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We investigate numerically the influence of a weak current on wind-generated surface
deformations for wind velocity below the onset of regular waves. In that regime, the liquid
surface is populated by small disorganised deformations elongated in the wind direction,
referred to as wrinkles. These wrinkles are the superposition of incoherent wakes generated
by the pressure fluctuations traveling in the turbulent boundary layer in the air. In this work,
we account for the effect of a weak sheared current in the liquid, either longitudinal or
transverse, by introducing a modified Doppler-shifted dispersion relation to lowest order
in viscosity and current in the spectral theory previously derived by Perrard et al. [J. Fluid
Mech. 873, 1020 (2019)]. This theory describes the simplified one-way problem of surface
deformations excited by a prescribed turbulent forcing, thereby neglecting the retroaction
of waves on turbulence in the air. The forcing is taken from a set of direct numerical
simulations of a turbulent channel flow. We determine the wrinkle properties (size and
amplitude) as a function of the liquid viscosity and current properties (surface velocity,
thickness, and orientation). We find significant modifications of the wrinkle geometry
by the currents: the wrinkles are tilted for a transverse current and show finer scales
for a longitudinal current. However, their characteristic size is weakly affected, and their
amplitude remains independent of the current. We discuss the implications of these results
on the onset of regular waves at larger wind velocity. In this work, we introduce a spectral
interpolation method to evaluate the surface deformation fields, based on a refined meshing
close to the dispersion relation of the waves. This method, which can be extended to any
dispersive system excited by a random forcing, strongly reduces the discretization effects
at a low computational cost.

DOI: 10.1103/PhysRevFluids.5.124801

I. INTRODUCTION

When a light turbulent wind blows at the surface of a liquid at rest, it first generates random
surface deformations of weak amplitude elongated in the wind direction [1–8]. These structures,
named wrinkles in Refs. [9,10], can be described as the superposition of the incoherent wakes
originating from the pressure and shear stress fluctuations traveling in the turbulent boundary layer
in the air [11]. If the wind is sufficiently strong, typically 1–3 m s−1 for the air-water interface, these
wrinkles are found at small fetch only, and rapidly evolve downwind into more coherent waves
of larger amplitude. On the other hand, if the wind velocity remains low, these wrinkles reach a
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statistically stationary state, in which the energy injected by the pressure fluctuations that push or
suck the surface is balanced by the energy dissipated in the liquid. This statistically steady state
corresponds to the asymptotic regime of the inviscid resonant theory of Phillips [3] saturated by the
viscous dissipation in the liquid.

Although these incoherent surface deformations at small wind velocities have been observed for
a long time, their very small amplitude (typically 1–10 μm in water), well below the resolution
of conventional probes, make them difficult to analyze experimentally. Wrinkles are also found
in numerical simulations of temporally growing waves, but the range of physical parameters
covered by these studies remains limited [12,13]. They were systematically characterized by Paquier
et al. [9,10] in water and more viscous aqueous solutions using free-surface synthetic Schlieren
measurements [14], an optical method with micrometer accuracy.

The motivation for investigating wind-wave generation in the wrinkle regime is that, despite their
very small amplitude, wrinkles may play a key role in the onset of coherent regular waves at larger
wind velocity. If wrinkles are the base state from which regular waves grow as the wind velocity
is increased, we may expect the transition to regular waves to depend on any parameter that may
affect the wrinkles, such as the presence of currents in the liquid.

Beyond their relevance for oceanography, wrinkles are also of interest for industrial applications
that involves thin liquid films sheared by turbulent gas flow, such as coating processes, cooling of
solidifying surfaces, and two-phase flows in oil industry [15,16]. Although the wave dynamics in
thin films strongly differs from that in the deep-water limit relevant to the air-sea configuration,
elongated wrinkles produced by the wakes of pressure and stress fluctuations are also observed in
that configuration [17].

The theoretical and numerical analysis of Perrard et al. [11] identified the main scaling properties
of the wrinkles in deep water in the absence of currents. Their characteristic size � is governed by
the largest scales of the pressure fluctuations, controlled by the thickness δ of the boundary layer,
with no significant effect of the liquid viscosity ν�. On the other hand, their characteristic amplitude
ζrms = 〈ζ 2〉1/2 [with ζ (r, t ) the surface displacement field] depends on ν�: in the statistically steady
state, the balance between the work of the pressure fluctuations per unit time and the dissipation in
the liquid yields

ζrms

δ
� C

ρa

ρ�

(
u∗3

gν�

)1/2

, (1)

with C � 0.02 [11]. Here u∗ is the friction velocity in the air (one has u∗ � 0.05Ua for the typical
Reynolds number of the problem, with Ua the freestream velocity), g the acceleration of gravity, and
ρa and ρ� the density of air and liquid; the liquid depth is assumed infinite, and the capillary effects
are neglected, provided that the boundary layer thickness δ is much larger than the capillary length.

Equation (1) is in good agreement with laboratory experiments over a wide range of liquid
viscosity, ν� = 1–560 mm2 s−1 [10]. However, extending laboratory results, for which the boundary
layer thickness is typically δ � 1–10 cm, to the ocean is challenging, because of the difficulty to
evaluate the spatiotemporal structure of pressure fluctuations in the atmospheric boundary layer.
The thickness of the boundary layer over the ocean is usually governed by unsteady conditions or
convection phenomena [18]; values of order 100–500 m reported in the literature [19,20] are order
of magnitudes larger than the centimetric surface deformations typically observed.

An important limitation of the theory in Ref. [11] is that it ignores the presence of currents in the
liquid: only the stress fluctuations (pressure and shear stress) are considered, while the mean shear
stress applied by the wind, responsible for the generation of a surface current, is neglected [21].
Stationary currents in the liquid, not necessarily aligned with the wind, are frequently encountered
in natural flows, such as in near-shore regions and rivers [22–24]. In the case of wind-generated
drift flow, the surface velocity Us results from a balance between the applied wind stress and the
viscous stress in the fluid (Stokes-drift contribution is usually negligible in that context [25,26]).
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Wind-generated currents are typically of order 0.6u∗ [27–30], but currents originating from other
external causes may naturally be significantly larger than u∗.

Modeling the combined effects of the mean shear stress, responsible for the generation of a
current, and the fluctuating stresses (including wave-induced stresses) is of considerable difficulty
in air-sea interaction [7,31]. In this paper we consider a simplified configuration, valid only in the
wrinkle regime, following the assumptions introduced in Perrard et al. [11]: (1) we neglect the
feedback of the waves on the turbulent boundary layer (one-way approach), an assumption valid
when the wrinkle amplitude is much smaller than the viscous sublayer thickness; (2) we assume
that the flow in the liquid is laminar, which allows us to consider separately the effect of the sheared
current and the waves; and (3) we neglect the effect of the shear stress fluctuations, which were
found to produce surface deformations much smaller than that produced by the pressure fluctuations.
In this simplified configuration, the sheared current is simply modeled through a modification
of the dispersion relation of the waves. Considering separately the mean sheared current and the
surface deformations induced by the stress fluctuations is valid only for sufficient viscosity, as in
the experiments of Paquier et al. [9,10] performed in viscous aqueous solutions. It is, however,
questionable in the real air-sea interaction problem, in which even a moderate wind produces a
highly sheared and possibly turbulent layer at the surface of the water.

In this paper, we are interested in the modifications of the wrinkle amplitude and geometry
induced by such a shear-modified dispersion relation. Since wrinkles are elongated in the wind
direction, we can anticipate a stronger influence of a crosswind current than an alongwind current:
the dominant wave number k of the wrinkles being approximately normal to the wind direction, a
stronger Doppler shift k · Us is naturally expected for a current Us normal to the wind.

Several approaches, all assuming linear inviscid waves, were introduced to determine the
modification of the dispersion relation owing to sheared currents. Solutions to this problem are
either analytical or numerical [32]. Analytical approaches are based on a perturbation analysis
for weak currents, valid to first or second order in Us/c (with c the phase velocity) [33–36].
Numerical schemes include piecewise linear approximation for the velocity profile [37,38], or a full
Rayleigh approach for arbitrary velocity profile [23]. Recently, Li and Ellingsen [32] introduced a
theoretical and numerical method that works for arbitrary velocity profiles including slowly varying
bathymetry.

We restrict in this paper to the effect a weak sheared current on the wrinkle properties. The
influence of a sheared current on the surface deformation induced by a traveling pressure disturbance
is analyzed in Ref. [39], but without viscous effects. Viscosity must naturally be kept in our analysis,
since wrinkles are the viscous-saturated statistically steady state of waves sustained by the turbulent
fluctuations in the air. We propose here a heuristic modification of the spectral theory of Perrard et al.
[11] including the effects of viscosity and shear currents. To provide physical insight, we focus on
weak currents, for which the approximate dispersion relation is known analytically to first order in
Us/c. Another reason for this restriction is that no exact wave-current interaction analysis including
viscous effects is available, so we must consider the problem to lowest order both in viscosity and
current. For this reason, we consider in this paper the simplest first-order shear-modified dispersion
relation derived by Stewart and Joy [33].

In the following we first focus on a uniform current, for which the effect is strongest, and then
investigate the more relevant case of a current exponentially decreasing with depth, as sketched in
Fig. 1. We restrict to currents of uniform direction, ignoring the more complex situation of a depth-
varying current direction. Our results show that, while the geometry of the wrinkles is modified
by currents, their amplitude remains almost independent of the current, suggesting that the wrinkle
properties are robust with respect to currents.

In this paper we also introduce a numerically efficient interpolation method to compute the
wrinkle properties. A limitation of the spectral theory in Ref. [11] is that, in deriving Eq. (1), the limit
of small viscosity is taken. This assumption was necessary to derive analytically the scaling of the
wrinkle properties with the liquid viscosity, ζrms ∼ ν

−1/2
� and � ∼ ν0

� . This semianalytical procedure
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FIG. 1. Flow configuration. A liquid is subject to a turbulent air flow blowing at its surface with velocity
Ua. The liquid is characterized by its density ρ�, viscosity ν�, and surface tension γ . The air turbulent boundary
layer is characterized by its density ρa, kinematic viscosity νa, boundary layer thickness δ, and friction velocity
u∗. Fluctuations in the surface elevation ζ (r, t ) result from the turbulent stresses applied at the interface. Two
current configurations are illustrated: (a) uniform current of constant velocity Us and (b) exponential velocity
profile of thickness δ�. Both cases are illustrated here in the case θ = 0 (current aligned with the wind direction).
The velocity profiles are not drawn to scale: the velocity in the air is typically 20 times larger than that in the
liquid.

also circumvented the discretization errors that arise when computing the surface deformation spec-
trum from direction numerical simulation (DNS) data in boxes of limited size. Such discretization
errors are unavoidable at small ν�, when the resonance is thinner than the spectral resolution of
the data. A general procedure was missing to apply this spectral theory to arbitrary viscosity, or
more generally to arbitrary dispersive wave system for which partial analytical solutions cannot
be derived. Here we propose an improved version for the evaluation of the surface deformation
spectrum which does not assume weak viscosity, based on an interpolation of the forcing spectrum in
the vicinity of the resonance. Using this method, the dependence of the wrinkle properties in liquid
viscosity can be investigated, confirming the robustness of the scalings ζrms ∼ ν

−1/2
� and � ∼ ν0

�

derived analytically for small viscosity. This spectral interpolation method could be applied in
principle to any physical system governed by dispersive waves excited by a statistically stationnary
and homogeneous forcing.

II. THEORETICAL DESCRIPTION OF WRINKLES

A. Flow configuration and dimensionless numbers

We briefly recall here the spectral formulation derived in Ref. [11] that relates the spatiotemporal
spectrum of the surface deformation to that of the turbulent forcing. We first neglect the surface
current.

The system is sketched in Fig. 1 with Us = 0: a layer of liquid with density ρ�, surface tension
γ , and viscosity ν� is subject to a turbulent wind in the x direction, of density ρa and viscosity νa.
The wind velocity far from the surface is Ua, and forms a boundary layer of thickness δ, which
we assume to be uniform and statistically stationary (more precisely, we restrict our analysis to
length scales and time scales over which δ can be considered as constant). The wind applies a shear
stress at the surface, of average τa = ρau∗2, where u∗ is the friction velocity. We neglect for the
moment the drift induced by this average shear stress, and focus on the fluctuating stresses at the
surface: pressure p(x, y, z = 0, t ) and shear stress σ(x, y, z = 0, t ) = ρaνa∂zu‖|z=0 (where u‖ is the
horizontal velocity fluctuation), with 〈p〉 = 0 and 〈σ〉 = 0.

The problem without current is characterized by five dimensionless numbers: the density ratio
ρa/ρ�, the Reynolds number Reδ = u∗δ/νa, the Bond number Boδ = δ/�c (with �c = √

γ /ρ�g the
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capillary length), the Froude number Frδ = u∗/
√

gδ, and the dimensionless liquid viscosity ν̃� =
ν�/

√
gδ3. The Froude number characterizes the geometry of wakes generated by the disturbances

of size δ traveling at a characteristic velocity u∗: wakes form characteristic V-shaped patterns at
small Frδ , which narrow at larger Frδ [40,41]. The normalized liquid viscosity ν̃� compares the
viscous time scale δ2/ν� to the period

√
δ/g of the gravity wave of wavelength of the order of δ. We

restrict our analysis here to ν̃� 	 1, corresponding to weakly damped waves; note that although the
viscous effects are weak in the dispersion relation, they are nonetheless essential in the problem, as
they govern the saturated wrinkle amplitude. Using this set of dimensionless numbers, the wrinkle
amplitude (1) reads

ζrms

δ
� C

ρa

ρ�

ν̃
−1/2
� Fr3/2

δ . (2)

In air-water laboratory experiments and in the ocean, we have ρa/ρ� � 1.2 × 10−3, Reδ 
 1,
Boδ 
 1, Frδ � O(1), and ν̃� 	 1. If we choose δ = 3 cm as in the experiments of Paquier et al.
[9,10], a wind velocity of Ua = 1 m/s (a value in the wrinkle regime, below the transition to regular
waves) gives u∗ � 0.05 m/s, and hence Reδ � 100, Boδ � 15, Frδ � 0.1, and ν̃� � 6 × 10−5. In this
regime the air flow is turbulent and excites surface deformations essentially in the gravity regime
with weak viscous dissipation. Larger values of δ, as found in experiments with larger fetch and in
the ocean, naturally fall in that regime too.

B. Spectral formulation

Since the surface deformations in the wrinkle regime are very small, we can neglect their
feedback on the turbulent boundary layer. The problem is therefore linear, and, assuming that all
fields are statistically stationary and homogeneous, they can be described by their space-time Fourier
transform, e.g., for the surface deformation field

ζ̂ (k, ω) = F{ζ (r, t )} =
∫

d2r dt ζ (r, t )e−i(k·r−ωt ) (3)

and similarly for the pressure p(r, t ) and shear stress σ(r, t ) at the liquid surface, with r = xex + yey

and k = kxex + kyey the horizontal position and wave vector, respectively. The assumption of
statistical stationarity implies that viscous dissipation balances the turbulent energy input: we
therefore ignore the quasi-inviscid growth regime of Phillips [3] and focus on the viscous-saturated
wrinkle regime.

For laminar flow in the liquid and for small wave slopes, ζ̂ (k, ω) takes the form of a resonant
response in Fourier space [11]

ζ̂ (k, ω) = Ŝ(k, ω)

D(k, ω)
, (4)

where Ŝ(k, ω) is the spectral forcing related to the pressure and shear stress Fourier transform,

Ŝ(k, ω) = (k p̂ + ik · σ̂ )/ρ�, (5)

and D(k, ω) is an inverse convolution kernel,

D(k, ω) = (ω + 2iν�k2)2 − ω2
r (k), (6)

with ω2
r (k) = (g + γ k2/ρ�)k the inviscid dispersion relation of capillary-gravity waves in infinite

depth, and k = |k|. In Eq. (6) the small viscosity limit ν�k2 	 ω is assumed. Waves (k, ω) satisfying
�{D} = 0 form an axisymmetric surface noted  in Fig. 2(a). Equation (4) shows that the energy
of the surface response is significant for waves (k, ω) excited by the forcing and matching the
dispersion relation. In a turbulent boundary layer in the x direction, the forcing is significant along
a tilted plane of equation ω = kxUc (shown in pink in Fig. 2), with Uc the characteristic convection
velocity of the stress fluctuations. This convection velocity is slightly smaller than the free-stream
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FIG. 2. (a) Representation in Fourier space of the resonant surface , defined as �{D(k, ω)} = 0 (blue
surface), and the forcing plane ω = Uckx (pink surface), where Uc is the convection velocity of the source. The
intersection between these two surfaces (black line) is where the energy of the surface response is expected.
(b) Same representation in presence of a uniform longitudinal current Us/u∗ = 2. The resonant surface is now
�{D(k, ω − ωD(k))} = 0 (blue surface), with ωD the Doppler shift. It intersects the forcing plane (blue line)
for larger kx , thus producing shorter structures. (c) Same representation in presence of a uniform transverse
current Us/u∗ = 2. The intersection of the resonant surface  with the forcing plane is now tilted (blue line),
thus modifying the orientation of the wrinkles.

velocity Ua, with a weak dependence in wave number and Reynolds number [42,43]; here we
consider Uc � 0.6Ua as a representative value. Energy of the surface response is therefore typically
found along the black line, defined as the intersection between the resonant surface  and the
forcing plane ω = kxUc.

In Ref. [11] we found that the shear stress contribution is negligible, and we consider in the
following only the pressure contribution, Ŝ(k, ω) = k p̂(k, ω)/ρ�. The surface displacement in the
physical space can then be obtained by applying the inverse Fourier transform of Eq. (4),

ζ (r, t ) = 1

(2π )3

∫∫∫
d2k dω

k p̂(k, ω)/ρ�

(ω + 2iν�k2)2 − ω2
r (k)

ei(k·r−ωt ), (7)

from which the root mean square (rms) wave amplitude ζrms = 〈ζ 2〉1/2 is obtained using Parseval’s
identity,

ζ 2
rms = 1

(2π )3

∫∫∫
d2k dω

k2| p̂(k, ω)|2/ρ2
l

|(ω + 2iν�k2)2 − ω2
r (k)|2 . (8)

Equation (7) provides a means of calculating the surface deformations under arbitrary (but
statistically homogeneous and stationary) pressure forcing. The calculation steps are illustrated in
Fig. 3.

Figure 3(a) shows a typical snapshot of the pressure field obtained from DNS for Reδ = 250
(numerical details are provided in Sec. III). It shows nearly isotropic pressure patches, of typical
amplitude ρau∗2 and correlation length � � 250δv , where δv = δ/Reδ is the thickness of the viscous
sublayer (we therefore have � � δ for this particular value of Reδ). The correlation length is defined
here from the spectral barycenter [see Eq. (14) below], which roughly corresponds to an average
wavelength in the physical space.

Figure 3(b) shows the spectral source term Ŝ(k, ω) = k p̂(k, ω)/ρ� in the plane (kx, ω), averaged
along ky; here kx and ω are made nondimensional using the boundary-layer length scale δ and
timescale δ/u∗. The energy of the source is concentrated along the line ω � Uckx (red dashed line),
with Uc � 0.6Ua � 12u∗ the typical convection velocity of the pressure fluctuations.

Figure 3(c) shows the spectral response, computed using Eq. (4). We can see that the energy
of the surface deformations is at wave numbers smaller than for the forcing (larger scales) and is
shifted towards the dispersion relation �{D} = 0 (red lines). Note that nearly all the energy actually
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FIG. 3. Illustration of the procedure used to compute the surface deformation field ζ (r, t ). The turbulent
pressure p(r, t ) at the liquid surface z = 0 (a), obtained from DNS, is Fourier-transformed to compute the
spectral source Ŝ(k, ω), shown in (b) in the plan (kx, ω) with average along ky. The pink dashed line shows
ω = Uck, with Uc the convection velocity of the pressure fluctuations. This spectral source serves as an input
for the calculation of surface deformation spectrum ζ̂ (k, ω) using Eq. (4), illustrated in (c). The red lines show
the dispersion relation ωr (k) for ky = 0. Finally, the surface elevation field in the physical space, shown in (d),
is recovered by inverse Fourier transform (7).

falls near �{D} = 0, which is axisymmetric (it depends only on k = |k|), but the representation in
the plane (ω, kx ) with ky-averaging breaks the axisymmetry and shows energy apparently far from
the dispersion relation [11].

Figure 3(d) finally shows a snapshot of the resulting surface deformation in the physical space,
obtained from Eq. (7). It shows wrinkles elongated in the wind direction, of typical amplitude
ζrms/δ � 10−4 and correlation lengths (�x,�y) � (7, 3)δ, significantly larger than the correlation
length � � δ of the pressure patches from which they originate.

C. Modified dispersion relation with current

We now include in the spectral formulation a stationary current in the liquid U = U (z)êc, uniform
in the horizontal plane (x, y), with possible variation of the amplitude along the depth z (Fig. 1).
Since the current may be driven by the wind itself or by any other means, we consider here a
general current of arbitrary direction, making a constant angle θ = cos−1(êc · êx ) with the wind.

Waves propagating in a current have their frequency modified by a Doppler shift. The simplest
situation is that of a constant current U = Usêc over the entire water depth, as sketched in Fig. 1(a)
in the longitudinal case (θ = 0). Although not relevant for a wind-driven surface current, this simple
situation may be encountered in near-shore regions, tide currents, and rivers. In addition to the five
dimensionless numbers introduced in Sec. II A, such a uniform current introduces two additional
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parameters to the problem: the normalized current velocity Us/u∗, and the current direction θ . In
this case, the Doppler shift for a wave of wave vector k simply reads

ωD(k) = k · U. (9)

The surface deformation spectrum (4) is therefore obtained by replacing the inviscid dispersion
relation D(k, ω) [Eq. (6) with ν� = 0] by D(k, ω − ωD(k)), showing that the resonance �{D} = 0
therefore occurs for (ω − ωD)2 = ω2

r , i.e., for ω = ±ωr + ωD.
In the following, we restrict ourselves to a current aligned with the wind (θ = 0), for which

ωD(k) = kxUs, and to a transverse current (θ = π/2), for which ωD(k) = kyUs. These cases are
illustrated in Fig. 2(b) and Fig. 2(c), showing the Doppler-shifted dispersion relation and the
resulting intersection with the forcing plane. From these figures we can anticipate that wrinkles with
longitudinal current will have larger kx (finer scales), while wrinkles with transverse current will be
tilted. Note that for a uniform current aligned with wind, Doppler shifting the dispersion relation
is equivalent to replacing the convection velocity Uc by Uc − Us, i.e., to consider the forcing in the
frame of the liquid.

The situation of a depth-varying current is more complex, because each wave vector k now
perceives the current at a different depth. Motivated by experimental measurements of wind-driven
currents in deep water [29,44–46], we consider here a simple exponential velocity profile character-
ized by a thickness δ� and surface velocity Us,

U(z) = Use
z/δ� êc, (10)

sketched in Fig. 1(b). This introduces δ�/δ as an additional dimensionless parameter in the problem.
The expected effect of this sheared current is to high-pass filter the Doppler shift with a cutoff at
k � δ−1

� : Wavelengths smaller than δ� are simply advected by the surface current, so their frequency
is Doppler shifted by an essentially constant velocity Us, while much larger wavelengths propagate
on an almost static liquid and have their frequency unchanged.

The influence of a depth-varying current on the dispersion relation has been the subject of several
studies, all assuming inviscid wave propagation. A difficulty arises here in defining a relevant
nondimensional measure of the shear intensity [47]. For a given wave number k, we wish to compare
the intrinsic wave frequency ωr to the typical shear rate perceived at the scale of the wave, i.e.,
the shear rate dU/dz at the depth |z| � k−1. For the exponential profile (10) this shear rate is
essentially Us/δ� for small wavelength (kδ� 
 1): the weak shear criterion is therefore Us/c� 	 1,
with c� = ωrδ� the phase velocity of waves of wavelength � δ�. If the thickness δ� of the current
layer is comparable to the thickness δ of the turbulent boundary layer, this criterion can be expressed
in the more conventional form Us/c 	 1, where c � ωrδ is the phase velocity of the dominant
waves. This ratio Us/c is frequently used as an approximate nondimensional measure of the shear
intensity, and we shall use it for simplicity in the following.

The simplest model, introduced by Stewart and Joy [33], modifies the dispersion relation of
waves in infinite depth by a simple additive Doppler-like term, valid to first order in Us/c,

ωD(k) = k
∫ 0

−∞
2k · U(z)e2kzdz. (11)

A finite-depth extension was later proposed by Skop [34] that was then developed to second order by
Kirby and Chen [35]. The case of a sheared current with both amplitude and direction varying with
z in finite depth was recently analyzed for small curvature of U (z) [47] and generalized to arbitrary
current and depth variations by Li and Ellingsen [32]. Here we restrict to weak currents of varying
amplitude but constant direction in infinite depth. Interestingly, the first-order development (11) of
Stewart and Joy [33] is almost indistinguishable from the exact solution even for Us/c � O(1) [47].
Since we have u∗/c � O(1), this condition is satisfied in the following for currents Us/u∗ � O(1).

Until now, the effects of viscosity have been ignored. Investigating the influence of a sheared
current on the wrinkle properties is challenging, due to the combined effect of viscosity and shear
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TABLE I. Details of the DNS turbulent channel air flow for the different Reynolds numbers Reδ = u∗δ/νa.
�x+ and �y+ are the spatial resolutions in terms of Fourier modes before dealisasing (in wall units, normalized
by δν = νa/u∗). �z+

min and �z+
max are the finest and coarsest spatial resolutions in the wall-normal direction. �t+

is the temporal separation between stored flow fields (in units of δν/u∗), and Tmax is the total duration of the
simulation.

Box size Reδ �x+ �y+ �z+
min �z+

max �t+ Tmaxu∗/δ

(8π, 3π )δ 100 10.1 5.7 0.06 3.4 0.63 12.5
180 9.1 5.3 0.02 3.0 0.64 14.1
250 12.1 6.8 0.03 4.0 0.61 10.1
360 13.1 6.5 0.04 5.8 3.80 21.8
550 13.4 7.5 0.04 6.7 0.45 6.7

(60π, 6π )δ 100 9.5 7.3 0.06 3.4 0.63 50.5

which must be taken into account in the spectral formulation. Although the general case with finite
viscosity and finite current has not been considered in the literature, we can infer the form of the
modified dispersion relation if we assume that both quantities are small. To linear order in both Us/c
and ν̃�, the individual corrections simply add up, giving the modified dispersion relation

D(k, ω) = [ω − ωD(k) + 2iν�k2]2 − ω2
r (k), (12)

with ωD(k) given by Eq. (11). We note that this form satisfies the Hermitian symmetry of the
problem: The surface deformation being real, its Fourier transform satisfies ζ̂ (−k,−ω) = ζ̂ †(k, ω),
with † the complex conjugate, and so does D(k, ω).

In the following, we investigate the influence of the three dimensionless numbers, Us/u∗, δ�/δ

and θ , on the wrinkle properties. We focus only on the extreme cases of purely longitudinal (θ = 0)
and transverse (θ = π/2) currents. We naturally expect that, for a given current amplitude Us, the
most pronounced effects on wrinkles are for a uniform profile, i.e., for δ�/δ 
 1, which equally
affects all wave vectors. On the other hand, since the characteristic wavelengths of the wrinkles are
of order δ, we expect vanishing effects in the limit δ�/δ 	 1 (thin flowing layer on a liquid at rest).
For this reason, we first consider the upper limit δ�/δ 
 1, before studying the more realistic case
of finite δ�/δ.

III. NUMERICAL METHODS

A. DNS simulations

We now describe the dynamics of the surface deformations forced by the turbulent boundary
layer in the air. We follow here the simplified one-way approach introduced in Perrard et al. [11]:
we neglect the feedback of the waves on the dynamics of the turbulent boundary layer in the air.
We can therefore use a data base of time-resolved pressure fields extracted from DNS of a turbulent
channel flow with flat walls and no-slip boundary conditions. The channel half-height corresponds
to the boundary layer thickness δ, and periodic boundary conditions are applied in the streamwise
and spanwise directions. Table I summarizes the DNS parameters used for the different cases, with
Reδ ranging from 100 to 550.

Assuming a no-slip boundary condition at the interface instead of the true velocity and stress
continuity is discussed in Ref. [11] in the absence of current. It was shown that this simplification
is acceptable in the wrinkle regime, i.e., for small wave amplitude and wave slope. Extending this
assumption in the presence of a sheared current is justified because the convection velocity of the
stress fluctuations, Uc � 12u∗, is much larger than the surface velocity Us � u∗ considered here. The
flow in the liquid being assumed laminar, the current in the liquid (driven by the mean component
of the shear stress) and the wrinkles (excited by the fluctuating component of the stresses) can be
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considered separately. Only the dynamics of the wrinkles is computed, while the sheared current is
considered as prescribed, and acts only through the modification of the dispersion relation.

We compute the source term Ŝ(k, ω) from the space-time Fourier transform of the wall pressure
on a discrete three-dimensional Cartesian grid (kx, ky, ω). The size of the computational box Lx × Ly

must be carefully chosen to ensure a sufficient spectral resolution to allow evaluation of the surface
deformation spectrum. The minimum channel size (2π, π )δ often used in turbulent channel flows
is not sufficient here for the study of wrinkles: while pressure fluctuations within the turbulent
boundary layer are dominated by the (inner) viscous sublayer thickness δν , this is not the case
for wrinkles, which are dominated by the (outer) boundary layer thickness δ. This is because the
surface response shifts the supplied energy to smaller k (larger scales), yielding a maximum energy
at the upper bound δ of the forcing interval [11]: wrinkles are therefore highly sensitive to the small
energy content of the pressure fluctuations at the largest scales, which must be correctly resolved.
Here we use boxes of size (8π, 3π )δ and (60π, 6π )δ. The largest box resolves almost all the energy
spectrum: structures up to half the box length contain more than 80% of the energy [48]. However,
due to the high computational cost, only the lowest Reynolds number (Reδ = 100) is available for
this largest box, whereas higher Reδ are available for the intermediate (8π, 3π )δ box only.

In the following, the other dimensionless numbers are chosen as follows: ρa/ρ� = 1.2 × 10−3

(air-water density ratio), Boδ = 14 (waves forced essentially in the gravity regime), and a nor-
malized liquid viscosity in the range ν̃� = ν�/

√
gδ3 � 6 × 10−5–6 × 10−3. For a boundary-layer

thickness δ = 3 cm such as in the experiments of Paquier et al. [9,10], this range covers 1–100
times the viscosity of water.

B. Spectral interpolation method

A strong numerical constraint when computing the space-time Fourier transform ζ̂ (k, ω) from
Eq. (4) arises from the small thickness of the resonance around the dispersion relation, which may
be below the spectral resolution �k(x,y) = 2π/L(x,y) and �ω = 2π/Tmax if the box size (Lx, Ly) and
time duration Tmax of the sample are too small. To evaluate the thickness of the dispersion relation,
we introduce the resonance function

R(k, ω) = 1

|D(k, ω)| = 1√(
ω2 − ω2

r

)2 + ω2
νω

2
, (13)

with ων = 4ν�k2. The effect of the current is not included here for simplicity, but it can be simply in-
cluded by replacing ω by ω − ωD(k). For a given wave vector k, the maximum Rmax(k) = 1/(ωνωr )
is at ω = ωr (k), on the resonant surface , and the typical thickness is ων [see Fig. 4(b)]. The rapid
variations of R near its maximum, typically in the interval [ωr − ων, ωr + ων], make the integrated
product R(k, ω)Ŝ(k, ω) highly sensitive to the mesh size �ω, or to the exact positions of  on the
spectral grid. Although a direct integration method is sufficient at large viscosity, this represents a
severe limitation at small viscosity. The smallest resolved viscosity can be estimated by equating
the spectral mesh size �ω and the resonance thickness ων . Considering that the dominant energy is
at k � δ−1, the smallest resolved liquid viscosity is ν�,min � δ2/Tmax. In terms of normalized liquid
viscosity, the criterion ν̃�,min = √

δ/g/Tmax 	 1 requires a sample duration much larger than the
period of the slowest gravity waves of wavelength of the order of δ.

Since at small viscosity the thickness of the resonance is smaller than the thickness of the spectral
forcing, we can overcome the limited spectral resolution by evaluating the resonance on a finer grid
on which we interpolate the forcing. Here the thickness of the forcing in the Fourier space, visible in
Fig. 3(b), is related to the temporal coherence of the pressure fluctuations traveling in the boundary
layer. To limit the computational cost, this mesh refinement is performed only in the vicinity of the
resonance, as sketched in Fig. 4. For each wave vector k, we define the resonant interval [ωmin, ωmax]
surrounding the resonance ωr (k) such that R(k, ω) > bRmax(k), with b < 1 (red boundaries in
Fig. 4), and count the number N of mesh points in the interval (black crosses). If N is smaller than
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FIG. 4. Illustration of the spectral interpolation method. (a) The inviscid dispersion relation ω = ωr (k) is
plotted in the plane ky = 0, surrounded by the resonant subspace bounded by ωmin and ωmax (shaded areas).
The resonant subspace is defined such that R(k, ω) > bRmax(k), with Rmax(k) the maximum of the resonance
function, as shown in (b). The spectral grid is represented in gray, with mesh sizes �ω = 2π/Tmax and �kx =
2π/Lx . The resonant subspace is split between an under-resolved subspace R− such that N < Nc (in blue), and
a resolved subspace R+ such that N > Nc (in green), with N the number of points along ω and Nc a threshold.
The grid is refined along ω in the under-resolved subspace R− up to a total number of Ni points (in red). The
evaluation of ζ̂ in this interval is performed by applying a linear interpolation of the source term Ŝ(k, ω) on the
refined grid.

a threshold value Nc, we refine the grid by introducing Ni points in the interval [ωmin, ωmax] (red
points). The under-resolved resonant subspace R− where this refinement is performed is colored in
blue in Fig. 4, while the resolved subspace R+ is in green. Finally, we linearly interpolate the source
Ŝ(k, ω) on the refined grid in R− and compute the space-time Fourier transform ζ̂ (k, ω). From this
refined piecewise spectrum the main spectral quantities characterizing the wrinkles can be computed
with a better accuracy than from the original spectrum. The main drawback of this method is that
computing the surface deformation ζ (r, t ) in the physical space by inverse Fourier transform is no
longer possible by usual FFT algorithms, since this piecewise spectrum is not defined on a complete
regular Cartesian grid.

Convergence tests were performed in order to ensure the validity of the method and determine
the optimal values for the various parameters (threshold b, minimum number of points Nc for
interpolation, and number of interpolated points Ni). These tests were performed for different liquid
viscosities and for the small and large DNS box sizes. Given that convergence was always reached
for Ni � 100, we take Ni = Nc = 100 in the following (choosing Ni = Nc ensures that there are
at least Nc points for each k in the resonant subspace). We choose a threshold b = 0.1, therefore
covering 90% of the resonant subspace for each k. A smaller threshold would widen the selected
resonant subspace, thereby implying an increase in Ni and therefore in the computational cost.

IV. INFLUENCE OF THE CURRENT ON THE WRINKLE PROPERTIES

A. Qualitative description

We now analyze the overall effect of a current on the geometry of the wrinkles. Snapshots of
the surface deformation ζ (r, t ) are shown in Fig. 5 for Reδ = 350, for both a longitudinal current
[Figs. 5(b), 5(c), and 5(d), on the left-hand side] and a transverse current [Figs. 5(e), 5(f), and
5(g), on the right-hand side], and are compared to the reference case without current [Fig. 5(a)].
To produce these snapshots in the physical space we had to use the direct Fourier computation (7)
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FIG. 5. Surface deformations without (a) and with (b–g) current. Snapshots are compared for increasing
current Us in the range (1 − 3)u∗, for a uniform current in the longitudinal (b–d) and transverse (e–g) directions
(θ = 0 and θ = π/2, respectively). Results are shown for Reδ = 350 and a liquid viscosity ν̃� = 6 × 10−3.

without the spectral interpolation method of Sec. III B. For this reason, we restrict our analysis here
to a relatively large liquid viscosity (ν̃� = 6 × 10−3) to avoid discretization errors.

In the case of a transverse current, the overall shape of the wrinkles is similar to the reference
case, except that they are inclined with an angle β that increases with the current. This angle simply
reflects the sweeping by the transverse current at velocity Us of the wake behind the pressure fluctu-
ations traveling at velocity Uc, yielding tan β � Us/Uc. This relationship is in good agreement with
the measured tilt angle β shown in Fig. 6, obtained by fitting lines through the surface deformation
pattern. Note that this simple geometric construction holds only at sufficiently large Froude number,
when the aperture angle of the V-shaped wakes with respect to the disturbance trajectory is itself
small compared to β, i.e., when the wrinkles are sufficiently elongated [40,41,49,50]. This condition
is satisfied in the case Reδ = 550 shown here: the Froude number based on the pressure size � and
convection velocity Uc is Fr = Uc/

√
g� � O(10), for which the wake essentially reduces to a line

behind the disturbance. At smaller Reδ (hence smaller Fr), the wake aperture is close to the Kelvin’s
angle of 39◦, leading to an intricate pattern from which we cannot define a clear tilt angle β.
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FIG. 6. Tilt angle β of the wrinkles in a transverse current at fixed Reynolds numbers Reδ = 550 as a
function of Us/Uc. Each point is obtained by fitting straight lines through the surface deformation patterns and
averaging over a large number of realizations. The dashed line is the geometric prediction tan β = Us/Uc, with
Uc � 12u∗ the convection velocity of the pressure fluctuations.

The case of a longitudinal current is more subtle. The wrinkles now remain aligned with the
wind, but they become shorter and more fragmented as the current velocity Us is increased. This
effect was expected from Fig. 2(b): the Doppler-shifted dispersion relation becomes closer to the
spectral forcing plane as Us is increased, therefore exciting a larger range of wave numbers. This is
confirmed by the space-time spectrum of the surface response |ζ̂ |2 averaged along ky in Fig. 7, which
shows a clear accumulation of energy along the Doppler-shifted dispersion relation (±ωr + ωD, in
green) as it becomes closer to the spectral forcing (kxUc, in dotted lines); we recall here that the
energy away from the dispersion relation is an artifact of the averaging over ky, which respects the
symmetry of the source but not that of the dispersion relation (see Fig. 2).

The wider range of excited wave numbers in the presence of a longitudinal current is evident
in the one-dimensional spectrum E (kx ) = 〈|ζ̂ |2〉ω,ky shown in Fig. 8, obtained by averaging the
space-time spectrum 〈|ζ̂ |2〉ky of Fig. 7 over ω. As the current velocity Us is increased, the spectra
show wider tails, with up to five times more energy at large kx for the strongest current Us/u∗ =
3. However, the peak of the spectrum remains around kxδ � 1, corresponding to wrinkle length
�x = 2π/kx � 6δ, suggesting a weak influence of the current on the energy-containing scale of the
wrinkles. This weak influence is better characterized by the spectral barycenters of the wave vector
and frequency,

K = Kx êx + Kyêy =
∫
D d2k dω k|ζ̂ |2∫
D d2k dω|ζ̂ |2 (14)

and

� =
∫
D d2k dω ω|ζ̂ |2∫
D d2k dω|ζ̂ |2 , (15)

where D is the domain of integration, kx,y > 0. The spectral barycenter (Kx,�), represented by
black circles in Fig. 7, is indeed shifted towards larger kx with current, but this shift remains
moderate.
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FIG. 7. Space-time spectrum of the surface displacement |ζ̂ (kx, ω)|2 averaged in ky computed from Eq. (4)
for liquid viscosity of ν̃� = 2 10−3 and Reδ = 100, without current (a) and with a current Us/u∗ = 3 (b). The
pink dashed line shows the forcing ω = Uck, where Uc is the convection velocity of the pressure fluctuations.
The continuous lines represent the dispersion relation without current (±ωr , in red) and with a uniform current
(±ωr + ωD, in green). The circles show the spectral barycenter (Kx, �).

B. Wrinkle properties in a longitudinal current

In the following we systematically characterize the influence of the current on the wrinkle
properties using the following four quantities: the longitudinal and transverse scales, defined from
the spectral barycenter (14) as �x = 2π/Kx and �y = 2π/Ky, the wrinkle characteristic velocity
Uc = �/Kx, and the wrinkle rms amplitude (8). To decrease the viscosity down to conditions rele-
vant to air-water applications (ν̃� = 6 × 10−5 for δ � 3 cm), we now apply the spectral interpolation

FIG. 8. One-dimensional energy spectrum |ζ̂ |2 of the surface deformation averaged over ω and ky for
increasing current Us in the longitudinal direction. Results are obtained for Reδ = 100 in the large DNS box
(60π, 6π ) with liquid viscosity ν̃� = 6 × 10−3.
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(a) (b)

(c) (d)

FIG. 9. Modification of the wrinkle properties for a longitudinal current as a function of Us/u∗: Character-
istic streamwise �x/δ (a) and spanwise �y/δ (b) lengths, convection velocity Uc/Ua (c), and wrinkle amplitude
ζrms/δ (d). Results are obtained for Reδ = 100 in the large DNS box (60π, 6π ), with liquid viscosity varied in
the range ν̃� = 6 × 10−5–6 × 10−3.

method described in Sec. III B, and first restrict our analysis to the smallest Reynolds number
Reδ = 100, for which the large DNS box (60π, 6π ) is available.

Figure 9 presents the four wrinkle properties �x/δ, �y/δ, Uc/Ua and ζrms/δ as a function of the
normalized current Us/u∗, for various liquid viscosities in the range ν̃� = 6 × 10−5 to 6 × 10−3.
We first note that the length scales �x and �y show no significant dependence in ν̃�, whereas the
wrinkle amplitude ζrms decreases as ν̃

−1/2
� , in agreement with Eq. (2). These scalings confirm the

analytical predictions of Perrard et al. [11] derived in the limit of small viscosity. In spite of our
spectral interpolation method, results still show some noise at small ν̃�: the curves obtained for the
lowest viscosity, for which the resonance is below the spectral resolution, show residual fluctuations
of about 5% (without the spectral interpolation method the fluctuations are typically 10 times larger
so that only results at large viscosity would be reliable).

The main result of Fig. 9 is that the amplitude of the wrinkles is independent of the current Us,
whereas their characteristic sizes and convection velocity are slightly modified. Best linear fits yield

�x/�x0 � 1 − (0.08 ± 0.02)Us/u∗, (16a)

�y/�y0 � 1 − (0.04 ± 0.02)Us/u∗, (16b)

Uc/Uc0 � 1 + (0.03 ± 0.01)Us/u∗, (16c)
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FIG. 10. Wrinkle properties as a function of the Reynolds number Reδ for three different currents Us/u∗

and a liquid viscosity ν̃� = 6 × 10−3. Results are obtained using the spectral interpolation method described in
Sec. III. �: small box, for various values of Us/u∗; �: large box (L.B.), for Us = 0 only.

where the subscript “0” denotes the reference values without current. These dependencies are clearly
limited, confirming that the wrinkle properties are robust with respect to currents. The strongest
dependence is for the streamwise size �x, which decreases by 8% for a current Us/u∗ = 1. This
decrease of �x can be qualitatively recovered from the match between the forcing kxUc and the
Doppler-shifted inviscid dispersion relation for gravity waves,

√
gk + kxUs, yielding for k = kx

�x/�x0 = 1 − u∗

Uc

Us

u∗ , (17)

with u∗/Uc � 0.08 at Reδ = 100, in good agreement with Eq. (16a). The convection velocity of the
wrinkle increases with surface current, but here again by a very limited amount, 3% for Us/u∗ = 1.

C. Influence of the Reynolds number and current thickness

We now extend the previous results to larger Reynolds numbers, up to 550. For these Reynolds
numbers, the DNS data are available only in the small box (8π, 3π )δ, so we must use a larger liquid
viscosity, ν̃� = 6 × 10−3, to reduce discretization errors; the results can however be extrapolated to
smaller viscosities, as we have seen that the wrinkles properties do not depend on ν̃�, at least in the
case Reδ = 100 (see Fig. 9).
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FIG. 11. Wrinkle properties as a function of the normalized liquid layer thickness δ�/δ for various currents
Us/u∗ = 0.5, 1, 2. Reference values obtained without any current (Us = 0) are represented by the dashed black
lines. Results are obtained at Reδ = 100 for the large box (60π, 6π )δ, with a liquid viscosity of ν̃� = 6 × 10−3.

Results for the four characteristic wrinkle properties are plotted in Fig. 10 as a function of the
Reynolds number for three values of the current Us/u∗. The evolution of these quantities with Reδ

is similar to the case Us = 0 already documented in Perrard et al. [11]: The wrinkles tend to be
more elongated in the wind direction (larger �x and smaller �y) as Reδ increases, the convection
velocity Uc/Ua rapidly falls off, and the wrinkle amplitude increases. Here again, the stronger effect
of current is found for the streamwise length �x, with a decrease with Us still compatible with
Eq. (16a) at larger Reδ; only the largest Reδ = 550 deviates from the trend, which may originate
from the limited computation time Tmax (and hence stronger discretization effect) for this Reδ . For
the other quantities, the variations with Reδ do not show any significant dependence with Us, thereby
suggesting that the weak effects found at Reδ = 100 can be extended to larger Reynolds numbers.

We finally consider the more realistic case of a sheared profile decreasing exponentially with
depth [Eq. (10)], still in the direction of the wind (θ = 0). In addition to the normalized surface
current Us/u∗, we also consider now the influence of the normalized liquid layer thickness δ�/δ,
restricting ourselves to the case Reδ = 100 for which the data in the large box is available. The same
four quantities characterizing the wrinkle properties are plotted as a function of the thickness ratio
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δ�/δ in Fig. 11 for various surface velocities. This ratio covers a wide range in practice: for wind-
generated currents, laboratory experiments typically have δ� � 1 cm in the liquid and δ � 10 cm in
the air [29], yielding δ�/δ � 0.1; in the ocean, δ� is typically 10 cm or more, while the boundary
layer thickness δ can cover a wide range in unsteady conditions (as discussed in the introduction),
yielding δ�/δ 	 1. For currents generated by other means, δ� can be arbitrarily large, so the limit
δ�/δ 
 1 is also relevant in general.

The results in Fig. 11 show a slow variation of the wrinkle properties with δ�/δ, bridging the
reference case without drift as δ� → 0 (dashed line) and the uniform current case as δ� → ∞. This
confirms the filtering role of the liquid layer δ� in the Doppler effect: the uniform current (δ� → ∞)
represents the bounding case with maximum effect, with a transition around δ�/δ � O(1) towards
no effect in the limit of a thin flowing liquid layer. We can conclude that the weak influence of
uniform currents on the wrinkle properties is also valid for sheared currents, but with even weaker
effects.

V. CONCLUSION

In this paper we investigated numerically the influence of a weak sheared current on the
properties of the wind-generated wrinkles for a wind velocity below the onset and growth of regular
waves. In that regime, the wrinkles are the statistically homogeneous and stationary response to
the pressure fluctuations in the turbulent boundary layer, and their amplitude is governed by the
viscosity of the liquid. We find that a longitudinal current tends to produce shorter and more
fragmented wrinkles, whereas a transverse current simply tilts the wrinkles without modifying
much their shape. In spite of these visual evidences, the overall effect of a longitudinal current
remains weak: the energy-containing scale of the wrinkles only slightly decreases (about 5% for the
typical wind-generated surface current Us � 0.6u∗ reported in the literature), and their amplitude
is remarkably independent of the current. This confirms that the wrinkle properties described in
Perrard et al. [11] are robust with respect to currents.

This weak dependence of wrinkles on currents may have implications for the onset of regular
waves at larger wind velocity. In Ref. [11] we proposed that wrinkles form a base state from
which regular waves are triggered, with a transition in friction velocity u∗ when the wrinkle
amplitude ζrms becomes of the order of the viscous sublayer thickness δν = νa/u∗, yielding a critical
friction velocity for the onset of regular waves u∗

c � ν
1/5
� . According to this model, the feedback of

the surface deformations on the turbulent boundary layer can no longer be neglected above this
threshold, leading to a phase coherence between wind and waves, and hence a possible increase
of energy transfers. Based on the observation made here regarding the independence of wrinkle
amplitude from surface current, we may conclude that the critical friction velocity u∗

c should be
essentially independent of the current. However, the argument of Ref. [11] is based on the wrinkle
amplitude only, not on their shape, so an influence of the current on u∗

c cannot be ruled out. While
the independence of u∗

c with current is a reasonable assumption in the presence of a longitudinal
current, for which the wrinkles remain aligned with wind, it is questionable for a transverse current:
the cross-wind orientation of the wrinkles in that case probably induces stronger disturbances in
the turbulent boundary layer, which could reduce the critical friction velocity u∗

c . Such a subtle
dependence of the onset of regular waves in wrinkle geometry may contribute to the large variability
of the critical velocities reported in the literature (Ua � 1–3 m s−1; see Ref. [10]), with values
usually larger in in controlled laboratory experiments than in open conditions where uncontrolled
currents may be present.
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