
HAL Id: hal-03273589
https://hal.science/hal-03273589

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-phase geothermal model with fracture network and
multi-branch wells

Antoine Armandine Les Landes, Daniel Castanon Quiroz, Laurent Jeannin,
Simon Lopez, Roland Masson

To cite this version:
Antoine Armandine Les Landes, Daniel Castanon Quiroz, Laurent Jeannin, Simon Lopez, Roland
Masson. Two-phase geothermal model with fracture network and multi-branch wells. SMAI Journal
of Computational Mathematics, 2023, 9. �hal-03273589�

https://hal.science/hal-03273589
https://hal.archives-ouvertes.fr


Two-phase geothermal model with fracture network and
multi-branch wells

A. Armandine Les Landes∗, D. Castanon Quiroz †, L. Jeannin ‡, S. Lopez§, R. Masson¶

June 29, 2021

Abstract

This paper focuses on the numerical simulation of geothermal systems in complex geological
settings. The physical model is based on two-phase Darcy flows coupling the mass conservation
of the water component with the energy conservation and the liquid vapor thermodynamical
equilibrium. The discretization exploits the flexibility of unstructured meshes to model complex
geology including conductive faults as well as complex wells. The polytopal and essentially
nodal Vertex Approximate Gradient scheme is used for the approximation of the Darcy and
Fourier fluxes combined with a Control Volume approach for the transport of mass and energy.
Particular attention is paid to the faults which are modelled as two-dimensional interfaces
defined as collection of faces of the mesh and to the flow inside deviated or multi-branch wells
defined as collection of edges of the mesh with rooted tree data structure. By using an explicit
pressure drop calculation, the well model reduces to a single equation based on complementarity
constraints with only one well implicit unknown. The coupled systems are solved fully implicitely
at each time step using efficient nonlinear and linear solvers on parallel distributed architectures.
The convergence of the discrete model is investigated numerically on a simple test case with a
Cartesian geometry and a single vertical producer well. Then, the ability of our approach to
deal efficiently with realistic test cases is assessed on a high energy faulted geothermal reservoir
operated using a doublet of two deviated wells.

1 Introduction

Deep geothermal systems are often located in complex geological settings, including faults or
fractures. These geological discontinuities not only control fluid flow and heat transfer, but also
provide feed zones for production wells. Modeling the operation of geothermal fields and the exchange
of fluids and heat in the rock mass during production requires explicitly taking into account objects
of different characteristic sizes such as the reservoir itself, faults and fractures, which have a small
thickness compared to the characteristic size of geological formations and wells (whose radius is of
the order of a few tens of centimeters).

A common way to account for these highly constrated spatial scales is based on a reduction
of dimension both for the fault/fracture and the well models. Following [23, 4, 10, 21, 31, 37,
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26, 5, 11, 15, 34] faults/fractures will be represented as co-dimension one manifolds coupled with
the surrounding matrix domain leading to the so-called hybrid-dimensional or Discrete Fracture
Matrix (DFM) models. This reduction of dimension is obtained by averaging both the equations and
unknowns in the fracture width and using appropriate transmission conditions at matrix fracture
interfaces. In our case, the faults/fractures will be assumed to be conductive both in terms of
permeability and thermal conductivity in such a way that pressure and temperature continuity can
be assumed as matrix fracture transmission conditions [4, 10, 37]. This setting has been extended
to two-phase Darcy flows in [12, 13] and to multi-phase compositional non-isothermal Darcy flows in
[45].

The well will be modelled as a line source defined by a 1D graph with tree structure. It will be
coupled to the 3D matrix domain and to the 2D faults/fractures possibly intersecting the well using
Peaceman’s approach. It is a widely used approach in reservoir simulation for which the Darcy or
Fourier fluxes between the reservoir and the well are discretized by a two-point flux approximation
with a transmissivity accounting for the unresolved pressure or temperature singularity. This leads
to the concept of well or Peaceman’s index defined at the discrete level and depending on the type of
cell, on the well radius and geometry and on the scheme used for the discretization. Let us refer to
[35] for its introduction in the framework of a two-point cell-centered finite volume scheme on square
cells, to [36] for its extension to non square cells and anisotropic permeability field and to [43, 1, 17]
for extensions to more general well geometries and different discretizations. The coupling with the
faults/fractures is considered in [9]. Let us also refer to [22] for a related approach also based on a
removal of the singularity induced by the well line source but at the continuous level.

This paper focuses on the liquid vapor single water component non-isothermal Darcy flow model
based on mass and energy conservation equations coupled with thermodynamical equilibrium and
volume balance. The extension to hybrid-dimensional models follows [45] with pressure and temper-
ature continuity at matrix fracture interfaces. The thermal well model is a simplified version of the
drift flux model [30, 41] neglecting transient terms, thermal losses and cross flow in the sense that
all along the well, the well behaves either as a production or an injection well. It results that using
an explicit approximation of the mixture density along the well, the well model can be reduced to a
single unknown, the so-called bottom hole pressure, implicitely coupled to the reservoir.

The discretization of hybrid-dimensional Darcy flow models has been the object of many works
using cell-centered Finite Volume schemes with either Two Point or Multi Point Flux Approximations
[27, 5, 24, 42, 38, 2, 3], Mixed or Mixed Hybrid Finite Element methods [4, 31, 26], Hybrid Mimetic
Mixed Methods [20, 6, 11, 15], and Control Volume Finite Element Methods (CVFE) [10, 37, 33, 24,
32]. This article focus on the Vertex Approximate Gradient (VAG) scheme accounting for polyhedral
meshes. It has been introduced for the discretization of multiphase Darcy flows in [19] and extended
to hybrid-dimensional models in [12, 11, 44, 15, 45, 16, 14].

The VAG scheme uses nodal and fracture face unknowns in addition to the cell unknowns which
can be eliminated without any fill-in. Thanks to its essentially nodal nature, it leads to a sparse
discretization on tetrahedral meshes which are particulary adapted to discretize complex geological
features like faults defined as a collection of faces and slanted or multi-branch wells defined as a col-
lection of edges with tree structure. Compared with other nodal approaches such as CVFE methods,
the VAG scheme avoid the mixing of the control volumes at the matrix fracture interfaces, which is
a key feature for its coupling with a transport model. As shown in [12] for two-phase flow problems,
this allows to use a coarser mesh size at the matrix fracture interface.

The remainder of this paper is organized as follows. Section 2 presents the physical model
describing the flow and transport in the matrix domain coupled to the fracture/fault network in
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the hybrid-dimensional setting. Section 3 presents the VAG discretization of this liquid vapor non-
isothermal hybrid-dimensional model. It is based on the discrete mass and energy conservations on
each control volume coupled with thermodynamical equilibrium and the sum to one of the saturations.
Then, the well modelling is addressed starting with the description of the well geometry as a collection
of edges defining a rooted tree data structure. The source terms connecting the well to the reservoir
at each well node are based on two-point fluxes with transmissivities defined by Peaceman’s indexes.
The derivation of the simplified well model is detailed both for production and injection wells starting
from the drift flux model. We discuss at the end of Section 3 the algorithms used to solve the nonlinear
and linear systems on distributed parallel architectures at each time step of the simulation. Finally,
to demonstrate the efficiency of our approach, we present in Section 4 two numerical tests. The first
test case checks the numerical convergence of the model for a vertical production well connected to
an homogeneous reservoir on a family of refined Cartesian meshes. The second test case simulates
the development plan of a high enthalpy faulted geothermal reservoir with slanted production and
injection wells.

2 Hybrid-dimensional non-isothermal two-phase Discrete Frac-

ture Model

This section recalls, in the particular case of a non-isothermal single-component two-phase Darcy
flow model, the hybrid-dimensional model introduced in [45].

2.1 Discrete Fracture Network

Let Ω denote a bounded domain of R3 assumed to be polyhedral. Following [4, 21, 31, 11, 15] the
fractures are represented as interfaces of codimension 1. Let J be a finite set and let Γ =

⋃
j∈J Γj

and its interior Γ = Γ \ ∂Γ denote the network of fractures Γj ⊂ Ω, j ∈ J , such that each Γj is a
planar polygonal simply connected open domain included in a plane of R3. The fracture width is

Figure 1: Example of a 2D domain with 3 intersecting fractures Γ1,Γ2,Γ3.

denoted by df and is such that 0 < df ≤ df (x) ≤ df for all x ∈ Γ. We can define, for each fracture
j ∈ J , its two sides + and −. For scalar functions on Ω, possibly discontinuous at the interface Γ
(typically in H1(Ω \ Γ)), we denote by γ± the trace operators on the side ± of Γ. Continuous scalar
functions u at the interface Γ (typically in H1(Ω)) are such that γ+u = γ−u and we denote by γ the
trace operator on Γ for such functions. At almost every point of the fracture network, we denote by
n± the unit normal vector oriented outward to the side ± of Γ such that n+ + n− = 0. For vector
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fields on Ω, possibly discontinuous at the interface Γ (typically in Hdiv(Ω \ Γ), we denote by γ±n the
normal trace operator on the side ± of Γ oriented w.r.t. n±.

The gradient operator in the matrix domain Ω \ Γ is denoted by ∇ and the tangential gradient
operator on the fracture network is denoted by ∇τ such that

∇τu = ∇u− (∇u · n+)n+.

We also denote by divτ the tangential divergence operator on the fracture network, and by dτ(x) the
Lebesgue measure on Γ.

We denote by Σ the dimension 1 open set defined by the intersection of the fractures excluding
the boundary of the domain Ω, i.e. the interior of

⋃
{(j,j′)∈J×J | j 6=j′} ∂Γj ∩ ∂Γj′ \ ∂Ω.

For the matrix domain, Dirichlet (subscript D) and Neumann (subscript N) boundary conditions
are imposed on the two dimensional open sets ∂ΩD and ∂ΩN respectively where ∂ΩD ∩ ∂ΩN = ∅,
∂Ω = ∂ΩD∪∂ΩN . Similarly for the fracture network, the Dirichlet and Neumann boundary conditions
are imposed on the one dimensional open sets ∂ΓD and ∂ΓN respectively where ∂ΓD ∩ ∂ΓN = ∅,
∂Γ ∩ ∂Ω = ∂ΓD ∪ ∂ΓN .

2.2 Non-isothermal two-phase flow model

We consider in this work a two-phase liquid gas, single water component, and non-isothermal Darcy
flow model. The liquid (`) and gas (g) phases are described by their pressure p (neglecting capillary
effects), temperature T and pore volume fractions or saturations sα, α ∈ {`, g}. Let us also introduce
the mass fraction cα of the water component in phase α, equal to 1 for a present phase α but lower
than 1 for an absent phase. It will be used below to express the thermodynamical equilibrium as
complementary constraints.

For each phase α, we denote by ρα(p, T ) its mass density, by µα(p, T ) its dynamic viscosity, by
eα(p, T ) its specific internal energy, and by hα(p, T ) its specific enthalpy. The rock energy density is
denoted by Er(p, T ).

The reduction of dimension in the fractures leading to the hybrid-dimensional model is obtained
by integration of the conservation equations along the width of the fractures complemented by
transmission conditions at both sides of the matrix fracture interfaces (see [45]). In the following,
pm, Tm, s

α
m, c

α
m denote the pressure, temperature, saturations, and mass fractions in the matrix do-

main Ω \ Γ, and pf , Tf , s
α
f , c

α
f are the pressure, temperature, saturations and mass fractions in the

fractures averaged along the width of the fractures. The permeability tensor is denoted by Km in
the matrix domain and we denote by Kf the tangential permeability tensor in the fractures (average
value along the fracture width assuming that the permeability tensor in the fracture has the normal
as principal direction). The porosity (resp. thermal conductivity of the rock and fluid mixture) is
denoted by φm (resp. λm) in the matrix domain and by φf (resp. λf ) along the fracture network
(average values along the fracture width). The relative permeability of phase α as a function of the
phase saturation is denoted by kαr,m in the matrix and by kαr,f in the fracture network. The gravity
acceleration vector is denoted by g.

The set of equations couples the mass, energy and volume balance equations in the matrix

φm ∂t

( ∑
α∈{`,g}

ρα(pm, Tm)sαmc
α
m

)
+ div(qh2o

m ) = 0,

φm ∂t

( ∑
α∈{`,g}

ρα(pm, Tm)eα(pm, Tm)sαmc
α
m

)
+ (1− φm)∂tEr(pm, Tm) + div(qem) = 0,∑

α∈{`,g}

sαm = 1,

(1)
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in the fracture network

dfφf ∂t

( ∑
α∈{`,g}

ρα(pf , Tf )s
α
f c
α
f

)
+ divτ (q

h2o
f )− γ+

n qh2o
m − γ−n qh2o

m = 0,

dfφf ∂t

( ∑
α∈{`,g}

ρα(pf , Tf )e
α(pf , Tf )s

α
f c
α
f

)
+ df (1− φf )∂tEr(pf , Tf )

+ divτ (q
e
f )− γ+

n qem − γ−n qem = 0,∑
α∈{`,g}

sαf = 1,

(2)

with the thermodynamical equilibrium for i = m, f
cg
i pi − psat(Ti)c

`
i = 0,

min
(
s`i , 1− c`i

)
= 0,

min
(
sg
i , 1− c

g
i

)
= 0,

(3)

where psat(T ) is the vapor saturated pressure as a function of the temperature T .
The Darcy and Fourier laws provide the mass and energy fluxes in the matrix

qh2o
m =

∑
α∈{`,g}

qαm,

qαm = cαm
ρα(pm, Tm)

µα(pm, Tm)
kαr,m(sαm)Vα

m,

qem =
∑

α∈{`,g}

hα(pm, Tm)qαm − λm∇Tm,

(4)

and in the fracture network

qh2o
f =

∑
α∈{`,g}

qαf ,

qαf = cαf
ρα(pf , Tf )

µα(pf , Tf )
kαr,f (s

α
f )Vα

f ,

qef =
∑

α∈{`,g}

hα(pf , Tf )q
α
f − dfλf∇τTf ,

(5)

where
Vα
m = −Km

(
∇pm − ρα(pm, Tm)g

)
, Vα

f = −dfKf

(
∇τpf − ρα(pf , Tf )gτ

)
,

and gτ = g − (g · n+)n+.

The system (1)-(2)-(4)-(5) is closed with transmission conditions at the matrix fracture interface
Γ. These conditions state the continuity of the pressure and temperature at the matrix fracture
interface assuming that the fractures do not act as barrier neither for the Darcy flow nor for the
thermal conductivity (see [4, 21, 31, 45]).

γ+pm = γ−pm = γpm = pf ,

γ+Tm = γ−Tm = γTm = Tf .
(6)

At fracture intersections Σ, note that we assume mass and energy flux conservation as well as the
continuity of the pressure pf and temperature Tf . Homogeneous Neumann boundary conditions are
applied for the mass qh2o

f and energy qef fluxes at the fracture tips ∂Γ \ ∂Ω.
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3 VAG Finite Volume Discretization

3.1 Space and time discretizations

The VAG discretization of hybrid-dimensional two-phase Darcy flows introduced in [12] considers
generalized polyhedral meshes of Ω in the spirit of [18]. Let M be the set of cells that are disjoint
open polyhedral subsets of Ω such that

⋃
K∈MK = Ω, for all K ∈ M, xK denotes the so-called

“center” of the cell K under the assumption that K is star-shaped with respect to xK . The set of
faces of the mesh is denoted by F and FK is the set of faces of the cell K ∈ M. The set of edges
of the mesh is denoted by E and Eσ is the set of edges of the face σ ∈ F . The set of vertices of
the mesh is denoted by V and Vσ is the set of vertices of the face σ. For each K ∈ M we define
VK =

⋃
σ∈FK Vσ.

The faces are not necessarily planar. It is just assumed that for each face σ ∈ F , there exists a
so-called “center” of the face xσ ∈ σ \

⋃
a∈Eσ a such that xσ =

∑
s∈Vσ βσ,s xs, with

∑
s∈Vσ βσ,s = 1,

and βσ,s ≥ 0 for all s ∈ Vσ; moreover the face σ is assumed to be defined by the union of the triangles
Tσ,a defined by the face center xσ and each edge a ∈ Eσ. The mesh is also supposed to be conforming
w.r.t. the fracture network Γ in the sense that for each j ∈ J there exists a subset FΓj of F such
that

Γj =
⋃

σ∈FΓj

σ.

We will denote by FΓ the set of fracture faces

FΓ =
⋃
j∈J

FΓj ,

and by

VΓ =
⋃
σ∈FΓ

Vσ,

the set of fracture nodes. This geometrical discretization of Ω and Γ is denoted in the following by
D.

In addition, the following notations will be used

Ms = {K ∈M| s ∈ VK}, Mσ = {K ∈M| σ ∈ FK},

and
FΓ,s = {σ ∈ FΓ | s ∈ Vσ}.

For Ntf ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tNtf = tf
of the time interval [0, tf ]. We denote the time steps by ∆tn = tn − tn−1 for all n = 1, · · · , Ntf .

3.2 VAG fluxes and control volumes

The VAG discretization is introduced in [18] for diffusive problems on heterogeneous anisotropic
media. Its extension to the hybrid-dimensional Darcy flow model is proposed in [12] based upon the
following vector space of degrees of freedom:

VD = {vK , vs, vσ ∈ R, K ∈M, s ∈ V , σ ∈ FΓ}.

The degrees of freedom are illustrated in Figure 2 for a given cell K with one fracture face σ in bold.
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The matrix degrees of freedom are defined by the set of cells M and by the set of nodes V \ VΓ

excluding the nodes at the matrix fracture interface Γ. The fracture faces FΓ and the fracture nodes
VΓ are shared between the matrix and the fractures but the control volumes associated with these
degrees of freedom will belong to the fracture network (see Figure 3). The degrees of freedom at the
fracture intersection Σ are defined by the set of nodes VΣ ⊂ VΓ located on Σ. The set of nodes at
the Dirichlet boundaries ∂ΩD and ∂ΓD is denoted by VD.

The VAG scheme is a control volume scheme in the sense that it results, for each non Dirichlet
degree of freedom in a mass or energy balance equation. The matrix diffusion tensor is assumed
to be cellwise constant and the tangential diffusion tensor in the fracture network is assumed to be
facewise constant. The two main ingredients are therefore the conservative fluxes and the control
volumes. The VAG matrix and fracture fluxes are illustrated in Figure 2. For uD ∈ VD, the matrix
fluxes FK,ν(uD) connect the cell K ∈ M to the degrees of freedom located at the boundary of K,
namely ν ∈ ΞK = VK ∪ (FK ∩ FΓ). The fracture fluxes Fσ,s(uD) connect each fracture face σ ∈ FΓ

to its nodes s ∈ Vσ. The expression of the matrix (resp. the fracture) fluxes is linear and local to
the cell (resp. fracture face). More precisely, the matrix fluxes are given by

FK,ν(uD) =
∑
ν′∈ΞK

T ν,ν
′

K (uK − uν′),

with a symmetric positive definite transmissibility matrix TK = (T ν,ν
′

K )(ν,ν′)∈ΞK×ΞK depending only on
the cell K geometry (including the choices of xK and of xσ, σ ∈ FK) and on the cell matrix diffusion
tensor. The fracture fluxes are given by

Fσ,s(uD) =
∑
s∈Vσ

T s,s′

σ (uσ − us′),

with a symmetric positive definite transmissibility matrix Tσ = (T s,s′
σ )(s,s′)∈Vσ×Vσ depending only

on the fracture face σ geometry (including the choice of xσ) and on the fracture face width and
tangential diffusion tensor. Let us refer to [12] for a more detailed presentation and for the definition
of TK and Tσ.

Figure 2: For a cell K and a fracture face σ (in bold), examples of VAG degrees of freedom uK , us,
uσ, us′ and VAG fluxes FK,σ, FK,s, FK,s′ , Fσ,s.

The construction of the control volumes at each degree of freedom is based on partitions of the
cells and of the fracture faces. These partitions are respectively denoted, for all K ∈M, by

K = ωK
⋃  ⋃

s∈VK\VD

ωK,s

 ,
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and, for all σ ∈ FΓ, by

σ = Σσ

⋃  ⋃
s∈Vσ\VD

Σσ,s

 .

The practical implementation of the scheme does not require to build explicitly the geometry of these
partitions but only need to define the matrix volume fractions

αK,s =

∫
ωK,s

dx∫
K
dx

, s ∈ VK \ (VD ∪ VΓ), K ∈M,

constrained to satisfy αK,ν ≥ 0, and
∑

s∈VK\(VD∪VΓ) αK,s ≤ 1, as well as the fracture volume fractions

ασ,s =

∫
Σσ,s

df (x)dτ(x)∫
σ
df (x)dτ(x)

, s ∈ Vσ \ VD, σ ∈ FΓ,

constrained to satisfy ασ,s ≥ 0, and
∑

s∈Vσ\VD ασ,s ≤ 1, where we denote by dτ(x) the 2 dimensional
Lebesgue measure on Γ. Let us also set

φK = (1−
∑

s∈VK\(VD∪VΓ)

αK,s)

∫
K

φm(x)dx for K ∈M,

and

φσ = (1−
∑

s∈Vσ\VD

ασ,s)

∫
σ

φf (x)df (x)dτ(x) for σ ∈ FΓ,

as well as

φs =
∑
K∈Ms

αK,s

∫
K

φm(x)dx for s ∈ V \ (VD ∪ VΓ),

and

φs =
∑
σ∈FΓ,s

ασ,s

∫
σ

φf (x)df (x)dτ(x) for s ∈ VΓ \ VD,

which correspond to the porous volumes distributed to the degrees of freedom excluding the Dirichlet
nodes. The rock complementary volume in each control volume ν ∈ M∪ FΓ ∪ (V \ VD) is denoted
by φ̄ν .

As shown in [12], the flexibility in the choice of the control volumes is a crucial asset, compared
with usual CVFE approaches and allows to significantly improve the accuracy of the scheme when
the permeability field is highly heterogeneous. As exhibited in Figure 3, as opposed to usual CVFE
approaches, this flexibility allows to define the control volumes in the fractures with no contribution
from the matrix in order to avoid to artificially enlarge the flow path in the fractures.

Figure 3: Example of control volumes at cells, fracture face, and nodes, in the case of two cells K
and L separated by one fracture face σ (the width of the fracture is enlarged in this figure). The
control volumes are chosen to avoid mixing fracture and matrix rocktypes.
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A rocktype is assigned to each cell, node and fracture face. In our case, for cells and for nodes not
located along the fractures, the matrix rocktype is assigned. For fracture nodes and faces at the inter-
face between the matrix and the fracture rocktypes, the fracture rocktype is assigned corresponding
to the most pervious rock type consistently with the choice of the control volumes (see [12]). For
convenience’s sake, in the following, we will denote by kαr,ν the corresponding relative permeability
function for ν ∈M∪ V ∪ FΓ.

In the following, we will keep the notation FK,s, FK,σ, Fσ,s for the VAG Darcy fluxes defined
with the cellwise constant matrix permeability Km and the facewise constant fracture width df and
tangential permeability Kf . Since the rock properties are fixed, the VAG Darcy fluxes transmissibility
matrices TK and Tσ are computed only once.

The VAG Fourier fluxes are denoted in the following by GK,s, GK,σ, Gσ,s. They are obtained with
the isotropic matrix and fracture thermal conductivities averaged in each cell and in each fracture
face using the previous time step fluid properties. Hence VAG Fourier fluxes transmissibility matrices
need to be recomputed at each time step.

3.3 Multi-branch non-isothermal well model

LetW denote the set of wells. Each multi-branch well ω ∈ W is defined by a set of oriented edges of
the mesh assumed to define a rooted tree oriented away from the root. This orientation corresponds
to the drilling direction of the well. The set of nodes of a well ω ∈ W is denoted by Vω ⊂ V and
its root node is denoted by sω. A partial ordering is defined on the set of vertices Vω with s <

ω
s′ if

and only if the unique path from the root sω to s′ passes through s. The set of edges of the well ω
is denoted by Eω and for each edge a ∈ Eω we set a = ss′ with s <

ω
s′ (i.e. s is the parent node of s′,

see Figure 4). It is assumed that Vω1 ∩ Vω2 = ∅ for any ω1, ω2 ∈ W such that ω1 6= ω2.
We focus on the part of the well that is connected to the reservoir through open hole, production

liners or perforations. In this section, exchanges with the reservoir are dominated by convection
and we decided to neglect heat losses as a first step. The latest shall be taken into account when
modeling the wellbore flow up to the surface. It is assumed that the radius rω of each well ω ∈ W
is small compared to the cell sizes in the neighborhood of the well. It results that the Darcy flux
between the reservoir and the well at a given well node s ∈ Vω is obtained using the Two Point Flux
Approximation

V ω
s = WIs(ps − pωs ),

where ps is the reservoir pressure at node s and pωs is the well pressure at node s. The Well Index
WIs is typically computed using Peaceman’s approach (see [35, 36, 17]) and takes into account the
unresolved singularity of the pressure solution in the neighborhood of the well. Fourier fluxes between
the reservoir and the well could also be discretized using such Two Point Flux Approximation but
they are assumed to be small compared with thermal convective fluxes and will be neglected in the
following well model. At each well node s ∈ Vω the temperature inside the well is denoted by T ωs
and the volume fractions by sαs,ω, α ∈ {`, g}. The temperature in the reservoir at node s is denoted
by Ts, the saturations by sαs , and the phase mass fractions by cαs for α ∈ {`, g}.

For any a ∈ R, let us define a+ = max(a, 0) and a− = min(a, 0). The mass flow rates between
the reservoir and the well ω at a given node s ∈ Vω are defined by the following phase based upwind
approximation of the mobilities:

qr→ωs,α = βinjω

ρα(pωs , T
ω
s )

µα(pωs , T
ω
s )
kαr,s(s

α
s,ω)(V ω

s )− + βprodω cαs
ρα(ps, Ts)

µα(ps, Ts)
kαr,s(s

α
s )(V ω

s )+,

qr→ωs,h2o =
∑

α∈{`,g}

qr→ωs,α ,
(7)
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and the energy flow rate is defined similarly by

qr→ωs,e =
∑

α∈{`,g}

hα(pωs , T
ω
s )(qr→ωs,α )− + hα(ps, Ts)(q

r→ω
s,α )+. (8)

The well coefficients βinjω and βprodω are used to impose specific well behavior. The general case
corresponds to βinjω = βprodω = 1. Yet, for an injection well, it will be convenient as explained in
subsection 3.3.2, to impose that the mass flow rates qr→ωs,h2o are non positive for all nodes s ∈ Vω
corresponding to set βinjω = 1 and βprodω = 0. Likewise, for a production well, it will be convenient
as explained in subsection 3.3.3, to set βinjω = 0 and βprodω = 1 which corresponds to assume that
the mass flow rates qr→ωs,h2o are non negative for all nodes s ∈ Vω. These simplifying options currently
prevent the modeling of cross flows where injection and production occur in different places of the
same well, as it sometimes happen in geothermal wells, typically in closed wells.

3.3.1 Well physical model

Our conceptual model inside the well assumes that the flow is stationary at the reservoir time scale
along with perfect mixing and thermal equilibrium. The Fourier fluxes and the wall friction are
neglected and the pressure distribution is assumed hydrostatic along the well.

For the sake of simplicity, the flow rate between the reservoir and the well is considered concen-
trated at each node s of the well. For each edge a ∈ Eω, let us denote by qαa the mass flow rate of
phase α along the edge a oriented positively from s′ to s with a = ss′ (let us recall that s is the
parent node of s′).

Let α ∈ {`, g}, the set of well unknowns is defined at each node s ∈ Vω by the well pressure pωs ,
the well temperature T ωs , the well saturations sαs,ω, and at each edge a ∈ Eω by the mass flow rates
qαa . These well unknowns are complemented by the well mass flow rates qαω which are non negative
for production wells and non positive for injection wells (see Figure 4).

For each edge a = ss′ ∈ Eω, and each phase α, let us define the following phase based upwind
approximations of the specific enthalpy, mass density and saturation

hαa =

{
hα(pωs′ , T

ω
s′ ) if qαa ≥ 0,

hα(pωs , T
ω
s ) if qαa < 0.

ραa =

{
ρα(pωs′ , T

ω
s′ ) if qαa ≥ 0,

ρα(pωs , T
ω
s ) if qαa < 0.

sαa =

{
sαs′,ω if qαa ≥ 0,

sαs,ω if qαa < 0.
(9)

For all ss′ = a ∈ Eω, let us set κa,s′ = −1 and κa,s = 1. The well equations account for the mass and
energy conservations at each node of the well combined with the sum to one of the saturations and
the thermodynamical equilibrium. Let Eωs ⊂ Eω denote the set of well edges sharing the node s ∈ Vω,
then for all s ∈ Vω we obtain the equations

qr→ωs,h2o +
∑
a∈Eωs

∑
α∈{`,g}

κa,sq
α
a = δsωs

∑
α∈{`,g}

qαω ,

qr→ωs,e +
∑
a∈Eωs

∑
α∈{`,g}

hαaκa,sq
α
a = δsωs

∑
α∈{`,g}

(
h̄αω(qαω)− + hα(pωs , T

ω
s )(qαω)+

)
,

s`s,ω + sg
s,ω = 1,

pωs = psat(T
ω
s ) if sg

s,ω > 0 and s`s,ω > 0,

pωs ≥ psat(T
ω
s ) if sg

s,ω = 0, pωs ≤ psat(T
ω
s ) if s`s,ω = 1,

(10)

where δ stands for the Kronecker symbol, and h̄αω for prescribed specific enthalpies in the case of
injection wells. Inside the well, the hypothesis of hydrostatic pressure distribution implies that

pωs − pωs′ + ρag(zs − zs′) = 0, (11)

10



Figure 4: Example of multi-branch well ω with its root node sω, one edge a = ss′ and the main
physical quantities: the well mass flow rates qαω , the mass and energy flow rates between the reservoir
and the well qr→ωs,h2o, qr→ωs,e , the well node pressure, temperature and saturations pωs , T

ω
s , s

α
s,ω, and the

edge mass flow rates qαa .

for each edge ss′ = a ∈ Eω, where ρa is the mass density of the liquid gas mixture. The system is
completed by a slip closure law expressing the slip between the liquid velocity u`a and the gas velocity
ug
a at each edge a ∈ Eω with

qαa = πr2
ωρ

α
a s

α
au

α
a .

In the following simplified well models developed in subsections 3.3.2 and 3.3.3, a zero slip law will be
assumed for simplicity in such a way that u`a = ug

a. Note that these simplified well models could be
easily extended to account for non-zero slip laws as well as for an explicit approximation of the wall
friction along the wells. The two fundamental assumptions to obtain these simplified well models are

(i) prescribed sign of the mass flow rates qr→ωs,α , s ∈ Vω, forced to be all non-negative for production
wells and all non-positive for injection wells,

(ii) neglected Fourier fluxes compared with thermal convection fluxes.

The well boundary conditions prescribe a limit total mass flow rate q̄ω and a limit bottom hole
pressure p̄ω. Then, complementary constraints accounting for usual well monitoring conditions, are
imposed between qω − q̄ω and pω − p̄ω using the notations

pω = pωsω and qω =
∑

α∈{`,g}

qαω .

In the following subsections, we consider the particular case of injection wells assuming a pure liquid
phase, and the case of production wells. The flow rates are enforced to be non positive (resp. non
negative) at all well nodes for injection wells (resp. production wells). It corresponds to set βinjω = 1,
βprodω = 0 for an injection well and βinjω = 0, βprodω = 1 for a production well. The limit bottom
hole pressure p̄ω is a maximum (resp. minimum) pressure and the limit total mass flow rate q̄ω is
a minimum non positive (resp. maximum non negative) flow rate for injection (resp. production)
wells.

11



In both cases, using an explicit computation of the hydrostatic pressure drop, the well model will
be reduced to a single equation and a single implicit unknown corresponding to the well reference
pressure pω (see e.g. [7]).

3.3.2 Liquid injection wells

The injection well model sets βinjω = 1, βprodω = 0 and prescribes the minimum well total mass flow
rate q̄ω ≤ 0, the well maximum bottom hole pressure p̄ω and the well specific liquid enthalpy h̄`ω. It
is assumed that the injection is in liquid phase and that no gas will appear in the well during the
simulation as it is usually the case in geothermal systems.

Since βinjω = 1 and βprodω = 0, the mass flow rates qαa are enforced to be non negative and it results
from (10), and the assumption that the gas phase does not appear in the well that h`a = h̄`ω for all
a ∈ Eω and that s`s,ω = 1− sg

s,ω = 1 for all s ∈ Vω.
Given the previous time step well reference pressure pn−1

ω = pω,n−1
sω , we first compute the pressures

along the well solving the equations

pωs − pωs′ + ρag(zs − zs′) = 0 for all a = ss′ ∈ Eω,

pωsω = pω,n−1
sω ,

ρa = ρ`(pωs , T
ω
s ) for all a = ss′ ∈ Eω,

h`(pωs , T
ω
s ) = h̄`ω for all s ∈ Vω.

We deduce the explicit pressure drops

∆pω,n−1
s = pωs − pn−1

ω ,

which provide for all s ∈ Vω the pressures pω,ns and temperatures T ω,ns along the well at the current
time step n such that

pω,ns = pnω + ∆pω,n−1
s ,

h`(pω,ns , T ω,ns ) = h̄`ω.

The mass and energy flow rates at each node s ∈ Vω between the reservoir and the well are
defined by (7)-(8) with βinjω = 1 and βprodω = 0 and depend only on the implicit unknowns pnω and pns .
They are respectively denoted by qr→ωs,h2o(pns , p

n
ω) and qr→ωs,e (pns , p

n
ω).

The well equation at the current time step is defined by the following complementary constraints
between the prescribed minimum well total mass flow rate and the prescribed maximum bottom hole
pressure 

(∑
s∈Vω

qr→ωs,h2o(pns , p
n
ω)− q̄ω

)(
p̄ω − pnω

)
= 0,∑

s∈Vω

qr→ωs,h2o(pns , p
n
ω)− q̄ω ≥ 0,

p̄ω − pnω ≥ 0.

(12)

3.3.3 Production wells

The production well model sets βinjω = 0, βprodω = 1 and prescribes the maximum well total mass flow
rate q̄ω ≥ 0 and the well minimum bottom hole pressure p̄ω.

The solution at the previous time step n − 1 provides the pressure drop ∆pω,n−1
s at each node

s ∈ Vω. This computation based on thermodynamical equilibrium is detailed below. As for the

12



injection well, we deduce the well pressures using the bottom well pressure at the current time step
n

pω,ns = pnω + ∆pω,n−1
s .

The mass and energy flow rates at each node s ∈ Vω between the reservoir and the well are defined by
(7)-(8) with βinjω = 0 and βprodω = 1 and depend only on the implicit reservoir unknowns Xn

s setting

Xs =
(
Ps, Ts, s

`
s, s

g
s , c

`
s, c

g
s

)
,

and on the implicit well unknown pnω. They are respectively denoted by qr→ωs,h2o(Xn
s , p

n
ω) and qr→ωs,e (Xn

s , p
n
ω).

The well equation at the current time step is defined by the following complementary constraints
between the prescribed maximum well total mass flow rate and the prescribed minimum bottom hole
pressure 

(
q̄ω −

∑
s∈Vω

qr→ωs,h2o(Xn
s , p

n
ω)
)(
pnω − p̄ω

)
= 0,

q̄ω −
∑
s∈Vω

qr→ωs,h2o(Xn
s , p

n
ω) ≥ 0,

pnω − p̄ω ≥ 0.

(13)

Let us now detail the computation of the pressure drop at each node s ∈ Vω using the previous
time step solution n−1 consisting of the reservoir unknowns and the well pressures. We first compute
the well temperature T ω,n−1

s and saturations sα,n−1
s,ω at each node s using equations (10). Summing

the mass and energy equations of (10) over all nodes s′′ ≥
ω

s, we obtain for all a = s′s ∈ Eω that

∑
α∈{`,g}

Qα,n−1
a =

∑
s′′∈Vω |s′′≥

ω
s

qr→ωs′′,h2o(Xn−1
s′′ , pn−1

ω ) = Qω
s,h2o,

∑
α∈{`,g}

hα(pω,n−1
s , T ω,n−1

s )Qα,n−1
a =

∑
s′∈Vω |s′′≥

ω
s

qr→ωs′,e (Xn−1
s′′ , pn−1

ω ) = Qω
s,e,

with
Qα,n−1

a = πr2
ωρ

α(pω,n−1
s , T ω,n−1

s )sα,n−1
s,ω uα,n−1

a , α ∈ {`, g}.
It results that the thermodynamical equilibrium at fixed well pressure pω,n−1

s , mass Qω
s,h2o and

energy Qω
s,e provides the well temperature T ω,n−1

s and the well saturations sα,n−1
s,ω at node s as follows.

Let us set p = pω,n−1
s . We first assume that both phases are present which implies that Tsat =

(psat)
−1(p) and that the liquid mass fraction is given by

c` =
hg(p, Tsat)−

Qωs,e
Qωs,h2o

hg(p, Tsat)− h`(p, Tsat)
.

The following alternatives are checked:

Two-phase state: if 0 < c` < 1, the two-phase state is confirmed. Using the zero slip assumption,
we obtain

T ω,n−1
s = Tsat and s`,n−1

s,ω = 1− sg,n−1
s,ω =

c`

ρ`(p,Tsat)

c`

ρ`(p,Tsat)
+ 1−c`

ρg(p,Tsat)

.

Liquid state: if c` ≥ 1, then only the liquid phase is present, we set s`,n−1
s,ω = 1, sg,n−1

s,ω = 0, and
T ω,n−1
s is the solution T of

h`(p, T ) =
Qω

s,e

Qω
s,h2o

.
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Gas state: if c` ≤ 0, then only the gas phase is present, we set s`,n−1
s,ω = 0, sg,n−1

s,ω = 1, and
T ω,n−1
s is the solution T of

hg(p, T ) =
Qω

s,e

Qω
s,h2o

.

Then, the explicit pressure drop

∆pω,n−1
s = pωs − pn−1

ω ,

is obtained from

pωs − pωs′ + ρag(zs − zs′) = 0 for all a = ss′ ∈ Eω,

pωsω = pω,n−1
sω ,

ρa =
∑

α∈{`,g}

sα,n−1
s,ω ρα(pω,n−1

s , T ω,n−1
s ) for all a = ss′ ∈ Eω.

3.4 Discretization of the hybrid-dimensional non-isothermal two-phase
flow model

The time integration is based on a fully implicit Euler scheme to avoid severe restrictions on the time
steps due to the small volumes and high velocities in the fractures. A phase based upwind scheme
is used for the approximation of the mobilities in the mass and energy fluxes (see e.g. [8]). At the
matrix fracture interfaces, we avoid mixing matrix and fracture rocktypes by choosing appropriate
control volumes for σ ∈ FΓ and s ∈ VΓ (see Figure 3). In order to avoid tiny control volumes at the
nodes s ∈ VΣ located at the fracture intersection, the volume is distributed to such a node s from all
the fracture faces containing the node s.

For each ν ∈ M ∪ FΓ ∪ V the set of reservoir pressure, temperature, saturations and mass

fractions unknowns is denoted by Xν =
(
Pν , Tν , s

`
ν , s

g
ν , c

`
ν , c

g
ν

)
, where cαν is the mass fraction of the

water component in phase α used to express the thermodynamical equilibrium. We denote by XD,
the set of reservoir unknowns

XD = {Xν , ν ∈M∪FΓ ∪ V},
and similarly by PD and TD the sets of reservoir pressures and temperatures. The set of well bottom
hole pressures is denoted by PW = {pω, ω ∈ W}.

The Darcy fluxes taking into account the gravity term are defined by
V α
K,ν(XD) = FK,ν(PD)− ρα(pK , TK) + ρα(pν , Tν)

2
FK,ν(GD), ν ∈ ΞK , K ∈M,

V α
σ,s(XD) = Fσ,s(PD)− ρα(pσ, Tσ) + ρα(ps, Ts)

2
Fσ,s(GD), s ∈ Vσ, σ ∈ FΓ,

(14)

where GD denotes the vector (g · xν)ν∈M∪FΓ∪V .
For each Darcy flux, let us define the upwind control volume cvαµ,ν such that

cvαK,ν =

{
K if V α

K,ν(XD) > 0

ν if V α
K,ν(XD) < 0

for ν ∈ ΞK , K ∈M,

for the matrix fluxes, and such that

cvασ,s =

{
σ if V α

σ,s(XD) > 0

s if V α
σ,s(XD) < 0

for s ∈ Vσ, σ ∈ FΓ,
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for fracture fluxes. Using this upwinding, the mass and energy fluxes are given by

qαν,ν′(XD) = cαcvα
ν,ν′

ρα(pcvα
ν,ν′
, Tcvα

ν,ν′
)

µα(pcvα
ν,ν′
, Tcvα

ν,ν′
)
kαr,cvα

ν,ν′
(sαcvα

ν,ν′
)V α

ν,ν′(XD),

qh2o
ν,ν′(XD) =

∑
α∈{`,g}

qαν,ν′(XD),

qeν,ν′(XD) =
∑

α∈{`,g}

hα(pcvα
ν,ν′
, Tcvα

ν,ν′
)qαν,ν′(XD) +Gν,ν′(TD).

In each control volume ν ∈M∪FΓ ∪ V , the mass and energy accumulations are denoted by

Aα,ν(Xν) = φνρ
α(pν , Tν)s

α
ν c
α
ν ,

Ah2o,ν(Xν) =
∑

α∈{`,g}

Aα,ν(Xν),

Ae,ν(Xν) =
∑

α∈{`,g}

eα(pν , Tν)Aα,ν(Xν) + φ̄νEr(pν , Tν).

We can now state the system of discrete equations at each time step n = 1, · · · , Ntf which accounts
for the mass (i = h2o) and energy (i = e) conservation equations in each cell K ∈M:

RK,i(X
n
D) :=

Ai,K(Xn
K)−Ai,K(Xn−1

K )

∆tn
+
∑
s∈VK

qiK,s(X
n
D) +

∑
σ∈FΓ∩FK

qiK,σ(Xn
D) = 0, (15)

in each fracture face σ ∈ FΓ:

Rσ,i(X
n
D) :=

Ai,σ(Xn
σ )−Ai,σ(Xn−1

σ )

∆tn
+
∑
s∈Vσ

qiσ,s(X
n
D) +

∑
K∈Mσ

−qiK,σ(Xn
D) = 0, (16)

and at each node s ∈ V \ VD:

Rs,i(X
n
D, P

n
W) :=

Ai,s(Xn
s )−Ai,s(Xn−1

s )

∆tn
+
∑
σ∈FΓ,s

−qiσ,s(Xn
D) +

∑
K∈Ms

−qiK,s(Xn
D)

+
∑

ω∈W|s∈Vω

qr→ωs,i (Xn
s , p

ω,n
s ) = 0.

(17)

It is coupled with the well equations for the injection wells ω ∈ Winj

Rω(Xn
D, P

n
W) := −min(

∑
s∈Vω

qr→ωs,h2o(Xn
s , p

n
ω)− q̄ω, p̄ω − pnω) = 0, (18)

and for the production wells ω ∈ Wprod

Rω(Xn
D, P

n
W) := min(q̄ω −

∑
s∈Vω

qr→ωs,h2o(Xn
s , p

n
ω), pnω − p̄ω) = 0, (19)

reformulating respectively (12) and (13) using the min function.
The system is closed with thermodynamical equilibrium and the sum to one of the saturations

R1(Xn
ν ) := cg,n

ν pnν − psat(T
n
ν )c`,nν = 0,

R2(Xn
ν ) := min(s`,nν , 1− c`,nν ) = 0,

R3(Xn
ν ) := min(sg,n

ν , 1− cg,n
ν ) = 0,

R4(Xn
ν ) := s`,nν + sg,n

ν − 1 = 0,

(20)

15



at all control volumes ν ∈M∪FΓ ∪ V \ VD as well as the Dirichlet boundary conditions

Xn
s = Xs,D,

for all s ∈ VD.

Let us denote by Rν the vector
(
Rν,i, i ∈ {h2o, e}, Rj(Xν), j ∈ {1, · · · , 4}

)
, and let us rewrite the

conservation and closure equations (15), (16), (17), (18), (19), (20) as well as the Dirichlet boundary
conditions in vector form defining the following nonlinear system at each time step n = 1, 2, ..., Ntf

0 = R(XD, PW) :=


Rs(XD, PW), s ∈ V ,
Rσ(XD), σ ∈ FΓ,
RK(XD), K ∈M,
Rω(XD, PW), ω ∈ W ,

(21)

where the superscript n is dropped to simplify the notations and where the Dirichlet boundary
conditions have been included at each Dirichlet node s ∈ VD in order to obtain a system size
independent of the boundary conditions.

The nonlinear system R(XD, PW) = 0 is solved by a Newton-min algorithm [28]. Our imple-
mentation is based on an active set method both for the well equations and the thermodynamical
equilibrium.

For the well equations, we enforce either the total mass flow rate or the bottom hole pressure
at each Newton iterate and use the remaining inequality constraint to switch from prescribed total
mass flow rate to prescribed bottom hole pressure and vice versa.

For the thermodynamical equilibrium, we distinguish a two-phase state Inν = {`, g}, a liquid state
Inν = {`}, and a gas state Inν = {g}. For Inν = {`, g}, the closure equations provide c`,nν = cg,n

ν = 1,
pnν − psat(T

n
ν ) and s`,nν = 1 − sg,n

ν and we define Yν = (pnν , s
g,n
ν ) as primary unknowns. For Inν = {`},

the closure equations provide c`,nν = 1, cg,n
ν = psat(Tnν )

pnν
, s`,nν = 1, sg,n

ν = 0 and we define Yν = (pnν , T
n
ν )

as primary unknowns. For Inν = {g}, the closure equations provide cg,n
ν = 1, c`,nν = pnν

psat(Tnν )
, s`,nν = 0,

sg,n
ν = 1 and we define Yν = (pnν , T

n
ν ) as primary unknowns. The inequality constraints are then used

to switch from two-phase state to a one phase state and vice versa.

The Jacobian system at each Newton-min iteration is assembled w.r.t. the primary unknowns
YD, PW and the mass and energy conservation equations (15), (16), (17), (18), (19). The cell un-
knowns are locally eliminated without any additional fill-in before solving the linear system using
the GMRES iterative solver preconditioned by a CPR-AMG preconditioner introduced in [29, 39].
This preconditioner combines multiplicatively a parallel algebraic multigrid preconditioner (AMG)
[25] for a pressure block of the linear system with a block Jacobi ILU0 preconditioner for the full
system. In our case, the columns of the pressure block are defined by the node, the fracture face
and the well pressure unknowns, and its lines by the node and the fracture face mass conservation
equations as well as the well equations.

The parallel implementation is described in [45] and [9]. Let us recall that the distribution of
wells to each MPI process p is such that any well with a node belonging to the set of own nodes of p
belongs to the set of own and ghost wells of p. Then, the set of own and ghost nodes of p is extended
to include all the nodes belonging to the own and ghost wells of p. These definitions ensure that
(i) the local linearized systems can be assembled locally on each process without communication as
in [45], and (ii) the pressure drops of the wells can be computed locally on each process without
communication. This last property is convenient since the pressure drop is a sequential computation
along the well rooted tree. This parallelization strategy of the well model is based on the assumption
that the number of additional ghost nodes resulting from the connectivity of the wells remains very
small compared with the number of own nodes of the process.
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4 Numerical results

4.1 Numerical convergence for a diphasic vertical well in an homoge-
neous reservoir

Let us consider the geothermal reservoir defined by the domain Ω = (−H,H)2 × (0, Hz) where
H = 1000 m and Hz = 200 m, including one vertical producer well along the line {(x, y, z) ∈ Ω |x =
y = 0} of radius rω = 0.1 m. The reservoir is assumed homogeneous with isotropic permeability
Km = kmI, km = 5× 10−14 m2 and porosity φm = 0.15. It is assumed to be initially saturated with
pure water in liquid phase. The enthalpy, internal energy, mass density and viscosity of water in
the liquid and gas phases are given from [40] by analytical laws as functions of the pressure and
temperature. The vapour pressure Psat(T ) is given in Pa by the Clausius-Clapeyron equation

psat(T ) = 100 exp

(
46.784− 6435

T
− 3.868 log(T )

)
.

The thermal conductivity is fixed to λm = 2 W.m−1.K−1, and the rock volumetric heat capacity
is given by Cr = 1.6 MJ.K−1.m−3 with Er(p, T ) = CrT . The relative permeabilities are set to
kαr,m(sα) = (sα)2 for both phases α ∈ {`, g}. The gravity vector is as usual g = (0, 0,−gz) with
gz = 9.81 m.s−2.

The simulation consists in two stages both run on a family of refined uniform Cartesian meshes
of size nx × ny × nz of the domain Ω with

(nx, ny, nz) ∈ {(10, 10, 5), (20, 20, 10), (40, 40, 20), (80, 80, 40)}.

These meshes are labeled as {h1, . . . , h4} respectively. The well indexes are computed at each node
of the well following [9].

At the first stage, the well is closed and a Dirichlet boundary condition is imposed at the top
of the domain prescribing the pressure and the temperature equal to pm = 4 MPa and Tm =
(psat)

−1(pm) − 1 K; respectively, and homogeneous Neumann boundary conditions are set at the
bottom and at the sides of the domain. This stage is run until the simulation reaches a stationary
state with the liquid phase only, a constant temperature and an hydrostatic pressure depending only
on the vertical coordinate.

For the second stage, homogeneous Neumann boundary conditions are prescribed at the bottom
and at the top of the domain Ω, but Dirichlet boundary conditions for the pressure and temperature
are fixed at the sides of the domain to the ones at the end of stage one. The well is set in an open state,
i.e., it can produce, and its monitoring conditions are defined by the minimum bottom hole pressure
p̄ω = 1 bar (never reached in practice) and the maximum total mass flow rate q̄ω = 200 ton.hour−1.
The second stage is run on the time interval (0, tf ) with tf = 30 days.

Figures 5 and 6 show the total volume of gas inside the well, and the total volume of gas inside
the reservoir as functions of time for the family of refined meshes. The solutions on the two coarsest
meshes are still rough, which is expected given that the gas bubble is concentrated on a small region
around the well (see Figure 10). On the other hand the solutions on the two finest meshes are quite
close exhibiting the good convergence of the scheme.

In addition, Figures 7, 8, and 9 show the pressure, the temperature and the gas saturation along
the well; respectively, at final time tf . The solutions are pretty close for all meshes and exhibit a
good convergence behavior.

Figures 10, and 11 show a close look of the pressure and of the temperature inside the reservoir;
respectively, for all meshes at final time tf . It illustrates the cone shaped bubble of gas along the
well at the top of the reservoir and demontrates again the good convergence behavior of the discrete
model.
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Figure 5: Total gas volume inside the well as a function of time on the different meshes.
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Figure 6: Total gas volume inside the reservoir as a function of time on the different meshes.
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Figure 7: Pressure in Pa along the well at final time on the different meshes.
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Figure 8: Temperature in ◦C along the well at final time on the different meshes.
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Figure 9: Gas saturation along the well at final time on the different meshes.

(a) Mesh size h1. (b) Mesh size h2.

(c) Mesh size h3. (d) Mesh size h4.

Figure 10: Clip and close look of the gas saturation inside the reservoir at final time for all meshes
(cell values).
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(a) Mesh size h1. (b) Mesh size h2.

(c) Mesh size h3. (d) Mesh size h4.

Figure 11: Clip and close look of the temperature in ◦C inside the reservoir at final time for all
meshes (cell values).

At each time step, the nonlinear system is solved using a Newton algorithm. The GMRES
stopping criterion on the relative residual is fixed to 10−8. The Newton solver is convergent if the
relative residual is lower than 10−8 as well.

Table 1 shows the numerical efficiency of the proposed scheme for all meshes for the second stage
of the simulation. We denote by N∆t the number of successful time steps, by NNewton the average
number of Newton iterations per successful time step, and by NGMRES the average number of GMRES
iterations per Newton iteration. It exhibits a very good robustness of the Newton solver on the family
of refined meshes and a moderate increase of the number of GMRES iterations with the mesh size.

Finally, we present in Figure 12 the total computational time in hours obtained with the finest
mesh h4 for different numbers of MPI processes Np = 8, 16, 32, 64. As usual for this type of simula-
tions, the strong scalability is limited by the AMG preconditioner of the pressure block which requires
a sufficiently high number of unknowns per processor to keep a good scalability, corresponding to
roughly speaking 4 104. This explains the good speed up obtained between 8 and 32 processors
whereas the speed up becomes very small between 32 and 64 processors.

Mesh #M N∆t NNewton NGMRES

h1 4000 134 1.99 8.59
h2 32000 134 1.74 9.93
h3 256000 134 1.92 11.75
h4 1848320 133 2.22 15.91

Table 1: Numerical behavior of the second stage of the simulation for different mesh sizes. N∆t is
the number of successful time steps, NNewton the average number of Newton iterations per successful
time step, and NGMRES is the average number of GMRES iterations per Newton iteration.
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Figure 12: Total computational time vs. number of MPI processes for the second stage simulation
on the finest mesh h4.

4.2 Study of a high enthalpy reservoir

In this section, we consider a more realistic case built from geological and production data of a
field in a volcanic area. The field is a convective dominated system initially in liquid phase, that is
crossed by a major normal fault.
The reservoir (in blue in Figure 13a) is about 500 m thick; it is covered by a weakly permeable clay
caprock (in yellow) of 250 m thick, which outcrops at the surface. Below the reservoir is the basement
layer (also in yellow).

Figure 13b gives the tetrahedral mesh of the domain. The VAG finite volume discretization makes
it possible to deal with complex geology including faults and complex well trajectories. The unstruc-
tured mesh of 700 000 tetrahedral elements draws on geological horizons. The fault is meshed as a
two-dimensional (2D) surface, where the triangular elements are interconnected with the surrounding
matrix using conformal meshing. The (one-dimensional) wells are discretized by a set of edges as
shown in Figure 13b. The computation of numerical well indexes would require an analytical solution
for the linear diffusion equation, which is not known for such a complex geometry involving fault and
slanted wells. This solution could also be obtained numerically using a mesh at the scale of the wells,
but its generation is out of the scope of this test case. Alternatively, we use for this test case an
approximate analytical Peaceman type formula taking the fault into account and providing a good
order of magnitude.
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(a) Domain modelled. (b) Mesh and wells location.

Figure 13: Geometry, mesh and wells data for the second numerical test.

The geothermal field is operated using a doublet of two deviated wells, a producer (in green) and
an injector (in blue), both of which cross the major fault as shown in Figure 13b. The reservoir
is assumed homogeneous with an isotropic permeability Km = kmI, km = 10−14 m2 and a porosity
φm = 0.05, while the faulted area has a thickness df = 10 m, an isotropic permeability Kf = kfI,
kf = 5.10−14 m2 and a porosity φf = 0.05. The caprock and the basement layer are assumed
weakly permeable with km = 10−19 m2. The matrix and fracture thermal conductivities are set to
λm = λf = 3 W.K−1.m−1 and the rock energy density is homogeneous for the whole rock mass such
that Er(p, T ) = ρr c

r
p T with crp = 1000 J.kg−1.K−1 and ρr = 2600 kg.m−3.

Figure 14: Initial state dominated by convention. Isotemperature surfaces.

As the previous numerical test, this simulation consists in two stages. The first one acts as
a preliminary step where the initial state of the geothermal system, which is already dynamic, is
achieved by performing a simulation over a long period (here 105 years) from an hydrostatic pressure
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state (with 1 bar at the top of the model), and a temperature field increasing linearly with depth
(between 30 ◦C at the top to 280 ◦C at the bottom). Dirichlet boundary conditions for temperature
and pressure are thus imposed at the top and bottom boundaries. No flow and Dirichlet temperature
conditions are applied on the lateral boundaries. The initial state obtained is convective; the fluid in
the reservoir is in liquid state with a low fraction of gas near the top of the reservoir. Iso-temperature
contours are represented in Figure 14 and show the development of convection cells and the influence
of the fault, which is a more permeable zone.

Then the second stage begins where the reservoir production starts with steam production at the
producer well-head: a flow rate of 250 ton.hr−1 is imposed at the well-head for five years. The same
boundary conditions are imposed as in the initial state determination, but the temperature imposed
on the lateral boundaries is now given by the average temperature distribution in the rock mass at
this initial state. The depletion occuring near the producer well favors the development of a steam
cap in the reservoir as well as in the fault zone. Figure 15 shows this steam cap: faces in the fault
and cells in the reservoir with a gas saturation greater than 0.1 are filled in yellow, while temperature
field is also represented on the other faces of the fault plane.

Figure 15: Temperature and saturation after 5 years of production - cells with a gas saturation
greater than 0.1 are filled in yellow - the temperature is represented in the fault plane

After five years of production and reservoir depletion, half of the fluid produced is reinjected at
the injector with a wellhead temperature of 110 ◦C. During the injection, vapor around the injector
condenses and the steam cap generated around the producer is considerably reduced (Figure 16).
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Figure 16: Temperature and saturation after 10 years of production with reinjection during the last 5
years - cells with a gas saturation greater than 0.1 are filled in yellow - the temperature is represented
in the fault plane

Figures 17a and 17b show at a given depth of 455 m respectively the evolution of pressure in
the reservoir and in the well and the saturation evolution in the well. Reservoir pressure decreases
during the first five years of production, while reinjection of half of the fluid produced during the
next five years leads to a pressure build-up in the reservoir (the model is not hydraulically closed).
Well pressure follows the same trends. Whereas gas saturation was around 80% during the depletion
phase in the well at 455 m depth, injection results in a reduced gas saturation in the well down to
say 50% at 455 m depth (Figure 17b).
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Figure 17: (a) Pressure evolution in the reservoir (red dashed line) and in the well (green line) at
455 m depth. Saturation pressure in the well at 455 m depth is given by the black dotted line. (b):
Saturation evolution in the well at 455 m depth.

Table 2 shows the numerical efficiency of the proposed scheme for both stages of the simulation
and different numbers of MPI processes Np = 4, 8, 16. We use the same notations as in the previous
test case and report in addition the total simulation time in hours. These results exhibit the very
good robustness of the linear and nonlinear solvers w.r.t. the number of MPI processes. A very good
speedup is obtained up to 16 MPI processes verifying that parallel computing makes possible to have
reasonable computation times to model industrial cases such as the one presented in this section.

Stage Np N∆t NNewton NGMRES Time (hrs)

1
4 1515 4.6 29.3 98.2
8 1507 4.6 29.4 31.9
16 1526 4.6 30.0 17.8

2
4 1395 7.3 7.7 65.9
8 1367 7.2 7.6 20.2
16 1320 7.2 7.9 10.1

Table 2: Numerical behavior of both stages of the simulation for different number of processors.
N∆t is the number of successful time steps, NNewton the average number of Newton iterations per
successful time step, NGMRES the average number of GMRES iterations per Newton iteration, and
Time (hrs) is the total simulation time in hours.

5 Conclusion

This paper focuses on the numerical modelling of geothermal systems in complex geological settings.
The proposed approach is based on unstructured meshes to model complex features such as faults
and deviated wells. It solves liquid vapor two-phase Darcy flows coupled with energy transfers and
thermodynamical equilibrium. The use of the hybrid-dimensional polytopal VAG scheme allows to
treat physically complex cases, while respecting geometrical constraints. We particularly focus on the
well modelling with deviated or multi-branch wells defined as a collection of edges of the mesh with
rooted tree data structure. By using an explicit pressure drop calculation, the well model reduces
to a single equation with only one well implicit unknown fully coupled to the reservoir system.
Finally, efficient parallel linear and nonlinear solvers ensure acceptable computation times on real
case studies. A sanity checked is first presented showing the numerical convergence of the discrete
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model on a diphasic vertical producer well in a simple reservoir geometry. Then, the efficiency of
our approach is demonstrated on a geothermal test case of high enthalpy faulted reservoir using a
doublet of two deviated wells crossing the fault.

An improved model of cross flows between well and reservoir will be investigated in the near
future. Industrial studies of high and medium enthalpy geothermal reservoirs are currently under
way with the approach proposed in this paper.
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