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Abstract
Spindle speed variation is a well known technique to suppress regenerative machine 
tool vibrations, but it is usually considered to be effective only for low spindle speeds. In 
this paper, the effect of spindle speed variation is analyzed in the high-speed domain, 
for the spindle speeds corresponding to the first flip (period doubling) and to the first 
Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are com-
puted using the semi-discretization method. It is shown that period doubling chatter can 
effectively be suppressed by spindle speed variation, while the technique is not effective 
for the quasi-periodic chatter above the Hopf lobe. The results are verified by cutting 
tests.  

 
 
1 INTRODUCTION 

Productivity of machining is often limited by vi-
brations that arise during the cutting process. 
These vibrations causes poor surface finish, 
increase the rate of tool wear and reduce the 
spindle lifetime. One reason for these vibrations 
is the surface regeneration, i.e., the tool cuts a 
surface that was modulated in the previous cut. 
The theory of regenerative machine tool chatter 
is based on the works of Tobias and Fishwick 
[1]. This knowledge initially dedicated to the 
turning process has been adapted to milling 
operations [2, 3] and led to the development of 
the stability lobe theory. Since then several im-
proved models and analysis techniques have 
been appeared including detailed analysis of 
the governing delay-differential equation and 
time domain simulations [4-9]. These models all 
use the so-called stability lobe diagrams, which 
allows to choose the maximum axial depth of 
cut for a given spindle speed associated with a 
chatter free machining. In many practical cas-
es, however, the choice of the optimal speed is 
difficult because contradictory parameters in-
teract with productivity [10, 11]. 
There are different ways to reduce chatter vi-
brations. Classical solutions are based on the 
increase of the stiffness of the mechanical 
components and on the increase of the damp-
ing by reducing cutting speed or by adding 
dampers. Tools with variable pitches [12], or 
with variable helix angles [13, 14] can also be 

used to suppress chatter. The idea behind 
these techniques is that each flute experiences 
different regenerative delay, this way the re-
generative effect is disturbed that may reduce 
the self-excited vibrations for certain spindle 
speeds.  
A similar technique to disturb the regenerative 
effect and to suppress chatter vibrations is the 
spindle speed variation. As opposed to variable 
pitch or variable helix cutters, spindle speed 
variation can effectively be used in a wider 
spindle speed range, since the frequency and 
the amplitude of the speed variation can easily 
be adjusted in CNC machines even during the 
machining process. The idea of spindle speed 
variation became in the focus of interest in the 
1970's. Takemura et al. [15] presented the first 
simple models to study the stability of variable 
speed machining; they predicted significant 
shift of the stability lobes to higher depth of 
cuts, but the experimental tests showed only 
small improvements. Sexton and Stone [16, 17] 
have developed a more realistic model, they 
found some improvements in the stability prop-
erties for low spindle speeds.  
Stability analysis for variable speed machining 
requires special mathematical techniques, 
since the corresponding mathematical model is 
a delayed-differential equation with time varying 
delay. Sexton et al. [16] considered the projec-
tion of the solutions of the system to the sub-
space of periodic functions and used Fourier 
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expansion to reduce the problem to an eigen-
value analysis. Tsao et al. [18] have developed 
a model taking the angular coordinates as vari-
ables instead of time. This approach was fur-
ther improved by Jayaram et al. [19], who used 
a special combination of Fourier expansion and 
an expansion with respect to Bessel functions 
to analyze the system. Insperger and Stépán 
[20] used the semi-discretization method to 
construct stability diagrams for variable speed 
turning. They showed that the critical depths of 
cut can be increased for low speeds, but for the 
high-speed domain, no improvement was 
found.  
The modeling of variable speed milling is more 
complex than that of turning, since the speed 
variation frequency and the tooth passing fre-
quency interact and the resulted system is typi-
cally quasi-periodic. Still, there are mathemati-
cal techniques to determine approximate dy-
namic properties. Sastry et al. [21] used Fourier 
expansion and applied the Floquet theory to 
derive stability lobe diagrams for face milling. 
They obtained some improvements for low 
spindle speeds. Recently, Zatarain et al [22] 
presented a general method in frequency do-
main to the problem, and show that variable 
spindle speed can effectively be used to chatter 
suppression for low cutting speeds. They used 
the semi-discretization method and time do-
main simulations to validate their model, and 
confirmed their results by experiments.  
In this paper, the stability of variable speed mill-
ing is analyzed in the high-speed domain, for 
the spindle speeds corresponding to the first 
flip (period doubling) and to the first Hopf lobes. 
Theoretical stability predictions are obtained 
using the semi-discretization method based on 
[23], and the results are confirmed by experi-
ments.  
 
2 MODEL OF MILLING PROCESS WITH 

VARIABLE SPINDLE SPEED  

2.1 Variation of the spindle speed 

Periodic spindle speed variation is considered 
in the form N(t) = N0 + NA S(t), where N0 is the 
mean spindle speed, NA, is the amplitude of the 
variation and S(t) = S(t+T) is a T-periodic shape 
function that varies between -1 and 1. In the 
literature, mostly sinusoidal, triangular or 
square-wave modulations are considered. 
Here, the triangular variation shown in Figure 1 
is analyzed. The corresponding shape function 
reads: 
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Figure 1: Typical triangular shape variation. 

 
Here, mod(t,T) denotes the modulo function, for 
example, mod(12, 5) = 2.  
According to the general notation in the corre-
sponding literature, the amplitude and the fre-
quency of the speed variation is normalized by 
the mean spindle speed N0 as: 
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RVA represents the ratio of the amplitude NA 
and the mean value N0. In practical applica-
tions, the maximum value for RVA is about 0.3. 
This represents a variation of 30% of the spin-
dle speed and results in a variation of 30% of 
the feed by tooth due to the constant feed ve-
locity. RVF is the ratio of the variation fre-
quency f and the average spindle frequency 
N0/60. The variation frequency f is typically 
about 1-2 Hz. Using the normalized parameters 
introduced above, the triangular modulation can 
be given as: 
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The time delay between two subsequent cutting 
teeth plays a crucial role in the system's dy-
namics due to the regenerative effect. For a 
machining process with constant spindle speed 
N0, this time delay is constant: 

* %0
0

60

zN
, (5) 

where z is the number of the teeth of the tool. 
For variable spindle speed machining, the time 
delay varies periodically in time according to 
the spindle speed modulation. The variation of 
the regenerative delay can be given in the im-
plicit form: 
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For the triangular modulation defined in Eq. (4), 
this equation gives:  
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where *0 is the mean time delay.  
 

2.2 The mechanical model  

A schematic diagram of the milling process is 
shown in Figure 2. The structure is assumed to 
be flexible in the x direction, while the feed is 
parallel to the y direction. The dynamic model is 
given by the following equation: 

, - , - , - , -' ' %!! !
xmx t cx t kx t F t , (9) 

where m is the modal mass, c is the damping, k 
is the stiffness and Fx(t) is the cutting force in 
the x direction. According to the linear cutting 
law, the x component of the force is given by: 

, - , - , -. .
%

% !/
1

cos sin
z

x p R j T j j

j

F t A K K h t , (10) 

where Ap is the axial depth of cut and KT and 
KR are the specific tangential and radial cutting 
coefficients. The chip thickness is expressed 
by:  

, - , - , - , -, -, -, -. * .% ' ! !sin cosj j z j jh t g t f x t x t t ,(11) 

where the function gj(t) is a unit function, it is 
equal to 1 when the tooth j is cutting, otherwise 
it is equal to 0. Here, fz is the feed per tooth, 
x(t) is the current position of the tool and 

*!( ( ))x t t  is the position at the previous cut. 

The regenerative delay *(t) is periodic in time 
due to the spindle speed modulation, as it is 
given in Eq. (7).  
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Figure 2: Mechanical model of the milling proc-

ess with single degree of freedom. 

3 THEORETICAL STABILITY PREDICTIONS 

Equations (9), (10) and (11) imply the time pe-
riodic delay differential equation in the form: 

*
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As it is shown by Eq. (7), the regenerative time 
delay is periodic at the spindle modulation 
period T. We assume that the ratio of the 
modulation period T and the mean time delay 
*0 is a rational number, i.e., *% 0qT p  with q 

and p being relative primes. Thus, the system 
is periodic at the principal period qT, 
consequently, the Floquet theory of periodic 
DDEs can be applied. Note that if the ratio of T 
and *0 is not rational, then the system is quasi-
periodic and the Floquet theory cannot be 
used. 

The stability is determined using the first-order 
semi-discretization method according to [24]. 
The scheme of the approximation is shown in 
Figure 3. First, the discrete time scale % >it i t , 

i=1,2,,... is introduced so that % >qT K t  with K 
being an integer. In the i th discretization 
interval, the time delay is approximated by its 
integral average as: 
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Then, the delayed term *!( ( ))t tu  is approxi-
mated by the linear function of time as: 
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Figure 3: Schematic of the semi-discretization 

method. 
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and % ( )i itu u  is used as short notation. Note 

that >ir t is a kind of integer approximation of 

the delay * i . Finally, the time periodic functions 
are approximated by their integral average: 
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Now, in each interval '@ 1[ , ]i it t t , the equation of 

motion (12) is approximated by: 
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This system can be considered as an ordinary 
differential equation with a forcing term, which 
linearly depends on time. Thus, if % ( )i itx x , 

' ! ' !%1 1( )
i ii r i rtu u , ! !% ( )

i ii r i rtu u  are given, then 

the solution over the interval '@ 1[ , ]i it t t  can be 
constructed analytically as: 
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Here, I denotes the 2x2 unit matrix. This solu-
tion can be represented by a discrete map: 

' %1i i iy Q y , (19) 

with 
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where 1iR  and 0iR  are in the (ri-1)th and the ri
th 

columns and !% %max 0 1 1max( , , )Kr r r r . Note, that 

in this case, the elements ui are 1×1 matrices, 
and the corresponding 1×1 unit matrices I be-
low the diagonal are in fact the scalar unit 1.  

The approximate Floquet transition matrix can 
be given after computing matrix Qi in K suc-
ceeding discretization intervals: 

! !% %1 2 0K K! Q Q Q . (20) 

If the eigenvalues of !  are in modulus less 
than 1, then the process is stable. Stability 
lobes can be constructed by scanning the cut-
ting conditions (spindle speed and axial depth 
of cut) for a couple of (RVA, RVF) parameters. 
An example can be seen in Figure 4. 
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Figure 4: Stability diagrams for constant and for 

variable speed milling with RVA = 0.3 and 
RVF = 0.003 

 
4 SELECTION OF THE OPTIMAL 

PARAMETERS 

Stability of variable speed machining is very 
sensitive to the choice of the frequency and 
amplitude parameters. In order to find the opti-
mal modulation, different combinations of fre-
quencies and amplitudes should be analyzed. 
Here, the effectiveness of the spindle speed 
variation is investigated in the area of the 1st flip 
lobe (N0 = 9100 rpm, blue dashed line in Figure 
4) and also in the area of the 1st Hopf lobe (N0 = 
8900 rpm, red dashed line in Figure 4). For 
these spindle speeds, the critical depths of cut 
were determined for several modulation ampli-
tudes (RVA) and frequencies using the semi-
discretization method. The results for average 
spindle speed of 9100 rpm are presented in 
Figure 5 in contour plot form. For constant 
speed, the critical depth of cut is 0.5 mm. For 
variable spindle speed, the critical depth of cut 
Ap is always larger than 0.5 mm for any RVA 
and RVF values. For some domains, even Ap = 
2.4 mm can be achieved that corresponds to 
380% increase in the depth of cut. Figure 5 al-
so shows that large frequency of speed varia-
tion coupled with small amplitude does not yield 
any gain in the depth of cut. The most effective 
parameter is the amplitude variation, while the 
frequency does not have a significant effect on 
the stability within the range of 0.5-4 Hz. The 
selection of the frequency and the amplitude 
variation is limited by the spindle's dynamics 
that is also denoted in the frequency-amplitude 
diagram in Figure 5. Considering this limit, the 
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optimal choice is to apply low frequency of 
modulation with large amplitude. Such cases 
are denoted by points A and C.  

 
Figure 5: Parametric study for N0 = 9100 rpm 

and Ae = 2 mm. 
 
Similar plot was determined spindle speed 
8900 rpm shown in Figure 6. In this case the 
critical depth of cut for constant speed machin-
ing was 5 mm. It was found that spindle speed 
variation always result in a depth of cut smaller 
than 5 mm, thus in this case, the application of 
varying spindle speed is not useful.  
 

 
Figure 6: Parametric study for N0 = 8900 rpm 

and Ae = 2 mm. 
 
Based on the above numerical studies, it can 
be concluded that the efficiency of spindle 
speed variation in high speed milling is diverse 
for different spindle speeds. For the area of the 
1st flip lobe, the critical depth of cut can essen-
tially be increased as it is shown in Figure 5. 
However, for the area of the 1st Hopf lobe, no 
significant gains in the depth of cut can be 
achieved by spindle speed variation. It is found, 
furthermore, that the improvements depend 
mostly on the amplitude of the speed variation, 
and the dependence on the frequency is mod-
est.  
 

5 EXPERIMENTAL WORK 

The machining tests were carried out on a high-
speed milling center (Huron, KX10). The aver-
age feed per tooth was 0.1 mm/tooth. The tool 
was an inserted mill with 3 teeth, D = 25 mm 
diameter without helix angle. The spindle speed 
variation was implemented by a sub-program 
using a synchronous function (Siemens 840D). 
In compliance with the dynamics of the spindle, 
the difference between the input and the meas-
ured spindle speed trajectory was less than 
0.5%, see Figure 7. According to Siemens, the 
spindle speed variation has no negative effect 
on the spindle life.  
 

0.26 0.52 0.78

t [s]

N(t) [rpm]
9828

8372

1.04

Input
Measured

9100

0  
Figure 7. Comparison between input and 

measured spindle speed trajectory, for N0 = 
9100 rpm ; RVA = 0.08 ; RVF = 0.0125 (f = 1.9 

Hz). 
 
The setup of the milling tests can be seen in 
Figure 8. A flexure was used to provide a single 
degree of freedom system that is compliant in 
the x direction (perpendicular to the feed). The 
tool is considered to be rigid compared to the 
flexure. An aluminium (2017A) part was down-
milled with a radial depth of cut Ae = 2 mm, thus 
the radial immersion ratio was Ae/D = 0.08. The 
length of the workpiece was 90 mm, the opera-
tion time was approximately 2 s at spindle 
speed 9100 rpm. The vibrations of the part 
were measured by a laser velocimeter (Omet-
ron, VH300+). A filtering followed by a numeri-
cal integration was used to extract displace-
ment of the part. 

 
Figure 8. Experimental setup. 
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The dynamic characteristics of the system were 
determined by hammer impact test. The modal 
parameters and the cutting force coefficients 
are collected in Table 1. The cutting force coef-
ficients were determined in previous work [10]. 
 

m [kg] f0 [Hz] ! [%] KT [MPa] KR [MPa]

1.637 222.5 0.50 700 140 

Table 1. Modal parameters and cutting force 
coefficients. 

 

5.1 Constant spindle speed tests 

First, a series of tests at a constant speed has 
been conducted in order to verify the model. 
The results are shown in Figure 9. Stable cut-
ting tests are denoted by circle while unstable 
tests by crosses. The predicted behavior of the 
system agrees well with the experiments. The 
zone of period doubling chatter at the 1st flip 
lobe is also explored using a finer resolution of 
the spindle speed.  
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Figure 9: Experimental test at constant spindle 

speed. 
 

5.2 Stabilization via spindle speed variation  

In this section, chatter suppression by spindle 
speed variation is presented by an example. 
Consider the machining process with spindle 
speed 9100 rpm and depth of cut 1 mm. For 
constant spindle speed, this process is unsta-
ble (see Figure 4). Spindle speed variation is 
applied according to point A in Figure 5. The 
corresponding parameters are RVA = 0.2, RVF 
= 0.0046875 (f = 0.71 Hz). Based on the theo-
retical predictions in Figure 5, the critical depth 
of cut is about 2 mm, i.e., the system with vari-
able spindle speed is predicted to be stable. 
Figure 10 presents the spindle speed, the dis-
placement history and the surface roughness 
obtained by the cutting tests.  
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Figure 10: Chatter suppression by spindle 

speed variation for Ap = 1 mm  
and N0 = 9100 rpm.  

 
For an ideally symmetric tool, the pitch of the 
machined profile is equal to the feed per tooth. 
However, if the tool has a runout larger than the 
roughness of the surface, than it leaves only 
one mark by revolution. The tool used in the 
tests had a runout of 10 Am, the feed per tooth 
was 0.1mm and the tool had 3 teeth, thus the 
pitch of the machined profile is expected to be 
approximately 0.3 mm for stable machining. (In 
fact, the pitch slightly varies around 0.3 mm, 
since the constant feed velocity and the vari-
able spindle speed produces a varying feed per 
tooth.) 
During the tests with variable spindle speed, no 
chatter was observed. The amplitude of the vi-
brations was less than 0.01 mm, the roughness 
was 1.75 "m and the pitch of the machined 
profile was 0.3 mm as it can be seen in Figure 
10. These all refer to a stable cutting process.  
The results for constant spindle speed are 
shown in Figure 11. In this case chatter was 
clearly identified. The amplitude of the vibra-
tions was about 0.07 mm, the roughness was 
3.7 "m, and the pitch of the machined profile 
was 0.6 mm that refers to the period doubling 
chatter (note that these cutting parameters are 
in the 1st flip zone).  
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Figure 11. Constant spindle speed machining 

for Ap = 1 mm and N0 = 9100 rpm.  
 
6 CONCLUSIONS 

Variable spindle speed machining has been 
studied for high-speed milling at around the 1st 
Hopf and the 1st flip lobes. Stability properties 
were predicted using the semi-discretization 
method, and confirmed by time-domain simula-
tions. Different combinations of the amplitude 
and the frequency of the speed modulation 
were analyzed in order to find the optimal tech-
nique to suppress chatter. It was found that the 
stability properties can always be improved 
(i.e., the critical depth of cut can always be in-
creased) by spindle speed variation within the 
unstable domain of the 1st flip lobe, while there 
are some spindle speeds, where the spindle 
speed variation does not provide any essential 
gain. It was also shown that the amplitude has 
a stronger effect on the stability of the process 
than the frequency.  
Cutting tests were performed for certain spindle 
speeds in the flip domain in order to verify the 
theoretical predictions. The stabilizing effect of 
spindle speed variation was clearly verified ex-
perimentally, a period doubling chatter was 
suppressed by applying a proper spindle speed 
variation.  
The efficiency of spindle speed variation can be 
increased by spindles that are capable to pro-
vide large acceleration. This would allow the 

use of larger range of amplitudes and frequen-
cies. Furthermore, the application of large 
modulation frequencies would decrease the 
principal period of the system that would be 
beneficial for the suppression of transient vibra-
tions.  
Finally, it should be noted, that practically, it 
might be easier to change the spindle speed to 
stable parameter domains rather than applying 
spindle speed variation. For instance, in the 
current study, application of constant speeds 
8900 rpm or 11000 rpm both result in a stable 
machining process, as well, even for depths of 
cut 4-5 mm. However, the structure of the sta-
bility diagram is usually unknown for the ma-
chinist, and to find a stable "window" in the sta-
bility lobe diagram is not a trivial task. For a 
complex part with multiple modes, the lobe dia-
gram is more intricate than that of a single de-
gree-of-freedom system. In these cases, the 
application of spindle speed variation is a more 
practical than searching for stable spindle 
speeds. Furthermore, the spindle speed is of-
ten limited by other technological factors. In this 
context, spindle speed variation is an extra tool 
in addition to the traditional methods that can 
be used in the complex optimization of machin-
ing processes.  
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