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Introduction

Deep geothermal systems are often located in complex geological settings, including faults or fractures. These geological discontinuities not only control fluid flow and heat transfer, but also provide feed zones for production wells. Modeling the operation of geothermal fields and the exchange of fluids and heat in the rock mass during production requires explicitly taking into account objects of different characteristic sizes such as the reservoir itself, faults and fractures, which have a small thickness compared to the characteristic size of geological formations and wells (whose radius is of the order of a few tens of centimeters).

A common way to account for these highly constrated spatial scales is based on a reduction of dimension both for the fault/fracture and the well models. Following [START_REF] Granet | A two-phase flow simulation of a fractured reservoir using a new fissure element method[END_REF][START_REF] Alboin | Modeling fractures as interfaces for flow and transport in porous media[END_REF][START_REF] Bogdanov | Two-phase flow through fractured porous media[END_REF][START_REF] Flauraud | Domain decomposition for an asymptotic geological fault modeling[END_REF][START_REF] Martin | Modeling fractures and barriers as interfaces for flow in porous media[END_REF][START_REF] Reichenberger | A mixed-dimensional finite volume method for two-phase flow in fractured porous media[END_REF][START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF][START_REF] Angot | Asymptotic and numerical modelling of flows in fractured porous media[END_REF][START_REF] Brenner | Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media[END_REF][START_REF] Brenner | Gradient discretization of hybriddimensional Darcy flow in fractured porous media with discontinuous pressures at matrixfracture interfaces[END_REF][START_REF] Nordbotten | Unified approach to discretization of flow in fractured porous media[END_REF] faults/fractures will be represented as co-dimension one manifolds coupled with the surrounding matrix domain leading to the so-called hybrid-dimensional or Discrete Fracture Matrix (DFM) models. This reduction of dimension is obtained by averaging both the equations and unknowns in the fracture width and using appropriate transmission conditions at matrix fracture interfaces. In our case, the faults/fractures will be assumed to be conductive both in terms of permeability and thermal conductivity in such a way that pressure and temperature continuity can be assumed as matrix fracture transmission conditions [START_REF] Alboin | Modeling fractures as interfaces for flow and transport in porous media[END_REF][START_REF] Bogdanov | Two-phase flow through fractured porous media[END_REF][START_REF] Reichenberger | A mixed-dimensional finite volume method for two-phase flow in fractured porous media[END_REF]. This setting has been extended to two-phase Darcy flows in [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF][START_REF] Brenner | Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media[END_REF] and to multi-phase compositional non-isothermal Darcy flows in [START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF].

The well will be modelled as a line source defined by a 1D graph with tree structure. It will be coupled to the 3D matrix domain and to the 2D faults/fractures possibly intersecting the well using Peaceman's approach. It is a widely used approach in reservoir simulation for which the Darcy or Fourier fluxes between the reservoir and the well are discretized by a two-point flux approximation with a transmissivity accounting for the unresolved pressure or temperature singularity. This leads to the concept of well or Peaceman's index defined at the discrete level and depending on the type of cell, on the well radius and geometry and on the scheme used for the discretization. Let us refer to [START_REF] Peaceman | Interpretation of Well-Block Pressures in Numerical[END_REF] for its introduction in the framework of a two-point cell-centered finite volume scheme on square cells, to [START_REF] Peaceman | Interpretation of Well-Block Pressures in Numerical Reservoir Simulation with Nonsquare Grid Blocks and Anisotropic Permeability[END_REF] for its extension to non square cells and anisotropic permeability field and to [START_REF] Wolfsteiner | Calculation of well index for nonconventional wells on arbitrary grids[END_REF][START_REF] Aavatsmark | Well Index in Reservoir Simulation for Slanted and Slightly Curved Wells in 3D Grids[END_REF][START_REF] Chen | Well flow models for various numerical methods[END_REF] for extensions to more general well geometries and different discretizations. The coupling with the faults/fractures is considered in [START_REF] Beaude | Parallel geothermal numerical model with fractures and multi-branch wells[END_REF]. Let us also refer to [START_REF] Gjerde | A singularity removal method for coupled 1d-3d flow models[END_REF] for a related approach also based on a removal of the singularity induced by the well line source but at the continuous level. This paper focuses on the liquid vapor single water component non-isothermal Darcy flow model based on mass and energy conservation equations coupled with thermodynamical equilibrium and volume balance. The extension to hybrid-dimensional models follows [START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF] with pressure and temperature continuity at matrix fracture interfaces. The thermal well model is a simplified version of the drift flux model [START_REF] Livescu | A fully-coupled thermal multiphase wellbore flow model for use in reservoir simulation[END_REF][START_REF] Shi | Drift-flux modeling of two-phase flow in wellbores[END_REF] neglecting transient terms, thermal losses and cross flow in the sense that all along the well, the well behaves either as a production or an injection well. It results that using an explicit approximation of the mixture density along the well, the well model can be reduced to a single unknown, the so-called bottom hole pressure, implicitely coupled to the reservoir.

The discretization of hybrid-dimensional Darcy flow models has been the object of many works using cell-centered Finite Volume schemes with either Two Point or Multi Point Flux Approximations [START_REF] Karimi-Fard | An efficient discrete-fracture model applicable for general-purpose reservoir simulators[END_REF][START_REF] Angot | Asymptotic and numerical modelling of flows in fractured porous media[END_REF][START_REF] Haegland | Comparison of cell-and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture-matrix system[END_REF][START_REF] Tunc | A model for conductive faults with non-matching grids[END_REF][START_REF] Sandve | An efficient multi-point flux approximation method for Discrete Fracture-Matrix simulations[END_REF][START_REF] Ahmed | Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model[END_REF][START_REF] Ahmed | Three-dimensional controlvolume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model[END_REF], Mixed or Mixed Hybrid Finite Element methods [START_REF] Alboin | Modeling fractures as interfaces for flow and transport in porous media[END_REF][START_REF] Martin | Modeling fractures and barriers as interfaces for flow in porous media[END_REF][START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF], Hybrid Mimetic Mixed Methods [START_REF] Faille | Model reduction and discretization using hybrid finite volumes of flow in porous media containing faults[END_REF][START_REF] Antonietti | Mimetic finite difference approximation of flows in fractured porous media[END_REF][START_REF] Brenner | Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media[END_REF][START_REF] Brenner | Gradient discretization of hybriddimensional Darcy flow in fractured porous media with discontinuous pressures at matrixfracture interfaces[END_REF], and Control Volume Finite Element Methods (CVFE) [START_REF] Bogdanov | Two-phase flow through fractured porous media[END_REF][START_REF] Reichenberger | A mixed-dimensional finite volume method for two-phase flow in fractured porous media[END_REF][START_REF] Monteagudo | Control-volume model for simulation of water injection in fractured media: incorporating matrix heterogeneity and reservoir wettability effects[END_REF][START_REF] Haegland | Comparison of cell-and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture-matrix system[END_REF][START_REF] Matthai | Finite element -node-centered finite-volume two-phase-flow experiments with fractured rock represented by unstructured hybrid-element meshes[END_REF]. This article focus on the Vertex Approximate Gradient (VAG) scheme accounting for polyhedral meshes. It has been introduced for the discretization of multiphase Darcy flows in [START_REF] Eymard | Vertex-centred discretization of multiphase compositional Darcy flows on general meshes[END_REF] and extended to hybrid-dimensional models in [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF][START_REF] Brenner | Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media[END_REF][START_REF] Xing | Parallel Vertex Approximate Gradient discretization of hybrid-dimensional Darcy flow and transport in discrete fracture networks[END_REF][START_REF] Brenner | Gradient discretization of hybriddimensional Darcy flow in fractured porous media with discontinuous pressures at matrixfracture interfaces[END_REF][START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF][START_REF] Brenner | Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions[END_REF][START_REF] Brenner | Nodal Discretization of Two-Phase Discrete Fracture Matrix Models[END_REF].

The VAG scheme uses nodal and fracture face unknowns in addition to the cell unknowns which can be eliminated without any fill-in. Thanks to its essentially nodal nature, it leads to a sparse discretization on tetrahedral meshes which are particulary adapted to discretize complex geological features like faults defined as a collection of faces and slanted or multi-branch wells defined as a collection of edges with tree structure. Compared with other nodal approaches such as CVFE methods, the VAG scheme avoid the mixing of the control volumes at the matrix fracture interfaces, which is a key feature for its coupling with a transport model. As shown in [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF] for two-phase flow problems, this allows to use a coarser mesh size at the matrix fracture interface.

The remainder of this paper is organized as follows. Section 2 presents the physical model describing the flow and transport in the matrix domain coupled to the fracture/fault network in the hybrid-dimensional setting. Section 3 presents the VAG discretization of this liquid vapor nonisothermal hybrid-dimensional model. It is based on the discrete mass and energy conservations on each control volume coupled with thermodynamical equilibrium and the sum to one of the saturations. Then, the well modelling is addressed starting with the description of the well geometry as a collection of edges defining a rooted tree data structure. The source terms connecting the well to the reservoir at each well node are based on two-point fluxes with transmissivities defined by Peaceman's indexes. The derivation of the simplified well model is detailed both for production and injection wells starting from the drift flux model. We discuss at the end of Section 3 the algorithms used to solve the nonlinear and linear systems on distributed parallel architectures at each time step of the simulation. Finally, to demonstrate the efficiency of our approach, we present in Section 4 two numerical tests. The first test case checks the numerical convergence of the model for a vertical production well connected to an homogeneous reservoir on a family of refined Cartesian meshes. The second test case simulates the development plan of a high enthalpy faulted geothermal reservoir with slanted production and injection wells.

2 Hybrid-dimensional non-isothermal two-phase Discrete Fracture Model

This section recalls, in the particular case of a non-isothermal single-component two-phase Darcy flow model, the hybrid-dimensional model introduced in [START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF].

Discrete Fracture Network

Let Ω denote a bounded domain of R 3 assumed to be polyhedral. Following [START_REF] Alboin | Modeling fractures as interfaces for flow and transport in porous media[END_REF][START_REF] Flauraud | Domain decomposition for an asymptotic geological fault modeling[END_REF][START_REF] Martin | Modeling fractures and barriers as interfaces for flow in porous media[END_REF][START_REF] Brenner | Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media[END_REF][START_REF] Brenner | Gradient discretization of hybriddimensional Darcy flow in fractured porous media with discontinuous pressures at matrixfracture interfaces[END_REF] the fractures are represented as interfaces of codimension 1. Let J be a finite set and let Γ = j∈J Γ j and its interior Γ = Γ \ ∂Γ denote the network of fractures Γ j ⊂ Ω, j ∈ J, such that each Γ j is a planar polygonal simply connected open domain included in a plane of R 3 . The fracture width is denoted by d f and is such that 0 < d f ≤ d f (x) ≤ d f for all x ∈ Γ. We can define, for each fracture j ∈ J, its two sides + and -. For scalar functions on Ω, possibly discontinuous at the interface Γ (typically in H 1 (Ω \ Γ)), we denote by γ ± the trace operators on the side ± of Γ. Continuous scalar functions u at the interface Γ (typically in H 1 (Ω)) are such that γ + u = γ -u and we denote by γ the trace operator on Γ for such functions. At almost every point of the fracture network, we denote by n ± the unit normal vector oriented outward to the side ± of Γ such that n + + n -= 0. For vector fields on Ω, possibly discontinuous at the interface Γ (typically in H div (Ω \ Γ), we denote by γ ± n the normal trace operator on the side ± of Γ oriented w.r.t. n ± .

The gradient operator in the matrix domain Ω \ Γ is denoted by ∇ and the tangential gradient operator on the fracture network is denoted by ∇ τ such that

∇ τ u = ∇u -(∇u • n + )n + .
We also denote by div τ the tangential divergence operator on the fracture network, and by dτ (x) the Lebesgue measure on Γ.

We denote by Σ the dimension 1 open set defined by the intersection of the fractures excluding the boundary of the domain Ω, i.e. the interior of {(j,j )∈J×J | j =j } ∂Γ j ∩ ∂Γ j \ ∂Ω.

For 

Non-isothermal two-phase flow model

We consider in this work a two-phase liquid gas, single water component, and non-isothermal Darcy flow model. The liquid ( ) and gas (g) phases are described by their pressure p (neglecting capillary effects), temperature T and pore volume fractions or saturations s α , α ∈ { , g}. Let us also introduce the mass fraction c α of the water component in phase α, equal to 1 for a present phase α but lower than 1 for an absent phase. It will be used below to express the thermodynamical equilibrium as complementary constraints.

For each phase α, we denote by ρ α (p, T ) its mass density, by µ α (p, T ) its dynamic viscosity, by e α (p, T ) its specific internal energy, and by h α (p, T ) its specific enthalpy. The rock energy density is denoted by E r (p, T ).

The reduction of dimension in the fractures leading to the hybrid-dimensional model is obtained by integration of the conservation equations along the width of the fractures complemented by transmission conditions at both sides of the matrix fracture interfaces (see [START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF]). In the following, p m , T m , s α m , c α m denote the pressure, temperature, saturations, and mass fractions in the matrix domain Ω \ Γ, and p f , T f , s α f , c α f are the pressure, temperature, saturations and mass fractions in the fractures averaged along the width of the fractures. The permeability tensor is denoted by K m in the matrix domain and we denote by K f the tangential permeability tensor in the fractures (average value along the fracture width assuming that the permeability tensor in the fracture has the normal as principal direction). The porosity (resp. thermal conductivity of the rock and fluid mixture) is denoted by φ m (resp. λ m ) in the matrix domain and by φ f (resp. λ f ) along the fracture network (average values along the fracture width). The relative permeability of phase α as a function of the phase saturation is denoted by k α r,m in the matrix and by k α r,f in the fracture network. The gravity acceleration vector is denoted by g.

The set of equations couples the mass, energy and volume balance equations in the matrix

                 φ m ∂ t α∈{ ,g} ρ α (p m , T m )s α m c α m + div(q h 2 o m ) = 0, φ m ∂ t α∈{ ,g} ρ α (p m , T m )e α (p m , T m )s α m c α m + (1 -φ m )∂ t E r (p m , T m ) + div(q e m ) = 0, α∈{ ,g} s α m = 1, (1) 
in the fracture network

                     d f φ f ∂ t α∈{ ,g} ρ α (p f , T f )s α f c α f + div τ (q h 2 o f ) -γ + n q h 2 o m -γ - n q h 2 o m = 0, d f φ f ∂ t α∈{ ,g} ρ α (p f , T f )e α (p f , T f )s α f c α f + d f (1 -φ f )∂ t E r (p f , T f ) + div τ (q e f ) -γ + n q e m -γ - n q e m = 0, α∈{ ,g} s α f = 1, (2) 
with the thermodynamical equilibrium for i = m, f

         c g i p i -p sat (T i )c i = 0, min s i , 1 -c i = 0, min s g i , 1 -c g i = 0, (3) 
where p sat (T ) is the vapor saturated pressure as a function of the temperature T . The Darcy and Fourier laws provide the mass and energy fluxes in the matrix

q h 2 o m = α∈{ ,g} q α m , q α m = c α m ρ α (p m , T m ) µ α (p m , T m ) k α r,m (s α m )V α m , q e m = α∈{ ,g} h α (p m , T m )q α m -λ m ∇T m , (4) 
and in the fracture network

q h 2 o f = α∈{ ,g} q α f , q α f = c α f ρ α (p f , T f ) µ α (p f , T f ) k α r,f (s α f )V α f , q e f = α∈{ ,g} h α (p f , T f )q α f -d f λ f ∇ τ T f , (5) 
where

V α m = -K m ∇p m -ρ α (p m , T m )g , V α f = -d f K f ∇ τ p f -ρ α (p f , T f )g τ , and g τ = g -(g • n + )n + .
The system (1)-( 2)-( 4)-( 5) is closed with transmission conditions at the matrix fracture interface Γ. These conditions state the continuity of the pressure and temperature at the matrix fracture interface assuming that the fractures do not act as barrier neither for the Darcy flow nor for the thermal conductivity (see [START_REF] Alboin | Modeling fractures as interfaces for flow and transport in porous media[END_REF][START_REF] Flauraud | Domain decomposition for an asymptotic geological fault modeling[END_REF][START_REF] Martin | Modeling fractures and barriers as interfaces for flow in porous media[END_REF][START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF]).

γ + p m = γ -p m = γp m = p f , γ + T m = γ -T m = γT m = T f . (6) 
At fracture intersections Σ, note that we assume mass and energy flux conservation as well as the continuity of the pressure p f and temperature T f . Homogeneous Neumann boundary conditions are applied for the mass q h 2 o f and energy q e f fluxes at the fracture tips ∂Γ \ ∂Ω.

3 VAG Finite Volume Discretization

Space and time discretizations

The VAG discretization of hybrid-dimensional two-phase Darcy flows introduced in [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF] considers generalized polyhedral meshes of Ω in the spirit of [START_REF] Eymard | Small-stencil 3D schemes for diffusive flows in porous media[END_REF]. Let M be the set of cells that are disjoint open polyhedral subsets of Ω such that K∈M K = Ω, for all K ∈ M, x K denotes the so-called "center" of the cell K under the assumption that K is star-shaped with respect to x K . The set of faces of the mesh is denoted by F and F K is the set of faces of the cell K ∈ M. The set of edges of the mesh is denoted by E and E σ is the set of edges of the face σ ∈ F. The set of vertices of the mesh is denoted by V and V σ is the set of vertices of the face σ. For each K ∈ M we define

V K = σ∈F K V σ .
The faces are not necessarily planar. It is just assumed that for each face σ ∈ F, there exists a so-called "center" of the face x σ ∈ σ \ a∈Eσ a such that x σ = s∈Vσ β σ,s x s , with s∈Vσ β σ,s = 1, and β σ,s ≥ 0 for all s ∈ V σ ; moreover the face σ is assumed to be defined by the union of the triangles T σ,a defined by the face center x σ and each edge a ∈ E σ . The mesh is also supposed to be conforming w.r.t. the fracture network Γ in the sense that for each j ∈ J there exists a subset

F Γ j of F such that Γ j = σ∈F Γ j σ.
We will denote by F Γ the set of fracture faces

F Γ = j∈J F Γ j ,
and by

V Γ = σ∈F Γ V σ ,
the set of fracture nodes. This geometrical discretization of Ω and Γ is denoted in the following by D.

In addition, the following notations will be used

M s = {K ∈ M | s ∈ V K }, M σ = {K ∈ M | σ ∈ F K }, and 
F Γ,s = {σ ∈ F Γ | s ∈ V σ }. For N t f ∈ N * , let us consider the time discretization t 0 = 0 < t 1 < • • • < t n-1 < t n • • • < t Nt f = t f of the time interval [0, t f ]. We denote the time steps by ∆t n = t n -t n-1 for all n = 1, • • • , N t f .

VAG fluxes and control volumes

The VAG discretization is introduced in [START_REF] Eymard | Small-stencil 3D schemes for diffusive flows in porous media[END_REF] for diffusive problems on heterogeneous anisotropic media. Its extension to the hybrid-dimensional Darcy flow model is proposed in [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF] based upon the following vector space of degrees of freedom:

V D = {v K , v s , v σ ∈ R, K ∈ M, s ∈ V, σ ∈ F Γ }.
The degrees of freedom are illustrated in Figure 2 for a given cell K with one fracture face σ in bold.

The matrix degrees of freedom are defined by the set of cells M and by the set of nodes V \ V Γ excluding the nodes at the matrix fracture interface Γ. The fracture faces F Γ and the fracture nodes V Γ are shared between the matrix and the fractures but the control volumes associated with these degrees of freedom will belong to the fracture network (see Figure 3). The degrees of freedom at the fracture intersection Σ are defined by the set of nodes V Σ ⊂ V Γ located on Σ. The set of nodes at the Dirichlet boundaries ∂Ω D and ∂Γ D is denoted by V D .

The VAG scheme is a control volume scheme in the sense that it results, for each non Dirichlet degree of freedom in a mass or energy balance equation. The matrix diffusion tensor is assumed to be cellwise constant and the tangential diffusion tensor in the fracture network is assumed to be facewise constant. The two main ingredients are therefore the conservative fluxes and the control volumes. The VAG matrix and fracture fluxes are illustrated in Figure 2. For u D ∈ V D , the matrix fluxes F K,ν (u D ) connect the cell K ∈ M to the degrees of freedom located at the boundary of K,

namely ν ∈ Ξ K = V K ∪ (F K ∩ F Γ ). The fracture fluxes F σ,s (u D ) connect each fracture face σ ∈ F Γ to its nodes s ∈ V σ .
The expression of the matrix (resp. the fracture) fluxes is linear and local to the cell (resp. fracture face). More precisely, the matrix fluxes are given by

F K,ν (u D ) = ν ∈Ξ K T ν,ν K (u K -u ν ),
with a symmetric positive definite transmissibility matrix T K = (T ν,ν K ) (ν,ν )∈Ξ K ×Ξ K depending only on the cell K geometry (including the choices of x K and of x σ , σ ∈ F K ) and on the cell matrix diffusion tensor. The fracture fluxes are given by

F σ,s (u D ) = s∈Vσ T s,s σ (u σ -u s ),
with a symmetric positive definite transmissibility matrix T σ = (T s,s σ ) (s,s )∈Vσ×Vσ depending only on the fracture face σ geometry (including the choice of x σ ) and on the fracture face width and tangential diffusion tensor. Let us refer to [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF] for a more detailed presentation and for the definition of T K and T σ . 

K,σ , F K,s , F K,s , F σ,s .
The construction of the control volumes at each degree of freedom is based on partitions of the cells and of the fracture faces. These partitions are respectively denoted, for all K ∈ M, by

K = ω K   s∈V K \V D ω K,s   ,
and, for all σ ∈ F Γ , by

σ = Σ σ   s∈Vσ\V D Σ σ,s   .
The practical implementation of the scheme does not require to build explicitly the geometry of these partitions but only need to define the matrix volume fractions

α K,s = ω K,s dx K dx , s ∈ V K \ (V D ∪ V Γ ), K ∈ M,
constrained to satisfy α K,ν ≥ 0, and s∈V K \(V D ∪V Γ ) α K,s ≤ 1, as well as the fracture volume fractions

α σ,s = Σσ,s d f (x)dτ (x) σ d f (x)dτ (x) , s ∈ V σ \ V D , σ ∈ F Γ ,
constrained to satisfy α σ,s ≥ 0, and s∈Vσ\V D α σ,s ≤ 1, where we denote by dτ (x) the 2 dimensional Lebesgue measure on Γ. Let us also set

φ K = (1 - s∈V K \(V D ∪V Γ ) α K,s ) K φ m (x)dx for K ∈ M,
and

φ σ = (1 - s∈Vσ\V D α σ,s ) σ φ f (x)d f (x)dτ (x) for σ ∈ F Γ ,
as well as

φ s = K∈Ms α K,s K φ m (x)dx for s ∈ V \ (V D ∪ V Γ ),
and

φ s = σ∈F Γ,s α σ,s σ φ f (x)d f (x)dτ (x) for s ∈ V Γ \ V D ,
which correspond to the porous volumes distributed to the degrees of freedom excluding the Dirichlet nodes. The rock complementary volume in each control volume

ν ∈ M ∪ F Γ ∪ (V \ V D ) is denoted by φν .
As shown in [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF], the flexibility in the choice of the control volumes is a crucial asset, compared with usual CVFE approaches and allows to significantly improve the accuracy of the scheme when the permeability field is highly heterogeneous. As exhibited in Figure 3, as opposed to usual CVFE approaches, this flexibility allows to define the control volumes in the fractures with no contribution from the matrix in order to avoid to artificially enlarge the flow path in the fractures. A rocktype is assigned to each cell, node and fracture face. In our case, for cells and for nodes not located along the fractures, the matrix rocktype is assigned. For fracture nodes and faces at the interface between the matrix and the fracture rocktypes, the fracture rocktype is assigned corresponding to the most pervious rock type consistently with the choice of the control volumes (see [START_REF] Brenner | Vertex Approximate Gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media[END_REF]). For convenience's sake, in the following, we will denote by k α r,ν the corresponding relative permeability function for ν ∈ M ∪ V ∪ F Γ .

In the following, we will keep the notation F K,s , F K,σ , F σ,s for the VAG Darcy fluxes defined with the cellwise constant matrix permeability K m and the facewise constant fracture width d f and tangential permeability K f . Since the rock properties are fixed, the VAG Darcy fluxes transmissibility matrices T K and T σ are computed only once.

The VAG Fourier fluxes are denoted in the following by G K,s , G K,σ , G σ,s . They are obtained with the isotropic matrix and fracture thermal conductivities averaged in each cell and in each fracture face using the previous time step fluid properties. Hence VAG Fourier fluxes transmissibility matrices need to be recomputed at each time step.

Multi-branch non-isothermal well model

Let W denote the set of wells. Each multi-branch well ω ∈ W is defined by a set of oriented edges of the mesh assumed to define a rooted tree oriented away from the root. This orientation corresponds to the drilling direction of the well. The set of nodes of a well ω ∈ W is denoted by V ω ⊂ V and its root node is denoted by s ω . A partial ordering is defined on the set of vertices V ω with s < ω s if and only if the unique path from the root s ω to s passes through s. The set of edges of the well ω is denoted by E ω and for each edge a ∈ E ω we set a = ss with s < ω s (i.e. s is the parent node of s , see Figure 4). It is assumed that

V ω 1 ∩ V ω 2 = ∅ for any ω 1 , ω 2 ∈ W such that ω 1 = ω 2 .
We focus on the part of the well that is connected to the reservoir through open hole, production liners or perforations. In this section, exchanges with the reservoir are dominated by convection and we decided to neglect heat losses as a first step. The latest shall be taken into account when modeling the wellbore flow up to the surface. It is assumed that the radius r ω of each well ω ∈ W is small compared to the cell sizes in the neighborhood of the well. It results that the Darcy flux between the reservoir and the well at a given well node s ∈ V ω is obtained using the Two Point Flux Approximation

V ω s = WI s (p s -p ω s ), where p s is the reservoir pressure at node s and p ω s is the well pressure at node s. The Well Index WI s is typically computed using Peaceman's approach (see [START_REF] Peaceman | Interpretation of Well-Block Pressures in Numerical[END_REF][START_REF] Peaceman | Interpretation of Well-Block Pressures in Numerical Reservoir Simulation with Nonsquare Grid Blocks and Anisotropic Permeability[END_REF][START_REF] Chen | Well flow models for various numerical methods[END_REF]) and takes into account the unresolved singularity of the pressure solution in the neighborhood of the well. Fourier fluxes between the reservoir and the well could also be discretized using such Two Point Flux Approximation but they are assumed to be small compared with thermal convective fluxes and will be neglected in the following well model. At each well node s ∈ V ω the temperature inside the well is denoted by T ω s and the volume fractions by s α s,ω , α ∈ { , g}. The temperature in the reservoir at node s is denoted by T s , the saturations by s α s , and the phase mass fractions by c α s for α ∈ { , g}. For any a ∈ R, let us define a + = max(a, 0) and a -= min(a, 0). The mass flow rates between the reservoir and the well ω at a given node s ∈ V ω are defined by the following phase based upwind approximation of the mobilities:

q r→ω s,α = β inj ω ρ α (p ω s , T ω s ) µ α (p ω s , T ω s ) k α r,s (s α s,ω )(V ω s ) -+ β prod ω c α s ρ α (p s , T s ) µ α (p s , T s ) k α r,s (s α s )(V ω s ) + , q r→ω s,h 2 o = α∈{ ,g} q r→ω s,α , (7) 
and the energy flow rate is defined similarly by

q r→ω s,e = α∈{ ,g} h α (p ω s , T ω s )(q r→ω s,α ) -+ h α (p s , T s )(q r→ω s,α ) + . (8) 
The well coefficients β inj ω and β prod ω are used to impose specific well behavior. The general case corresponds to β inj ω = β prod ω = 1. Yet, for an injection well, it will be convenient as explained in subsection 3.3.2, to impose that the mass flow rates q r→ω s,h 2 o are non positive for all nodes s ∈ V ω corresponding to set β inj ω = 1 and β prod ω = 0. Likewise, for a production well, it will be convenient as explained in subsection 3.3.3, to set β inj ω = 0 and β prod ω = 1 which corresponds to assume that the mass flow rates q r→ω s,h 2 o are non negative for all nodes s ∈ V ω . These simplifying options currently prevent the modeling of cross flows where injection and production occur in different places of the same well, as it sometimes happen in geothermal wells, typically in closed wells.

Well physical model

Our conceptual model inside the well assumes that the flow is stationary at the reservoir time scale along with perfect mixing and thermal equilibrium. The Fourier fluxes and the wall friction are neglected and the pressure distribution is assumed hydrostatic along the well.

For the sake of simplicity, the flow rate between the reservoir and the well is considered concentrated at each node s of the well. For each edge a ∈ E ω , let us denote by q α a the mass flow rate of phase α along the edge a oriented positively from s to s with a = ss (let us recall that s is the parent node of s ).

Let α ∈ { , g}, the set of well unknowns is defined at each node s ∈ V ω by the well pressure p ω s , the well temperature T ω s , the well saturations s α s,ω , and at each edge a ∈ E ω by the mass flow rates q α a . These well unknowns are complemented by the well mass flow rates q α ω which are non negative for production wells and non positive for injection wells (see Figure 4).

For each edge a = ss ∈ E ω , and each phase α, let us define the following phase based upwind approximations of the specific enthalpy, mass density and saturation

h α a = h α (p ω s , T ω s ) if q α a ≥ 0, h α (p ω s , T ω s ) if q α a < 0. ρ α a = ρ α (p ω s , T ω s ) if q α a ≥ 0, ρ α (p ω s , T ω s ) if q α a < 0. s α a = s α s ,ω if q α a ≥ 0, s α s,ω if q α a < 0. (9) 
For all ss = a ∈ E ω , let us set κ a,s = -1 and κ a,s = 1. The well equations account for the mass and energy conservations at each node of the well combined with the sum to one of the saturations and the thermodynamical equilibrium. Let E ω s ⊂ E ω denote the set of well edges sharing the node s ∈ V ω , then for all s ∈ V ω we obtain the equations

                         q r→ω s,h 2 o + a∈E ω s α∈{ ,g} κ a,s q α a = δ sω s α∈{ ,g} q α ω , q r→ω s,e + a∈E ω s α∈{ ,g} h α a κ a,s q α a = δ sω s α∈{ ,g} hα ω (q α ω ) -+ h α (p ω s , T ω s )(q α ω ) + , s s,ω + s g s,ω = 1, p ω s = p sat (T ω s ) if s g s,ω > 0 and s s,ω > 0, p ω s ≥ p sat (T ω s ) if s g s,ω = 0, p ω s ≤ p sat (T ω s ) if s s,ω = 1, (10) 
where δ stands for the Kronecker symbol, and hα ω for prescribed specific enthalpies in the case of injection wells. Inside the well, the hypothesis of hydrostatic pressure distribution implies that

p ω s -p ω s + ρ a g(z s -z s ) = 0, ( 11 
)
Figure 4: Example of multi-branch well ω with its root node s ω , one edge a = ss and the main physical quantities: the well mass flow rates q α ω , the mass and energy flow rates between the reservoir and the well q r→ω s,h 2 o , q r→ω s,e , the well node pressure, temperature and saturations p ω s , T ω s , s α s,ω , and the edge mass flow rates q α a .

for each edge ss = a ∈ E ω , where ρ a is the mass density of the liquid gas mixture. The system is completed by a slip closure law expressing the slip between the liquid velocity u a and the gas velocity u g a at each edge a ∈ E ω with q α a = πr 2 ω ρ α a s α a u α a . In the following simplified well models developed in subsections 3.3.2 and 3.3.3, a zero slip law will be assumed for simplicity in such a way that u a = u g a . Note that these simplified well models could be easily extended to account for non-zero slip laws as well as for an explicit approximation of the wall friction along the wells. The two fundamental assumptions to obtain these simplified well models are (i) prescribed sign of the mass flow rates q r→ω s,α , s ∈ V ω , forced to be all non-negative for production wells and all non-positive for injection wells, (ii) neglected Fourier fluxes compared with thermal convection fluxes.

The well boundary conditions prescribe a limit total mass flow rate qω and a limit bottom hole pressure pω . Then, complementary constraints accounting for usual well monitoring conditions, are imposed between q ω -qω and p ω -pω using the notations p ω = p ω sω and q ω = α∈{ ,g} q α ω .

In the following subsections, we consider the particular case of injection wells assuming a pure liquid phase, and the case of production wells. The flow rates are enforced to be non positive (resp. non negative) at all well nodes for injection wells (resp. production wells). It corresponds to set β inj ω = 1, β prod ω = 0 for an injection well and β inj ω = 0, β prod ω = 1 for a production well. The limit bottom hole pressure pω is a maximum (resp. minimum) pressure and the limit total mass flow rate qω is a minimum non positive (resp. maximum non negative) flow rate for injection (resp. production) wells.

In both cases, using an explicit computation of the hydrostatic pressure drop, the well model will be reduced to a single equation and a single implicit unknown corresponding to the well reference pressure p ω (see e.g. [START_REF] Aunzo | Wellbore Models GWELL, GWNACL, and HOLA, user's guide[END_REF]).

Liquid injection wells

The injection well model sets β inj ω = 1, β prod ω = 0 and prescribes the minimum well total mass flow rate qω ≤ 0, the well maximum bottom hole pressure pω and the well specific liquid enthalpy h ω . It is assumed that the injection is in liquid phase and that no gas will appear in the well during the simulation as it is usually the case in geothermal systems.

Since β inj ω = 1 and β prod ω = 0, the mass flow rates q α a are enforced to be non negative and it results from [START_REF] Bogdanov | Two-phase flow through fractured porous media[END_REF], and the assumption that the gas phase does not appear in the well that h a = h ω for all a ∈ E ω and that s s,ω = 1 -s g s,ω = 1 for all s ∈ V ω . Given the previous time step well reference pressure p n-1 ω = p ω,n-1 sω , we first compute the pressures along the well solving the equations

p ω s -p ω s + ρ a g(z s -z s ) = 0 for all a = ss ∈ E ω , p ω sω = p ω,n-1 sω , ρ a = ρ (p ω s , T ω s ) for all a = ss ∈ E ω , h (p ω s , T ω s ) = h ω for all s ∈ V ω .
We deduce the explicit pressure drops ∆p ω,n-1

s = p ω s -p n-1 ω ,
which provide for all s ∈ V ω the pressures p ω,n s and temperatures T ω,n s along the well at the current time step n such that

p ω,n s = p n ω + ∆p ω,n-1 s , h (p ω,n s , T ω,n s ) = h ω .
The mass and energy flow rates at each node s ∈ V ω between the reservoir and the well are defined by ( 7)-( 8) with β inj ω = 1 and β prod ω = 0 and depend only on the implicit unknowns p n ω and p n s . They are respectively denoted by q r→ω s,h 2 o (p n s , p n ω ) and q r→ω s,e (p n s , p n ω ). The well equation at the current time step is defined by the following complementary constraints between the prescribed minimum well total mass flow rate and the prescribed maximum bottom hole pressure

           s∈Vω q r→ω s,h 2 o (p n s , p n ω ) -qω pω -p n ω = 0, s∈Vω q r→ω s,h 2 o (p n s , p n ω ) -qω ≥ 0, pω -p n ω ≥ 0. ( 12 
)

Production wells

The production well model sets β inj ω = 0, β prod ω = 1 and prescribes the maximum well total mass flow rate qω ≥ 0 and the well minimum bottom hole pressure pω .

The solution at the previous time step n -1 provides the pressure drop ∆p ω,n-1 s at each node s ∈ V ω . This computation based on thermodynamical equilibrium is detailed below. As for the injection well, we deduce the well pressures using the bottom well pressure at the current time step n p ω,n s = p n ω + ∆p ω,n-1 s .

The mass and energy flow rates at each node s ∈ V ω between the reservoir and the well are defined by ( 7)-( 8) with β inj ω = 0 and β prod ω = 1 and depend only on the implicit reservoir unknowns X n s setting

X s = P s , T s , s s , s g s , c s , c g s ,
and on the implicit well unknown p n ω . They are respectively denoted by q r→ω s,h 2 o (X n s , p n ω ) and q r→ω s,e (X n s , p n ω ). The well equation at the current time step is defined by the following complementary constraints between the prescribed maximum well total mass flow rate and the prescribed minimum bottom hole pressure

           qω - s∈Vω q r→ω s,h 2 o (X n s , p n ω ) p n ω -pω = 0, qω - s∈Vω q r→ω s,h 2 o (X n s , p n ω ) ≥ 0, p n ω -pω ≥ 0. ( 13 
)
Let us now detail the computation of the pressure drop at each node s ∈ V ω using the previous time step solution n-1 consisting of the reservoir unknowns and the well pressures. We first compute the well temperature T ω,n-1 s and saturations s α,n-1 s,ω at each node s using equations [START_REF] Bogdanov | Two-phase flow through fractured porous media[END_REF]. Summing the mass and energy equations of ( 10) over all nodes s ≥ ω s, we obtain for all a = s s ∈ E ω that α∈{ ,g}

Q α,n-1 a = s ∈Vω|s ≥ ω s q r→ω s ,h 2 o (X n-1 s , p n-1 ω ) = Q ω s,h 2 o , α∈{ ,g} h α (p ω,n-1 s , T ω,n-1 s )Q α,n-1 a = s ∈Vω|s ≥ ω s q r→ω s ,e (X n-1 s , p n-1 ω ) = Q ω s,e , with Q α,n-1 a = πr 2 ω ρ α (p ω,n-1 s , T ω,n-1 s )s α,n-1 s,ω u α,n-1 a , α ∈ { , g}.
It results that the thermodynamical equilibrium at fixed well pressure p ω,n-1 s , mass Q ω s,h 2 o and energy Q ω s,e provides the well temperature T ω,n-1 s and the well saturations s α,n-1 s,ω at node s as follows. Let us set p = p ω,n-1 s . We first assume that both phases are present which implies that T sat = (p sat ) -1 (p) and that the liquid mass fraction is given by

c = h g (p, T sat ) - Q ω s,e Q ω s,h 2 o h g (p, T sat ) -h (p, T sat )
.

The following alternatives are checked:

Two-phase state: if 0 < c < 1, the two-phase state is confirmed. Using the zero slip assumption, we obtain

T ω,n-1 s = T sat and s ,n-1 s,ω = 1 -s g,n-1 s,ω = c ρ (p,Tsat) c ρ (p,Tsat) + 1-c ρ g (p,Tsat)
.

Liquid state: if c ≥ 1, then only the liquid phase is present, we set s ,n-1 s,ω = 1, s g,n-1 s,ω = 0, and

T ω,n-1 s is the solution T of h (p, T ) = Q ω s,e Q ω s,h 2 o
.

Gas state: if c ≤ 0, then only the gas phase is present, we set s ,n-1 s,ω = 0, s g,n-1 s,ω = 1, and

T ω,n-1 s is the solution T of h g (p, T ) = Q ω s,e Q ω s,h 2 o
.

Then, the explicit pressure drop ∆p ω,n-1

s = p ω s -p n-1 ω , is obtained from p ω s -p ω s + ρ a g(z s -z s ) = 0 for all a = ss ∈ E ω , p ω sω = p ω,n-1 sω , ρ a = α∈{ ,g} s α,n-1 s,ω ρ α (p ω,n-1 s , T ω,n-1 s
) for all a = ss ∈ E ω .

Discretization of the hybrid-dimensional non-isothermal two-phase flow model

The time integration is based on a fully implicit Euler scheme to avoid severe restrictions on the time steps due to the small volumes and high velocities in the fractures. A phase based upwind scheme is used for the approximation of the mobilities in the mass and energy fluxes (see e.g. [START_REF] Aziz | Petroleum Reservoir Simulation[END_REF]). At the matrix fracture interfaces, we avoid mixing matrix and fracture rocktypes by choosing appropriate control volumes for σ ∈ F Γ and s ∈ V Γ (see Figure 3). In order to avoid tiny control volumes at the nodes s ∈ V Σ located at the fracture intersection, the volume is distributed to such a node s from all the fracture faces containing the node s.

For each ν ∈ M ∪ F Γ ∪ V the set of reservoir pressure, temperature, saturations and mass fractions unknowns is denoted by X ν = P ν , T ν , s ν , s g ν , c ν , c g ν , where c α ν is the mass fraction of the water component in phase α used to express the thermodynamical equilibrium. We denote by X D , the set of reservoir unknowns

X D = {X ν , ν ∈ M ∪ F Γ ∪ V},
and similarly by P D and T D the sets of reservoir pressures and temperatures. The set of well bottom hole pressures is denoted by

P W = {p ω , ω ∈ W}.
The Darcy fluxes taking into account the gravity term are defined by

     V α K,ν (X D ) = F K,ν (P D ) - ρ α (p K , T K ) + ρ α (p ν , T ν ) 2 F K,ν (G D ), ν ∈ Ξ K , K ∈ M, V α σ,s (X D ) = F σ,s (P D ) - ρ α (p σ , T σ ) + ρ α (p s , T s ) 2 F σ,s (G D ), s ∈ V σ , σ ∈ F Γ , (14) 
where G D denotes the vector (g

• x ν ) ν∈M∪F Γ ∪V .
For each Darcy flux, let us define the upwind control volume cv α µ,ν such that

cv α K,ν = K if V α K,ν (X D ) 0 ν if V α K,ν (X D ) < 0 for ν ∈ Ξ K , K ∈ M,
for the matrix fluxes, and such that

cv α σ,s = σ if V α σ,s (X D ) 0 s if V α σ,s (X D ) < 0 for s ∈ V σ , σ ∈ F Γ ,
for fracture fluxes. Using this upwinding, the mass and energy fluxes are given by

q α ν,ν (X D ) = c α cv α ν,ν ρ α (p cv α ν,ν , T cv α ν,ν ) µ α (p cv α ν,ν , T cv α ν,ν ) k α r,cv α ν,ν (s α cv α ν,ν )V α ν,ν (X D ), q h 2 o ν,ν (X D ) = α∈{ ,g} q α ν,ν (X D ), q e ν,ν (X D ) = α∈{ ,g} h α (p cv α ν,ν , T cv α ν,ν )q α ν,ν (X D ) + G ν,ν (T D ).
In each control volume ν ∈ M ∪ F Γ ∪ V, the mass and energy accumulations are denoted by

A α,ν (X ν ) = φ ν ρ α (p ν , T ν )s α ν c α ν , A h 2 o,ν (X ν ) = α∈{ ,g} A α,ν (X ν ), A e,ν (X ν ) = α∈{ ,g} e α (p ν , T ν )A α,ν (X ν ) + φν E r (p ν , T ν ).
We can now state the system of discrete equations at each time step n = 1, • • • , N t f which accounts for the mass (i = h 2 o) and energy (i = e) conservation equations in each cell K ∈ M:

R K,i (X n D ) := A i,K (X n K ) -A i,K (X n-1 K ) ∆t n + s∈V K q i K,s (X n D ) + σ∈F Γ ∩F K q i K,σ (X n D ) = 0, (15) 
in each fracture face σ ∈ F Γ :

R σ,i (X n D ) := A i,σ (X n σ ) -A i,σ (X n-1 σ ) ∆t n + s∈Vσ q i σ,s (X n D ) + K∈Mσ -q i K,σ (X n D ) = 0, (16) 
and at each node

s ∈ V \ V D : R s,i (X n D , P n W ) := A i,s (X n s ) -A i,s (X n-1 s ) ∆t n + σ∈F Γ,s -q i σ,s (X n D ) + K∈Ms -q i K,s (X n D ) + ω∈W|s∈Vω q r→ω s,i (X n s , p ω,n s ) = 0. (17) 
It is coupled with the well equations for the injection wells

ω ∈ W inj R ω (X n D , P n W ) := -min( s∈Vω q r→ω s,h 2 o (X n s , p n ω ) -qω , pω -p n ω ) = 0, (18) 
and for the production wells

ω ∈ W prod R ω (X n D , P n W ) := min(q ω - s∈Vω q r→ω s,h 2 o (X n s , p n ω ), p n ω -pω ) = 0, (19) 
reformulating respectively ( 12) and ( 13) using the min function.

The system is closed with thermodynamical equilibrium and the sum to one of the saturations The thermal conductivity is fixed to λ m = 2 W.m -1 .K -1 , and the rock volumetric heat capacity is given by C r = 1.6 MJ.K -1 .m -3 with E r (p, T ) = C r T . The relative permeabilities are set to k α r,m (s α ) = (s α ) 2 for both phases α ∈ { , g}. The gravity vector is as usual g = (0, 0, -g z ) with g z = 9.81 m.s -2 .

R 1 (X n ν ) := c g,n ν p n ν -p sat (T n ν )c ,n ν = 0, R 2 (X n ν ) := min(s ,n ν , 1 -c ,n ν ) = 0, R 3 (X n ν ) := min(s g,n ν , 1 -c g,n ν ) = 0, R 4 (X n ν ) := s ,n ν + s g,n ν -1 = 0, (20) 
The simulation consists in two stages both run on a family of refined uniform Cartesian meshes of size n x × n y × n z of the domain Ω with (n x , n y , n z ) ∈ {(10, 10, 5), [START_REF] Faille | Model reduction and discretization using hybrid finite volumes of flow in porous media containing faults[END_REF][START_REF] Faille | Model reduction and discretization using hybrid finite volumes of flow in porous media containing faults[END_REF][START_REF] Bogdanov | Two-phase flow through fractured porous media[END_REF], [START_REF] Schmidt | Properties of water and steam in S.I. units[END_REF][START_REF] Schmidt | Properties of water and steam in S.I. units[END_REF][START_REF] Faille | Model reduction and discretization using hybrid finite volumes of flow in porous media containing faults[END_REF], (80, 80, 40)}. These meshes are labeled as {h 1 , . . . , h 4 } respectively. The well indexes are computed at each node of the well following [START_REF] Beaude | Parallel geothermal numerical model with fractures and multi-branch wells[END_REF].

At the first stage, the well is closed and a Dirichlet boundary condition is imposed at the top of the domain prescribing the pressure and the temperature equal to p m = 4 MPa and T m = (p sat ) -1 (p m ) -1 K; respectively, and homogeneous Neumann boundary conditions are set at the bottom and at the sides of the domain. This stage is run until the simulation reaches a stationary state with the liquid phase only, a constant temperature and an hydrostatic pressure depending only on the vertical coordinate.

For the second stage, homogeneous Neumann boundary conditions are prescribed at the bottom and at the top of the domain Ω, but Dirichlet boundary conditions for the pressure and temperature are fixed at the sides of the domain to the ones at the end of stage one. The well is set in an open state, i.e., it can produce, and its monitoring conditions are defined by the minimum bottom hole pressure pω = 1 bar (never reached in practice) and the maximum total mass flow rate qω = 200 ton.hour -1 . The second stage is run on the time interval (0, t f ) with t f = 30 days.

Figures 5 and6 show the total volume of gas inside the well, and the total volume of gas inside the reservoir as functions of time for the family of refined meshes. The solutions on the two coarsest meshes are still rough, which is expected given that the gas bubble is concentrated on a small region around the well (see Figure 10). On the other hand the solutions on the two finest meshes are quite close exhibiting the good convergence of the scheme.

In addition, Figures 7,8, and 9 show the pressure, the temperature and the gas saturation along the well; respectively, at final time t f . The solutions are pretty close for all meshes and exhibit a good convergence behavior. Figures 10,[START_REF] Brenner | Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media[END_REF] show a close look of the pressure and of the temperature inside the reservoir; respectively, for all meshes at final time t f . It illustrates the cone shaped bubble of gas along the well at the top of the reservoir and demontrates again the good convergence behavior of the discrete model. At each time step, the nonlinear system is solved using a Newton algorithm. The GMRES stopping criterion on the relative residual is fixed to 10 -8 . The Newton solver is convergent if the relative residual is lower than 10 -8 as well.

Table 1 shows the numerical efficiency of the proposed scheme for all meshes for the second stage of the simulation. We denote by N ∆t the number of successful time steps, by N Newton the average number of Newton iterations per successful time step, and by N GMRES the average number of GMRES iterations per Newton iteration. It exhibits a very good robustness of the Newton solver on the family of refined meshes and a moderate increase of the number of GMRES iterations with the mesh size.

Finally, we present in Figure 12 the total computational time in hours obtained with the finest mesh h 4 for different numbers of MPI processes N p = 8, 16, 32, 64. As usual for this type of simulations, the strong scalability is limited by the AMG preconditioner of the pressure block which requires a sufficiently high number of unknowns per processor to keep a good scalability, corresponding to roughly speaking 4 10 4 . This explains the good speed up obtained between 8 and 32 processors whereas the speed up becomes very small between 32 and 64 processors. 

Mesh

Study of a high enthalpy reservoir

In this section, we consider a more realistic case built from geological and production data of a field in a volcanic area. The field is a convective dominated system initially in liquid phase, that is crossed by a major normal fault. The reservoir (in blue in Figure 13a) is about 500 m thick; it is covered by a weakly permeable clay caprock (in yellow) of 250 m thick, which outcrops at the surface. Below the reservoir is the basement layer (also in yellow).

Figure 13b gives the tetrahedral mesh of the domain. The VAG finite volume discretization makes it possible to deal with complex geology including faults and complex well trajectories. The unstructured mesh of 700 000 tetrahedral elements draws on geological horizons. The fault is meshed as a two-dimensional (2D) surface, where the triangular elements are interconnected with the surrounding matrix using conformal meshing. The (one-dimensional) wells are discretized by a set of edges as shown in Figure 13b. The computation of numerical well indexes would require an analytical solution for the linear diffusion equation, which is not known for such a complex geometry involving fault and slanted wells. This solution could also be obtained numerically using a mesh at the scale of the wells, but its generation is out of the scope of this test case. Alternatively, we use for this test case an approximate analytical Peaceman type formula taking the fault into account and providing a good order of magnitude. As the previous numerical test, this simulation consists in two stages. The first one acts as a preliminary step where the initial state of the geothermal system, which is already dynamic, is achieved by performing a simulation over a long period (here 10 5 years) from an hydrostatic pressure state (with 1 bar at the top of the model), and a temperature field increasing linearly with depth (between 30 • C at the top to 280 • C at the bottom). Dirichlet boundary conditions for temperature and pressure are thus imposed at the top and bottom boundaries. No flow and Dirichlet temperature conditions are applied on the lateral boundaries. The initial state obtained is convective; the fluid in the reservoir is in liquid state with a low fraction of gas near the top of the reservoir. Iso-temperature contours are represented in Figure 14 and show the development of convection cells and the influence of the fault, which is a more permeable zone.

Then the second stage begins where the reservoir production starts with steam production at the producer well-head: a flow rate of 250 ton.hr -1 is imposed at the well-head for five years. The same boundary conditions are imposed as in the initial state determination, but the temperature imposed on the lateral boundaries is now given by the average temperature distribution in the rock mass at this initial state. The depletion occuring near the producer well favors the development of a steam cap in the reservoir as well as in the fault zone. Figure 15 shows this steam cap: faces in the fault and cells in the reservoir with a gas saturation greater than 0.1 are filled in yellow, while temperature field is also represented on the other faces of the fault plane. Well pressure follows the same trends. Whereas gas saturation was around 80% during the depletion phase in the well at 455 m depth, injection results in a reduced gas saturation in the well down to say 50% at 455 m depth (Figure 17b). Table 2 shows the numerical efficiency of the proposed scheme for both stages of the simulation and different numbers of MPI processes N p = 4, 8, 16. We use the same notations as in the previous test case and report in addition the total simulation time in hours. These results exhibit the very good robustness of the linear and nonlinear solvers w.r.t. the number of MPI processes. A very good speedup is obtained up to 16 MPI processes verifying that parallel computing makes possible to have reasonable computation times to model industrial cases such as the one presented in this section.

Stage N p N ∆t N Newton N GMRES Time (hrs) N ∆t is the number of successful time steps, N Newton the average number of Newton iterations per successful time step, N GMRES the average number of GMRES iterations per Newton iteration, and Time (hrs) is the total simulation time in hours.

Conclusion

This paper focuses on the numerical modelling of geothermal systems in complex geological settings. The proposed approach is based on unstructured meshes to model complex features such as faults and deviated wells. It solves liquid vapor two-phase Darcy flows coupled with energy transfers and thermodynamical equilibrium. The use of the hybrid-dimensional polytopal VAG scheme allows to treat physically complex cases, while respecting geometrical constraints. We particularly focus on the well modelling with deviated or multi-branch wells defined as a collection of edges of the mesh with rooted tree data structure. By using an explicit pressure drop calculation, the well model reduces to a single equation with only one well implicit unknown fully coupled to the reservoir system. Finally, efficient parallel linear and nonlinear solvers ensure acceptable computation times on real case studies. A sanity checked is first presented showing the numerical convergence of the discrete model on a diphasic vertical producer well in a simple reservoir geometry. Then, the efficiency of our approach is demonstrated on a geothermal test case of high enthalpy faulted reservoir using a doublet of two deviated wells crossing the fault. An improved model of cross flows between well and reservoir will be investigated in the near future. Industrial studies of high and medium enthalpy geothermal reservoirs are currently under way with the approach proposed in this paper.

Figure 1 :

 1 Figure 1: Example of a 2D domain with 3 intersecting fractures Γ 1 , Γ 2 , Γ 3 .

  the matrix domain, Dirichlet (subscript D) and Neumann (subscript N ) boundary conditions are imposed on the two dimensional open sets ∂Ω D and ∂Ω N respectively where ∂Ω D ∩ ∂Ω N = ∅, ∂Ω = ∂Ω D ∪∂Ω N . Similarly for the fracture network, the Dirichlet and Neumann boundary conditions are imposed on the one dimensional open sets ∂Γ D and ∂Γ N respectively where ∂Γ D ∩ ∂Γ N = ∅, ∂Γ ∩ ∂Ω = ∂Γ D ∪ ∂Γ N .

Figure 2 :

 2 Figure 2: For a cell K and a fracture face σ (in bold), examples of VAG degrees of freedom u K , u s , u σ , u s and VAG fluxes F K,σ , F K,s , F K,s , F σ,s .

Figure 3 :

 3 Figure 3: Example of control volumes at cells, fracture face, and nodes, in the case of two cells K and L separated by one fracture face σ (the width of the fracture is enlarged in this figure). The control volumes are chosen to avoid mixing fracture and matrix rocktypes.
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 41 Numerical convergence for a diphasic vertical well in an homogeneous reservoir Let us consider the geothermal reservoir defined by the domain Ω = (-H, H) 2 × (0, H z ) where H = 1000 m and H z = 200 m, including one vertical producer well along the line {(x, y, z) ∈ Ω | x = y = 0} of radius r ω = 0.1 m. The reservoir is assumed homogeneous with isotropic permeability K m = k m I, k m = 5 × 10 -14 m 2 and porosity φ m = 0.15. It is assumed to be initially saturated with pure water in liquid phase. The enthalpy, internal energy, mass density and viscosity of water in the liquid and gas phases are given from [40] by analytical laws as functions of the pressure and temperature. The vapour pressure P sat (T ) is given in Pa by the Clausius-Clapeyron equation p sat (T ) = 100 exp 46.784 -6435 T -3.868 log(T ) .
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 78 Figure 7: Pressure in Pa along the well at final time on the different meshes.

Figure 9 :

 9 Figure 9: Gas saturation along the well at final time on the different meshes.

  (a) Mesh size h 1 . (b) Mesh size h 2 . (c) Mesh size h 3 . (d) Mesh size h 4 .

Figure 10 :

 10 Figure 10: Clip and close look of the gas saturation inside the reservoir at final time for all meshes (cell values).

(a) Mesh size h 1 .

 1 (b) Mesh size h 2 . (c) Mesh size h 3 . (d) Mesh size h 4 .

Figure 11 :

 11 Figure 11: Clip and close look of the temperature in • C inside the reservoir at final time for all meshes (cell values).

Figure 12 :

 12 Figure 12: Total computational time vs. number of MPI processes for the second stage simulation on the finest mesh h 4 .

  (a) Domain modelled. (b) Mesh and wells location.

Figure 13 :

 13 Figure 13: Geometry, mesh and wells data for the second numerical test.

Figure 14 :

 14 Figure 14: Initial state dominated by convention. Isotemperature surfaces.

Figure 15 :

 15 Figure 15: Temperature and saturation after 5 years of production -cells with a gas saturation greater than 0.1 are filled in yellow -the temperature is represented in the fault plane

Figure 16 :

 16 Figure 16: Temperature and saturation after 10 years of production with reinjection during the last 5 years -cells with a gas saturation greater than 0.1 are filled in yellow -the temperature is represented in the fault plane

Figure 17 :

 17 Figure 17: (a) Pressure evolution in the reservoir (red dashed line) and in the well (green line) at 455 m depth. Saturation pressure in the well at 455 m depth is given by the black dotted line. (b): Saturation evolution in the well at 455 m depth.

  Figure 5: Total gas volume inside the well as a function of time on the different meshes.Figure 6: Total gas volume inside the reservoir as a function of time on the different meshes.

		2 2.2 4.4x10 6								h 1 h 2 h 3 h 4
	m 3 Pressure (Pa)	1.4 1.6 1.8 3.6x10 6 4x10 6								
		1 1.2 3.2x10 6	0	0.02	50	0.04	100	0.06	h 1 h 2 h 3 h 4 150	0.08	200
						t (years) z (meters)		
		12000								
		8000								
	m 3									
		4000								
		0		0.02	0.04	0.06	h 1 h 2 h 3 h 4	0.08
						t (years)			

Table 1 :

 1 Numerical behavior of the second stage of the simulation for different mesh sizes. N ∆t is the number of successful time steps, N Newton the average number of Newton iterations per successful time step, and N GMRES is the average number of GMRES iterations per Newton iteration.

		#M	N ∆t N Newton N GMRES
	h 1	4000	134	1.99	8.59
	h 2	32000	134	1.74	9.93
	h 3	256000 134	1.92	11.75
	h 4	1848320 133	2.22	15.91

Table 2 :

 2 Numerical behavior of both stages of the simulation for different number of processors.

		4 1515	4.6	29.3	98.2
	1	8 1507	4.6	29.4	31.9
		16 1526	4.6	30.0	17.8
		4 1395	7.3	7.7	65.9
	2	8 1367	7.2	7.6	20.2
		16 1320	7.2	7.9	10.1
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at all control volumes ν ∈ M ∪ F Γ ∪ V \ V D as well as the Dirichlet boundary conditions

Let us denote by R ν the vector R ν,i , i ∈ {h 2 o, e}, R j (X ν ), j ∈ {1, • • • , 4} , and let us rewrite the conservation and closure equations [START_REF] Brenner | Gradient discretization of hybriddimensional Darcy flow in fractured porous media with discontinuous pressures at matrixfracture interfaces[END_REF], [START_REF] Brenner | Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions[END_REF], [START_REF] Chen | Well flow models for various numerical methods[END_REF], [START_REF] Eymard | Small-stencil 3D schemes for diffusive flows in porous media[END_REF], [START_REF] Eymard | Vertex-centred discretization of multiphase compositional Darcy flows on general meshes[END_REF], [START_REF] Faille | Model reduction and discretization using hybrid finite volumes of flow in porous media containing faults[END_REF] as well as the Dirichlet boundary conditions in vector form defining the following nonlinear system at each time step n = 1, 2, ...,

where the superscript n is dropped to simplify the notations and where the Dirichlet boundary conditions have been included at each Dirichlet node s ∈ V D in order to obtain a system size independent of the boundary conditions.

The nonlinear system R(X D , P W ) = 0 is solved by a Newton-min algorithm [START_REF] Kräutle | The semi-smooth newton method for multicomponent reactive transport with minerals[END_REF]. Our implementation is based on an active set method both for the well equations and the thermodynamical equilibrium.

For the well equations, we enforce either the total mass flow rate or the bottom hole pressure at each Newton iterate and use the remaining inequality constraint to switch from prescribed total mass flow rate to prescribed bottom hole pressure and vice versa.

For the thermodynamical equilibrium, we distinguish a two-phase state I n ν = { , g}, a liquid state I n ν = { }, and a gas state

and we define Y ν = (p n ν , s g,n ν ) as primary unknowns. For I n ν = { }, the closure equations provide c ,n ν = 1, c g,n ν = psat(T n ν ) p n ν , s ,n ν = 1, s g,n ν = 0 and we define Y ν = (p n ν , T n ν ) as primary unknowns. For I n ν = {g}, the closure equations provide c g,n ν = 1, c ,n ν = p n ν psat(T n ν ) , s ,n ν = 0, s g,n ν = 1 and we define Y ν = (p n ν , T n ν ) as primary unknowns. The inequality constraints are then used to switch from two-phase state to a one phase state and vice versa.

The Jacobian system at each Newton-min iteration is assembled w.r.t. the primary unknowns Y D , P W and the mass and energy conservation equations ( 15), ( 16), ( 17), [START_REF] Eymard | Small-stencil 3D schemes for diffusive flows in porous media[END_REF], [START_REF] Eymard | Vertex-centred discretization of multiphase compositional Darcy flows on general meshes[END_REF]. The cell unknowns are locally eliminated without any additional fill-in before solving the linear system using the GMRES iterative solver preconditioned by a CPR-AMG preconditioner introduced in [START_REF] Lacroix | Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS)[END_REF][START_REF] Scheichl | Decoupling and block preconditioning for sedimentary basin simulations[END_REF]. This preconditioner combines multiplicatively a parallel algebraic multigrid preconditioner (AMG) [START_REF] Henson | BoomerAMG: A parallel algebraic multigrid solver and preconditioner[END_REF] for a pressure block of the linear system with a block Jacobi ILU0 preconditioner for the full system. In our case, the columns of the pressure block are defined by the node, the fracture face and the well pressure unknowns, and its lines by the node and the fracture face mass conservation equations as well as the well equations.

The parallel implementation is described in [START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF] and [START_REF] Beaude | Parallel geothermal numerical model with fractures and multi-branch wells[END_REF]. Let us recall that the distribution of wells to each MPI process p is such that any well with a node belonging to the set of own nodes of p belongs to the set of own and ghost wells of p. Then, the set of own and ghost nodes of p is extended to include all the nodes belonging to the own and ghost wells of p. These definitions ensure that (i) the local linearized systems can be assembled locally on each process without communication as in [START_REF] Xing | Parallel numerical modeling of hybrid-dimensional compositional non-isothermal darcy flows in fractured porous media[END_REF], and (ii) the pressure drops of the wells can be computed locally on each process without communication. This last property is convenient since the pressure drop is a sequential computation along the well rooted tree. This parallelization strategy of the well model is based on the assumption that the number of additional ghost nodes resulting from the connectivity of the wells remains very small compared with the number of own nodes of the process.