

Statement of the problem

                           div(σ(u)) = 0 in D , σ(u) = C∇u s u = 0 on Γ D , σ(u)n = q on Γ N , [[u] ] • n σ nn (u) σ nn (u)([[u]] • n) σ nτ (u)(u • τ ) + µ a |u • τ | -µ a ≤ σ nτ (u) ≥ ≤ = = ≤ 0 0 0 0 µ a            on Γ c . (1) 
For the purposes of this work, it is necessary to introduce the regularized version of the problem (1). In this case, the total potential energy of the system is given by

F (u) = 1 2 D σ(u)•∇u s - ΓN q•u+µ a Γc (u • τ ) 2 + a+µ c Γc | [[u] ]•n | 2 + , (2) 
where the displacement field u is a solution to the following variational problem:

Find u ∈ U, such that D σ(u) • ∇η s = = ΓN q • η -µ a Γc (τ ⊗ τ )u • η (u • τ ) 2 + a -2µ c Γc (| [[u] ] • n | + )n • η , ∀η ∈ V. (3)
The term σ(u) = C∇u s is the Cauchy stress tensor. We consider isotropic material, so that the elasticity tensor C can be written as

C = 2µI + λ(I ⊗ I) , (4) 
where I and I are the second and fourth order identity tensors, respectively, and µ and λ are the Lamé's coefficients. In particular, we have

µ = E 2(1 + ν) , λ = νE (1 + ν)(1 -2ν) and λ * = νE 1 -ν 2 , ( 5 
)
where λ and λ * are associated with plane strain and plane stress assumptions, respectively. In addition, E is the Young's modulus and ν the Poisson's ratio.

The strain tensor is defined as

∇ϕ s := (∇ϕ) s = 1 2 (∇ϕ + (∇ϕ) ⊤ ) . (6) 
In what follows, the term q ∈ H 1 2 (Γ N ; R 2 ) is a given boundary traction, µ a is a known friction coefficient, τ denotes the tangential vector field on Γ c and a ∈ R + is a regularization parameter. The operator

| [[ϕ]] • n | 2 + , defined as | [[ϕ]] • n | 2 + := 0 if [[ϕ]] • n > 0 , ([[ϕ]] • n) 2 if [[ϕ]] • n ≤ 0 , (7) 
is introduced to impose the non-interpenetration condition through the penalty parameter µ c . Finally, the set U and the space V are defined as

V := U := ϕ ∈ H 1 (D) : ϕ |Γ D = 0 . (8) 
Since we are considering a cracked domain, the propagation mechanism may be activated according to some dissipation criterion (Griffith, 1921). As mentioned before, the aim is to find a way to retard or even avoid the triggering of such mechanism by minimizing a shape functional, written down in terms of the Rice's integral with respect to the nucleation of circular inclusions far from the crack tip.

Rice's integral

The Rice's integral, denoted by J (u), is defined as

J (u) := - d dh W(u) , (9) 
where W(u) is the energy released [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF]. By taking the strain energy to compute the energy release rate, i.e., taking W(u) = -F (u), we obtain

J (u) = e• ∂ω * Σ(u)n * +µ a Γc ∂ τ V τ (u • τ ) 2 + a+µ c Γc ∂ τ V τ | [[u]]•n | 2 + , ( 10 
)
where e is the direction of the crack growth, n * is the outward unit vector normal to ∂ω * , and Σ(u), defined as

Σ(u) = 1 2 (σ(u) • ∇u s )I -∇u ⊤ σ(u) , (11) 
is the Eshelby energy-momentum tensor introduced in Eshelby (1975). In the sequence, V τ is the tangential component of the shape change velocity field V , which, in the present case, is defined as

V ∈ C ∞ (D) : V = e in ω * , (12) 
with compact support in ω * .

For the purposes of this work, it is necessary to introduce a representation of J (u) as an integral over the cracked domain. Alternative representations of J (u) can be found in [START_REF] Fancello | Shape sensitivity analysis in fractura mechanics[END_REF], [START_REF] Saurin | Shape design sensitivity analysis for fracture conditions[END_REF], or Van Goethem and Novotny (2010), for instance. For a more general expression of J (u) in three spatial dimensions see [START_REF] Feijóo | Shape sensitivity analysis for energy release rate evaluation and its application to the study of three-dimensional cracked bodies[END_REF]. According to Van Goethem and [START_REF] Van Goethem | Crack nucleation sensitivity analysis[END_REF], the derivative of F (u), with respect to the crack length h, can also be written down as

d dh F (u) = = D Σ(u) • ∇V + µ a Γc ∂ τ V τ (u • τ ) 2 + a + µ c Γc ∂ τ V τ | [[u]] • n | 2 + . (13) 
Therefore, the following equivalent form for the Rice's integral J (u) holds true

J (u) = = D Σ(u) • ∇V + µ a Γc ∂ τ V τ (u • τ ) 2 + a + µ c Γc ∂ τ V τ | [[u]] • n| 2 + , (14) 
where Σ(u) is the Eshelby tensor, defined by ( 11). The proof of the equivalence between the different representations of the Rice's integral, given by ( 10) and ( 14), can be found in details in Van Goethem and Novotny (2010), for instance.

Topology optimization problem

The topology optimization problem is based on Griffith's energy criterion for crack propagation (Griffith, 1921). This criterion can be written down in terms of the Rice's integral in the following way:

J (u) + G s    < 0 the crack is unstable; = 0 the crack is in equilibrium; > 0 the crack is stable, (15) 
where G s > 0 is used to denote the Griffith's surface energy. Since G s is a positive number and taking into account that J (u) is a negative quantity, the less negative is J (u) the higher is the fracture toughness of the mechanical component. Therefore, by avoiding trivial solution, which consists in rounding the crack tip, the idea is to maximize J (u) with respect to the nucleation of hard and/or soft inclusions far from the crack tip. Thus, the optimization problem we are dealing with can be formulated as follows:

Minimize Ω⊂D {-J (u)}, subject to (3) , (16) 
where Ω := D \ ω * and J (u) is the Rice's integral, defined through ( 14). Here, the domain Ω, which is free of geometrical singularities, produced by the crack tip, is assumed to be smooth, with Lipschitz boundary ∂Ω.

A natural approach to deal with such a minimization problem consists in applying the concept of topological derivative (see [START_REF] Novotny | Topological Derivatives in Shape Optimization[END_REF]Sokolowski and Żochowski, 1999). Therefore, in order to simplify further the analysis, we introduce the following adjoint state:

Find v ∈ V, such that D σ(v) • ∇η s = D u J (u), η = = D tr(∇V )σ(u) • ∇η s - D σ(η) • (∇u∇V ) - D σ(u) • (∇η∇V ) + µ a Γc ∂ τ V τ (τ ⊗ τ )u • η (u • τ ) 2 + a + 2µ c Γc ∂ τ V τ (| [[u] ] • n | + )n • η , ∀ η ∈ V , ( 17 
)
where V is the shape change velocity field defined in (12).

Topology optimization method

The methodology, proposed in Xavier, [START_REF] Xavier | Crack growth control based on the topological derivative of the Rice's integral[END_REF], is based on the fact that the introduction of an inclusion at the region, where the topological derivative is negative, allows for decreasing the values of the associated shape functional. Therefore, the topological derivative of the shape functional, defined by ( 14), with respect to the nucleation of a small circular inclusion, is obtained. Then, the resulting expression will be used to indicate the regions, where the inclusions should be nucleated in order to solve the minimization problem ( 16). Since the domain of analysis contains a singularity, it is necessary first to apply the Domain Decomposition Technique, combined with the Steklov-Poincaré pseudo-differential boundary operator, in order to evaluate the associated topological derivative.

Domain decomposition method

Let us decompose D into two subdomains, namely, ω * ⊂ D and Ω := D \ ω * , such that ω * is the region, which contains the singularity produced by the crack tip. In addition, we consider an intact domain ω of the form ω := ω * ∪ Γ c as sketched in Fig. 2. Then, the following boundary value problem is considered: Find w, such that

       divσ(w) = 0 in ω * , σ(w) = C∇w s , σ(w)n = g(w)
on Γ c , w = ϕ on ∂ω .

(

) 18 
where the vector function g is given by

g(w) = -µ a (τ ⊗ τ )w (w • τ ) 2 + a -2µ c (| [[w]] • n | + )n . (19) 
Therefore, by using (18), we can define the Steklov-Poincaré pseudo-differential boundary operator S as follows

S : H 1 2 (∂ω) → H -1 2 (∂ω) ϕ → σ(w)n * , ( 20 
)
where n * is the outward normal vector to the boundary ∂ω. Therefore, the following variational problem is considered over the uncracked domain Ω: Find u ∈ U, such that

Ω σ(u) • ∇η s + ∂ω S(u) • η = ΓN q • η , ∀η ∈ V . ( 21 
)
Note that, by setting ϕ = (u) | ∂ω , we have w = (u) | ω * . By using the Domain Decomposition Technique, the cracked domain D is decomposed, so that the singularity, produced by the crack tip, is absorbed by the 18), defined over the cracked subdomain ω * . Consequently, the remaining subdomain Ω becomes smooth, which allows us to evaluate the associated topological derivative by using results known from the literature. For more details on the domain decomposition method, see [START_REF] Amigo | Optimum design of extensional piezoelectric actuators into two spatial dimensions[END_REF], [START_REF] Lopes | Asymptotic analysis of variational inequalities with applications to optimum design in elasticity[END_REF], or Soko lowski and Żochowski (2005), for instance. Now, in order to apply the concept of topological derivative (Novotny and Soko lowski, 2013), let us introduce the topologically perturbed counterpart of the problem (21). The idea consists in nucleating a circular inclusion, denoted by B ε (x), of radius ε and center at the arbitrary point x ∈ Ω, such that B ε (x) ⊂ Ω, see the sketch in Fig. 3. More precisely, we define a piecewise constant function of the form

γ ε = γ ε (x) := 1 if x ∈ Ω \ B ε (x) ; γ if x ∈ B ε (x) , (22) 
where γ = γ(x) is the contrast in the material properties. The variational formulation, associated with the topologically perturbed problem, is stated as:

Find u ε ∈ U, such that Ω σ ε (u ε ) • ∇η s + ∂ω S(u ε ) • η = ΓN q • η ∀η ∈ V , ( 23 
)
where

σ ε (u ε ) = γ ε σ(u ε ). Note that, by setting ϕ = (u ε ) | ∂ω , we have w = (u ε ) | ω * .

Existence of the topological derivative

The existence of the associated topological derivative is ensured by the following result: Then, the following estimate holds true:

u ε -u H 1 (Ω) ≤ Cε , ( 24 
)
where C is a constant independent of the small parameter ε.

Proof Let us subtract ( 21) from ( 23). Then, from the definition for the contrast ( 22), we obtain

0 = Ω (σ ε (u ε ) -σ(u)) • ∇η s + ∂ω S(u ε -u) • η = Ω\Bε (σ(u ε ) -σ(u)) • ∇η s + Bε (γσ(u ε ) -σ(u)) • ∇η s + ∂ω S(u ε -u) • η .
After adding and subtracting the term Bε γσ(u) • ∇η s in the above expression, we have

Ω σ ε (u ε -u) • ∇η s + ∂ω S(u ε -u) • η = Bε (1 -γ)σ(u) • ∇η s . ( 25 
)
By taking η = u ε -u as test function in (25) we obtain the following equality

Ω σ ε (u ε -u) • ∇(u ε -u) s + ∂ω S(u ε -u) • (u ε -u) = Bε T(u) • ∇(u ε -u) s , ( 26 
)
where we have introduced the notation

T(u) = (1 -γ)σ(u) . ( 27 
)
From the Cauchy-Schwartz inequality, it follows that

Bε T(u) • ∇(u ε -u) s ≤ T(u) L 2 (Bε) ∇(u ε -u) L 2 (Bε) ≤ C 0 ε ∇(u ε -u) L 2 (Bε) (28) ≤ C 1 ε u ε -u H 1 (Ω) .
By coercivity of the bilinear form on the left-hand side of ( 29) we have

c u ε -u 2 H 1 (Ω) ≤ Ω σ ε (u ε -u) • ∇(u ε -u) s + ∂ω S(u ε -u) • (u ε -u), (29) 
which leads to the result with C = C 1 /c independent of the small parameter ε.

Topological derivative formula

Since the topological perturbation is nucleated far from the control region ω * and taking into account the definition of the shape change velocity field V from (12), the Rice's integral (14) becomes concentrated over the fixed domain ω * . In this particular case, the topological derivative can be adapted from [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF]. For the general case, associated with singular domain perturbations, which is much more complicated from the mathematical point view, see, for instance, Nazarov, Soko lowski and Specovious-Neugebauer (2010), or Soko lowski and Żochowski (2005). See also [START_REF] Ammari | Complete asymptotic expansions of solutions of the system of elastostatics in the presence of inhomogeneities of small diameter[END_REF] for the complete topological asymptotic expansion of solutions governed by the elasticity system.

Theorem 1 The topological derivative of the shape functional {-J (u)}, where J (u) is the Rice's integral given by (14), with respect to the nucleation of a small circular inclusion endowed with contrast γ, can be formulated in terms of the solutions to the direct (21) and adjoint (17) problems, namely:

T (x) = P γ σ(u)(x) • ∇v s (x), ∀x ∈ Ω , (30) 
where the polarization tensor P γ is given by a fourth order isotropic tensor as follows

P γ = - 1 -γ 1 + βγ (1 + β)I + 1 2 (α -β) 1 -γ 1 + αγ I ⊗ I , (31) 
with the coefficients α and β defined as

α = µ + λ µ and β = 3µ + λ µ + λ . ( 32 
)
Corollary 1 The following limit cases for the contrast parameter γ can be formally obtained from Theorem 1, whose rigorous mathematical justification can be found in [START_REF] Ammari | Strong convergence of the solutions of the linear elasticity and uniformity of asymptotic expansions in the presence of small inclusions[END_REF], for instance:

Case 1. Contrast parameter going to zero (γ → 0),

T 0 (x) = P 0 σ(u)(x) • ∇v s (x) , (33) 
where the polarization tensor P 0 is given by

P 0 = - 4µ + 2λ µ + λ I - µ -λ 4µ I ⊗ I . ( 34 
)
Case 2. Contrast parameter going to infinity (γ → ∞),

T ∞ (x) = P ∞ σ(u)(x) • ∇v s (x) , (35) 
with the polarization tensor P ∞ given by

P ∞ = 4µ + 2λ 3µ + λ I + µ -λ 4(µ + λ) I ⊗ I . (36) 

Bittencourt's experiment

In this section a well known numerical experiment is presented in order to illustrate some preliminary results. As mentioned before, the obtained topological derivatives will be used to indicate the regions, where the controls should be positioned. Then, a combination of such indications is performed in order to verify the effects caused by the topological changes. The mechanical problem is solved by using the Finite Element Method with linear triangular elements only. This example, called Bittencourt's experiment (see [START_REF] Bittencourt | Quasi-automatic simulation of crack propagation for 2d LEFM problems[END_REF], has been proposed in [START_REF] Ingraffea | Probabilistic fracture mechanics: A validation of predictive capability[END_REF]. The geometry and boundary conditions can be seen in details in Fig. 4. A concentrated load q = -(0, 10 4 ) lbf is applied at the middle point of the top face. In particular, we highlight the three holes, located between the load and the initial crack. In addition, the control region ω * is given by a circle centered at the crack tip with radius r * = 0.5 in. It is assumed that the structure is under plane strain assumption. The remaining parameters are shown in Table 1.

The obtained topological derivatives in the neighborhood of the control region ω * (see Fig. 4 for details) are presented in Fig. 5. In particular, the limit Cases 1 and 2, according to (33) and ( 35 In order to verify the effects, caused by the nucleation of such inclusions, the following four cases are considered. Case A: no inclusions are nucleated; Case B: a hard inclusion is nucleated at the point (5.4125, 2.25) since T ∞ (x) < 0; Case C: two soft inclusions are nucleated at the points (4.125, 1.75) and (5.87, 1.125) since T 0 (x) < 0; Case D: the cases B and C are considered simultaneously. In all cases the radius of the inclusion is r = 0.25 in, see Fig. 6 for details, where white/black circles represent soft/hard inclusions.

The obtained results are presented in Table 2, and they are also presented in Fig. 7 after normalization with respect to the first obtained value of -J (u). Note that the values of the associated shape functional decrease after introducing the topology changes according to the signal of the topological derivative. In the last case, for example, a gain of approximately 13% is observed. 

Conclusions

In this paper, an extension of the methodology proposed in Xavier, Novotny and Soko lowski (2018) to deal with crack growth control problems for the nonlinear case by considering contact type boundary conditions on the crack lips, is proposed. The main idea consists in minimizing a shape functional defined in terms of the Rice's integral, by nucleating hard and/or soft inclusions far from the crack tip, according to the information provided by the topological derivative. In particular, the Domain Decomposition Technique, combined with the Steklov-Poincaré pseudo-differential boundary operator, is used to obtain the sensitivity of the associated shape functional with respect to the nucleation of a small circular inclusion with different material property from the background. Then, the resulting expression is used to indicate the regions, where ... the controls (inclusions) should be positioned (nucleated) in order to solve the minimization problem. According to the Griffith's energy criterion, this procedure allows for an increase of the fracture toughness of the cracked component. The well known Bittencourt's experiment is presented to illustrate the applicability of the method in the case of pure traction. In fact, this example shows that a gain of 13% in the fracture toughness of the mechanical component can be obtained by applying the proposed method. Finally, it should be emphasized that the numerical example can be seen as a preliminary result only. Actually, further studies, related to the implementation of the numerical treatment of the problems with the non-interpenetration conditions, are now being carried out. In addition, the numerical experiments only show a tendency concerning the behavior of the shape function after nucleation of inclusions according to the value of the topological derivative. Solving a topology optimization problem in the strict sense by using the derived theoretical results is the subject of future work. 
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  ) in Corollary 1, are presented in Figs 5(a) and 5(b), respectively. Note that, as indicated in Fig. 5(a), two soft inclusions should be nucleated at both sides of the crack tip. Now, taking into account the result shown in Fig. 5(b), a hard inclusion should be nucleated in front of the crack in the direction of the applied load.
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 4 Figure 4. Bittencourt's experiment. Geometry and boundary conditions

  Figure 5. Bittencourt's experiment. Topological derivatives in the neighborhood of the control region ω * , centered at the crack tip (see Figure 4 for details)

Figure 6 .

 6 Figure 6. Cases A, B, C, and D

Figure 7 .

 7 Figure 7. Bittencourt's experiment. Obtained results

Table 1 .

 1 Bittencourt's experiment. Parameters 

	Parameter	Value
	E	4.5 × 10 5 psi
	ν	0.35
	e	(0, 1)
	h	1.5 in
	c	5 in

Table 2 .

 2 Bittencourt's experiment. Obtained results 

	Cases	A	B	C	D
	-J (u) 101.5803 97.291 92.1696 88.3871
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